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Abstract

Fuel is one main cost driver in the road haulage sector. An analysis of diesel price
variations across different European countries showed that a significant potential for
cutting fuel expenditure can be found in international long-haul freight transporta-
tion. Here, truck drivers are often on the road for several consecutive days or even
weeks. During their trips, they must comply with the rules on driving hours and rest
periods which in the European Union are governed by Regulation (EC) No 561/2006.
In the literature, refueling problems have attracted limited attention so far. In the
present study, we show why a joint consideration of drivers’ rest periods and breaks
and refueling is important and how the choice of time windows, the planning of driver
activities, and the determination of refueling stops and quantities can be done accord-
ingly. For a given sequence of customer locations and gas stations with different fuel
prices along the route chosen to serve these customers we propose a mixed integer
linear programming (MILP) model and describe the corresponding solution process.
In this multicriteria optimization problem with the goals to minimize lateness, trav-
eling time and fuel expenditures, we consider multiple soft time windows at customer
locations. We extend the MILP model developed by Bernhardt et al. (2016) by inte-
grating refueling decisions. Additionally, a preprocessing heuristic is described which
reduces the number of gas stations to be considered along the route and thus the
solution space and the computational effort. Numerical experiments were conducted
for instances derived from real data that include vehicle routes for one week and infor-
mation on gas stations along the vehicle routes. Different parameter settings for the
preprocessing heuristic were analyzed.

Keywords: road transportation, refueling, fuel cost, driver scheduling, rest periods,
breaks, driving hours, Regulation (EC) No 561/2006, mixed integer linear program-
ming models
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1 Introduction

Considering the competitiveness in the road haulage sector, cost levels are a key factor.
According to the European Commission (2014), converging cost structures will more and
more urge transport undertakings to improve their efficiency and quality of service. As
depicted in Figure 1, fuel is a main cost driver and represents between 24% and 38% of
the total costs in the EU member states.1

Figure 1: Cost breakdowns of hauliers from selected EU member states

Considering the 100 largest cities in Germany, price variances may amount up to 22 ct
per liter diesel considering the cheapest and the most expensive price.2 This seems to be
a high cost saving potential but many haulage companies have contracts with fuel card
operators that make diesel prices at gas stations dependent on list prices per country.
In that case, price variations within one country become less important. A significant
potential for cutting fuel expenditure can especially be found in international long-haul
freight transportation. In the European Union, international transport operations account
for almost one third of all road freight transport activities (European Commission (2014)).
Diesel prices vary strongly across different European countries. Variations may amount to
30 ct per liter and more (see Figure 2). Price relations between countries are not constant
over time as the comparison of Figures 2 and 3 shows. This means that even if countries
with cheap diesel prices were chosen for refueling in the past and fixed contracts exist

1 Source: Collection and Analysis of Data on the Structure of the Road Haulage Sector in the European Union,
AECOM 2013 (retrieved from European Commission (2014))

2 Source: clever-tanken.de (2017). The referenced prices include VAT.
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causing traveled routes to remain the same, new refueling plans are necessary regularly to
exploit the cost saving potential.
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Figure 2: Diesel prices excluding VAT in Euro per liter on August 13, 20163

Not only the choice of gas stations but also the refueling quantities have an impact on
the refueling costs of a trip and determining good refueling strategies is a non-trivial task.
Additional cost or non-cost factors can be taken into account and are considered in the
literature (see Section 4).

One important factor is the time needed for detours to gas stations and for refueling and
its impact on driver schedules.

Besides cost levels, quality of service is another important key factor (European Commis-
sion (2014)) for which in the haulage sector punctuality is a quantifiable distinctive feature
for the customer. Lateness may cause contractual penalties and may lower customer sat-
isfaction which has a strong impact on future requests and thus on the economic viability
of a haulage company. The time needed for detours and refueling influences the transport
duration and should be taken into account. In case a cheap refueling may bear the risk of
a late arrival, the refueling plan should be reconsidered.

The cost breakdowns in Figure 1 depict that labor is, with fuel, one of the two main cost
drivers in the road haulage sector. Opportunity costs arise when a driver has to wait several
hours for a new customer time window or until the next day to load and/or unload the

3 Source: Europe’s Energy Portal (2016)
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Figure 3: Diesel prices excluding VAT in Euro per liter on December 9, 2017 4

vehicle because he missed a time window or arrived after the opening hours. If he arrives
much too early, this is disadvantageous as well for the same reason. Finally, one should not
forget the annoyance for the driver if, for example, deviations from the original schedule
disturb his or her plans for the weekend or a resting location with basic amenities.

When planning arrival times at customers for long-haul trips that require several days,
Regulation (EC) No 561/2006 on driving times and rest periods of drivers in road transport
is obligatory in all member countries of the EC. Set up to improve safety and working
conditions of drivers in road transport, they have a high influence on the execution time
of a transport request and disregarding them may be fined severely.

Despite the rules being rather complex in their application, as often many different pos-
sibilities to plan driver activities have to be evaluated, a dispatcher has to set up his
plans ensuring that drivers are able to stick strictly to the regulation. Rest periods and
breaks cannot be split arbitrarily or interrupted to serve customers or to refuel. Thus, it
is not recommendable to consider resting activities in the form of a fixed proportion of
the overall travel time in the schedule when planning arrival times as deviations would
occur frequently. This would be disadvantageous especially if narrow time windows are
involved.
4 Source: Europe’s Energy Portal (2017)
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2 Motivation

Technology as on-board computers, digital tachographs and telematics equipment poses
new challenges for transport companies but at the same time opens many new opportuni-
ties. Online availability of telematics data such as latest position data of drivers and time
management data which reflect their exact status considering rest periods and breaks, gas
station prices and locations are some of the data which could help dispatchers and drivers
in their daily work. As there is plenty of distributed data to be evaluated decision sup-
port systems with advanced planning tools can be an important contribution to support
decision-makers.

Fuel costs and driver rest periods and breaks are two important issues that transport
companies have to take care of to be profitable. Moreover, dependencies between them
suggest a joint analysis to identify good strategies.

Figure 5 shows an example of the interdependencies of planning refueling and choosing
among customer time windows thereby considering daily rest periods and breaks. It is
assumed that the driver crosses two country borders and thus has the possibility to refuel
in three different countries with three different list prices.5 Due to the remaining fuel
quantity in the tank, a "corridor" has been determined in which the next refueling has
to take place such that the vehicle does not run out of fuel. Without considering time
windows, a refueling plan would recommend to stop in the area where the fuel price is
1.10e and completely refill or at least refuel as much as needed to cross the area with a
fuel price of 1.14e. The latter recommendation depends on the development of future fuel
prices in the following regions (countries) to be passed, namely if they are expected to be
cheaper or not.

At the bottom of Figure 5 driver activities were planned without considering the duration
for refueling. The start and the end times of the chosen customer time windows are marked
with bold, black vertical lines. Loading and/or unloading at a customer location has to start
within a time window but can be finished after the upper bound of that time window. The
red vertical lines show the estimated arrival times of the driver at the customer locations.
The symbols that are used to describe driver activities are explained in Figure 4. It can be
seen that there is no lateness and at the first and last customer location the driver even has
to wait 30 minutes until the start of the time window. At the second customer location,
loading and/or unloading is planned to start at the end of the time window and thus any
delays between the first and the second customer would cause lateness.

In this simple example, the estimated duration for refueling is assumed to be 20 minutes,
the times for detours to gas stations are neglected. If we try to bring the two plans together,
the first one only made for refueling, the other one for driver activities (without refueling)
and time windows (see the continuous lines from top to bottom), we see that refueling for
the optimal price of 1.10e would cause lateness at customer 2. If we consider punctuality
to be more important than fuel costs, refueling (at least) has to take place in the corridor

5 For reasons of simplicity we assume that the gas station prices in a country are equal to the list price of this
country.
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with a diesel price of 1.17e if the replanning of time windows, rest periods and breaks is
not to be considered.6

Figure 4: Symbols describing driver activities

Figure 6 shows the advantages of an alternative planning technique which simultaneously
considers the choice of time windows and the determination of driver activities together
with refueling. For the second customer a different time window has been chosen thus
allowing the driver to be on time and also making it possible to refuel for the cheapest
price of 1.10 e. Refueling is depicted in yellow.

Models and algorithms that plan refueling considering restrictions on drivers’ working
hours can be an important value added. Embedded in decision support and planning tools
they can help dispatchers to plan vehicle movements, estimate arrival times at customer
locations and reduce fuel expenditures. But the integration of both issues - the scheduling
of drivers’ rest periods and breaks and the refueling planning - into one planning process has
not been addressed in literature so far. In the following, we will deal with the mathematical
modeling and the integration of the two issues described above into one solution process.

During our research, we cooperated with a medium sized company operating truckload
shipping services in Europe. While a significant part of transport requests result from fixed
contracts, others are not known in advance. Several partner companies pass on requests and
additionally, freight exchanges are used to supplement partial loads or to acquire additional
requests for the return trip. Conversely, shipping orders are passed on to subcontractors.
For our analysis of the developed solution methods, we concentrated on the international
transport requests which represent a large proportion of the business activities of the freight
company. Each request for transportation consists of a pickup and a corresponding delivery
location and often, the locations are far apart of each other. Moreover, for the arrival at
customer locations, opening hours have to be taken into consideration and it is common
that loading and/or unloading at customer locations has to take place during so-called time
windows, i.e. one or several time intervals proposed by the customer among which a choice
has to be made. Especially for this group of requests, the joint consideration of driver rest
periods and breaks and refueling is promising. As national borders are passed and fuel
prices vary considerably across different countries in Europe, there is a high potential to
cut fuel expenditures. Since travel times of several days are considered, the integration of
6 Note that this is a simple example. In reality, if the driver schedule is executed, the complete plan of driver

activities may have to be reconsidered after the first refueling. Because of detours breaks may have to be taken
earlier and because of the additional time required daily rest periods may have to be rescheduled. This is also
the case if gas station prices are neglected.
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1.17 1.10 1.14

distance travelled

160)l 0)l

Refueling here would cause lateness:
Arrival time at the second stop is at the end of the time
window

Refueling here would cause lateness:
Another break would be neccessary

duration refueling:)20)min

Remaining diesel in the tank
3without safety)reserves9

Refueling has to take place in this corridor:

diesel price without VAT)in €/l

Scheduled driver activities without considering refueling:

1:45 0:15 0:30 2:00 2:45 0:30 2:45 2:00 1:45 9:00 0:30

start:)Mon8)08:00 TW:)Mon8)10:30 – 11:00 TW:)Mon8)18:00 – 18:30 TW:)Tue8)12:15 – 12:45

4:30

Figure 5: Planning of rest periods and breaks without considering refueling

rest periods and breaks into the planning of arrival times and the choice of time windows
must not be neglected.

The planning tasks that are relevant for our consideration are distributed among dispatch-
ers, drivers and a decision maker for refueling matters. An on-site process analysis gave
detailed insights into the planning process. Dispatchers are responsible to acquire addi-
tional or to subcontract transport requests, to plan vehicle routes, choose among customer
time windows and plan arrival times. Drivers plan their rest periods and breaks and reg-
ularly inform the dispatcher about their status. The dispatcher uses this information for
the planning of time windows and to react on unforeseen events. The decision maker for
refueling matters analyzes refueling data from the past and negotiates contracts with fuel
card operators. If a gas station is favorable because of its geographical position near to
often traveled routes, the decision maker may try to negotiate a special price and informs
the dispatchers accordingly. Moreover, the tasks include the monitoring of diesel list prices
of the countries and to give advice to the dispatchers in which countries refueling should
preferably take place. The dispatchers inform the drivers about changes in the refueling
strategy that are relevant for the current route. If refueling is necessary, drivers fill up
completely if no cheaper gas stations are expected to be passed until the next refueling
stop. Otherwise, a smaller amount is refueled.
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1.17 1.10 1.14

distance travelled

160Al 0Al

duration refueling:A20Amin

Remaining diesel in the tank
Mwithout safetyAreserves,

Refueling has to take place in this corridor:

diesel price without VATAin €/l

Scheduled driver activities with consideration of refueling:
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Figure 6: Joint planning of rest periods and breaks and refueling

3 Objective

A sequence of customer locations that are assigned to a vehicle in the current week and
the route to be traveled are given. Geographical positions of gas stations along the route
and the corresponding diesel prices are known. Driving durations and fuel consumptions
between consecutive customer locations are additional input parameters as well as the
current time and the driver status concerning rest periods and breaks. As we consider a
planning horizon that comprises several days, we also take Regulation (EC) No 561/2006
on driving times and rest periods of drivers into consideration. For each customer location
there are one or more time windows among which a choice has to be made. The time that
is needed for loading, unloading and handling activities at each customer location is given
as well.

The objective is to optimally choose customer time windows and gas stations, plan refueling
amounts and schedule driver activities including refueling with the goals to maximize
punctuality, i.e. to minimize lateness, and to minimize fuel costs. Inefficiencies that arise
from the distributed decision making of drivers and dispatchers shall be minimized by
considering these tasks simultaneously and determining a global optimum. Minimizing
lateness and minimizing fuel costs are two conflicting goals. For example, choosing a very
cheap gas station may cause a greater detour distance and travel duration. This may lead
to lateness at following customer locations that could have been avoided by choosing a
different gas station for refueling that is more expensive but causes less detour duration.
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The MILP model that will be proposed builds on the MILP model with optional rules7 for
scheduling driver rest periods and breaks described in Bernhardt et al. (2016). Before we
start to describe the model, we give a review of the literature dealing with vehicle refueling
problems in Section 4. For a review of research on including regulations concerning rest
periods and breaks in operational transportation planning considering Regulation (EC) No
561/2006 we refer to Bernhardt et al. (2016). Then, in Section 5, different graph structures
for the refueling subproblem are analyzed and a graph structure together with the corre-
sponding model is chosen to work with. In Section 6 it is shown how to merge the MILP
model chosen in the previous step and the MILP model with optional rules developed by
Bernhardt et al. (2016) to simultaneously plan refueling, customer time windows and driver
activities in accordance with Regulation (EC) No 561/2006. The solution process to solve
the resulting multicriteria optimization problem with the help of an optimization solver is
described in Section 7. The creation of base instances for our numerical experiments is
presented in Section 8. A heuristic preprocessing which was used to eliminate unattractive
gas stations and thus to reduce the problem size is introduced in Section 9. In Section 10,
the environment and the different parameter settings for the numerical experiments are
described. The analysis is given in Section 11. Section 12 summarizes our findings and
identifies directions for future research.

7 In Bernhardt et al. (2016) two MILP models, one which considers the optional rules of Regulation (EC) No
561/2006 and one that ignores these rules, are developed. Both can be chosen as basis but in our mathematical
experiments we concentrated on the one with optional rules.
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4 Literature review

In the literature different refueling problems are analyzed. Besides studies for the road
transportation sector, there are works that deal with refueling problems in railroad net-
works, the airline industry and maritime transportation. The positioning of fueling facilities
is also a field of research.8

In the following review we consider studies that concentrate on road transport and vehicle
refueling problems that include the identification of gas stations to be visited and the
amounts of fuel to be purchased. For other modes of transportation we refer to Suzuki
and Dai (2013) who propose corresponding literature. Routes may be given in advance or
chosen together with the refueling strategy.

In the problem considered by Lin et al. (2007) the vehicle traverses a series of gas stations
with different fuel prices while traveling along a fixed route. Detours to gas stations are
ignored. At each gas station a decision has to be made on how much to refuel. The goal
is to reach the destination with minimum total fuel costs. Lin et al. (2007) relate the
problem to the inventory-capacitated lot-sizing problem and propose a linear-time greedy
algorithm. The idea is at each gas station to fill just enough to reach the next cheaper gas
station or to fill up the tank if no cheaper gas station is reachable even with a full tank.

Lin (2008b) deals with the problem of finding an optimal refueling policy in a transportation
network with fixed start and target vertices. The other vertices are gas stations with
different fuel prices and other locations such as cities, suppliers or customers that may be
but do not have to be visited. The goal is to find the cheapest path in the transportation
network along with the corresponding refueling quantities without running out of gas. The
starting and ending fuel levels may be arbitrary between a minimum fuel level (reserve
quantity to remain in the tank at all time) and the tank capacity. Lin (2008b) takes
all possible integer fuel levels per stop into consideration and proposes a polynomial time
dynamic programming algorithm to solve the problem depending on the number of vertices
and the difference between the minimum fuel level and the tank capacity.

Khuller et al. (2007) consider several different refueling problems. One of them is the same
problem addressed by Lin et al. (2007). Another one is the "gas station problem", which
is similar to the problem addressed by Lin (2008b) with the difference that the ending
fuel level is set to be equal to the minimum fuel level. Khuller et al. (2007) present a
different dynamic programming recursion to solve the problem. For the all-pairs version,
a faster algorithm is proposed. Both algorithms run in polynomial time. Khuller et al.
(2007) also study the "tour gas station problem" where a set of cities has to be visited
in arbitrary order in a minimum cost tour. There may be cities with gas stations but
some cities may not have a gas station. Gas stations located outside of cities may also
be visited for refueling. Khuller et al. (2007) at first concentrate on the uniform cost case
where fuel prices are the same everywhere. As a generalization of the traveling salesman

8 Corresponding literature is presented for example by Suzuki (2008).
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problem (TSP) the problem is NP-hard. Under certain assumptions9 the "uniform cost
tour gas station problem" can be reduced to the TSP and can be solved with standard
techniques. Building upon the Christofides heuristic for the TSP, the authors develop an
approximation algorithm for the more general problem where for each city to be visited
there is a gas station within a specified distance with a fuel consumption of less than a half
of the tank capacity. This algorithm is used within the heuristic for the "tour gas station
problem" with arbitrary fuel prices. In the "sequence gas station problem", a cheapest
way from a source to a final destination has to be found in the transportation network,
visiting a set of locations in a given order. This problem can be reduced to the original gas
station problem. The technique used will be discussed later when we consider the different
possible graph structures (see Section 5). At last, Khuller et al. (2007) consider the "single
gas station problem" where the vehicle starts from the gas station and always has to return
to it before it runs out of gas while visiting a number of cities.

Lin (2008a) considers a refueling problem that is similar to the gas station problem ad-
dressed by Lin (2008b). By analyzing the structure of optimal refueling policies he reduces
the problem to the classical shortest path problem. For this purpose, a transition graph
is derived from the original graph, modeling all extremal transitions between gas stations
where the vehicle arrives with the lowest fuel level allowed and gas stations that are left
with a full tank. A corresponding distance measure that represents the transition cost is
introduced. Lin (2008a) presents an algorithm that is faster than the one proposed by
Khuller et al. (2007) for the all-pairs version. In addition, on the basis of the all-pairs
version, he gives a solution method for the single-pair case with given ending fuel level
that may differ from the minimum fuel level.

Lin (2016) shows how to efficiently maintain and update routing and refueling information
to be able to determine an optimal refueling strategy in quadratic time depending on the
number of gas stations (n). With the help of shortest path trees and the usage of the
transition network described in Lin (2008a), important routing information is determined
in O(n3) time using quadratic space which also depends on n.

Suzuki (2008) refers to software products already in use by transport companies in the
United States to plan vehicle refueling. He develops a mathematical programming model
that mimics the behavior of standard fuel-optimizer products such as ProMiles, Expert
Fuel, Fuel and Route, or Fuel Advice. The model can be used to optimally plan refueling
stops at gas stations along with refueling quantities for a given route considering detour
distances to and from gas stations. He stresses additional parameters that are taken into
account by most fuel optimizer packages that are important in practice. These include,
for example, the detour distances to gas stations or the availability of certain amenities
to be able to eliminate unattractive gas stations that are far off the route or that do not
have shower facilities. A minimum purchase quantity allows to control the frequency of
refueling stops. A limitation to "network" gas stations (i.e. gas stations with purchase
contracts) has also to be taken into account. Suzuki (2008) identifies the shortcoming with
respect to other non-fuel cost elements that are interconnected with out of route miles to
gas stations and the frequency of refueling stops such as vehicle deprecation cost, vehicle

9 It is supposed that every city has a gas station and the largest distance between any two cities is less than or
equal to the tank capacity. No additional gas stations are considered, i.e. the set of gas stations is equal to the
set of cities to be visited.
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maintenance and opportunity costs in standard fuel optimizer software. He also stresses
the underestimation of cost elements such as fuel consumption rates on non-highway roads
that are of special importance if highways are left and detours to visit cheap gas stations
are accepted. In Suzuki (2008) a MILP formulation is introduced to include such cost
components in order to minimize the total cost of operating a vehicle in a given route.
Numerical results for randomly generated instances are presented that compare the fuel
purchasing cost and the total vehicle operating cost for the solutions obtained with the
standard fuel optimizer model with those of the extended version. As solution method,
the simplex algorithm in conjunction with the branch-and-bound method is used.

Suzuki (2009) addresses a refueling problem that differs from the ones discussed so far.
Usually, refueling strategies applied by standard-optimizer products deal with the questions
which gas stations to choose and how much fuel to purchase. Suzuki (2009) mentions that
transport companies are reluctant to introduce fuel optimizer products as they are afraid to
suffer from limited actual cost savings because of low driver compliance rates and they even
fear that drivers may move to other companies. He proposes a method that considers fuel
price fluctuations over time and allows drivers to freely choose the gas stations they wish to
visit. It is assumed that drivers take their daily rest period at a parking area of a truck stop
where they also refuel. A corresponding refueling policy comprises the decisions on whether
to refuel before or after taking a daily rest period at a truck stop chosen by the driver and
on the refueling quantity. The latter may be equal to the minimum purchase quantity or
the amount needed to fill the tank completely. Expected future prices at subsequent gas
stations are taken into account by the stochastic dynamic programming model proposed.
To predict future fuel prices at truck stops the OPIS (2017) database which provides fuel
price information for truck stops in the U.S. and Canada is used. Computational results
for randomly generated test instances are presented, comparing the costs for the case of
random refueling behavior, those obtained when using the standard fuel optimizer model
and those provided by the method proposed. Considering several scenarios, not only fuel
costs but also driver compliance rates and driver replacement costs are taken into account.
Although the lowest fuel cost is attained for the standard fuel optimizer model, under
certain conditions the overall cost savings are higher for the proposed method.

Suzuki and Dai (2013) consider the vehicle refueling problem in combination with the route
selection and propose a corresponding bicriteria MILP model. In contrast to Lin (2008a,b)
and Khuller et al. (2007), the presented transportation network comprises vertices solely
incorporated for the route selection subproblem. Gas stations are considered between each
pair of those vertices in a similar way as it is done by Suzuki (2008, 2009) for the fixed
path refueling problem. Additional constraints involve a limit on the maximum number
of refueling stops and a limit on the maximum route duration. The duration for refueling
is considered to be constant. Suzuki and Dai (2013) emphasize that it is important to
consider both, fuel costs and vehicle miles and thus also integrate pollutants emission
caused by increased fuel consumption into the decision process. The authors propose
an optimization technique that involves the usage of a commerical optimization solver to
construct the Pareto front. Different strategies are proposed to select the final solution
according to the user preferences.

Suzuki (2014) outlines that there is no efficient algorithm in the literature that can solve
the complex fixed-route vehicle-refueling problem to optimality taking into account the
minimum refueling quantity as well as detour distances to gas stations. He suggests the
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usage of a preprocessing heuristic to eliminate gas stations that are guaranteed not to be
chosen for refueling in the following solution process. For 16 instances based on real data
provided by a fuel optimizer vendor, the variable-reduction technique removed between
46.9% and 60.1% of the gas stations. On average, this reduced the run time to about one-
fourth of the original time needed to find an optimal solution. Suzuki (2014) also considers
the solution quality of solutions determined by the heuristic used in the software of the fuel
optimizer vendor. For the instances considered the difference between the optimal solution
and the one determined by the heuristic method was 0.3%. In some of the solutions
produced by the software of the fuel optimizer vendor, less than the minimum purchase
quantity was refueled at gas stations implying that the minimum purchase quantity is
considered as a soft constraint.

The weight of the fuel in the tank as a variable part of the overall weight of the vehicle has
an influence on the fuel consumption. Suzuki et al. (2014) aim at incorporating this weight
as a factor for refueling decisions modifying the standard fuel optimizer model presented by
Suzuki (2008, 2009) accordingly. Additionally, they consider the possibility to modify the
minimum quantity of fuel to be left in the tank to not run out of fuel in case of unforeseen
events depending on the gas station density that varies along the route. For the resulting
nonlinear model, the authors propose a simple heuristic approach. To this end, they develop
a relaxed MILP model based on the standard fuel optimizer model. By adding a penalty
term in the objective function, the portion of the fuel tank that is never used is rewarded.
The minimum fuel level is set per route segment. In their experiments, Suzuki et al. (2014)
show the saving potential of their approach compared to the standard approach. They
discover that in their experiments the overall fuel consumption is only reduced by up to
0.25%, whereas the savings in the overall fuel costs amount up to 1.74% compared to the
standard approach presented in Suzuki (2008, 2009). This indicates that the reduction of
the minimum fuel level for areas with a high gas station density is taken advantage of very
extensively. At cheap gas stations, this allows to buy more fuel. Suzuki et al. (2014) also
argue that the effectiveness of their approach may improve as the maximum tank capacity
increases. Based on Suzuki (2008), the authors also consider the impact of their approach
on non-fuel cost. Since in their approach the detour distance and the frequency of refueling
stops is decreased, the sum of other (direct and opportunity) costs associated with detour
distances and durations and the time needed for additional refueling stops is reduced as
well.

Lin (2014) introduces two MILP models for vehicle refueling problems with route selection
in a transportation network that is similar to the network considered by Lin (2008a,b).
The models either minimize fuel cost or travel time giving an upper bound on the overall
travel time10 or the fuel cost, respectively, and thus only differ by the objective function
and a single constraint that has to be chosen accordingly. First, the author proposes a
formulation that restricts the solution space to only allow a simple path and then shows
how to relax this condition.

Lin (2015) proves that the computational task to solve the MILP models presented in
Lin (2014) is NP-complete even if fuel prices do not vary or the fuel consumption and
the travel time are linearly dependent. For these two cases the author proposes two fully
polynomial-time approximation schemes.

10 Note that this is equivalent to having a customer time window at the target location.
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Vehicle refueling in the context of vehicle routing problems with time windows is considered
by Bousonville et al. (2011). In this study, the standard fuel optimizer model introduced
by Suzuki (2008, 2009) is extended considering additional vertices representing customer
locations with time windows. The resulting graph structure with detour distances to gas
stations is obtained by mapping gas stations into the main path. Thus, the detour from
the route to a gas station may differ from the detour from that gas station back to the
route. The resulting model is used to integrate refueling decisions into the Solomon I1
heuristic (see Solomon (1987)) for solving the VRPTW. Test instances are constructed on
the basis of the well-known Solomon benchmark instances. The numerical results show the
impact of price variations on the tour length.

Suzuki (2012) considers vehicle refueling in combination with the time-constrained single-
vehicle routing problem (traveling salesman problem with time windows, TSPTW). He
proposes a two-stage solution technique. In the first stage, the TSPTW is solved using a
variant of the simulated annealing technique. Not only the best feasible tour is kept but
also the M best feasible tours. In the second stage, for each tour chosen from a subset of the
M tours determined in stage one a MILP model is solved using the simplex algorithm. The
chosen subset depends on a customizable parameter. Similar to Bousonville et al. (2011),
the MILP model is an extension of the standard fuel optimizer model with additional
time window constraints. Strategies for improving solution time are discussed. Numerical
experiments for the proposed method are conducted for three real-word instances and a
set of hypothetical instances (simulation experiments). The solution quality and the run
time are compared to benchmark methods.

In the literature, no algorithms or models have been proposed so far that simultaneously
plan vehicle refueling along with driver rest periods and breaks. The main contribution of
this study is to present a MILP model to fill this gap.
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5 Graph structures

In the literature dedicated to refueling problems, different graph structures are analyzed.
Three of them are interesting for our objective and will be described in the following.
Additionally, we will show their possible integration with the graph structure of the MILP
models developed by Bernhardt et al. (2016)11 for the scheduling of driver activities with
multiple soft time windows considering European regulations on rest periods and breaks.
Before we start discussing the different graph structures, we first describe the input of the
problem we addressed in Bernhardt et al. (2016).

The starting point of the problem consists of an origin location, a sequence of customer
locations which have to be visited by the vehicle for loading and/or unloading goods and
a final destination. Regulation (EC) No 561/2006 on rest periods and breaks should be
taken into account. To be able to plan in a rolling horizon manner and to reschedule
activities in case of unforeseen events, the driver status at the beginning of the planning
process provides information about when the next daily or weekly rest period or break is
necessary. Moreover, it also gives information on the usage of the optional rules. Thus,
the planning may start at the beginning of the week but it is also possible during the
week in case that the driver has already started to serve customer requests. We do not
consider customer locations with time windows that start after the presumed end of the
next weekly rest period. This means that we do not schedule driver activities spreading
over two weeks. Loading and/or unloading at customer locations has to start within time
windows or opening hours (modeled as large time windows). Multiple time windows may
be available and a choice has to be made. We allow lateness but we penalize it in the
objective function to be able to give feedback to the dispatcher in case that there does
not exist a solution without lateness. Driving durations between consecutive locations and
estimated durations for loading, unloading and handling activities are known.

To integrate refueling decisions and to determine the corresponding input parameters, at
first a decision about the problem definition and the degree of abstraction has to be made.
For two of the graph structures described in the following it is assumed that the choice
for the optimal route to serve the customers has been made in advance. In one of these
graph structures the problem is reduced by neglecting detours to gas stations. The third
graph structure bases on the idea that for the choice of a route prices and locations of gas
stations already play an important role. It can be argued that when choosing the route
independently gas stations along the route may be very expensive and detour distances
may be large as this was not included into the decision. This can be overcome when
integrating the choice of gas stations into the process of finding an optimal route between
consecutive customers. Therefore, the graph structure of this subproblem represents a
complete transportation network with vertices for customer locations and for gas stations
and arcs between them.
11 An integration is possible for both models, for the one that considers the optional rules and the one that ignores

them. In the next section, we show the integration for the model with optional rules. Numerical experiments are
only described for the MILP model resulting from this step. If optional rules are not considered, then constraints
(6.14) and (6.15) must be dropped and the objective function (6.26) has to be modified. For reasons of simplicity,
in the following, we talk about "the MILP model developed by Bernhardt et al. (2016)" referring to the model
which considers the optional rules.
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Independently of the graph structure that will be chosen, the goal is to select time windows
and gas stations, determine refueling quantities and plan driver activities that comply with
Regulation (EC) No 561/2006 in such a way that lateness, overall travel time and fuel
expenditures are minimized. Whether or not we include routing decisions will be revealed
at the end of this section.

We will now describe the three approaches in more detail and will explain their advantages
and disadvantages.

Lin et al. (2007) consider refueling along a fixed route. No detours to gas stations are taken
into account. Adapted to the problem of finding an optimal refueling policy between an
origin and a destination where no refueling may be allowed at the origin and destination,
the resulting linear graph for n locations (origin, destination and n− 2 gas stations) looks
like the upper graph depicted in Figure 7. The origin may be the start location for the
vehicle at the beginning of the planning horizon or a customer vertex where loading and/or
unloading takes place. The destination may be the subsequent customer location or the
end location that should be reached until the end of the planning horizon. For a sequence of
customer locations to be visited, the corresponding graph is shown below. The r different
locations (origin, destination, customer locations and gas stations) are numbered from 0
to r−1. It is simply the concatenation of origin and destination pairs and the linear graph
structure remains.

Figure 7: Linear graph

The disadvantage of this graph structure is the underlying assumption that gas stations
are always located on the route or at least extremely nearby such that detours to reach
gas stations and to return to the route may be ignored. Gas stations located along the
motorways are usually more expensive than stations that are a little farther away even if
fuel cards are used. In addition, neglecting gas stations requiring a detour may reduce the
solution space too much. On the other hand, considering gas stations with a detour but
ignoring the detour distance will lead to solutions that are suboptimal in practice. As a
detour to a gas station consumes time and fuel we actually want to know whether a price
difference is worth a detour. Detours not considered in the planning phase may jeopardize
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the driver schedule and thus a punctual arrival at customer locations. Furthermore, they
may lead to higher fuel expenditures than originally expected.

In Lin (2008a,b) and Khuller et al. (2007) (in their gas station problem), refueling in a
transportation network is considered. In the basic problem, only the origin and destination
vertices are set in advance, other vertices that represent gas stations or other locations may
or may not be visited and together with the origin and destination pair form a complete
graph. The goal is to find the cheapest path from the origin to the destination. Extended
by vertices for customer locations that have to be visited, the complete graph looks like
the one depicted in Figure 8 in the upper part. To ensure that the sequence in which the
customer locations have to be visited is kept, we need an extension. Khuller et al. (2007)
call the underlying problem of finding the cheapest way starting from an origin to a final
destination visiting a set of locations in a given order during the trip "the sequence gas
station problem". For this task, the authors provide a corresponding graph structure. For
each location in the sequence that is not equal to the origin or destination, a copy of the
complete graph is made, i.e. if n is the number of these locations, n−2 copies are obtained.
These graphs are joined by merging the equivalent to the i-th location (unequal to origin
and destination) of the sequence from the i-th copy with the one from the (i+ 1)-th copy.
If there is at least one customer location to be considered, the original graph is jointed with
the first copy by merging the first customer location and its equivalent in the copy. Figure
8 demonstrates the case of one location that does not equal the origin or destination.12

Thus, the "sequence gas station problem" can be reduced to the "gas station problem",
as a solution to the original problem can be obtained by finding an optimal path from the
origin to the destination in the new graph.

One major drawback of this representation is the huge number of additional indicator
variables that have to be provided when describing the graph in a mathematical model. If
n is the number of locations to be visited, including the origin and destination, andm is the
number of gas stations, the whole graph has a number of arcs equal to (n− 1)(n+m)(n+
m−1). If in our mathematical model each arc is connected with the decision on whether or
not to use this arc in the solution, we obtain for the case of only 10 locations to be visited
in a sequence including origin and destination and 20 gas stations 7830 binary decision
variables. Additional decision variables that are relevant to model rest periods and breaks
on arcs have to be considered for each arc. However, there are additional reasons against
this graph structure. In practice, an optimal route between locations is chosen based on
different criteria, not only depending on refueling costs. Relevant aspects are, for example,
the driving duration, toll costs, suitability of the streets for trucks, durations of border
controls and regional holidays with driving bans. Therefore, it is not a good idea to base
the choice of routes between customer locations solely on the selection of gas stations. As
long as other aspects to be taken into account cannot be formalized in a sufficient way and
integrated in the routing decision, it is better to directly plan the routes between customer
locations and try to stick to them as much as possible.

The mathematical models presented by Suzuki (2008, 2009) build upon the standard fuel
optimizer model. The underlying idea of this model is that drivers follow the route pre-
viously determined (for example by a routing algorithm and then modified to also take

12 Note that in Figure 8 a consecutive numbering of all locations, including gas stations, is chosen. The vertex with
number 2 represents the first location of the sequence of locations that have to be visited.
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Figure 8: Subgraphs as copies of a complete graph merged at customer vertices
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care of the aspects described above) and only leave it for refueling to return to the route
afterward (see the upper graph in Figure 9). To simplify the problem, it is assumed that
the route is left for refueling and entered after refueling at the same position and that the
detour distances to and from the gas station are the same. In reality, this may not always
be the case, especially if the motorway is left for refueling. However, this graph structure
allows us to consider detours without considering complete subgraphs for refueling. The
original route is kept and only extended by detours. If a decision variable indicates that
a gas station is chosen for refueling, the consumption for the detour to the gas station
is added to the consumption for the path between the preceding location (gas station,
customer location, origin or destination) and this gas station. The path between this gas
station and the next location is extended by the detour from the gas station back to the
route. Due to the reasons described above and the drawbacks of the other graph structures
we decided to use this base graph structure to model the combined problem of planning
refueling, customer time windows and driver activities in accordance with Regulation (EC)
No 561/2006.

The extended graph for a sequence of customer locations is depicted in Figure 9 at the
bottom. Note that in contrast to Suzuki (2008) and similar to Bousonville et al. (2011) we
decided to allow detour consumptions (and durations) to and from gas stations to differ.

Figure 9: Linear graph supplemented by detour arcs

To allow for the consideration of fuel consumption that depends on route lengths and also
on properties like road types and geographical data and to enable the possible usage of
historical fuel consumption rates for route segments often traveled, we do not consider
fixed fuel consumption rates as input parameters but a concrete fuel consumption for each
path between locations.

In the following section we will extend the standard fuel optimizer model presented by
Suzuki (2008) and show the necessary changes on the MILP model developed by Bernhardt
et al. (2016) to be able to merge the two models.
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6 Mathematical formulation

In the following, we show how to merge the two MILP models, the standard model for
refueling decisions as described by Suzuki (2008, 2009) and the model for rest periods and
breaks from Bernhardt et al. (2016) and which modifications have to be made. Figure 10
takes up again the graph structure from Figure 9.

Figure 10: Parameters for driving durations and consumptions and time windows

The factory symbol emphasizes that the sequence of locations between the origin and
destination consists of customer locations where loading and/or unloading takes place.
A consecutive numbering is chosen for all locations, i.e. for origin, destination, customer
locations and gas stations not differentiating between the kind of location. For the sorting
of gas stations the point where the route has to be left to head for the corresponding gas
station is the decisive criterion. Note that only gas stations that lie in a previously specified
(linear or real) distance to the route are relevant and are listed with their detour durations
(∆̄drTo

i and ∆̄drFrom
i for the detour duration to and from the gas station i, respectively)

and detour consumptions (∆̄consTo
i and ∆̄consFrom

i for the detour consumption to and from
the gas station i, respectively) as potential refueling points.

Observe that if a gas station can be visited between several consecutive customer locations,
it is listed for each of those pairs. Thus, depending on the time windows, it can be decided
between which pair(s) of customer locations the gas station shall be visited if it is chosen
for refueling. We used a mapping table to memorize the assignment of customer locations
and gas station IDs to location numbers.

The set of all locations is given by Slocations. To differentiate between location types,
Scustomers denotes the set of all customer locations and Sstations denotes the set of all gas
stations. The origin and destination are mapped by the first vertex 0 and the last vertex
r − 1, respectively.

Driving durations and fuel consumptions between two consecutive locations i and i + 1
without detours (in case one or both locations are gas stations) are given by ∆̄dr

(i,i+1) and
∆̄cons

(i,i+1), respectively.
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Similar as in Bernhardt et al. (2016), each customer location has at least one time window,
i.e. a time interval in which the loading and/or unloading of goods should start. We consider
multiple customer time windows, as in reality, a dispatcher often has the possibility to
choose among a set of time windows proposed by a customer. The start of the z-th time
window interval at location i is given by TW begin

iz , the end by TW end

iz (z = 0, 1, ..., nTWi−
1).

In Section 6.1, we describe the modifications that have to be made for constraints adopted
from the MILP model described by Bernhardt et al. (2016) to be able to integrate the time
aspects of refueling decisions. Then, in Section 6.2 additional parameters, variables and
constraints are introduced. A complete list of all parameters and variables of the whole
MILP model is given in Appendix A.

6.1 Modifications for constraints from the model for rest periods

and breaks

All constraints from Bernhardt et al. (2016) are adopted for the extended vertex set that
now additionally consists of refueling vertices. Some modifications are necessary and will
be described in the following.

In the MILP model of Bernhardt et al. (2016), the driving durations between two consecu-
tive locations ∆̄drive

i,i+1 were constant. As now gas stations are included in the list of locations,
the durations contain a variable part if at least one of the locations is a gas station. De-
pending on whether a gas station i is chosen for refueling (αrefuel

i = 1) or not (αrefuel
i = 0),

out of route driving durations have to be added. Note that ∆̄drTo
i and ∆̄drFrom

i are set to
be zero if location i is no gas station. In the equality conditions (6.1) to be added to the
MILP model the driving duration from gas station i to the point where the route is entered
is added if i is a gas station chosen for refueling. The driving duration to gas station i+ 1
is added if i+ 1 is chosen for refueling.

∆dr
(i,i+1) = ∆̄dr

(i,i+1) + ∆̄drFrom
i αrefuel

i + ∆̄drTo
i+1 αrefuel

i+1 ∀ i ∈ Slocations (6.1)

As a vertex may represent a customer location or a gas station, there are two different
kinds of working activities that may take place: working activities associated with loading
and/or unloading or refueling. Both can be treated similarly as far as time aspects are
considered. It is important to know the estimated duration of the working activity. A new
variable ∆work

i is introduced that represents the duration of the working activity at location
i (see (6.2)). It is composed of the working time for refueling ∆̄refuel and the working time
for loading and/or unloading ∆̄service

i . The working time for refueling is set to be zero for
all non gas station locations. For reasons of simplicity it is assumed to be constant for each
gas station and it is only taken into account if the corresponding gas station i is chosen for
refueling (αrefuel

i = 1). The working time for loading and/or unloading is set to be zero
for all non customer locations.
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∆work
i = ∆̄service

i + ∆̄refuel αrefuel
i ∀ i ∈ Slocations (6.2)

The constants ∆̄drive
i were substituted by the variables for driving durations ∆dr

(i,i+1) and
the constants ∆̄service

i were substituted by the variables for the duration of working time
at locations ∆work

i in all constraints of the MILP model of Bernhardt et al. (2016) where
these constants appeared. This affected the constraints for the driving time left until the
next break or daily rest when entering vertex i (variables Edt

i ), the daily driving time left
until the next daily rest (variables Eddt

i ) and the overall time left until the next daily rest
(variables Et

i ) upon arrival at a location i. Here, ∆̄drive
i had to be substituted by ∆dr

(i,i+1).
∆̄service

i was replaced by ∆work
i in the constraints for the time left until the next daily rest

period when leaving i, Lt
i. In the constraints for the begin of service, both, ∆̄drive

i and
∆̄service

i have been substituted accordingly.

Time windows are only considered for customer locations and the final destination. The
constraints which state that exactly one time window has to be chosen for each location
are customized to a limited vertex set (see (6.3)). The start of loading and/or unloading
is restricted by time windows. We decided to not consider time windows at gas stations
(nTWi, the number of time windows at location i, is equal to 0 for all i in the set of gas
stations Sstations) and therefore, inequalities (6.4), that state that loading and/or unloading
only can start after the the lower bound of the time window interval, can be adopted
without modifications.13 The variable twiz is equal to 1 if time window z at location i is
chosen and 0 otherwise.

nTWi−1∑
z=0

twiz = 1 ∀ i ∈ Scustomers ∪ {r − 1} (6.3)

starti ≥
nTWi−1∑

z=0

TW
begin

iz twiz ∀ i = 1, . . . , r − 1 (6.4)

Lateness at location i is denoted by ∆late
i . Since no lateness is considered at gas stations,

only the vertex set Scustomers∪{r−1} is covered by the modified lateness constraints (6.5).
For gas station vertices, lateness is set to be equal to 0 by the new equations (6.6).

∆late
i ≥ starti −

nTWi−1∑
z=0

TW
end

iz twiz ∀ i ∈ Scustomers ∪ {r − 1} (6.5)

∆late
i = 0 ∀ i ∈ Sstations (6.6)

13 Although time windows can be used to model opening hours of gas stations, this adds more complexity to the
model and does only make sense if opening hours of gas stations are maintained.
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To restrict the solution space, we allow daily rest periods in vertices associated with gas
stations only in cases where they are necessary for refueling because the time left until the
next daily rest period is exhausted. The auxiliary binary variables λ7i are introduced to
model the corresponding constraints (see (6.7) to (6.11)).

900 λ7i ≥ Et
i − ∆̄refuel αrefuel

i ∀ i ∈ Sstations (6.7)

900
(
λ7i − 1

)
≤ Et

i − ∆̄refuel αrefuel
i ∀ i ∈ Sstations (6.8)

αrest
i ≤ 1− λ7i ∀ i ∈ Sstations (6.9)

αrest
i ≤M

(
∆̄refuel αrefuel

i − Et
i

)
+ (M + 1) 900 λ7i ∀ i ∈ Sstations (6.10)

λ7i = 0 ∀ i ∈ Scustomers ∪ {0, r − 1} (6.11)

Constraints (6.7) set λ7i to be equal to 1 if there is still time left until the next daily rest
period after refueling without taking a daily rest period in advance. Constraints (6.8)
ensure that λ7i is equal to 0 in case that refueling takes place at gas station i and this is not
possible without taking a daily rest period. Constraints (6.9) then state that a daily rest
period in vertex i may only be taken if λ7i is equal to 0. In case that the time needed for
refueling suffices exactly without taking a daily rest period, λ7i may take on both values,
1 or 0. To ensure that no daily rest period is taken in that case, constraints (6.10) are
introduced with M chosen sufficiently large.14 λ7i is set to be 0 for all non gas station
vertices by (6.11).

Waiting time, breaks and partial breaks at gas stations are prohibited by constraints (6.12),
(6.13) and (6.14) as such activities from a mathematical point of view do not bring any
benefits. Waiting time can always be postponed to the next customer location or be used
to extend the duration of a daily rest period without worsening the solution value. If a

14 Continuous variables that consider time aspects are the variables starti, ∆late
i , ∆dr

(i,i+1), ∆work
i , Edt

i , Eddt
i ,

Et
i , Ldt

i , Lddt
i , Lt

i, ∆rest
(i,i+1), ∆rest

i and ∆wait
i (see the Appendix for details on these variables). If all input

parameters except the parameters that consider refueling are integer, we can assume, because of the structure
of the constraints, that if there is an optimal solution these variables are integer or there is another optimal
solution in which this is the case. For example, let us consider the arrival time at a location starti (see Bernhardt
et al. (2016) for corresponding constraints). The "arrival" at the origin, start0, is defined as the sum of integer
parameters multiplied with integer variables and the continuous variable for the duration of a rest period at the
origin if a daily rest period is taken there. starti+1 is again the sum of terms that are integer by definition,
starti, ∆wait

i+1 , ∆rest
i,i+1 and ∆rest

i+1 . Because the lower and upper bounds of all time windows are chosen to be
integers (minutes from the beginning of the planning horizon), choosing the variables for resting and waiting
not to be integer cannot improve the solution value considering objective function (6.24) (or (6.25)). Similarly,
it can be assumed that if there is a solution, there is an optimal solution with all Et

i being integer. Therefore,
in (6.10) it suffices M to be equal to 1, as if there is a solution then there has to be an optimal one for which
the value of |∆̄refuel αrefuel

i − Et
i | is either 0, or greater than or equal to 1. Hence, in case the time does not

suffice for refueling, λ7
i can be set to be zero by (6.8) without eliminating all optimal solutions by (6.10). If input

parameters are chosen differently, M has to be adjusted accordingly not to miss optimal solutions.
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break is needed to reset the time interval until the next break, it can also be taken later
on the way from the gas station to the next location and therefore may be mapped onto
the corresponding arc. As there are no additional waiting times considered at gas stations
that can be compensated by breaks or partial breaks, αbreak

i , the variable that is equal to
1 if a break is taken in vertex i and 0 otherwise, and αpbreak

i , the variable that indicates if
a partial break is taken in vertex i, are set to be zero for all gas stations i ∈ Sstations.15

∆wait
i = 0 ∀ i ∈ Sstations (6.12)

αbreak
i = 0 ∀ i ∈ Sstations (6.13)

αpbreak
i = 0 ∀ i ∈ Sstations (6.14)

A partial daily rest period αprest
i for i ∈ Sstations is only allowed if it substitutes a break on

the preceding arc (see (6.15)). Note that if the variable µprest
i is equal to one, this indicates

that the partial daily rest period planned αprest
i is not taken upon arrival at gas station i

but "substitutes" a break between location i − 1 and gas station i. That means that the
last resting activity between location i− 1 and gas station location i is a partial daily rest
period although the number of breaks on the arc Abreak

(i−1,i) would suggest another break.

αprest
i ≤ µprest

i ∀ i ∈ Sstations (6.15)

6.2 Refueling constraints

The refueling constraints (6.16) to (6.20) originate from the standard fuel optimizer model
described by Suzuki (2008, 2009) and reflect the two following decisions:

• where to refuel (i.e. determination of refueling locations) and

• how much to refuel (i.e. determination of refueling quantities).

Ti ≥ T̄min ∀ i ∈ Slocations (6.16)
Tr−1 ≥ f̄ end (6.17)

∆refuel
i ≥ ∆̄min αrefuel

i ∀ i ∈ Slocations (6.18)

∆refuel
i ≤ T̄max αrefuel

i ∀ i ∈ Slocations (6.19)

∆refuel
i ≤ T̄max − Ti ∀ i ∈ Slocations (6.20)

The amount of fuel in the tank, either at gas station i before purchasing fuel if gas station
i is chosen for refueling (∆refuel

i = 1) or at the corresponding leaving point (if ∆refuel
i = 0),

15 Estimated waiting times at gas stations, such as waiting in line until refueling is possible or waiting in line for
paying, are included in the parameter ∆̄refuel and are not intended to be used for a break by the MILP model.
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is denoted by Ti. Constraints (6.16) ensure that the amount of fuel in the tank never falls
below the defined reserve quantity T̄min. The minimum amount of fuel to be left in the
tank at the final destination given by f̄ end is ensured by (6.17). Constraints (6.18) state
that in case that refueling takes place at gas station i, the purchased amount ∆refuel

i has to
be higher or at least as much as the minimum purchase quantity ∆̄min. These constraints
serve to raise the acceptance of drivers as they may not be willing to stop frequently for
refueling very small amounts.16 In addition, they are important if minimum purchase
quantities are necessary to get a discount. If no refueling takes place at location i, the
refueling quantity is set to be 0 by constraints (6.19). Taking into account the maximum
tank capacity, inequalities (6.20) ensure that the refueling quantity ∆refuel

i at i always has
to be equal to or less than the tank capacity minus the amount of fuel in the tank Ti when
reaching gas station i.

Constraint (6.21) sets the starting fuel level f̄ start for the origin location 0.
T0 = f̄ start (6.21)

The standard fuel optimizer model described by Suzuki (2008, 2009) considers linear con-
sumptions by suggesting the use of consumption rates. In contrast to this, we consider
individual fuel consumptions per arc (∆̄cons

(i,i+1)), i.e. for each pair of consecutive locations,
to be able to integrate more precise consumption data relying, for example, on topographic
data, route types and/or empirical values if available. Also for detours individual fuel con-
sumptions are considered. Deviating from the standard fuel optimizer model, we assume
that the fuel consumption from the point where the road is left to head for the gas station,
∆̄consTo

i , may differ from the fuel consumption for the way back, ∆̄consFrom
i .

Constraints (6.22) are adapted from the standard fuel optimizer model and are customized
to individual consumptions and different detour consumptions depending on whether head-
ing for the gas station or returning to the route. They state that the amount of fuel left
in the tank upon arrival at location i + 1 is equal to the amount of fuel left in the tank
at location i plus the refueling amount at location i minus the consumption for the path
back to the route if location i was chosen for refueling minus the consumption for the way
from i to i + 1 on the original route and minus the consumption for the path to location
i+ 1 if it is a gas station chosen for refueling.

Ti+1 = Ti + ∆refuel
i − ∆̄consFrom

i αrefuel
i − ∆̄cons

(i,i+1) − ∆̄consTo
i+1 αrefuel

i+1

∀ i ∈ Slocations\{r − 1} (6.22)

By (6.23), the variables that indicate if refueling takes place at location i are set to be 0
for all locations that do not correspond to a gas station.

αrefuel
i = 0 ∀ i ∈ Scustomers ∪ {0, r − 1} (6.23)

16 Another or additional option would be to restrict the number of stops to a predefined maximum number which
is, for example, dependent on the original length of the complete route. Note that the third objective function
that is used in the last optimization step for a postprocessing penalizes the number of gas stations visited. The
solution process and the objective function mentioned will be described in Section 7.
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6.3 Objective functions

The most important objective is the minimization of lateness. To keep the overall travel
time startr−1 low, i.e. to arrive at the final destination as soon as possible, is the second
objective. The third objective is to minimize the overall costs for refueling. Other criteria
that are important to obtain comprehensible solutions and thus for the acceptance of
drivers and dispatchers are accumulated in one objective function. Similar as in Bernhardt
et al. (2016), a combination of lexicographic ordering and trade-off strategy was chosen
when setting up the objective functions and determining the solution process for this
multicriteria optimization problem.17 The different objective functions are described in
Sections 6.3.1, 6.3.2 and 6.3.3. The solution methodology to solve the MILP model is
described in Section 7.

6.3.1 Objective function 1

For the first objective function, the trade-off strategy from Bernhardt et al. (2016) was
chosen, giving most importance to the minimization of lateness. For the choice of the
penalty factor P see Bernhardt et al. (2016).

Minimize startr−1 +
r−1∑
i=1

P ·∆late
i (6.24)

6.3.2 Objective function 2

The second objective function minimizes the overall refueling costs.18

Minimize
r−1∑
i=0

P̄i ·∆refuel
i (6.25)

6.3.3 Objective function 3

Objective function 3 is an extension of objective function 2 described in Bernhardt et al.
(2016). Note that the last two components are added to the original objective function
penalizing the number of refueling stops and the duration of the complete route. As the
variable part of the route are the detours, the last component penalizes durations for
detours. The different weights may be customized depending on user preferences.

17 The trade-off strategy is only relevant within the first and the last objective function.
18 Note that refueling quantities are set to be zero for non gas station locations by (6.19) and (6.23).
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Minimize
r−1∑
i=1

nTW∑
z=0

10 (z + r − i) twiz +
r−1∑
i=0

starti

+
r−2∑
i=0

10 (r − i) (µearlydr1
(i,i+1) + µearlydr2

(i,i+1) )

+
r−1∑
i=0

10 (r − i) (αpbreak
i + αprest

i )

+
r−1∑
i=0

20 ∆wait
i

+
r−2∑
i=0

30 (r − i) µredrest
(i,i+1) +

r−1∑
i=0

40 (r − i) µredrest
i

+
r−2∑
i=0

50 (r − i) µextd2
(i,i+1) + 60 (r − i) µextd1

(i,i+1) + 60 (r − i) µextd3
(i,i+1)

+
r−1∑
i=0

60 (r − i) µextd
i

+
r−1∑
i=0

50 αrefuel
i

+
r−2∑
i=0

100 ∆dr
(i,i+1) (6.26)



27

7 The solution process

Since a lexicographical ordering of the different objective functions will be used, multiple
optimization steps are necessary to solve the multicriteria optimization problem. In each
optimization step, a submodel is solved which consists of the constraints described in the
previous section and in Bernhardt et al. (2016) and a corresponding objective function.
From step 2 onwards additional constraints need to be added. The composition in each
step is described in the following.

Punctuality at customer locations is often more important than saving fuel costs, as cus-
tomer satisfaction has a big impact on future requests and thus on the economic viability of
a haulage company. We therefore may order objective functions 1 and 2 lexicographically
giving highest importance to objective function 1 (6.24).

When setting up the solution process for the MILP model without consideration of refu-
eling, we noticed that it was beneficial to have an additional submodel in which optional
rules were deactivated and to use the optimal objective function value of this submodel as
an upper cutoff for the submodel in which optional rules were allowed. Using this expe-
rience, we adopted the same approach and obtained two submodels and two optimization
steps for the first objective function. For details see Bernhardt et al. (2016).

For the objective of minimizing fuel costs, we set up a third submodel with objective
function (6.25). Two additional constraints are added to this submodel. The first one,
(7.1), does not allow more lateness than the total lateness over all locations i obtained in
optimization step 2.

r−1∑
i=1

∆late
i ≤

r−1∑
i=1

∆late
i

∗ (7.1)

Note that a solution still has to exist if there was one in the previous steps as refueling
already was considered even though not in an optimal way.

For more freedom, in optimization step 3 we allow the overall travel time startr−1 to be at
most 30 minutes more than in optimization step 2. This is expressed in constraint (7.2),
where start∗r−1 denotes the overall travel time of step 2. The time may be used for an
additional and/or alternative refueling.

startr−1 ≤ start∗r−1 + 30 (7.2)

Similarly to the solution process for the model without refueling, an additional submodel
and a corresponding optimization step was added to obtain more comprehensible solutions,
to only use optional rules if this is advantageous and to keep the number of refueling stops
and detour durations low.



28 7 The solution process

For the additional optimization step, the objective function of the previous step is trans-
formed to constraint (7.3) with the optimal objective function value z∗ of step 3 as an
upper bound such that the fuel costs are prevented from increasing.

r−1∑
i=0

P̄i ·∆refuel
i ≤ z∗ (7.3)

Again, the constraint (7.1) was added to keep the optimal lateness determined in step
two.

In step 3, we allow for more freedom for refueling decisions when adding constraint (7.2).
In step 4, we do not allow an increase of the overall travel time and thus add constraint
(7.4), where start∗r−1 in that case represents the travel time determined in optimization
step 3.

startr−1 ≤ start∗r−1 (7.4)

The objective function of optimization step 4 is given by (6.26).

The solution of optimization step 4 still needs to be transformed into a readable driver
schedule. In Bernhardt et al. (2016), a transformation algorithm was developed for this
task (see the appendices in Bernhardt et al. (2016)). The time for loading and/or unloading
at customer location i that was taken from the input parameters of the MILP model has to
be replaced by the value of the variable for general working time, ∆work

i , for each customer
location or gas station i. Similarly, the driving duration between a pair of consecutive
locations i and i+ 1 is now variable and given by ∆dr

(i,i+1). This has to be adopted for the
input parameters of the algorithm accordingly.

Figure 11 gives an overview of the solution process.

In the next section, the test instances are presented. Afterward, in Section 9, a prepro-
cessing heuristic is introduced which helps to reduce the number of gas stations to be
considered during the solution process. In our numerical experiments, all subproblems are
solved with a commercial optimization solver. The details on the test environment are
described in Section 10. In Appendix B.1 it is shown for a test instance how the driver
schedule evolves over the several optimization steps.



29

Transformation algorithm

Step 1:

• MILP without optional rules

• Objective:
Minimize penalized lateness and travel
time

Step 2:

• MILP with optional rules

• Objective:
Minimize penalized lateness and travel
time

• Upper cutoff: Solution of step 1

Step 4:

• MILP withUoptionalUrules

• Objectives:
• ReduceUtheUusageUofUoptionalUrulesUtoUa

minimum
• Use optionalUrules asUlateUasUpossible
• ReduceUwaitingUtimeUtoUaUminimum
• Keep number of refueling stops low
• Keep detours low

• Additional constraints:
• KeepUlatenessUfromUprevious step
• DoUnot increase the travel time
• Do not increase fuel costs

Step 3:

• MILP withUoptionalUrules

• Objective:
Minimize fuel costs

• Additional constraints:
• KeepUpenalizedUlatenessUfrom stepU2
• AllowUforUadditionalU30UminutesUforUthe

travelUtime

Solution process

Figure 11: The four optimization steps in the solution process
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8 Numerical experiments - The base instances

The data basis of the test instances of Bernhardt et al. (2016) were derived from real
data provided by a German haulage company that operates a fleet of vehicles in Europe.
The provided data comprised telematics data of the vehicles of the haulage company as
well as arrival times at customer locations initially planned by dispatchers in the order
management system. The arrival times at customer locations were used as a basis to
add time windows to the test instances. One to three time windows were considered in
Bernhardt et al. (2016) along with varying time window lengths. For determining driving
durations, different road types were taken into account. To be as close to reality as possible,
routes were adjusted to the real routes chosen by the drivers by setting support points.19

For determining the routes, a planning horizon of one week was considered.

We extended the data basis of the test instances that were used to test the MILP models for
planning time windows and rest periods and breaks (see Bernhardt et al. (2016)) by adding
information about gas stations along the route. In a first step, we decided to consider gas
stations with a straight line (i.e. Euclidean) distance of at most 30 km to the route.

To obtain driving durations and distances between locations and for detours, a modified
A∗ routing algorithm was used which was developed during the research project Dynaserv
in which the haulage company mentioned above served as a partner. The real vehicle
fuel consumptions for the one-week routes were used to determine distance dependent
consumption rates. Real data on the tank capacities of the vehicles, starting and ending
fuel levels at the beginning and the end of the planning horizon were adopted.

List prices per country of one of the main fuel card operators of the haulage company were
provided. The fuel card operator considers different types of gas stations, among those
the group of gas stations that are close to the motorway and therefore are more expensive
and a group of gas stations that are less expensive. In reality, the fuel price at a gas
station that is valid for the corresponding fuel card holder is dependent on the gas station
type and on the list price of the corresponding country. Additionally, there were special
discount arrangements for selected gas stations. For Spain, there was a contract with a
different service station chain. For simplification reasons, fuel prices at gas stations were
assumed to be equal to the list prices of the corresponding countries at the beginning of
the corresponding planning horizons.

Table 1 gives an overview of the extended base instances.

In the first column, the base instance ID is displayed. In total, we considered 15 base
instances. Distances and driving durations without consideration of detours are given in
the second and third column, respectively. The number of customer locations including the
origin and destination are given in the fourth column. The vehicles considered have different
tank capacities that range from 900 to 1200 liters. The tank capacities are given in the fifth
column. Starting and ending fuel levels are given in columns six and seven. Column eight
shows the overall fuel consumption for the one-week routes. This fuel consumption divided

19 Support points have to be part of the route determined by the routing algorithm (see Bernhardt et al. (2016)
for more details).
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base
instance

overall
distance

(km)

overall
driving

duration
(h)

# customer
locations

(incl. start &
end)

tank
capacity

(l)

starting
fuel level

(l)

ending
fuel level

(l)

fuel
consumption

(l)

# gas stations
(30 km straight
line distance)

1 2914 36.85 4 925.00 925.00 619.75 670.30 276
2 3391 42.48 5 925.00 582.75 758.50 803.59 397
3 3653 46.95 6 900.00 360.00 837.00 1077.72 181
4 2831 36.45 6 900.00 873.00 468.00 781.30 447
5 1739 22.37 6 925.00 268.25 900.00 486.82 241
6 2944 37.47 6 900.00 729.00 396.00 889.12 326
7 2269 30.32 7 900.00 495.00 639.00 664.95 284
8 3142 39.77 7 900.00 666.00 891.00 816.86 374
9 3019 38.17 7 925.00 712.25 910.00 830.21 515
10 3436 43.77 8 900.00 747.00 693.00 896.92 383
11 3447 43.62 8 1200.00 504.00 444.00 1082.25 474
12 2475 31.85 9 900.00 873.00 684.00 737.67 298
13 2826 36.42 10 900.00 648.00 576.00 802.50 337
14 3055 40.85 11 900.00 666.00 576.00 837.06 368
15 3250 41.95 12 900.00 801.00 360.00 952.28 353

Table 1: Base instances

by the overall distance gave us the fuel consumption rate in liters per km. The number of
gas stations within a straight line distance of at most 30 km along the route is shown in the
last column. Note that gas stations were chosen per route between consecutive locations
in Scustomers ∪ {0, r − 1}. Gas stations that were within the chosen straight line distance
for several of such routes were listed multiple times accordingly.

9 Heuristic preprocessing: Eliminating unattractive gas

stations

As we will see later in our numerical experiments, the number of gas stations included in
the list of potential gas stations for refueling strongly influences the duration needed by
the optimization solver to find an optimal solution. Therefore, a preprocessing heuristic
was developed to eliminate less promising gas stations from the list and thus reduce the
computational efforts necessary in the following steps.

As mentioned earlier in Section 4, Suzuki (2014) also proposes a preprocessing procedure
that reduces the number of gas stations to be considered. Note that this procedure applied
to our problem may remove attractive gas stations as we also consider time factors which
have a high priority in our problem definition. The time needed for a detour is not consid-
ered in the elimination process described by Suzuki (2014). Conversely, one criterion for
the elimination of a gas station is that its detour distance is less than the detour distance
of two other gas stations that represent the start and the end point of a subsequence of gas
stations. Eliminating such gas stations with short detour distances can be disadvantageous
if customer time windows are involved. Additionally, the average number of gas stations
removed by the variable-reduction technique does not sufficiently reduce the problem size
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in preparation for the solution process for the MILP model provided in this study.20

The heuristic presented in this section is applied to each pair of consecutive customer lo-
cations (including origin and destination) and has a run time complexity of O(n2), where
n is the number of gas stations between the two locations. For each route between consec-
utive customer locations (or between origin and first customer location or last customer
location and destination), gas stations within the chosen straight line distance of 30 km
to the route were sorted ascending by price and by detour distance, where the price was
chosen to be the first sorting criterion. To obtain the sorted list of gas stations, we used
the sorting algorithm of the Collections package of Java (java.util.Collections) together
with a comparison function (using java.util.Comparator). For two gas stations i and j,
the comparison function returns −1 if gas station i according to the sorting criteria has
to stand higher in the list than gas station j, 1 if j has to stand higher in the list than
i and 0 otherwise. Nevertheless, the sorting algorithm can be chosen independently. As
sorting algorithms are broadly discussed in the literature, we only present the comparison
function, Algorithm 1, used for the sorting in Java. Note that in the following we assume
that the detour to a gas station is equal to the detour back to the route. Additionally,
linear fuel consumption rates per distance unit are assumed.

Algorithm 1 Compare price and detour
1: compare(P̄i, P̄j, detouri, detourj)
Input:

P̄i(P̄j) : Fuel price at gas station i (j)

detouri(detourj) : Detour distance if gas station i (j) is visited

Output:

return


−1 if gas station i should stand higher in the list than gas station j,
1 if gas station j should stand higher in the list than gas station i
0 otherwise

2: // First sorting criterion: Fuel price (ascending)
3:
4: if P̄i < P̄j then
5: return −1
6: else if P̄i > P̄j then
7: return 1
8: else
9:

10: // Second sorting criterion: Detour distance (ascending)
11:
12: if detouri < detourj then
13: return −1

20 For the instances considered by Suzuki (2014), the number of gas stations was reduced by 54.8 % on average.
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14: else if detourj < detouri then
15: return 1
16: else
17: return 0
18: end if
19: end if

The following comparison function (Algorithm 2) is necessary to sort the gas stations by
the sequence in which the points where the route has to be left to reach the gas stations
are traversed. The corresponding sorting is done as a preprocessing step to determine
input parameters for the MILP model. In the MILP model, the driving durations and fuel
consumptions between consecutive locations are needed. If i and j are two consecutive
gas stations, the distance between them can for example be determined by subtracting the
distance on the route between the last customer location and gas station i (disti) from the
distance on the route between the last customer location and gas station j (distj). For the
driving durations and fuel consumptions this can be done analogously.

Algorithm 2 Compare on-route distance
1: compare(disti, distj)
Input:

disti(distj) : Distance on the route between the last customer

location and gas station i (j)

Output:

return
{
−1 if gas station i should stand higher in the list than gas station j,
1 otherwise

2:
3: if disti < distj then
4: return −1
5: else
6: return 1
7: end if

We want to keep the "best" gas stations considering the two criteria, fuel price and detour
distance. Those gas stations for which there is a "better" gas station considering both
criteria, fuel price and detour distance, in a predefined on-route distance are eliminated.
In the following, we call this predefined distance "filter distance". Algorithm 3 shows the
elimination process. Note that if gas station j stands higher in the list than gas station
i and the list has been sorted using comparison function 1, j has definitely a fuel price
that is lower than or equal to the fuel price of i. We therefore only compare the detour
distances of gas stations i and j in Algorithm 3.
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Algorithm 3 Filter gas stations
Input:

P̄i(P̄j) Fuel price at gas station i (j)

detouri(detourj) Detour distance (one-way) if gas station i (j) is visited

disti Distance on the route from the last customer vertex

(or origin) to the point where the route has to be left

if gas station i should be visited

n Number of gas stations between the two customer locations

considered

Sstations
(c,c+1) Set of all gas stations i with selected straight line distance to

the route between customer c and customer c+ 1.

radius Filter distance

Output:

Ŝstations
(c,c+1) Remaining list of gas stations between customer locations c and c+ 1

1: Sort the gas stations in Sstations
(c,c+1) by price (first criterion) and by detour distance (second

2: criterion) using Algorithm 1. Resulting list: Ŝstations
(c,c+1)

3: // Go through the sorted list of gas stations, start by the second station.
4: // (The first station is kept in the list as it has the best price).
5:
6: for i = 1 to n− 1 do
7:
8: // Go through the list of gas stations that were kept and only keep gas station i
9: // in the list if for one of the two criteria (this can only be the detour distance)
10: // it is better than all gas stations kept so far or no kept gas station lies in the
11: // filter distance of gas station i.
12:
13: for j = 0 to i− 1 do
14:
15: if detouri ≥ detourj then
16:
17: if |disti − distj| < radius then
18:
19: Ŝstations

(c,c+1) ← Ŝstations
(c,c+1) \ {i}
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20:
21: i = i− 1
22:
23: break
24:
25: end if
26:
27: end if
28:
29: j = j + 1
30:
31: end for
32:
33: i = i+ 1
34:
35: end for
36:
37: Sort the gas station list Ŝstations

(c,c+1) by the distance on the route between the last customer
38: location c and the gas station using Algorithm 2.
39: Result: Newly sorted list Ŝstations

(c,c+1) .
40:
41: return Ŝstations

(c,c+1)

Figure 12 illustrates Algorithm 3 by means of an example. The numbering of gas stations
depicted is the numbering obtained by sorting the gas stations with Algorithm 1. The
sequence in which the gas stations are considered is equal to this numbering. The gas
station with number 1 is kept, as it is the cheapest (and it is the first one in the list)
among all gas stations between customer c and customer c + 1. The second gas station
is kept because the detour distance is less than the detour distance of gas station 1. Gas
station 3 is eliminated because it is within the filter distance of gas station 1 (and 2) and
it has a higher fuel price and a larger detour distance than gas station 1. Gas station 4
is within the filter distance of gas station 1, but it has a smaller detour distance, so it
is kept. Gas station 5 is removed as it is within the filter distance of gas station 4 and
has a larger detour distance (and equal fuel price). Gas station 6 is in no filter distance
of any of the gas stations already considered and thus is kept in the list. Gas station 7
has a shorter detour distance than gas station 6, which is the only remaining gas station
with lower index within the filter distance of gas station 7. Thus, it is not eliminated. Gas
station 8 is within the filter distance of gas station 4, 6 and 7 and is removed because it
has a higher fuel price and a larger detour distance than gas station 7.

Note that for the choice of the filter distance the tank capacity has to be taken into ac-
count. If the filter distance is larger than one half of the distance that can be traveled with
a full tank, no solution might be found for the corresponding MILP model. The maximum
detour distance also may have an influence when it is large. Additionally, the starting and
ending fuel levels have to be taken into account. Therefore, for the filtering of gas stations
between the origin and the first customer and between the last customer and the final
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Figure 12: Example of filtering gas stations

destination, the filtering algorithm is slightly modified. To ensure that the first gas station
on the route is reachable, we use Algorithm 4. At least one gas station is kept by the
"normal" filtering algorithm. If the range with the starting fuel level is at least as far as
the route length between origin and the first customer plus the maximum detour distance
to a gas station, any gas station chosen on this arc is reachable. The original algorithm,
Algorithm 3, is executed. Otherwise, in each iteration, we only remove a gas station from
the list if a first gas station was found that is reachable with the starting fuel level.
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Algorithm 4 Filter gas stations between origin and first customer location
Input:

P̄i(P̄j) Fuel price at gas station i (j)

detouri(detourj) Detour distance (one-way) if gas station i (j) is visited

disti Distance on the route from the last customer vertex

(or origin) to the point where the route has to be left

if gas station i should be visited

n Number of gas stations between origin and first customer

location

Sstations
(0,1) Set of all gas stations i with selected straight line distance

to the route between origin 0 and first customer 1.

radius Filter distance

rangeStartingFuel Maximum distance traveled by the vehicle with the

starting fuel level

routeLength Length of the route between origin and first customer

maxDetour Maximum detour distance to a gas station (one-way)

Output:

Ŝstations
(0,1) Remaining list of gas stations between origin 0 and customer location 1

1: // Check if the execution of algorithm 3 suffices.
2:
3: if (routeLength+maxDetour ≤ rangeStartingFuel) then
4:
5: return Ŝstations

(0,1) obtained by Algorithm 3
6:
7: else
8:
9: Sort the gas stations in Sstations

(0,1) by price (first criterion) and by detour distance
10: (second criterion) using Algorithm 1. Resulting list: Ŝstations

(0,1)
11:
12: gasStationInRange = false
13:
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14: // Go through the sorted list of gas stations, start by the second station
15: // (the first station is kept).
16:
17: for i = 1 to n− 1 do
18:
19: for j = 0 to i− 1 do
20:
21: if not gasStationInRange then
22:
23: if (distj + detourj) ≤ rangeStartingFuel then
24:
25: gasStationInRange← true
26:
27: end if
28:
29: end if
30:
31: if detouri ≥ detourj then
32:
33: if |disti − distj| < radius then
34:
35: if gasStationInRange then
36:
37: Ŝstations

(0,1) ← Ŝstations
(0,1) \ {i}

38:
39: i = i− 1
40:
41: break
42:
43: end if // gasStationInRange
44:
45: end if // |disti − distj| < radius
46:
47: end if // detouri ≥ detourj
48:
49: j = j + 1
50:
51: end for // j = 0 to i− 1
52:
53: i = i+ 1
54:
55: end for // i = 1 to n− 1
56:
57: Sort the gas station list Ŝstations

(0,1) by the distance on the route between the origin 0
58: and the gas station using Algorithm 2.
59: Result: newly sorted list Ŝstations

(0,1) .
60:
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61: return Ŝstations
(0,1)

62:
63: end if // ELSE (not routeLength+maxDetour ≤ rangeStartingFuel)

For the filtering of gas stations between the last customer and the final destination, we have
to make sure that an arrival with the given ending fuel level is possible. This can be done
similarly as in Algorithm 4 with the difference that gas stations are only removed from the
list if a gas station has been found with a distance to the final destination that is less than
the range with a full tank minus the range with the ending fuel level. We therefore replace
line 23 by an if-statement that checks if the distance of gas station j to the destination is
less than or equal to the range with a full tank minus the range with the ending fuel level
(routeLength − distj + detourj ≤ range − rangeEndingFuel, rangeEndingFuel: range
of the vehicle with the ending fuel level, routeLength: Length of the route between the
last customer and the final destination). The if-statement in line 3 is modified with the
inequality routeLength+maxDetour ≤ range− rangeEndingFuel.

In the tests described in the following sections, different filter distances were considered.
The real maximum average fuel consumption over all base instances was less than 32 l per
100 km distance traveled. The minimum tank capacity was 900 l and we decided for a
minimum fuel level which had to be maintained in the tank at all times to not run out
of fuel in case of unforeseen events (e.g. traffic jam) of 100 l. With this information, we
computed a minimum range with a full tank of 900 l−100 l

0.32 l
km

= 2500 km. We decided to consider
a filter distance of at most 1000 km such that, provided that detour distances to gas stations
are not "too large"21, the filtering most likely does not lead to infeasibility of the MILP
model set up later. Infeasibility after filtering may occur if even when considering all gas
stations along the route there is no possibility to find a choice of gas stations where the
minimum fuel level in the tank can be maintained. It also theoretically may happen that
the maximum weekly driving time or the maximum time between two weekly rest periods
is exceeded because of unfavorable positions of the remaining gas stations as far as the
resulting time schedule is considered. But this may not be predicted easily. In all of our
test instances, feasibility was preserved for all of the filter distances used.

Table 2 shows the remaining number of gas stations (left hand side) and the overall number
of locations (right hand side) depending on the filter distance used. Note that the number
of gas stations per pair of consecutive customer locations (including start and end) were
added up for the complete route. Some of the gas stations may occur more than once
between different customer locations.

21 In the worst case, two remaining consecutive gas stations (with a customer in between) after filtering may have
an on-route distance of at most 2000 km even though before filtering there were gas stations "in between". In
such a case where the distance between two consecutive gas stations exceeds 1000 km, the gas stations belong to
two consecutive route segments, where a route segment is defined to be the route between two customer locations
including origin and destination. Thus, for the detour distance from the last gas station to the subsequent gas
station, at least (2500 − 2000) km = 500 km are remaining from the range with a full tank for the detour from
the first of the two gas stations to the route and the detour to the second one. In none of the considered cases,
one-way detour distances were larger than 192 km. But if different input parameters are chosen or different
properties are observed, this may have to be taken into account.
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Base
instance

#
customer
locations
incl.Pstart
andPend

noPprice
and

detour
filter

100
km

200
km

300
km

400
km

500
km

1000
km

noPprice
and

detour
filter

100
km

200
km

300
km

400
km

500
km

1000
km

1 4 276 22 10 9 9 7 7 280 26 14 13 13 11 11
2 5 397 24 13 10 9 9 8 402 29 18 15 14 14 13
3 6 181 26 15 11 9 9 7 187 32 21 17 15 15 13
4 6 447 23 14 12 10 10 8 453 29 20 18 16 16 14
5 6 241 15 10 8 7 6 6 247 21 16 14 13 12 12
6 6 326 24 12 11 9 8 7 332 30 18 17 15 14 13
7 7 284 22 14 12 10 10 9 291 29 21 19 17 17 16
8 7 374 32 19 14 13 12 12 381 39 26 21 20 19 19
9 7 515 25 15 11 11 10 8 522 32 22 18 18 17 15

10 8 383 25 19 16 15 14 13 391 33 27 24 23 22 21
11 8 474 27 18 13 11 11 8 482 35 26 21 19 19 16
12 9 298 23 16 13 12 12 11 307 32 25 22 21 21 20
13 10 337 20 13 11 10 10 8 347 30 23 21 20 20 18
14 11 368 27 18 16 14 13 13 379 38 29 27 25 24 24
15 12 353 30 22 21 19 17 15 365 42 34 33 31 29 27
Ø 7 350 24 15 13 11 11 9 358 32 23 20 19 18 17

PricePandPdetourPfilter:PfilterPdistance

#
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#
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Table 2: Remaining locations after filtering

On average, 350 gas stations were found within a straight line distance of 30 km to the
route of which 24 (7 %) remained when considering a filter distance of 100 km. With a
filter distance of 200 km, only 15 (4 %) gas stations remained, with 300 km, 13 (4 %) gas
stations. The number of gas stations in none of the base instances differed by more than 2
when using the filter distances 400 km and 500 km, respectively, and the average number of
filtered gas stations was about 11 (3 %) in both cases. Finally, a filter distance of 1000 km
was considered, leaving on average 9 (3 %) gas stations for the optimization process.

10 Numerical experiments - Environment and settings

For the following numerical experiments, the same test environment was used as for testing
the MILP models and the algorithm for determining time windows, rest periods and breaks
in Bernhardt et al. (2016). That means, the MILP model was implemented in Java (Java
8, 64 bit) and solved with Cplex 12.6 (64 bit) with the ILOG Cplex Concert Technology.
The test runs were made on an Intel Core i5 2500K with 8 GB RAM (DDR3-10700 (667
MHz)) running Windows 7 Professional Service Pack 1, 64 bit.

Table 3 shows the average number of variables and constraints over all test instances with
one time window per customer location and depending on the filter distance chosen. In the
last line, the values for the MILP model of Bernhardt et al. (2016) are listed for comparison.
The number of binary variables in a test instance with more than one time window per
customer location is raised by 1 for each additional time window.22 If the number of time
windows at customer locations is constant, the number of additional binary variables is

22 The number of alternative time windows may differ among customer locations. For each time window z at
customer location i, there is a binary decision variable twiz in the MILP model (for more details see Section
6.1).
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equal to the number of customer vertices, |Scustomers|, for each additional time window per
customer location.

filter distance
(km)

Ø continuous Ø integer Ø binary Ø step 1 Ø step 2 Ø step 3 Ø step 4

100 474 123 977 5536 5033 5035 5036
200 337 87 694 3920 3563 3565 3566
300 297 76 611 3448 3134 3136 3137
400 277 71 570 3212 2919 2921 2922
500 267 68 549 3094 2812 2814 2815
1000 249 63 512 2881 2618 2620 2621

no refueling: 80 26 208 1162 1049 1050

# variables # constraints

Table 3: Average number of variables and constraints (one time window) depending on the
filter distance

In Bernhardt et al. (2016), 225 test instances were generated from 15 base instances (real
data) that were now enriched with information needed for refueling (see Section 8). For
each of the 225 original test instances, 6 different filter distances (100, 200, 300, 400, 500
and 1000 km) were tested. Thus, 1350 complete test runs were performed.

While the preprocessing algorithm took less than one second for each of the instances, from
previous test runs and from the experience we made in Bernhardt et al. (2016), it seemed
reasonable to establish maximum run times for the different optimization steps to solve
the MILP model. Figure 13 shows the allocated time for each step.

The idea was to not allow more than half an hour time for the overall solution process
unless no solution could be found until then. In none of the optimization steps the solution
process was stopped if no solution was found so far because we wanted to know the run
times to find feasible solutions for these cases. As lateness is considered to be more crucial
than fuel costs and because we knew that the first two steps were most time consuming,
we decided to allow at most 25 minutes for step 1 and 2. If no optimal solution was found
in step 1 within 25 minutes, the best solution until then was saved. If no solution at all
was found during this time interval, the optimization solver was not stopped until the first
solution was found. The same was done in step 2 allowing at most 25 minutes minus the
duration of the first step in case at least one feasible solution was found. In step 3, a
maximum of 30 minutes minus the durations of steps 1 and 2 were allowed. The remaining
time was dedicated to step 4.
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Transformation algorithm

Step 1:

• MILP without optional rules

• Objective:
Minimize penalized lateness and travel
time

Step 2:

• MILP with optional rules

• Objective:
Minimize penalized lateness and travel
time

• Upper cutoff: Solution of step 1

Step 4:

• MILP withUoptionalUrules

• Objectives:
• ReduceUtheUusageUofUoptionalUrulesUtoUa

minimum
• Use optionalUrules asUlateUasUpossible
• ReduceUwaitingUtimeUtoUaUminimum
• Keep number of refueling stops low
• Keep detours low

• Additional constraints:
• KeepUlatenessUfromUprevious step
• DoUnot increase the travel time
• Do not increase fuel costs

Step 3:

• MILP withUoptionalUrules

• Objective:
Minimize fuel costs

• Additional constraints:
• KeepUpenalizedUlatenessUfrom stepU2
• AllowUforUadditionalU30UminutesUforUthe

travelUtime

Time limits

25min
or until 1st solution

Max(25min – run time step 1,0)
or until 1st solution

Max(30min – run time steps 1+2,0)
or until 1st solution

Max(30min – run time steps 1+2+3,0)
or until 1st solution

Solution process

Figure 13: Time limits of each optimization step for the MILP model
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11 Numerical experiments - Analysis

In the following, the results of the numerical experiments are presented and analyzed. In
Section 11.1 the influence of the filter distance on the run time is discussed. Then, in
Section 11.2, the impact of the number and the length of customer time windows on the
run time is considered. Section 11.3 gives some managerial insights.

11.1 The influence of the filter distance on the run time

Figure 14 depicts the overall run times (sum of the run times of optimization steps 1-4) of
all test runs23 depending on the number of locations. The latter depend, in turn, on the
chosen filter distance.24 It clearly can be seen that the filter distance and thus the number
of locations considered very strongly influences the run times. The figure shows three test
runs with an overall run time of more than 30 minutes and 20 test runs (1.5%) with a
run time between 25 and 30 minutes. The other test runs (98.3%) required less than 25
minutes.
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Figure 14: Run times depending on the number of locations and filter distances

The three test runs with a run time of more than 30 minutes belong to the cases with
a filter distance of 100 km with the most locations to be considered. In the case of the
23 For each test instance, 6 test runs were performed that differ by the chosen filter distance (see Section 10).
24 The detailed results can be found in Appendix B.2.
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longest run time of about 58 minutes (3509 sec) (base instance 14, 3 time windows with
a length of 120 minutes), it took nearly 58 minutes (3464 sec) in the second step until a
first feasible solution was found. In most of the cases in which in at least one of the steps
no optimal solution was found the second step was the bottleneck. But in some of those
cases with many locations the first optimization step was already very expensive. In the
two other cases where the overall run time exceeded 30 minutes the first step was the most
time consuming. In one of the two cases (base instance 8, 3 time windows with a length
of 600 minutes) the first step took 32 minutes. In the other case (base instance 15, 3
time windows with a length of 600 minutes), more than 21 minutes were needed to obtain
an optimal solution in this step (overall run time: 36 minutes). In the test run with a
run time of exactly 30 minutes (base instance 8, two time windows with a length of 600
minutes) only feasible solutions were found in each step with a run time for step one of 25
minutes. For the test run (base instance 14, 3 time windows with a length of 600 seconds)
with a run time very close to 30 minutes (1780 sec) an optimal solution was found in each
step. For the other test runs with an overall run time of more than 25 minutes and a filter
distance of 100 km, optimization step 2 by far had the longest run time. This occurred
for 6 instances from base instance 15 and one instance from base instance 14. For each of
these instances, steps 1 and 2 required together more than 25 minutes.

For a filter distance of 200 km, in step two the time limit was reached 4 times, for a filter
distance of 300 km it was reached 3 times and for the filter distances of 400 and 500 km
it was reached 2 times in each case. All of the corresponding instances were derived from
base instance 15. Considering the filter distance of 1000 km, overall run times were below
3 minutes with an average run time of 11 seconds.

In total, 27.38 hours were needed for all 1350 test runs. Figure 15 shows the proportions
of the different optimization steps on the overall run time for all test instances. The
greatest impact has optimization step 2 with a cumulated duration of 18.44 hours (67 %).
Optimization step 1 took 5.76 hours (21%) to complete. Time limits for step 3 were only
relevant in two cases (the second and third case with a run time of more than 30 minutes
described above). The overall duration of 1.82 hours (7 %) is rather short which shows
that the refueling subproblem is much faster to solve as the subproblem for planning time
windows, rest periods and breaks. The last optimization step took 1.36 h in total (5%).

Figure 15: The proportions of the different optimization steps on the overall run time
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Figures 16 and 17 show the proportions of the different steps on the overall (for all test
instances) run time for a filter distance of 100 km and a filter distance of 1000 km, respec-
tively. When reducing the filter distance, the proportions for the different optimization
steps are comparable in their magnitude although the run times increase significantly.
Note that the overall run time for all instances was 14.05 h if a filter distance of 100 km
was chosen and only 0.71 h if a filter distance of 1000 km was selected. This means that
there is a 95% decrease of the overall run time with a filter distance of 1000 km compared
to 100 km.

Figure 16: The proportions of the different optimization steps on the overall run time for
a filter distance of 100 km (225 test instances)

Figures 18 and 19 depict the average run times per base instance and per optimization
step for the filter distances of 100 km and 1000 km. Again, it can be seen that on average
the run time of step two is the longest with the two exceptions for base instances 2 and 8
and filter distance 100 km. Note that the large values for optimization step 1 and a filter
distance of 100 km of base instance 8 are mainly due to the two cases described before (see
pages 44 et seq.). In total, there are three base instances for which the run time of step
1 is longer than that of step 2. For base instance 2, 11 of 15 test instances (73%) show a
longer run time for step 1.

In total, there were 263 test runs (19%) for which step 1 took longer than step 2. In those
cases, the shorter run time of step 2 may be attributed to the upper cutoff provided by
step 1.

Although the run times of step 3 only account for 7% of the overall run time for all test
runs, the strong growth of the run time with the number of locations, especially when
considering the maximum run time for a given number of locations, can be observed here
as well (see Figure 20).
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Figure 17: The proportions of the different optimization steps on the overall run time for
a filter distance of 1000 km (225 test instances)
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11.2 The influence of the number and length of time windows on

the run time

It is interesting to see that the three instances with a run time of more than 30 minutes all
have three time windows (see Figure 21). This suggests that the number of time windows
influences the run time.
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Figure 21: Run times depending on the number of locations and the number of time win-
dows

A detailed analysis of the average run times depending on filter distances and the number
of time windows (see Figure 22) did not provide a clear picture. While the longest run
times for the filter distances of 100, 400, 500 and 1000 km were obtained for three time
windows, for the filter distances of 200 and 300 km the instances with three time windows
show on average the shortest run times.

We observe that the longest run time was obtained for an instance with a time window
length of 120 minutes (see Figure 23), followed by five instances with a time window of
600min.

Figure 24 shows the average run times per filter distance and per time window length.
It can be seen that for each filter distance the average run time for instances with time
windows of 600min is always ranked first or second when considering the longest run
times. For a time window length of 120min, significant longer average run times than for
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the time window lengths of 0, 30 and 60min can be found for the filter distances 100, 400
and 500 km.
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11.3 Managerial insights

In this section, valuable managerial insights are drawn from the results obtained. First, the
solution quality is analyzed depending on the selected filter distance. Afterwards, general
findings are discussed that may be relevant for practitioners.

11.3.1 Filter distance and solution quality

Figure 25 shows that the average lateness is constant for the filter distances of 200, 300, 400
and 500 km. For a filter distance of 1000 km there is an increase of 0.08%, i.e. the difference
in the overall lateness for all 225 test instances is 35 minutes, that means on average 9
seconds per instance. The increase in lateness stems from two instances. The first one has
a total lateness of 18 minutes and is derived from base instance 11. Moreover, it has one
time window per customer location with a time window length of zero. The other one also
refers to base instance 11 with one time window per customer location but with a time
window length of 30 minutes. For these two cases, even without considering the time for
refueling, time windows cannot be met. The increase in lateness when considering a filter
distance of 100 km can be explained by the non-optimal solution values obtained for the
instances where time limits were reached and the solution process was stopped prematurely
(see Figure 13 for the solution process and corresponding time limits and Section 11.1 for
a description of test instances with non-optimal solution values).

Fuel costs increase marginally with the filter distance. The difference between choosing a
filter distance of 100 km and a filter distance of 1000 km is on average 38 ct (0.04%). Over
all 225 instances, this amounts to 86 e. This means that the selection of a large filter
distance has the advantage of reducing the problem size and thus the run time without
negatively affecting the total fuel cost.

The average travel time is relatively constant and lies between 107.76 h (with a filter dis-
tance of 300 km) and 107.84 h (with a filter distance of 100 km) per week (see Figure 26).

Table 4 summarizes the findings considering four criteria for each of the filter distances.
The filter distance with the best obtained value cumulated over all instances is chosen as
reference. The corresponding value is set to be equivalent to 100%.

filter distance
(km)

% of minimum
lateness

% of minimum
fuel costs

% of minimum
travel time

% of minimum
run time

100 100.11% 100.01% 100.07% 2057.62%
200 100.00% 100.00% 100.00% 580.88%
300 100.00% 100.03% 100.00% 454.55%
400 100.00% 100.03% 100.01% 379.70%
500 100.00% 100.04% 100.01% 288.29%
1000 100.08% 100.04% 100.03% 100.00%

Table 4: Solution quality and run times depending on the filter distance
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It can be seen that slight increases in the solution quality correlate with a significant growth
of the run time for the shorter filter distances. When considering the filter distance 100 km,
the problem sizes are largest and so are the run times. Compared to the filter distance
200 km there are more instances for which no optimal solution is found in one or more of
the optimization steps. Thus, a deterioration of lateness, fuel cost and travel time can be
observed.

11.3.2 General findings

In this section, more general findings are discussed. The first table (Table 5) depicts the
average detour distance25 depending on the chosen filter distance. It can be noted that
the best value is obtained for a filter distance of 1000 km. A reason for this may be the
consideration of country prices. As prices often do not vary over long distances traveled,
the detour distance in many cases is the filter criterion that eliminates gas stations within
the given filter distance. With a filter distance of 1000 km more gas stations are eliminated
than with a filter distance of 200 km, thereby removing more gas stations with large detour
distances. As the choice of gas stations with large detour distances is reduced, it is quite
probable that the optimal solutions for a filter distance of 1000 km incorporate shorter
detour distances than those for a smaller filter distance. But this does not always have to
be the case.

filter distance
(km)

Ø detour
distance (km)

% of
minimum

100 6.34 119%
200 5.64 106%
300 5.37 101%
400 5.45 102%
500 5.37 101%
1000 5.34 100%

Table 5: Filter distance and average detour distance

Tables 6, 7 and 8 show the number of refueling stops depending on the filter distance, the
number of time windows per customer location and their length.26 It can be seen that for
filter distances of 200 km and 300 km the average number of refueling stops is 2.12. For
filter distances of 400, 500 and 1000 km the average number is about 2.19 which is 3%
more than the minimum value. For a filter distance of 100 km, the effects of non-optimal
solution values have to be taken into account (recall Table 4). If time windows are not
chosen optimally and thus more lateness is accepted, this leaves more time for additional
refueling stops. This may explain why the average number of refueling stops is higher for
a filter distance of 100 km than for a filter distance of 200 km.
25 The average is taken over all instances where per instance the whole detour for all visited gas stations is consid-

ered.
26 Note that the number of refueling stops was only considered in the objective function of optimization step 4.
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filter distance
(km)

Ø refueling
stops

% of
minimum

100 2.18 103%
200 2.12 100%
300 2.12 100%
400 2.19 103%
500 2.19 103%
1000 2.19 103%

Table 6: Filter distance and the number of refueling stops

The number of refueling stops lies between 1 and 4 for all test runs. Considering an arbi-
trary instance, the difference of the number of refueling stops between two filter distances
is at most 1. On average over all test runs 2.16 refueling stops are made. With more
time windows per customer location there are more possibilities for planning arrival times
without worsening lateness and the overall travel time. This leaves more freedom and time
for refueling and may be the reason why in Table 7 the average number of refueling stops
slightly increases with the number of time windows per customer location.

# TW
Ø refueling

stops
% of

minimum
1 2.14 100%
2 2.17 101%
3 2.19 102%

Table 7: The number of time windows and the number of refueling stops

For a time window length of zero, an additional refueling stop will more easily lead to
lateness than for a time window length greater than zero. Therefore, the average number
of stops for those instances is the lowest (see Table 8). For time window lengths of 30,
60 and 120 minutes the average number of refueling stops is relatively constant. When
considering a time window length of 600 minutes which in reality corresponds to opening
hours for many of the considered instances this is nearly the same as planning arrival times
freely without time windows. This means that additional refueling stops have a relatively
direct impact on the overall travel time which is a component of the objective functions of
optimization steps 1, 2 and 4. This may be the reason why the average number of refueling
stops for a time window length of 600 minutes is less than for time window lengths of 30,
60 and 120 minutes.
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length TW
(min)

Ø refueling
stops

% of
minimum

0 2.13 100.0%
30 2.18 102.1%
60 2.18 102.1%
120 2.17 101.9%
600 2.16 101.2%

Table 8: Time window length and the number of refueling stops
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12 Summary and future research

In this section we summarize the findings of this study and outline opportunities for future
research.

12.1 Summary

Fuel is a main cost driver in the European road haulage sector. Strongly varying diesel
prices across different European countries allow a high cost saving potential, especially
when considering long-haul trips that involve crossing several national borders. We de-
scribed why it is not recommendable to consider fuel optimization as an isolated problem.
When choosing appropriate customer time windows and determining driver rest periods
and breaks, the time needed for refueling stops has to be taken into account as otherwise
the time needed for an unplanned refueling may lead to changes in the driver schedule and
thus jeopardize a punctual arrival. When planning refueling stops, it is required, among
other things, to determine between which pairs of consecutive customer locations refueling
should be done not only considering fuel costs as decision criterion but also minimizing
lateness.

On the basis of the MILP model of Bernhardt et al. (2016) and extending constraints
from the standard fuel optimizer model presented by Suzuki (2008) we developed a MILP
model that plans driver activities in accordance with Regulation (EC) No 561/2006 simul-
taneously considering the choice of customer time windows, refueling stops and refueling
quantities. Similarly as in Bernhardt et al. (2016), we considered "soft" time windows to
even find solutions if lateness cannot be avoided completely. The main objectives were the
minimization of overall lateness, travel time and fuel expenditures. The solution process
presented to solve the resulting multicriteria optimization problem consists of four opti-
mization steps and a transformation algorithm that is needed to obtain a readable driver
schedule.

We observed that often list prices were constant over several days. As future prices cur-
rently cannot be predicted exactly several days in advance the approach to plan with the
current price is justifiable. However, online replanning is recommended and this step can
be carried out with the solution process presented.

The test instances described in Bernhardt et al. (2016) were derived from real data provided
by a German haulage company that operates a fleet of vehicles in Europe. The instances
comprise between 2 and 10 customer locations and in addition, stops for start and end
location. The number of time windows and their length were varied. We extended the
database of the test instances by adding information about gas stations along the route
based on real data. To obtain driving durations and distances between locations and for
detours to gas stations, a modified A∗ routing algorithm was used. Vehicle consumption
rates, tank capacities and starting and ending fuel levels were taken from the real data from
the one-week trips considered. The locations of gas stations considered all over Europe
were provided by the service station chain the partner haulage company had fuel cards for.
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Fuel prices at gas stations were assumed to be equal to the list prices provided by the fuel
card operator for the corresponding countries.

From the experience made in Bernhardt et al. (2016) we anticipated significantly long run
times if many locations were involved. To reduce the run times for the solution process,
a preprocessing heuristic was developed to eliminate unattractive gas stations and thus
reduce the solution space. The filter distance was the control parameter which was varied
in our numerical experiments to obtain different numbers of remaining gas stations per
instance. The larger the filter distance, the more gas stations were eliminated. Additionally,
time limits were set up for the different optimization steps to restrict the overall run time
to 30 minutes. Here, we made the exception that in each optimization step at least a
feasible solution had to be found before stopping the solution process.

Numerical experiments were conducted for the 225 test instances of Bernhardt et al. (2016)
with the extended data described above. For each of the instances test runs were performed
for the filter distances of 100, 200, 300, 400, 500 and 1000 km to analyze the influence of
the filter distance on the run time. As expected, run times, especially when considering
worst case scenarios, strongly increased with decreasing filter distance and thus with an
increasing number of locations considered. On the other hand, the analysis of the solution
quality showed that there are only slight improvements in lateness, overall travel time and
fuel expenditures when considering more gas stations. The test results suggest that it is
legitimate to choose a rather large filter distance. Using a filter distance of 100 km does
not seem to be reasonable at all as the run time on average was 233.47 seconds with 12
instances that had a run time of more than 25 minutes. Of these 12 instances 11 (4.89%)
were not solved to optimality, that means only a feasible solution was obtained in at least
one of the 4 optimization steps. With a filter distance of 1000 km all instances were solved
optimally in reasonable times. On average, here the solution process took 11.35 seconds.
When considering a filter distance of 500 km, the solution process took on average 32.71
seconds (288.19%) and for two cases (0.89%) the run time was more than 25 minutes and
no optimal solution was found. For a filter distance of 1000 km, the overall lateness was
only 0.08% worse than the best overall lateness, which amounts to an average difference
of only 9 seconds per instance. On average, the fuel costs were only 0.04% higher than
those obtained for the filter distance of 200 km with the lowest fuel cost, that means 38 ct
per test instance. The overall travel time only takes 0.03% longer which corresponds to
only 2.11 minutes more in the mean. Thus, among the filter distances considered the filter
distance of 1000 km for our test setting seems to be the most reasonable one.

12.2 Future research

In our numerical experiments, prices at gas stations were considered to be constant per
country. This approach may be reasonable if only a specific group of gas stations with
identical prices per country is considered to be suitable for the refueling of trucks and the
driver needs. This in turn may depend on existing contracts with fuel card operators.
In Section 11.3.2 we noticed that the overall detour distance on average was best for a
filter distance of 1000 km. As described there, we assume that this may be due to the
consideration of country prices. It would also be interesting to analyze if the number of
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refueling stops would change when considering different price structures. Therefore, the
analysis of the effect of varying prices within countries would be interesting.

In our mathematical experiments, ending fuel levels were taken from real data and thus
were input data. In reality, ending fuel levels have to be determined prior to the start
of the solution process. They should orientate on the fuel price trend and on the price
structure of countries expected to be visited in the future. The determination of a good
ending fuel level can be a future field of research.

Fuel consumption rates depend on the road type, geographical properties of the road, vehi-
cle characteristics, and the driving behavior. Thus, it would be interesting to incorporate
additional information, for example, from a geographic information system (GIS), from
the standardized FMS interface of the vehicle and other historical data when determining
fuel consumptions between locations for the MILP model input.

As described in Bernhardt et al. (2016), truck drivers face difficult working conditions
and there is a shortage of qualified drivers. When making a preselection of gas stations
with special amenities such as restrooms and restaurants, a first improvement on working
conditions is possible.

The use of a commercial optimization solver can be an obstacle for a company due to cost
reasons. Thus, the development of a heuristic solution process can be attractive for smaller
companies.
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A Parameters and variables of the complete MILP

model

In this appendix a complete overview of all parameters (Appendix A.1) and variables
(Appendix A.2) of the MILP model for the combined planning of time windows, rest
periods and breaks and vehicle refueling is given.

A.1 Parameters of the MILP model

r ∈ N Total number of vertices representing origin (vertex 0) and
destination (vertex r − 1), customer locations and gas stations.
The vertices are numbered from 0 to r − 1 according to the
sequence of customer locations to be visited and gas stations that
are passed.

Slocations Set of all vertices including all vertices for customer locations,
gas stations, origin and destination

Scustomers ⊂ Slocations Set of all vertices that correspond to customer locations
Sstations ⊂ Slocations Set of all vertices that correspond to gas stations
f̄ start ∈ N0 Amount of fuel in the tank at start location 0 in liters
f̄ end ∈ N0 Minimum amount of fuel to be left in the tank at the final

destination r − 1 in liters
P̄i ∈ R+

0 Fuel price at gas station i ∈ Sstations in e per liter
∆̄min ∈ R+

0 Minimum amount of fuel to purchase at a gas station in liters
T̄max ∈ R+

0 Vehicle tank capacity in liters
T̄min ∈ R+

0 Lower bound fuel, i.e. the minimum amount of fuel to be
maintained in the tank at all times in liters

∆̄dr
(i,i+1) ∈ N0 Driving time in minutes needed to travel from i to i+ 1,

i = 0, . . . , r − 2 not including the time needed for out of route
distances to and from gas stations

∆̄drTo
i ∈ N0 Driving time in minutes needed to travel from the point of

departure to the corresponding gas station i (equals 0 if
i /∈ Sstations)

∆̄drFrom
i ∈ N0 Driving time in minutes needed to travel from the gas station i

to the corresponding point of return (equals 0 if i /∈ Sstations)
∆̄cons

(i,i+1) ∈ R
+
0 Fuel consumption in liters when traveling from i to i+ 1,

i = 0, . . . , r − 2 not including the consumption for out of route
distances to and from gas stations
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∆̄consTo
i ∈ R+

0 Fuel consumption in liters when traveling from the point of
departure to the corresponding gas station i (equals 0 if
i /∈ Sstations)

∆̄consFrom
i ∈ R+

0 Fuel consumption in liters needed to travel from the gas station i
to the corresponding point of return (equals 0 if i /∈ Sstations)

∆̄refuel ∈ N0 Time needed for refueling in minutes
∆̄service

i ∈ N0 Time needed for loading and/or unloading at vertex i,
i ∈ Scustomers, in minutes, ∆̄service

0 = 0 and
∆̄service

i = 0 ∀ i ∈ Sstations

nTWi ∈ N0 Number of time windows at customer location i,
i ∈ Scustomers

TW
begin

iz ∈ N0 Lower limit of the time window z at vertex i, i ∈ Scustomers,
z = 1, . . . , nTW in minutes counted from start time 0

TW
end

iz ∈ N0 Upper limit of the time window z at vertex i, i ∈ Scustomers,
z = 1, . . . , nTWi in minutes counted from start time 0

udt ∈ N0 Driving time since the last daily rest period or break at the
beginning of the planning horizon in minutes

ddt ∈ N0 Cumulated daily driving time since the end of the last daily rest
period at the beginning of the planning horizon in minutes

ptr ∈ N0 Passed time since the end of the last daily rest period at the
beginning of the planning horizon in minutes

ptwr ∈ N0 Passed time since the end of the last weekly rest period at the
beginning of the planning horizon in minutes

urt ∈ N0 If a daily rest period takes place at start time, this parameter
expresses its duration since the start of the rest period
in minutes

ubt ∈ N0 If a break takes place at start time, this parameter expresses
its duration since the start of the break in minutes

dte ∈ {0, 1} Is equal to 1 if a driving time extension is currently used
when the planning horizon begins, 0 otherwise

hpb ∈ {0, 1} Is equal to 1 if the first part of a break with a duration of
at least 15 minutes has already been taken before the
beginning of the planning horizon, 0 otherwise

hpr ∈ {0, 1} Is equal to 1 if the first part of a daily rest period with a
duration of at least 3 hours has already been taken before the
beginning of the planning horizon, 0 otherwise

noRed ∈ {0, 1, 2, 3} The number of reduced daily rest periods that have already
been taken in the current week

noExt ∈ {0, 1, 2} The number of extended daily driving times that have already
been taken in the current week
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A.2 Variables of the MILP model

Variables needed to define the objective functions

starti ∈ R+
0 Start of loading and/or unloading if vertex i ∈ Scustomers,

start of refueling if i ∈ Sstations,
start of driving (after a potential break or rest period) if i = 0

∆late
i ∈ R+

0 Lateness in vertex i, i = 1, . . . , r − 1. Is set to be zero if the considered
vertex does not correspond to a customer location.

∆refuel
i ∈ R+

0 Amount of fuel to purchase at gas station i ∈ Sstations in liters

Variables for the integration of refueling decisions

αrefuel
i =

{
1 if i ∈ Sstations and i is selected for refueling
0 otherwise

Ti ∈ R+
0 Amount of fuel in the tank either at truck stop i before purchasing fuel

(∆refuel
i = 1) or at the corresponding leaving point (∆refuel

i = 0)

∆dr
(i,i+1) ∈ R

+
0 Driving duration between locations. If i is a gas station and refueling

takes place at i, ∆dr
(i,i+1) includes the out of route driving duration from

gas station i. If refueling takes place at i+ 1, the out of route driving
duration to gas station i+1 is added.

∆work
i ∈ R+

0 Time needed for loading and/or unloading at location i in minutes if i
is associated with a gas station, i.e. i ∈ Scustomers.
Time needed for refueling if i ∈ Sstations. ∆work

i is set to be
0 if i ∈ Sstations and no refueling takes place in i.

Variables that indicate which time window is chosen at customer i

twiz =

{
1 if time window z is chosen at destination i ∈ Scustomers

0 otherwise

i = 1, . . . , r − 1, z = 1, . . . , nbTWi

The following set comprises the continuous status variables for each vertex i.
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Edt
i Driving time left until the next break or daily rest period when entering

vertex i, i = 0, . . . , r − 1 in minutes
0 ≤ Edt

i ≤ 270

Eddt
i Driving time left until the next daily period rest when entering vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Eddt

i ≤ 540

Et
i Time left until the next daily rest period when entering vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Et

i ≤ 900

Ldt
i Driving time left until the next break or daily rest period when leaving

vertex i, i = 0, . . . , r − 1 in minutes
0 ≤ Ldt

i ≤ 270

Lddt
i Driving time left until the next daily rest period when leaving vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Lddt

i ≤ 540

Lt
i Time left until the next daily rest period when leaving vertex i

i = 0, . . . , r − 1 in minutes
0 ≤ Lt

i ≤ 900

The following variables indicate for each arc (i, i + 1) if a daily rest is made, the number
of daily rests and their cumulated duration.

αrest
(i,i+1) =

{
1 if at least one daily rest is taken on arc (i, i+ 1)

0 otherwise

i = 0, . . . , r − 2

Arest
(i,i+1) ∈ N0 The number of daily rest periods taken on arc (i, i+ 1),

i = 0, . . . , r − 2

∆rest
(i,i+1) ∈ R+

0 The cumulated duration of all daily rest periods on arc (i, i+ 1),

i = 0, . . . , r − 2

Regarding daily rests at vertices, the following variables indicate if a daily rest is made
and its duration.

αrest
i =

{
1 if a daily rest is made in vertex i
0 otherwise

i = 0, . . . , r − 1
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∆rest
i ∈ R+

0 The duration of a daily rest in vertex i,

i = 0, . . . , r − 1

The next set of variables are needed to determine if breaks are taken on arc (i, i+ 1) and
their number.

αbreak
(i,i+1) =

{
1 if at least one break is taken on arc (i, i+ 1)

0 otherwise

i = 0, . . . , r − 2

Abreak
(i,i+1) ∈ N0 The number of breaks taken on arc (i, i+ 1), i = 0, . . . , r − 2

The following variables indicate if breaks are taken in vertices.

αbreak
i =

{
1 if a break is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

Each variable ∆wait
i gives the waiting time in vertex i:

∆wait
i ∈ R+

0 Waiting time in vertex i, i = 0, . . . , r − 1

The next variables specify if an early daily rest is made on an arc, meaning that the daily
driving time is not completely used up.

µearlydr1
(i,i+1) =


1 if a break is replaced by a daily rest period on arc (i, i+ 1)

and this rest is the first rest on this arc
0 otherwise

i = 0, . . . , r − 2

µearlydr2
(i,i+1) =


1 if a break is replaced by a daily rest period on arc (i, i+ 1)

and this rest is not the first rest on this arc
0 otherwise

i = 0, . . . , r − 2

When arriving in vertex i, in case a daily rest period was taken on arc (i−1, i), the following
variable indicates if a break was taken since the last daily rest period.

ebti =

{
1 if the last rest activity on the preceding arc (i− 1, i) was a break
0 otherwise

i = 0, . . . , r − 1
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The next variables indicate if a break is still necessary to completely use up the daily
driving time left when leaving vertex i.

lbni =


1 if a break would be necessary to completely exploit

the daily driving time left when leaving vertex i
0 otherwise

i = 0, . . . , r − 1

The following variables are needed to model the optional rules.

αpbreak
i =

{
1 if the first part of a break is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

µupbreak
(i,i+1) =

{
1 if the second part of a break is taken on arc (i, i+ 1)

0 otherwise

i = 0, . . . , r − 2

µupbreak
i =

{
1 if the second part of a break is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

lpbreaki =


1 if when leaving vertex i a partial break of 15 minutes was taken

since the last rest period
0 otherwise

i = 0, . . . , r − 1

αprest
i =

{
1 if the first part of a daily rest is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

lpresti =


1 if when leaving vertex i a partial rest period of 3 h was taken

since the last rest period
0 otherwise

i = 0, . . . , r − 1
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µprest
i =


1 if the last break on arc (i− 1, i) is substituted by a

first partial rest
0 otherwise

i = 1, . . . , r − 1

µdredrest
i =


1 if in vertex i the decision is made that the next

daily rest after leaving vertex i will be a reduced one
0 otherwise

i = 0, . . . , r − 1

µredrest
(i,i+1) ∈ {0, 1, 2, 3} The number of reduced daily rests made

on arc (i, i+ 1), i = 0, . . . , r − 2

µredrest
i =

{
1 if a reduced daily rest is taken in vertex i
0 otherwise

i = 0, . . . , r − 1

ldredresti =


1 if the next daily rest is a reduced one and is taken

after leaving vertex i
0 otherwise

i = 0, . . . , r − 1

µextd1
(i,i+1) =


1 if a driving time extension is used on arc (i, i+ 1) before the

first daily rest
0 otherwise

i = 0, . . . , r − 2

µextd2
(i,i+1) ∈ {0, 1, 2} The number of driving time extensions used on arc (i, i+ 1)

between the first and the last daily rest, i = 0, . . . , r − 2

µextd3
(i,i+1) =


1 if a driving time extension is used on arc (i, i+ 1) after the

last daily rest
0 otherwise

i = 0, . . . , r − 2
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µextd
i =

{
1 if a driving time extension is decided in vertex i
0 otherwise

i = 0, . . . , r − 1

lextdi =


1 if a decision concerning a driving time extension was made

before leaving vertex i
0 otherwise

i = 0, . . . , r − 1

Auxiliary variables:

λ1i , λ
2
i , λ

3
i , λ

4
i , λ

6
i , λ

7
i ∈ {0, 1}, i = 0, . . . , r − 1

λ5i ∈ {0, 1}, i = 0, . . . , r − 2
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B Detailed results of numerical experiments

This appendix presents detailed results of the mathematical experiments conducted. In
Appendix B.1 results of the optimization steps of the solution process are illustrated for
one of the test runs. Appendix B.2 shows the overall run times for all test runs.

B.1 Solution process - An example

In the following, we will show by means of an example how the driver schedule evolves over
the several optimization steps. We chose the base instance 3 with three time windows per
customer location and a time window size of 30 minutes (see Table 10) and considered a
filter distance of 1000 km. The same instance (without considering information concerning
refueling) was used in Bernhardt et al. (2016) to compare different planning techniques.
Note that the driver starts his work week at the first customer (marked by a green dot
in Figure 27), i.e. there is no driving duration between start location 0 and the customer
location numbered 1. The final destination is chosen to be equal to the final destination
reached by the driver in real life and is marked by a red dot in Figure 27. The driver was
heading for a stop in Wolfsburg when his weekly rest period had to be started.

start

target5location Rastatt57DE9 Kirkel57DE9 Madrid57ES9 Duenas57ES9

stops [0] [1] [2] [3] [4] [5]

dur.5loading/unloading57h9 2:00 2:00 2:00 2:00 0:00

Mon506:30 Mon505:30 Wed505:30 Thu503:30 Mon500:00

Mon507:00 Mon506:00 Wed506:00 Thu504:00 Sun523:59

Mon509:00 Mon508:00 Wed508:00 Thu506:00

Mon509:30 Mon508:30 Wed508:30 Thu506:30

Mon511:30 Mon510:30 Wed510:30 Thu508:30

Mon512:00 Mon511:00 Wed511:00 Thu509:00

Mon507:47

time5windows start

end

start

end

start

end

Table 10: Time windows

The problem has 6 stops27 associated with customer locations, origin and final destination
here numbered from 0 to 5. Note that the numbering in the model depends on the number
and locations of the gas stations. After the execution of the filter algorithm we obtained
7 gas stations located in France, Spain and Belgium. Gas stations in Germany and the
Netherlands were in the original list of gas stations along the route but were eliminated
because of their high prices. Note that we consider list prices per country which are
depicted in Figure 27. For more details on the example see Table 1 on page 31. The

27 Note that even though the driver starts his week with loading and/or unloading at the first customer location,
in the MILP model, there is an additional vertex for the start location. This vertex has been added for modeling
purposes and for reasons of standardization (e.g. the origin location never has time windows) and thus is also
depicted in Table 10. The distance between the artificial origin and the first customer location is zero.
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transformation algorithm was executed after each optimization step to obtain visually
comparable results.28

Figure 27: Base instance 3

In optimization step 1 (see Table 11), the MILP submodel without optional rules was
solved, minimizing lateness and travel time. Refueling was already considered but not in
an optimal way. With the filtered list of gas stations as possible choices, the driver has to
refuel the vehicle in France at the beginning of his trip since with the remaining amount
of fuel in the tank he cannot reach a gas station in Spain. He also has a refueling stop in
Belgium at the end of his trip as otherwise it is not possible to obtain the high ending fuel
level of 837 l at the final destination. An additional refueling stop was chosen to take place
in Spain. The fuel costs amount to 1893e for the whole trip where the final destination
is reached with 40 l more in the tank than actually needed for the minimum ending fuel
level.
28 For the representation of the schedule as depicted in Tables 11 to 14, the mapping of customer locations to stops

as described in Section 6 on page 19 in the MILP model is used.
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The optimal objective function value is chosen as an upper cutoff for the MILP submodel
in step 2 (see Table 12), where the optional rules are considered. If we compare the two
schedules, we can see that the overall lateness in step 2 is reduced by the use of the
optional rules by 1:27 h (44%). Two reduced daily rest periods between customer stop 2
and 3 allow a punctual arrival at an earlier customer time window. The choice of an earlier
time window without causing lateness was also possible for customer stop 4. With the help
of a splitted break with one part before loading and/or unloading at customer location 4
and the other part on the way to customer location 5, two extended daily driving times
and another reduced daily rest period, the driver arrives at the final destination 14:15 h
earlier. The choice of gas stations did not change between steps 1 and 2, only the refueling
quantities which still are non-optimal. This time, the final destination is reached with the
minimum ending fuel level given by the input data. The overall fuel costs are 1857e.

In step 3 (see Table 13), the fuel costs have been optimized while the lateness from the
previous step was prevented from increasing. The travel time was allowed to increase
by a maximum of half an hour. In the schedule, the second daily rest period between
customer locations 2 and 3 is turned to a regular one. The replacement of the time window
chosen for customer stop 3 by the one chosen in step 1 allows another refueling stop on
the way to customer 3 without causing lateness. Thus, refueling can take place at the
first reachable gas station in Spain (second refueling stop). As the arrival at the final
destination is allowed to be 30 minutes later, there is time for an additional refueling stop
in Spain between customer location 4 and the final destination. The chosen gas station is
the last one in Spain in the filtered list. The complete refueling plan can be described as
follows: the driver refuels in France as the next cheaper gas station in Spain would not be
reachable, otherwise. The refueling amount is just enough to reach the first gas station
in Spain with the minimum fuel quantity allowed in the tank. He fills up completely as
there is no cheaper gas station along the route. The last gas station before leaving Spain
is used for an additional refueling stop and again, refueling is done until the tank capacity
is reached. The last refueling stop is necessary to comply with the predefined ending fuel
level. The total fuel costs are 1841e.

The last optimization step (see Table 14) serves as a postprocessing with the purpose to
obtain more comprehensible solutions and to allow more freedom for replanning if necessary
or for the continuation after the current planning horizon. Constraints are set up to not
worsen lateness, travel time and costs for refueling in this step. Optional rules should only
be used if this is advantageous and as late as possible. Waiting time should be reduced
to a minimum and arrival times at customer locations should be as early as possible.
Additionally, the number of refueling stops and detour durations should be kept low. The
last objective function takes account of these criteria. Thus, the second daily rest period
is reduced to the minimum duration of a regular daily rest period and waiting time at
customer location 3 is omitted. The daily rest period on the route to customer location 4
is extended by 3 minutes such that loading and/or unloading can start at the lower bound
of the chosen time window. The arrival at the final destination is 10 minutes earlier than
in step 3. The refueling strategy remains the same.
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day type from until duration
Mon (un)load 07:47 09:47 2:00

stop: 1
chosenfTW: start: Mon 06:30 end: Mon 07:00

lateness: 0:47

Mon drive 09:47 12:03 2:16
Mon (un)load 12:03 14:03 2:00

stop: 2
chosenfTW: start: Mon 10:30 end: Mon 11:00

lateness: 1:03

Mon drive 14:03 16:17 2:14
Mon rest 16:17 17:02 0:45
Mon drive 17:02 17:58 0:56
Mon refuel 17:58 18:18 0:20
Mon drive 18:18 20:47 2:29
Mon rest 20:47 07:47 11:00
Tue drive 07:47 12:17 4:30
Tue rest 12:17 13:02 0:45
Tue drive 13:02 17:32 4:30
Tue rest 17:32 04:32 11:00
Wed drive 04:32 09:02 4:30
Wed rest 09:02 09:47 0:45
Wed drive 09:47 12:27 2:40
Wed (un)load 12:27 14:27 2:00

stop: 3
chosenfTW: start: Wed 10:30 end: Wed 11:00

lateness: 1:27

Wed drive 14:27 16:17 1:50
Wed rest 16:17 04:15 11:58
Thu drive 04:15 05:00 0:45
Thu refuel 05:00 05:20 0:20
Thu drive 05:20 06:00 0:40
Thu (un)load 06:00 08:00 2:00

stop: 4
chosenfTW: start: Thu 06:00 end: Thu 06:30

lateness: 0:00

Thu drive 08:00 11:05 3:05
Thu rest 11:05 11:50 0:45
Thu drive 11:50 16:20 4:30
Thu rest 16:20 03:20 11:00
Fri drive 03:20 07:50 4:30
Fri rest 07:50 08:35 0:45
Fri drive 08:35 13:05 4:30
Fri rest 13:05 00:05 11:00
Sat drive 00:05 02:15 2:10
Sat refuel 02:15 02:35 0:20
Sat drive 02:35 03:27 0:52

stop: 5
chosenfTW: start: Mon 00:00 end: Sun 23:59

lateness: 0:00

Step 1

Table 11: Schedule from optimization step 1
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day type from until duration
Mon (un)load 07:47 09:47 2:00

stop: 1
chosenfTW: start: Mon 06:30 end: Mon 07:00

lateness: 0:47

Mon drive 09:47 12:03 2:16
Mon (un)load 12:03 14:03 2:00

stop: 2
chosenfTW: start: Mon 10:30 end: Mon 11:00

lateness: 1:03

Mon drive 14:03 16:17 2:14
Mon rest 16:17 17:02 0:45
Mon drive 17:02 17:58 0:56
Mon refuel 17:58 18:18 0:20
Mon drive 18:18 21:52 3:34
Mon rest 21:52 06:52 9:00
Tue drive 06:52 11:22 4:30
Tue rest 11:22 12:07 0:45
Tue drive 12:07 16:37 4:30
Tue rest 16:37 01:40 9:03
Wed drive 01:40 06:10 4:30
Wed rest 06:10 06:55 0:45
Wed drive 06:55 08:30 1:35
Wed (un)load 08:30 10:30 2:00

stop: 3
chosenfTW: start: Wed 08:00 end: Wed 08:30

lateness: 0:00

Wed drive 10:30 13:05 2:35
Wed refuel 13:05 13:25 0:20
Wed drive 13:25 13:45 0:20
Wed rest 13:45 01:25 11:40
Thu drive 01:25 01:45 0:20
Thu rest 01:45 02:00 0:15
Thu wait 02:00 03:30 1:30
Thu (un)load 03:30 05:30 2:00

stop: 4
chosenfTW: start: Thu 03:30 end: Thu 04:00

lateness: 0:00

Thu drive 05:30 09:40 4:10
Thu rest 09:40 10:10 0:30
Thu drive 10:10 14:40 4:30
Thu rest 14:40 15:25 0:45
Thu drive 15:25 16:25 1:00
Thu rest 16:25 01:25 9:00
Fri drive 01:25 05:55 4:30
Fri rest 05:55 06:40 0:45
Fri drive 06:40 11:10 4:30
Fri rest 11:10 11:55 0:45
Fri drive 11:55 12:00 0:05
Fri refuel 12:00 12:20 0:20
Fri drive 12:20 13:12 0:52

stop: 5
chosenfTW: start: Mon 00:00 end: Sun 23:59

lateness: 0:00

Step 2

Table 12: Schedule from optimization step 2
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day type from until duration
Mon (un)load 07:47 09:47 2:00

stop: 1
chosenfTW: start: Mon 06:30 end: Mon 07:00

lateness: 0:47

Mon drive 09:47 12:03 2:16
Mon (un)load 12:03 14:03 2:00

stop: 2
chosenfTW: start: Mon 10:30 end: Mon 11:00

lateness: 1:03

Mon drive 14:03 16:17 2:14
Mon rest 16:17 17:02 0:45
Mon drive 17:02 17:58 0:56
Mon refuel 17:58 18:18 0:20
Mon drive 18:18 21:52 3:34
Mon rest 21:52 06:52 9:00
Tue drive 06:52 11:22 4:30
Tue rest 11:22 12:07 0:45
Tue drive 12:07 16:37 4:30
Tue rest 16:37 03:40 11:03
Wed drive 03:40 08:10 4:30
Wed rest 08:10 08:55 0:45
Wed drive 08:55 09:29 0:34
Wed refuel 09:29 09:49 0:20
Wed drive 09:49 10:50 1:01
Wed wait 10:50 11:00 0:10
Wed (un)load 11:00 13:00 2:00

stop: 3
chosenfTW: start: Wed 10:30 end: Wed 11:00

lateness: 0:00

Wed drive 13:00 15:55 2:55
Wed rest 15:55 03:05 11:10
Thu drive 03:05 03:25 0:20
Thu rest 03:25 03:40 0:15
Thu (un)load 03:40 05:40 2:00

stop: 4
chosenfTW: start: Thu 03:30 end: Thu 04:00

lateness: 0:00

Thu drive 05:40 07:02 1:22
Thu refuel 07:02 07:22 0:20
Thu drive 07:22 10:10 2:48
Thu rest 10:10 10:40 0:30
Thu drive 10:40 15:10 4:30
Thu rest 15:10 15:55 0:45
Thu drive 15:55 16:55 1:00
Thu rest 16:55 01:55 9:00
Fri drive 01:55 06:25 4:30
Fri rest 06:25 07:10 0:45
Fri drive 07:10 11:40 4:30
Fri rest 11:40 12:25 0:45
Fri drive 12:25 12:30 0:05
Fri refuel 12:30 12:50 0:20
Fri drive 12:50 13:42 0:52

stop: 5
chosenfTW: start: Mon 00:00 end: Sun 23:59

lateness: 0:00

Step 3

Table 13: Schedule from optimization step 3
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day type from until duration
Mon (un)load 07:47 09:47 2:00

stop: 1
chosenfTW: start: Mon 06:30 end: Mon 07:00

lateness: 0:47

Mon drive 09:47 12:03 2:16
Mon (un)load 12:03 14:03 2:00

stop: 2
chosenfTW: start: Mon 10:30 end: Mon 11:00

lateness: 1:03

Mon drive 14:03 16:17 2:14
Mon rest 16:17 17:02 0:45
Mon drive 17:02 17:58 0:56
Mon refuel 17:58 18:18 0:20
Mon drive 18:18 21:52 3:34
Mon rest 21:52 06:52 9:00
Tue drive 06:52 11:22 4:30
Tue rest 11:22 12:07 0:45
Tue drive 12:07 16:37 4:30
Tue rest 16:37 03:37 11:00
Wed drive 03:37 08:07 4:30
Wed rest 08:07 08:52 0:45
Wed drive 08:52 09:26 0:34
Wed refuel 09:26 09:46 0:20
Wed drive 09:46 10:47 1:01
Wed (un)load 10:47 12:47 2:00

stop: 3
chosenfTW: start: Wed 10:30 end: Wed 11:00

lateness: 0:00

Wed drive 12:47 15:42 2:55
Wed rest 15:42 02:55 11:13
Thu drive 02:55 03:15 0:20
Thu rest 03:15 03:30 0:15
Thu (un)load 03:30 05:30 2:00

stop: 4
chosenfTW: start: Thu 03:30 end: Thu 04:00

lateness: 0:00

Thu drive 05:30 06:52 1:22
Thu refuel 06:52 07:12 0:20
Thu drive 07:12 10:00 2:48
Thu rest 10:00 10:30 0:30
Thu drive 10:30 15:00 4:30
Thu rest 15:00 15:45 0:45
Thu drive 15:45 16:45 1:00
Thu rest 16:45 01:45 9:00
Fri drive 01:45 06:15 4:30
Fri rest 06:15 07:00 0:45
Fri drive 07:00 11:30 4:30
Fri rest 11:30 12:15 0:45
Fri drive 12:15 12:20 0:05
Fri refuel 12:20 12:40 0:20
Fri drive 12:40 13:32 0:52

stop: 5
chosenfTW: start: Mon 00:00 end: Sun 23:59

lateness: 0:00

Step 4

Table 14: Schedule from optimization step 4
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B.2 Run times

The next six tables depict the run times for all 225 test instances for the different filter
distances chosen for the preprocessing heuristic. In each table, the instances are categorized
according to the number and length of time windows considered. Additionally, the number
of customer locations and the overall number of locations is given on the left hand side.
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base
inst.

# loc. 0 30 60 120 600 ∑

1 26 36.85 48.56 35.62 25.30 33.31 179.64
2 29 101.46 113.79 211.16 114.51 97.31 638.23
3 32 603.63 901.81 575.85 291.52 475.21 2848.02
4 29 4.45 5.18 16.86 5.63 4.87 36.98
5 21 11.48 11.75 9.05 6.29 7.13 45.69
6 30 16.12 17.93 5.21 14.46 38.07 91.78
7 29 34.29 21.85 12.00 19.28 19.45 106.87
8 39 127.13 83.26 92.74 145.24 75.10 523.46
9 32 21.34 45.23 96.40 35.16 57.02 255.14

10 33 258.87 61.04 110.33 169.40 154.22 753.86
11 35 100.20 39.28 38.19 51.26 58.30 287.23
12 32 35.23 44.84 42.28 86.55 82.42 291.30
13 30 97.63 64.69 22.92 51.31 69.23 305.78
14 38 135.58 232.05 111.49 201.99 937.24 1618.35
15 42 293.27 1511.20 1574.46 1514.27 479.55 5372.74

∑ 1877.50 3202.45 2954.54 2732.17 2588.41 13355.08
1 26 42.85 29.19 24.70 44.23 28.19 169.15
2 29 104.71 323.67 69.05 235.05 135.63 868.10
3 32 128.20 98.31 397.38 106.88 156.05 886.82
4 29 8.27 18.33 9.48 4.76 11.65 52.49
5 21 4.68 6.43 4.87 7.10 11.22 34.29
6 30 18.36 93.13 63.34 54.90 51.12 280.85
7 29 56.60 14.39 11.31 18.72 19.58 120.59
8 39 133.68 131.14 120.57 185.80 1799.46 2370.64
9 32 28.27 28.41 34.87 25.82 34.23 151.59

10 33 127.47 235.97 246.15 281.28 258.73 1149.60
11 35 159.59 71.08 50.25 127.36 81.42 489.69
12 32 126.10 81.12 57.64 39.12 33.99 337.98
13 30 49.03 39.52 868.01 22.90 244.30 1223.75
14 38 221.40 216.90 99.42 1513.80 140.95 2192.47
15 42 614.10 201.04 396.62 1542.69 1071.84 3826.28

∑ 1823.30 1588.61 2453.64 4210.40 4078.33 14154.28
1 26 33.92 53.51 29.97 45.77 53.92 217.08
2 29 209.12 258.18 31.34 190.77 644.16 1333.57
3 32 223.66 85.88 121.41 263.19 325.78 1019.92
4 29 12.06 9.33 6.29 12.76 8.96 49.39
5 21 14.82 12.17 7.52 11.40 21.30 67.21
6 30 24.93 50.92 40.84 35.62 152.60 304.91
7 29 47.11 16.13 228.62 13.93 26.69 332.48
8 39 286.98 145.00 235.83 261.43 1938.03 2867.27
9 32 47.08 29.78 37.46 56.92 240.55 411.80

10 33 141.67 267.84 505.21 217.08 561.43 1693.22
11 35 983.09 75.36 101.64 146.22 198.01 1504.32
12 32 93.10 141.87 121.13 149.30 27.17 532.57
13 30 67.11 231.57 68.16 128.12 686.59 1181.55
14 38 440.24 244.58 881.94 3508.53 1780.16 6855.44
15 42 1576.56 1546.64 219.87 1151.88 2155.95 6650.90

∑ 4201.44 3168.75 2637.21 6192.91 8821.30 25021.61

length of time windows in min

#
 t

im
e
 w

in
d

o
w

s

1

2

3

Table 15: Filter distance 100 km: Run times in seconds for the MILP model solution process
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base
inst.

# loc. 0 30 60 120 600 ∑

1 14 2.43 2.26 3.12 2.75 2.98 13.54
2 18 9.92 8.57 7.35 4.57 4.48 34.88
3 21 64.09 114.75 77.48 19.75 23.24 299.32
4 20 2.51 2.45 1.76 1.64 2.57 10.94
5 16 3.32 2.48 2.35 2.17 2.68 13.01
6 18 1.76 1.86 0.94 2.95 6.52 14.02
7 21 25.30 13.48 7.02 8.32 34.94 89.06
8 26 12.00 9.84 24.38 12.12 10.20 68.55
9 22 3.57 6.86 5.06 6.99 9.94 32.42

10 27 51.29 30.33 61.45 59.06 67.07 269.20
11 26 31.14 38.10 9.16 39.39 55.13 172.91
12 25 20.72 10.34 20.52 19.11 17.85 88.53
13 23 53.31 32.71 11.84 27.91 20.87 146.64
14 29 23.76 36.08 52.32 48.16 45.79 206.11
15 34 50.76 1508.83 264.31 597.50 1582.46 4003.86

∑ 355.89 1818.94 549.06 852.38 1886.72 5462.98
1 14 2.50 2.20 2.79 3.43 3.12 14.04
2 18 3.14 3.29 3.57 3.20 3.85 17.05
3 21 17.75 36.04 36.30 11.01 23.45 124.55
4 20 3.34 3.28 1.79 11.22 2.81 22.43
5 16 2.09 1.47 2.47 2.28 5.24 13.54
6 18 1.90 3.79 4.18 7.75 9.08 26.71
7 21 8.05 7.08 4.68 6.26 3.29 29.36
8 26 14.46 14.42 11.69 20.83 32.98 94.37
9 22 5.21 6.80 7.57 6.54 8.64 34.76

10 27 47.05 36.16 41.34 31.75 90.01 246.31
11 26 107.91 58.56 27.71 43.01 27.16 264.34
12 25 39.78 30.64 33.79 19.06 10.00 133.27
13 23 12.46 34.23 17.32 11.73 24.67 100.40
14 29 34.87 34.23 49.42 10.78 82.78 212.07
15 34 82.57 451.55 360.27 1512.62 1544.85 3951.85

∑ 383.07 723.72 604.88 1701.46 1871.92 5285.04
1 14 2.72 2.79 2.76 3.45 3.43 15.15
2 18 12.78 5.73 9.55 4.79 29.59 62.43
3 21 24.21 34.53 22.65 17.11 37.92 136.42
4 20 3.60 4.21 3.67 4.68 3.37 19.53
5 16 4.52 2.60 2.60 3.93 9.52 23.18
6 18 4.40 8.19 7.33 5.40 15.26 40.58
7 21 7.58 12.26 9.00 12.82 32.15 73.82
8 26 24.38 42.96 30.65 16.66 58.95 173.61
9 22 3.51 41.57 5.24 9.06 12.15 71.54

10 27 104.60 111.65 82.42 87.98 263.80 650.45
11 26 111.74 41.82 28.22 23.37 56.18 261.33
12 25 23.54 26.46 60.44 32.89 15.35 158.67
13 23 16.96 19.53 47.55 16.88 52.26 153.18
14 29 100.32 87.25 83.84 61.93 241.36 574.71
15 34 482.48 99.59 412.98 182.97 489.19 1667.21

∑ 927.35 541.16 808.89 483.93 1320.48 4081.81
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Table 16: Filter distance 200 km: Run times in seconds for the MILP model solution process
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base
inst.

# loc. 0 30 60 120 600 ∑

1 13 1.67 1.97 1.92 1.45 2.20 9.20
2 15 2.39 3.01 3.01 1.42 1.78 11.61
3 17 10.27 10.55 11.62 3.98 10.31 46.72
4 18 2.70 2.03 2.34 3.07 2.76 12.90
5 14 2.23 2.53 1.51 1.96 3.23 11.46
6 17 1.87 1.90 1.47 2.17 6.69 14.10
7 19 8.49 4.68 4.09 3.37 3.28 23.90
8 21 6.02 6.85 9.70 4.76 5.71 33.04
9 18 1.95 3.74 2.64 2.39 2.09 12.80

10 24 23.46 23.60 26.30 26.55 29.22 129.14
11 21 10.61 12.31 10.75 8.89 24.20 66.75
12 22 7.58 8.86 3.46 10.17 12.18 42.26
13 21 13.14 14.46 18.08 8.75 11.59 66.02
14 27 37.78 49.95 38.07 33.38 52.89 212.07
15 33 77.49 48.81 1520.62 1509.11 1227.73 4383.75

∑ 207.64 195.24 1655.58 1621.42 1395.85 5075.73
1 13 1.62 1.97 1.69 2.58 2.22 10.07
2 15 1.51 1.01 1.06 2.03 3.07 8.69
3 17 2.70 3.96 3.24 4.84 8.75 23.49
4 18 2.04 2.28 2.06 1.76 1.78 9.92
5 14 1.83 1.92 2.59 1.86 3.79 11.98
6 17 2.15 3.73 5.94 9.10 6.58 27.50
7 19 4.32 4.87 3.54 6.05 3.53 22.31
8 21 4.60 5.31 7.00 8.56 24.38 49.86
9 18 2.00 1.84 2.98 2.84 4.84 14.49

10 24 24.73 37.89 33.63 40.20 36.89 173.35
11 21 26.05 13.98 11.62 8.36 12.32 72.34
12 22 22.03 26.33 12.48 32.84 9.41 103.09
13 21 6.82 6.32 18.60 9.75 17.61 59.10
14 27 37.53 21.90 21.00 44.02 218.43 342.89
15 33 1513.61 80.36 252.28 87.53 930.39 2864.18

∑ 1653.55 213.66 379.71 262.32 1284.00 3793.24
1 13 2.04 2.57 2.56 3.17 2.04 12.39
2 15 3.62 2.32 2.36 2.31 14.82 25.43
3 17 7.74 4.74 3.79 9.31 13.14 38.72
4 18 3.10 3.99 3.25 4.74 3.04 18.13
5 14 2.03 3.64 2.53 2.81 4.43 15.43
6 17 4.59 6.58 7.38 5.21 9.34 33.10
7 19 4.06 5.26 6.37 5.71 6.49 27.88
8 21 9.23 16.16 12.28 9.50 20.47 67.64
9 18 3.64 2.34 2.76 12.79 5.62 27.14

10 24 45.80 102.34 52.48 86.89 86.99 374.49
11 21 45.02 21.39 24.60 22.82 23.82 137.66
12 22 29.77 17.60 25.88 23.74 7.58 104.57
13 21 35.72 12.14 10.30 13.23 51.98 123.37
14 27 82.85 50.34 52.90 33.31 117.20 336.60
15 33 121.84 79.80 109.34 115.35 966.83 1393.15

∑ 401.05 331.21 318.76 350.89 1333.79 2735.69
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Table 17: Filter distance 300 km: Run times in seconds for the MILP model solution process
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base
inst.

# loc. 0 30 60 120 600 ∑

1 13 2.09 2.59 2.40 2.00 2.34 11.42
2 14 2.08 2.21 3.37 1.76 2.53 11.95
3 15 5.07 4.85 8.06 3.10 7.61 28.70
4 16 2.17 1.20 1.06 1.81 2.06 8.30
5 13 0.91 1.45 1.87 1.12 2.43 7.78
6 15 1.44 1.19 0.83 1.25 4.35 9.05
7 17 2.90 3.35 2.92 12.86 3.82 25.85
8 20 5.23 5.10 5.10 3.67 3.99 23.09
9 18 2.06 2.04 1.93 2.40 3.28 11.72

10 23 35.71 17.38 18.24 14.77 31.92 118.02
11 19 7.60 5.40 7.41 4.80 9.55 34.76
12 21 5.86 6.49 7.65 4.45 22.31 46.76
13 20 11.23 9.45 3.68 3.14 11.84 39.34
14 25 23.85 18.80 28.45 24.12 20.00 115.22
15 31 47.00 55.02 133.35 935.40 552.93 1723.70

∑ 155.19 136.53 226.32 1016.65 680.96 2215.65
1 13 1.89 2.17 1.90 2.67 2.28 10.91
2 14 3.21 1.45 1.58 1.72 2.15 10.11
3 15 2.28 2.08 0.91 1.12 4.20 10.58
4 16 2.26 1.89 1.31 1.45 1.65 8.57
5 13 1.50 1.61 1.37 1.98 2.85 9.31
6 15 1.08 3.20 3.53 4.59 4.67 17.05
7 17 3.46 1.95 2.89 3.92 3.51 15.72
8 20 6.21 4.20 3.87 4.87 12.67 31.81
9 18 2.76 2.06 2.25 1.78 3.98 12.82

10 23 49.97 28.52 14.06 28.03 27.50 148.08
11 19 11.87 8.64 6.90 5.87 7.50 40.78
12 21 17.63 8.97 14.43 19.97 7.00 68.00
13 20 2.54 13.03 16.64 7.13 12.68 52.03
14 25 35.12 60.06 41.51 11.43 26.55 174.67
15 31 1521.43 66.47 28.56 181.44 765.70 2563.61

∑ 1663.20 206.28 141.69 277.96 884.90 3174.04
1 13 3.04 2.95 2.73 2.92 1.75 13.38
2 14 3.15 2.03 1.54 2.23 9.64 18.60
3 15 3.76 1.19 4.45 1.65 7.82 18.86
4 16 2.47 2.50 2.14 2.59 3.48 13.17
5 13 1.97 2.67 1.98 2.55 2.57 11.73
6 15 2.31 2.98 3.90 5.07 6.58 20.84
7 17 3.64 3.45 6.35 4.46 4.20 22.09
8 20 6.43 14.24 24.91 12.23 39.16 96.97
9 18 2.79 2.32 2.67 4.48 7.49 19.75

10 23 49.98 39.17 49.45 30.00 34.57 203.18
11 19 28.11 9.27 10.41 12.17 17.52 77.47
12 21 20.67 14.82 19.05 18.10 8.83 81.47
13 20 9.84 26.38 66.75 15.21 33.40 151.58
14 25 50.09 27.21 48.00 384.82 109.34 619.47
15 31 68.53 59.20 37.74 1528.03 1241.88 2935.38

∑ 256.78 210.37 282.07 2026.50 1528.22 4303.93

length of time windows in min

#
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Table 18: Filter distance 400 km: Run times in seconds for the MILP model solution process
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base
inst.

# loc. 0 30 60 120 600 ∑

1 11 1.16 1.04 0.77 0.67 0.72 4.35
2 14 2.34 2.89 2.82 1.54 1.89 11.48
3 15 2.97 4.56 8.83 4.37 3.73 24.45
4 16 1.45 0.83 1.22 1.42 1.93 6.85
5 12 0.64 0.98 0.58 0.84 2.04 5.09
6 14 1.12 0.90 0.91 1.11 3.93 7.97
7 17 2.82 3.37 2.86 12.84 3.84 25.73
8 19 4.42 4.99 4.31 4.54 3.70 21.95
9 17 1.97 1.78 1.48 1.95 3.10 10.28

10 22 5.32 19.66 19.92 15.30 27.05 87.25
11 19 8.11 6.33 3.46 6.15 9.69 33.75
12 21 5.80 6.55 7.64 4.42 23.90 48.31
13 20 16.29 13.51 3.70 5.31 13.38 52.18
14 24 16.10 15.48 26.58 27.82 15.66 101.64
15 29 25.85 57.30 175.67 391.70 569.29 1219.81

∑ 96.35 140.17 260.74 479.97 683.86 1661.08
1 11 0.59 0.64 0.56 0.91 0.72 3.42
2 14 1.70 0.97 1.90 1.25 1.67 7.49
3 15 2.62 2.40 5.99 1.67 5.54 18.22
4 16 1.76 2.18 1.55 1.69 1.37 8.55
5 12 0.72 0.86 1.20 1.00 2.43 6.21
6 14 0.78 3.17 2.65 3.09 3.64 13.32
7 17 3.46 1.98 2.90 3.92 3.48 15.74
8 19 2.48 2.90 2.48 3.03 13.71 24.60
9 17 1.50 1.95 1.61 2.15 3.56 10.76

10 22 19.58 18.27 19.94 19.33 21.98 99.09
11 19 11.83 9.84 4.63 6.12 6.82 39.24
12 21 17.74 8.96 14.27 19.91 6.99 67.86
13 20 5.31 37.11 27.97 15.27 15.40 101.06
14 24 35.41 27.72 29.41 11.53 31.47 135.53
15 29 469.66 31.17 42.98 1509.76 112.51 2166.07

∑ 575.13 150.12 160.04 1600.60 231.27 2717.17
1 11 1.14 1.14 0.98 1.08 0.90 5.24
2 14 1.53 2.73 2.03 1.67 14.23 22.18
3 15 2.76 2.03 2.70 2.23 9.66 19.38
4 16 1.90 3.32 1.76 2.15 1.97 11.11
5 12 1.73 1.81 1.62 1.59 1.67 8.42
6 14 2.12 4.48 3.01 2.23 9.47 21.31
7 17 3.59 3.43 6.36 4.48 4.24 22.11
8 19 4.77 9.05 5.45 7.82 28.22 55.30
9 17 2.18 2.54 2.57 2.95 6.12 16.36

10 22 26.05 49.33 27.96 23.15 21.92 148.40
11 19 34.68 10.90 12.31 7.30 17.74 82.93
12 21 20.59 14.95 19.00 19.56 8.77 82.87
13 20 43.87 21.75 58.72 17.85 48.23 190.41
14 24 56.69 52.90 33.45 19.59 71.15 233.78
15 29 71.43 50.95 43.91 1520.84 374.92 2062.05

∑ 275.04 231.30 221.83 1634.48 619.20 2981.85

length of time windows in min

#
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Table 19: Filter distance 500 km: Run times in seconds for the MILP model solution process
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base
inst.

# loc. 0 30 60 120 600 ∑

1 11 1.12 1.03 0.76 0.66 0.72 4.29
2 13 2.37 1.73 2.32 1.11 0.69 8.22
3 13 2.58 2.56 2.11 1.17 2.67 11.08
4 14 1.06 1.09 0.79 1.00 1.41 5.35
5 12 0.62 1.00 0.56 0.83 1.98 4.99
6 13 0.89 0.89 0.72 0.90 3.12 6.52
7 16 3.23 4.04 2.65 3.88 2.46 16.27
8 19 4.04 4.95 4.29 4.56 3.65 21.49
9 15 1.16 1.23 1.33 0.97 1.31 5.99

10 21 17.68 14.37 16.76 10.31 21.17 80.28
11 16 5.69 9.16 3.46 4.18 5.05 27.55
12 20 5.72 7.85 6.05 5.76 16.61 42.00
13 18 4.90 3.98 2.39 2.82 7.61 21.70
14 24 15.99 15.38 26.69 27.71 15.71 101.48
15 27 39.83 32.88 57.52 26.18 67.91 224.31

∑ 106.88 102.13 128.41 92.03 152.07 581.51
1 11 0.59 0.62 0.58 0.89 0.70 3.39
2 13 0.84 0.87 0.97 0.98 1.36 5.02
3 13 2.54 1.33 3.49 1.19 3.68 12.23
4 14 1.37 1.54 1.11 1.56 1.58 7.16
5 12 0.70 0.89 1.17 1.00 2.44 6.19
6 13 1.08 2.61 2.36 1.55 3.04 10.62
7 16 3.63 3.84 5.41 3.73 1.95 18.57
8 19 2.45 2.92 2.47 3.01 13.73 24.57
9 15 1.59 1.01 1.28 1.34 2.74 7.97

10 21 23.65 17.11 14.98 22.47 15.79 93.99
11 16 7.72 10.62 7.75 5.34 3.57 35.01
12 20 14.91 9.28 17.41 15.43 6.10 63.14
13 18 3.85 3.62 7.21 5.37 13.29 33.34
14 24 35.44 27.77 29.42 11.45 30.61 134.69
15 27 40.20 49.20 31.31 141.82 73.94 336.48

∑ 140.59 133.24 126.91 217.11 174.52 792.36
1 11 1.14 1.14 0.97 1.11 0.87 5.23
2 13 1.20 1.41 1.53 1.79 6.57 12.50
3 13 1.78 2.18 0.94 1.50 3.18 9.58
4 14 1.50 2.40 1.27 1.78 1.76 8.70
5 12 1.75 1.76 1.59 1.59 1.65 8.35
6 13 2.90 4.28 2.93 2.18 6.02 18.31
7 16 5.01 2.75 2.43 2.90 4.40 17.49
8 19 4.70 9.08 5.43 7.69 28.08 54.97
9 15 1.76 1.17 1.29 2.18 4.18 10.59

10 21 32.34 22.92 32.95 30.12 20.31 138.63
11 16 118.19 14.90 9.77 8.27 13.70 164.82
12 20 12.62 16.63 17.88 24.26 8.56 79.95
13 18 6.96 4.17 14.06 5.93 26.46 57.57
14 24 56.50 52.74 33.49 19.69 71.26 233.69
15 27 28.48 62.98 41.43 47.32 178.54 358.75

∑ 276.82 200.50 167.95 158.31 375.55 1179.12

length of time windows in min

#
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Table 20: Filter distance 1000 km: Run times in seconds for the MILP model solution
process
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