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Abstract

We study the state-dependent trading behavior of financial intermediaries in the oil fu-

tures market, using structural vector autoregressions with Markov switching in heteroske-

dasticity. We decompose changes in futures price volatility into changes in the slopes of

traders’ demand curves and in the variability of their demand shocks. We find that the

downward-sloping demand curve of intermediaries steepens significantly during turbulent

times. Moreover, the variance of intermediaries’ own demand shocks doubles during these

episodes. These findings suggest that the futures pricing of intermediaries is nonlinear and

increases the hedging costs of producers and processors of oil when volatility is high.
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1 Introduction

Traditional theories of asset pricing assign no role to financial intermediaries and view them

as a veil without influence on the functioning of financial markets. This conjecture has been

questioned. Modern theories state that intermediaries, broadly defined as entities which channel

funds between different parties, affect asset prices due to several frictions (Shleifer and Vishny,

1997, Kyle and Xiong, 2001, Fostel and Geanakoplos, 2008). Following the global financial crisis,

Brunnermeier and Pedersen (2009) and He and Krishnamurthy (2013) show theoretically how

asset price dynamics may change during crises in markets where intermediaries are the marginal

investors. Under financial stress, intermediaries’ funding constraints can become binding and

their risk-bearing capacity may shrink. Such occasionally binding constraints lay the foundation

for nonlinearities in the performance of asset markets and can give rise to liquidity dry-ups and

volatility spikes.

Based on these theoretical insights, several empirical papers study the relation between asset

prices and a variety of measures of intermediaries’ financial health. Adrian et al. (2014) document

a relationship between the marginal value of intermediaries’ wealth and asset returns. He et al.

(2016) find that intermediaries act as marginal investors in many asset markets. Focusing on

commodity markets, Acharya et al. (2013) show that the severity of intermediaries’ capital

constraints affects futures risk premia, and Etula (2013) highlights the relevance of the risk-

bearing capacity of securities broker-dealers for futures risk premia.

These empirical findings support the theoretical arguments that the risk and trading con-

straints of financial institutions are time-varying and change through volatility regimes. They

further suggest that such nonlinearities are key to understand commodity futures markets and,

given an arbitrage relation, potentially also spot prices. What is missing in the literature, ho-

wever, is an analysis of the state-dependent trading behavior of financial intermediaries and

the associated implications for price dynamics. We aim to fill this gap by building a Markov

switching in heteroskedasticity structural vector autoregressive (MSH-SVAR) model for the oil

futures market, using weekly position data from the U.S. Commodity Futures Trading Commis-

sion (CFTC) for the period 2006-2016. We focus on oil as the large exposure of banks to the oil

sector has raised concerns about financial stability (Domanski et al., 2015), but our approach

can be applied to other commodities.

We use a stylized conceptual framework following Cheng et al. (2015). It describes the

trading behavior of different trader groups in terms of simple net long demand curves depending

on the contemporaneous futures price and a group-specific demand shock. The framework

provides sufficient restrictions for just-identification of the structural empirical model. The

main identifying assumption is that traders do not directly respond to position changes of other

trader groups. This assumption is consistent with a publication lag of the CFTC data and

the electronic trading at the New York Mercantile Exchange to which the data refer, making

aggregate position changes of other trader groups contemporaneously unobservable. We consider

two states of the world: tranquil and volatile periods. The endogenous determination of these

states is at the core of the analysis. The Markov switching framework allows us to be agnostic

and gives full voice to the data (Hamilton, 1994), thereby reducing the risk of misspecification of

the transition points, variable(s), or functions. Since the structural model is just-identified for
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each state, we can let both the impact effects and the volatility of the structural shocks switch

across states. This facilitates a decomposition of changes in futures price volatility into changes

in the slopes of traders’ demand curves and in the volatility of their demand shocks.

Our paper contributes to the literature along several dimensions. The results show that the

trading behavior of financial intermediaries changes significantly across states. First, the demand

curve of intermediaries steepens significantly when switching from the tranquil to the turbulent

state. The lower price elasticity implies that they are less willing or able to absorb trades of

other groups. This increases the price effect of futures demand shocks by two thirds according

to our estimates. Second, the variance of intermediaries’ own demand shocks doubles during

these episodes, further raising price volatility. Both findings are consistent with the theoretically

predicted nonlinearities in Brunnermeier and Pedersen (2009) and He and Krishnamurthy (2013).

Our study also relates to a long-standing literature on the determination of commodity

futures prices, and their relation to spot prices.1 Recently, there has been much interest in the

role of financial institutions in these markets and whether the increased presence of financial

investors has changed the functioning of commodity markets (Fattouh et al., 2013, Cheng and

Xiong, 2014). Our analysis focuses on the role of financial intermediaries in the price formation

process in the oil futures market. We show that their trading behavior is state-dependent and

that this increases the hedging costs of producers and processors of oil in high volatility regimes.

The paper builds on a literature on structural time-series models with heteroskedasticity

(Rigobon, 2003). We combine the type of Markov switching models following Herwartz and

Lütkepohl (2014) with the framework of Bacchiocchi and Fanelli (2015). The first model type

determines regime switches endogenously, but allows only for changes in the volatility of the

structural shocks across regimes. The second class allows for changes in both the contempo-

raneous effects and the volatility of the structural shocks, but defines the regimes exogenously

based on prior information. Our model contains both desirable features: an endogenous regime

determination, and changes in the impacts and in volatility. This is crucial for our analysis as it

allows, first, endogenously estimating when significant changes in volatility occur and, second,

decomposing them into changes in the slopes of demand curves and into changes in the volati-

lity of demand shocks. Another important difference to the aforementioned models is that we

do not use the heteroskedasticity in the data for identification. The latter is achieved through

economic reasoning, implying that our identified structural shocks have the simple economic

interpretation as net long demand shocks of the trader groups included in the model.

Our results are robust to a large number of sensitivity tests. We also compare them with

estimates from popular alternative classes of nonlinear models – threshold and smooth transition

models – based on a single transition variable (Kilian and Lütkepohl, 2017, Ch. 18). These

models yield similar conclusions regarding the state-dependent trading behavior of financial

intermediaries. Furthermore, they show that the choice of the transition variable plays an

important role in determining the model outcomes, that none of the exogenously determined

states captures both the general financial market turmoil periods and the oil-market-specific

events that the Markov switching model detects, and that the structural parameters are less

1 See Garbade and Silber (1983), Hirshleifer (1990), Kilian and Murphy (2014), Hamilton and Wu (2015), Hen-
derson et al. (2015), Sockin and Xiong (2015), Knittel and Pindyck (2016).
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precisely estimated across states. Finally, we investigate whether combinations of variables can

capture the Markov switching regimes. We relate the smoothed probability of the high volatility

state to model-external variables through logit regressions. They show that higher Baa-Aaa

corporate spreads and lower U.S. Treasury yields are the best indicators of turbulent times,

consistent with risk premia and risk-free rates being important factors for the futures basis and

hence for futures price dynamics (Acharya et al., 2013, Szymanowska et al., 2014).

The remainder of the paper is structured as follows. The next section discusses the litera-

ture on intermediary asset pricing, presents a simple conceptual framework and some testable

implications. It further outlines the empirical methodology and describes the data. Section 3

contains the main results, while Section 4 compares them to other modeling approaches and

provides further evidence on the characteristics of the high volatility state. This section also

contains an extensive sensitivity analysis. The last section concludes.

2 Conceptual Framework, Empirical Model and Data

In this section, we first summarize the literature on intermediary asset pricing. Using the findings

in the literature, we present a conceptual framework and derive two testable implications for the

trading behavior of intermediaries in the oil futures market. The section ends with a description

of the data.

2.1 Conceptual Framework

Traditional theories of asset pricing regard financial intermediaries as a veil without influence

on the performance of asset markets. Intermediaries act according to their clients’ preferen-

ces, making a representative household the marginal investor. This neglect of the intermediary

sector has been questioned by numerous studies showing that intermediaries face a variety of

constraints, such as limits to arbitrage, due to which they influence the functioning of asset

markets (Kyle and Xiong, 2001, Fostel and Geanakoplos, 2008). In an influential paper Brun-

nermeier and Pedersen (2009) show the interdependence between the ability of intermediaries to

raise capital and market liquidity. When funding liquidity is scarce, intermediaries are reluctant

to open new positions, market liquidity is lower, and volatility is higher. He and Krishnamurthy

(2013) study the asymmetric effects of intermediary capital on risk premia. When capital is

abundant, intermediaries are able to offset losses such that there are only limited effects on risk

premia. When capital is scarce, however, losses in the intermediary sector can be associated

with higher and more volatile risk premia.

The subsequent empirical literature has studied the relation between intermediaries’ financial

health, using a variety of approximations of this unobservable variable, and asset prices. Adrian

et al. (2014) investigate the relation between a stochastic discount factor based on the leverage of

security broker-dealers and asset returns. He et al. (2016) use capital ratios of intermediaries and

provide evidence that intermediaries are the marginal investors in many asset markets and thus

key to understanding price formation. Focusing on commodity markets, Acharya et al. (2013)

show that the futures risk premium and hence producers’ hedging costs are increasing in the

severity of intermediaries’ capital constraints, measured by their assets relative to households’
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assets. Etula (2013) uses the leverage of securities broker-dealers, who serve as counterparties

to hedgers, to build a risk aversion index and finds that it is a determinant of risk premia

in commodity futures markets. Finally, Cheng et al. (2015) approximate the risk absorption

capacity of financial traders in commodity futures markets with the VIX and document a risk

transfer from those traders to hedgers during periods of high volatility.

These contributions suggest that when volatility is high (i) intermediaries are more reluctant

to take on new positions, and (ii) their exposure to idiosyncratic balance sheet shocks increases.

To map these considerations into testable implications, we formulate a stylized model of the oil

futures market, following Cheng et al. (2015). The framework describes the trading behavior of

all market participants, who are assumed to be atomistic price takers. We distinguish between

three groups of traders: hedgers (H), financial intermediaries (F ), and others (O). Hedgers are

producers, processors, or large consumers of oil, who want to hedge physical oil price risk of

commercial businesses. For the second group, we primarily think of it as large banks that either

trade on behalf of clients without direct access to the futures market or on their own behalf. The

third group contains all remaining traders and is mainly comprised of specialized commodity

trading advisors, commodity pool operators, and traders who cannot be clearly classified in any

other category. The demand curves of the three trader groups are

∆yH = −aH(S)∆P +
√
λH(S)νH

∆yF = −aF (S)∆P +
√
λF (S)νF

∆yO = −aO(S)∆P +
√
λO(S)νO,

where ∆yi denotes the change in the net long oil futures position of trader group i = H,F,O.

∆P is the change in the oil futures price. The coefficients ai(S) determine the slope of the

respective demand curve and thus measure the price elasticity of each group. They reflect the

capacity or willingness to absorb trades of other groups. Illiquidity might arise if there are

limits to arbitrage which deter risk averse arbitrageurs from taking the counter-side. Shleifer

and Summers (1990) and Shleifer and Vishny (1997), for example, show that large position

changes can influence prices through an effect on the order book if the instantaneous supply

of counterparty orders is low. Regarding financial intermediaries, a smaller value of aF implies

that they absorb a smaller part of the desired demand shift of producers and processors or,

equivalently, provide less liquidity, and that the price impact will be larger.

Each demand curve further features a random shock νi which causes the respective trader

group to adjust its net long position due to own reasons. For financial intermediaries the

causes can be manifold: portfolio diversification, risk management, speculative motives based

on private signals, or long hedging of short exposure vis-à-vis clients. The λi(S)’s measure

the variances of the shocks and are allowed to differ across groups. One can interpret these

coefficients as the exposure of each trader group to its idiosyncratic shocks. For example, if we

think of νF as a shock hitting the balance sheets of intermediaries, then a larger λF suggests

a greater exposure to this shock. Although being highly stylized, the simple demand functions

thus capture two main trading motives of financial institutions in commodity futures markets:

liquidity provision to other traders and trading for own purposes. The usual market clearing
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condition, ∆yH + ∆yF + ∆yO = 0, closes the model and ensures that the price is jointly

determined by all trader groups in equilibirum.

We distinguish in an ad-hoc form between two different states S = 1, 2 of the world. Without

loss of generality, we think of state 1 as tranquil periods and of state 2 as volatile times. The

latter can be either episodes of general financial market turmoil that spill over to the oil futures

market through balance sheets of intermediaries or drastic oil market developments that directly

affect intermediaries in the oil futures market. The central feature of the model is that the ai(S)

and λi(S) coefficients are allowed to differ between regimes. Hence, both the ability of traders

to absorb other traders’ shocks as well as the variance of own shocks can change between states.

Using the market clearing condition and writing the system in matrix notation gives
1 0 aH(S)

0 1 aF (S)

−1 −1 aO(S)




∆yH

∆yO

∆P

 =


√
λH(S)νH√
λF (S)νF√
λO(S)νO

 . (1)

This expression is the basis for the identification of our structural empirical model. It illustrates

our main identifying restrictions which are reflected in the zero elements on the LHS of (1).

We assume that no trader group responds directly to the position change of any other group.

This assumption is consistent with the publication lag of the CFTC data that we use and

the market to which they refer. The positions correspond to each Tuesday end-of-day at the

electronic trading platform of the New York Mercantile Exchange. Here, aggregated orders of

the other investors are not observable. But the CFTC reports are released only the following

Friday, implying that traders cannot contemporaneously observe and thus directly respond to

aggregated position changes of other groups. They do so, of course, indirectly through prices.

Given the theoretical literature discussed above and to focus the empirical analysis, we now

postulate the following two hypotheses about the changes in the coefficients across states:

Hypothesis 1 The downward-sloping demand curve of financial intermediaries steepens du-

ring turbulent times: aF (2) < aF (1).

Hypothesis 2 The volatility of intermediaries’ demand shifts increases during turbulent times:

λF (2) > λF (1).

The alternative hypotheses are that there are no significant changes across regimes, implying

that there is no clear difference in the way financial intermediaries trade in tranquil versus

turbulent times, or that the changes in parameters are significant but with the opposite sign.

Finally, unlike Cheng et al. (2015), our framework does not contain a common shock which

simultaneously affects all trader groups (potentially to differing degrees). This reduces the

computational complexity of the estimation. Instead, we deal which such shocks by including

a number of exogenous control variables in the baseline empirical model and by conducting an

extensive sensitivity analysis adding further controls.
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2.2 The MSH-SVAR Model

We now describe the general M state, p lag reduced form Markov switching in heteroskedasticity

structural vector autoregressive (MSH-SVAR) model:

yt = c+ Γ1yt−1 + · · ·+ Γpyt−p + Ψ0xt + Ψ1xt−1 + · · ·+ Ψnxt−n + ut, (2)

where in our case yt = [∆yHt ,∆y
F
t ,∆Pt]

′ is the vector of endogenous variables with ∆yHt and ∆yFt

the change in the net long futures position of hedgers and financial intermediaries, respectively,

and ∆Pt the oil futures return. Further, xt is a vector of W exogenous variables discussed

below, Γi and Ψj are parameter matrices with i = 1, . . . , p and j = 1, . . . , n, where n does not

necessarily equal p, and c is a vector of constants. Finally, ut is a vector of reduced form error

terms with E[ut] = 0 and E[utu
′
t] = Σu(St). For estimation purposes, we assume that ut is

normally and independently distributed conditional on a given state:

ut|St ∼ NID(0,Σu(St)).

Here, St is a first order discrete valued Markov process that can take on M different values,

St = 1, . . . ,M , with transition probabilities given by pkl = P (St = l|St−1 = k), k, l = 1, . . . ,M .

Although the model is linear in a given state, it is nonlinear as a whole.

Using the conceptual model in (1), we write the structural empirical model as 1 0 aH(St)

0 1 aF (St)

−1 −1 aO(St)


︸ ︷︷ ︸

≡A(St)

 ∆yHt

∆yFt

∆P


︸ ︷︷ ︸

=yt

=

 εHt

εFt

εOt

 ,

where εt = [εHt εFt εOt ]′ is a vector of structural shocks whose standard deviations correspond

to
√
λi in the conceptual model, and where we have neglected constants, lags and exogenous

variables for illustration.2 This leads to the following relationship between the reduced form

errors and the structural shocks: ut = A(St)
−1εt, where A(St)

−1 is a matrix of state-dependent

instantaneous effects.

It is important that despite the zeros in A(St) all variables are allowed to react contempo-

raneously to all shocks since

A−1(St) =


aF (St)+aO(St)

ã(St)
−aH(St)

ã(St)
−aH(St)

ã(St)

−aF (St)
ã(St)

aH(St)+aO(St)
ã(St)

−aF (St)
ã(St)

1
ã(St)

1
ã(St)

1
ã(St)

 , (3)

where ã(St) = aH(St) + aF (St) + aO(St). This is a central feature of the model and a main

building block of the empirical plausibility of our identifying assumptions as traders respond to

each other through prices in nearly continuous time. Any zero restrictions on A−1(St) would

thus be difficult to justify. The specific structure of A−1(St) follows from the restrictions placed

2 Implicitly this means that νi ∼ (0, 1) and that εi ≡
√
λi(S)νi ∼ (0, λi(S)).
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on A(St) and reveals that a change of aF (St) across states affects the response of all variables

to all shocks as it enters the denominator of all elements in A−1(St).

In order to allow for state-dependence of the instantaneous effects we model A(St) as

A(St) = Ā+A(St), St = 1, . . . ,M, (4)

where Ā consists of the state-invariant part and A(St) is the state-dependent part of the matrix.

For simplicity, we set A(1) = 0. To summarize, the definitions are

A(St) =

 1 0 aH(St)

0 1 aF (St)

−1 −1 aO(St)

 , Ā =

 1 0 āH

0 1 āF

−1 −1 āO

 , A(St) =

 0 0 αH(St)

0 0 αF (St)

0 0 αO(St)

 . (5)

Further, we assume that the structural errors have a non-identity diagonal covariance matrix:

E[εtε
′
t] = Λ(St) (naturally E[εt] = 0). We allow this matrix to be state-dependent in an analogous

fashion as above

Λ(St) = Λ̄ + Λ(St), St = 1, . . . ,M, (6)

where each matrix is diagonal. A typical element of Λ(St) is λi(St) = λ̄i + `i(St), where λ̄i and

`i(St) are the respective elements of Λ̄ and Λ(St). Again, for simplicity, we set Λ(1) = 0. The

covariance matrix of the reduced form errors can then be written as

Σu(St) = A(St)
−1Λ(St)(A(St)

−1)′ . (7)

The system contains six structural parameters per state. These can be directly mapped to

the six unique reduced form parameters through (7). The model is thus just-identified for any M ;

due to restrictions based on economic reasoning, without relying on changes in volatility. This

approach uses a combination of established approaches found in the literature. For instance,

the decomposition in (7) is used by Lanne et al. (2010), Herwartz and Lütkepohl (2014) and

others. In addition, analogous decompositions as in (4) and (6) can be found in Bacchiocchi

and Fanelli (2015). While our approach does make use of existing techniques, unlike in the

literature, we do not assume an identity covariance matrix for the structural shocks in the first

state, that is, Λ(1) 6= I, and we use, in the terminology of Lütkepohl (2005, Ch. 9), an A-model

for identification instead of a B-model, which is employed in the aforementioned papers.

Finally, the Markov switching model differs from models with exogenously determined regi-

mes, such as threshold and smooth transition structural time-series models in that it treats any

potential transition variable(s) as latent. This allows the researcher to be more agnostic on the

state determination. Section 4.1 compares our results with results from such models.

2.3 Estimation and Bootstrap Procedure

The parameters in (2) are estimated by means of the expectation maximization (EM) algorithm

of Hamilton (1994, Ch. 22), which was extended to multivariate processes by Krolzig (1997).

Crucial for the analysis is to incorporate the regime-switching nature of the covariance matrix

described in (4) and (6), given the restrictions in (5). Note that the latter do not contain any
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sign restrictions on the coefficients ai(S). Following Podstawski and Velinov (2016), we use the

following concentrated out log likelihood function in the maximization step of the EM algorithm:

l(Ā,A(2), . . . ,A(M), Λ̄, Λ(2), . . . , Λ(M)) =
1

2

M∑
m=1

[
T̂mlog(det(Σu(m)))

+ tr

(
(Σu(m))−1

T∑
t=1

ξ̂mt|T ûtû
′
t

)]
,

where Σu(m) is defined as in (7). Further, ξmt|T ,m = 1, . . . ,M, t = 1, . . . , T are the model

smoothed probabilities, Tm =
∑T

t=1 ξmt|T , and the hat symbol denotes estimated parameters

obtained from the previous iteration.

Once the EM algorithm has converged, we obtain standard errors of the point estimates of

the parameters through the inverse of the negative Hessian matrix evaluated at the optimum.

We use these standard errors as a first statistic to determine whether the estimated parameters

change significantly across states. As a second statistic, we use Likelihood Ratio tests, where we

restrict the main parameters of interest to be time-invariant. As a third statistic, we compute

bootstrapped impulse responses. Given the heteroskedasticity, classical residual bootstrapping

may be problematic in generating reliable confidence intervals. Any re-sampling scheme needs

to preserve the second order characteristics of the data. We therefore use a fixed design wild

bootstrap with u?t = ϕtût, where ϕt is a random variable independent of yt following a Radema-

cher distribution. ϕt is either 1 or –1 with probability 0.5. This is a commonly used technique

for these types of models (Herwartz and Lütkepohl, 2014, Podstawski and Velinov, 2016).

2.4 Data

We use data of the Disaggregated Commitments of Traders (DCOT) Report of the U.S. Com-

modity Futures Trading Commission (CFTC). The data are weekly and start from 13 June

2006 to May 24, 2016, thereby containing 520 observations. Due to data availability, we could

not start our sample earlier. However, given the weekly frequency of the data, we have a good

amount of observations to estimate our parameters precisely. We calculate the net long position

of the trader groups denoted as “Producer/Merchant/Processor/User” and “Swap Dealer” in

light sweet crude oil traded at the New York Mercantile Exchange (NYMEX) to approximate

net long demand of hedgers and financial intermediaries, respectively. Given the computational

complexity of the empirical model we focus on these two trader groups, as they have relatively

well defined business models within classifications, and lump the remaining groups in the price

equation. In Section 4.3, we show that the main results are insensitive to adding another trader

group to the model. Regarding the oil futures price, we employ the next-to-maturity futures

settlement price of light crude oil at NYMEX. All three endogenous variables enter the model

in standardized first differences, or log differences in case of prices.

According to the definition of the CFTC, a swap dealer is “[a]n entity that deals primarily in

swaps for a commodity and uses the futures markets to manage or hedge the risk associated with

those swaps transactions” (CFTC, 2017a). The vast majority of them are major global banks

and the remaining traders in this group are other banks and financial intermediaries (CFTC,
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2017b). Heumesser and Staritz (2013) document that the four largest globally active banks in

this category held around 70% of swap positions in commodity futures markets in 2008, namely,

Goldman Sachs, Morgan Stanley, JP Morgan, and Barclays Bank. In 2012 the group was made

up of Bank of America, JP Morgan, Goldman Sachs, and Citibank. Other banks with big swap

positions include Merril Lynch, Deutsche Bank, HSBC, Credit Suisse, Rabobank, and UBS.

One caveat of the CFTC data are potential misclassifications of traders and hence reporting

errors. First, financial intermediaries have incentives to be classified as hedgers since this entitles

them to preferential treatments. Hedgers are exempted from position limits and face lower mar-

gins requirements, translating into less capital needed for maintaining open positions. Second,

the data refer to total end-of-day positions of traders, meaning that positions are aggregated

across trades due to different business reasons. This aggregation complicates an interpretation

of position changes. Third, the CTFC itself changes the classification of traders from time to

time, for example following alterations in the way traders participate in the futures market.

Overall, misclassifications cannot be fully excluded. But the bias of these reporting errors is

likely to imply that some financial traders are erroneously classified as hedgers and our results

might then actually represent a lower bound of the influence of intermediaries on futures prices.

Finally, we augment the model with a number of contemporaneous exogenous variables to

control for common factors that potentially affect positions of all trader groups simultaneously.

We add the number of initial jobless claims to capture the state of the real economy and the

balance sheet of the Fed to account for nominal developments. Both variables are available at

the weekly frequency. Moreover, we include the surprise component in news releases of 30 U.S.

macroeconomic indicators to account for public information approaching the market. In Section

4.3 we show that the results are insensitive to the inclusion of a large number of further exogenous

variables. Appendix A contains a complete description of the data used in the analysis.

3 Results

We start by showing statistical evidence supporting the choice of a regime-switching model,

followed by a brief presentation of the endogenously determined states. We then discuss the

model’s main implications in terms of estimated structural parameters. Additionally, we report

bootstrapped impulse responses and forecast error variance decompositions.

3.1 Model Selection

Table 1 shows two types of specification statistics for the Markov switching model.3 The left

panel shows lag selection criteria. We follow the literature and select the lag order of the endo-

genous variables in the MSH-VAR model based on a linear VAR model. All three information

criteria point to one lag. This also seems plausible from an economic point of view, given that

financial markets react immediately and adjust quickly to new information, and since our data

are of weekly frequency. We use the same lag length for the exogenous variables.

3 In the Markov switching model only the covariance matrix is switching between the sates, the autoregressive
coefficients and the intercept are state-independent. In Section 4.3, we estimate a model with changing intercept.

9



The right panel shows that a MSH-VAR model is clearly preferred over a standard linear

VAR according to the log-likelihoods and information criteria. The latter have been shown to

work well to judge the performance of MS models (Psaradakis and Spagnolo, 2006), whereas

standard tests are problematic for determining the number of states (Hansen, 1992). The choice

of two states is motivated by theoretical reasoning (see Section 2). This number suffices to test

our two hypotheses. Estimation of a two-state model is also less cumbersome and leads to more

stable and precise estimates, given that a potential third state contains only a limited number

of observations. Nevertheless, we consider a three state model in the robustness analysis.

Table 1: Model Specification Tests

AIC SC HQ

Lag(s) 1 1 1

Note: Lag selection based on Akaike in-

formation criterion, Schwarz criterion,

and Hannan-Quinn criterion.

Model LogLike AIC SC

reduced form linear VAR −2069.4 4354.7 4813.7

reduced form MSH-VAR, 2 states −1957.2 4158.3 4676.8

Note: Model fit comparison of a linear VAR and a two-state MSH-

VAR with lag order n = p = 1 based on the log-likelihood, Akaike

information criterion, and Schwarz criterion.

3.2 Smoothed State Probabilities

One main feature of the Markov switching model is the endogenous determination of the two

states based on changes in the reduced form covariance matrix. For the labeling of the states

we look at the diagonal elements of the reduced form covariance matrices:

Σu(1) =

 0.58 · ·
0.00 0.74 ·
−0.11 −0.33 0.31

 Σu(2) =

 1.34 · ·
−0.29 0.78 ·
−0.23 0.05 1.58

 . (8)

Equation (8) shows that there is a low-volatility regime, state 1, with relatively small variances,

and a high-volatility regime, state 2, with larger variances. Especially the variance of the oil

futures return increases strongly from 0.31 to 1.58 in state 2. The variance of net long positions

of hedgers also more than doubles from 0.58 to 1.34. In contrast, the variance of net long

positions of financial intermediaries increases only mildly from 0.74 to 0.78. Through the lens of

the conceptual model, this modest change is likely reflecting two offsetting forces. On the one

hand, a steeper demand curve of intermediaries (Hypothesis 1) means that they are less price-

elastic and implies that a given order of other market participants induces a smaller change in

intermediaries’ positions and a larger price increase. On the other hand, a rise in the volatility

of intermediaries’ own demand shocks (Hypothesis 2) is tantamount to a rise in the variance

of their positions. Together, we thus observe a small increase in the variance of intermediaries’

positions and a large increase in the variance of the price in state 2. In the following we refer to

state 1 as the “tranquil state” and to state 2 as the “turbulent state.”

Figure 1 plots the smoothed probability of state 2. The dashed lines display a suggested

selection of events that are likely to have had an effect on intermediaries in the oil futures

market and potentially help rationalize the switches in the states. The switches occur both

around events directly related to the oil futures market and during periods of more general
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Figure 1: Smoothed Probabilities of State 2

Note: Plot of the endogenously estimated smoothed probability of the high volatility state 2, that is, the “turbulent
state.” Dashed lines correspond to selected events that are listed below the figure.

financial market turmoil. In detail, we observe two longer phases in state 2 which coincide with

oil market specific events. The first is towards the start of the sample. There was a boom in

oil prices related to expectations of OPEC supply cuts. It is important to bear in mind that

also short-selling requires capital in the form of margins. The second phase is at the end of the

sample and is in line with the plunge in oil prices from late 2014 onwards. This episode also

raised more general concerns about the health of financial institutions with a large exposure to

the oil sector (Domanski et al., 2015).

There area also several periods where the switch to state 2 is concurrent with general market

turmoil, as during the global financial crisis. The probability peaks for some months when

concerns about the solvency of several large banks (Northern Rock and Bear Stearns) intensified.

With the first actual failure of a big bank (IndyMac), the subsequent bankruptcy of Lehman

Brothers, and the rescue of AIG, the model enters a prolonged phase in state 2 that lasts until

summer 2009. It also generates increased probabilities surrounding important events of the euro

area crisis, such as the Greek bailout in summer 2010, potentially reflecting both the exposure

of U.S. banks to the euro area and the presence of European banks on U.S. futures markets

(CFTC, 2017b). Another short switch to state 2 occurs between the second half of 2011, which

begins with the U.S. debt-ceiling crisis and the subsequent downgrading of the U.S. by Standard

& Poor’s, as well as the return of the euro area crisis. All in all, this narrative indicates that

our agnostic model seems to identify a high volatility state not only for periods of stress in the

oil market but also for crisis times in other financial markets. To investigate this issue further,

we later study the relation of the smoothed probability with other asset prices.
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3.3 State-dependent Intermediary Pricing

In the following we formally test our two main hypotheses by evaluating the estimated para-

meters of interest, and their statistical significance based on the Hessian. We also perform

Likelihood Ratio tests to compare the baseline specification allowing for switches in all parame-

ters with alternative models which restrict the parameters of interest to be time-invariant.

We start with the estimated instantaneous relations between variables in the tranquil state:

A(1) = Ā =



1 0 1.06∗∗∗

(0.22)

0 1 1.52∗∗∗

(0.13)

−1 −1 0.56
(0.53)


.

The matrix corresponds to the one in the conceptual model so that we can interpret the es-

timated coefficients in the last column as the slope parameters of the demand curves of the

three trader groups. Hedgers are ordered first, financial intermediaries second, and the group

of others third. The values in parentheses show the standard errors. Asterisks indicate whether

the parameters are different from zero (∗, ∗∗, ∗ ∗ ∗ correspond to significance at the 10%, 5%,

and 1% level, respectively). The estimated slopes for hedgers and financial intermediaries are

highly statistically significant, with the latter demand curve being flatter. In tranquil times,

intermediaries have the highest price elasticity and are the group most willing to take counter-

positions. This ability shows how intermediaries facilitate hedging of producers and contribute

to the functioning of the market. The slope parameter of others is not significant, potentially

reflecting trader heterogeneity within this group.

To test Hypothesis 1, we evaluate A(2) which contains the changes in the slope coefficients

when switching to state 2:

A(2) =



0 0 −0.31
(0.28)

0 0 −1.26∗∗∗

(0.14)

0 0 0.41
(0.60)


.

The only slope that changes significantly is the one for intermediaries. The change has the

expected sign and is economically relevant. The demand curve steepens by more than 80%.

Adding Ā and A(2) yields the slope coefficients in state 2:

A(2) = Ā+A(2) =


1 0 0.75

0 1 0.26

−1 −1 0.96

 .

Comparing the slope for intermediaries directly across regimes shows that aF (1) = 1.52 >

0.26 = aF (2), or, equivalently, that aF (1)− aF (2) = 1.26 > 0. As this difference is statistically

different from zero the estimates suggest that intermediaries absorb trades of other market
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participants to a lesser extent during turbulent times. This result lends support to the prediction

of the theoretical literature that intermediary asset pricing is state-dependent, and shows that

the oil futures market is a typical asset market. Moreover, together with the smoothed state

probabilities it suggests that this market is not only affected by own developments but also by

financial turmoil originating in other markets where financial intermediaries are active as well.

Brunnermeier and Pedersen (2009) refer to this phenomenon as “commonality of liquidity across

assets” which results from the difficulty of large banks to raise capital during periods of stress.

As a result, market liquidity as a whole can decrease and observed price volatility increases.

To further judge the economic significance of the change in the demand functions, we inter-

pret the overall contemporaneous effects of net long demand shocks in both states. They take

into account all instantaneous feedback among positions and prices and are given by

A(1)−1 =

 0.66 −0.34 −0.34

−0.48 0.52 −0.48

0.32 0.32 0.32

 , A(2)−1 =

 0.62 −0.38 −0.38

−0.13 0.87 −0.13

0.51 0.51 0.51

 . (9)

Each column shows the effects of a demand shock of a given trader group on the positions of

hedgers and intermediaries, and on prices. Comparing the response of intermediaries’ positions

to demand shocks of the other two trader groups between state 1 and 2 shows that intermediaries

absorb trades from other market participants to a lesser extent in the turbulent state. The

respective value decreases in absolute terms from 0.48 to 0.13. Instead, intermediaries are

mostly trading for own reasons, as indicated by the increase from 0.52 to 0.87 of the effect of

their own shocks on own positions.

The bottom rows show that regardless of which trader groups’ demand is shifting, the price

impact in a given regime is the same as it depends on all traders’ demand curves (see last

rows in (3) and (9)). Across regimes, however, the price impact increases strongly, by nearly

60%. When interpreting this number, one has to bear in mind that the elements in A(S)−1 are

functions of all three estimated slopes in A(S) and that some coefficients and their changes are

not statistically significant. But when considering only the significant change in the coefficient

for intermediaries, aF , the price effect of demand shocks is 0.53, which is virtually the same as

when considering all changes in slopes.4 Hence, regardless of the precise computation, the price

impact of any trade in the market increases by almost two thirds in state 2, and the results

indicate that this is mostly due to a steeper demand curve of financial intermediaries.

To test Hypothesis 2, we turn to the estimated structural variances in state 1, Λ(1), and

their switch to state 2, Λ(2):

Λ(1) = Λ̄ =


0.71∗∗∗ 0 0
(0.13)

0 0.47∗∗∗ 0
(0.06)

0 0 1.90∗∗∗

(0.66)

 , Λ(2) =


1.18∗∗∗ 0 0
(0.35)

0 0.45∗∗∗ 0
(0.12)

0 0 1.46
(1.11)

 .

4 In detail, the coefficients in the last row are given by 1/ã(St), where ã(St) = aH(St) + aF (St) + aO(St). Hence,
1/ã(1) = 0.32 and 1/ã(2) = 0.51. If we only change aF (St) between states, that is ã(2∗) = aH(1)+aF (2)+aO(1),
then we obtain 1/ã(2∗) = 0.53.
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All variances in state 1 are statistically significant. If we interpret the coefficient for inter-

mediaries as their exposure to idiosyncratic balance sheet shocks, then intermediaries have the

smallest reaction to own shocks in state 1. This finding is consistent with the idea that in normal

times they can easily absorb ordinary balance sheet shocks. In state 2, however, the volatility

of demand shifts of intermediaries almost doubles from 0.47 to 0.92. Importantly, the change

λF (2) − λF (1) = 0.45 > 0 is statistically significant at the one percent level. The estimates

thus support Hypothesis 2 and suggest that during turbulent times the exposure of financial

intermediaries to shocks hitting their balance sheets increases. Finally, the volatility of demand

shocks of hedgers also changes significantly across regimes, being already relatively high in state

1. This finding suggests that producers and processors of oil have a large exposure to oil market

specific shocks already during normal times, consistent with many items on their balance sheets

being linked to the price of oil. This sensitivity increases further during episodes that contain

large oil price swings.

Putting the results together, we calculate the overall impact of the different demand shocks

on the endogenous variables. Using Λ(2) = Λ̄ + Λ(2), they are given by

A(1)−1Λ(1)0.5 =

 0.56 −0.23 −0.47

−0.41 0.35 −0.67

0.27 0.22 0.44

 , A(2)−1Λ(2)0.5 =

 0.85 −0.36 −0.70

−0.18 0.83 −0.24

0.69 0.49 0.93

.

The numbers resemble those in (9) but provide additional insights as they take into account

the size of demand shifts. While in state 1 intermediaries’ positions are more driven by trades

of other market participants than by own needs, this drastically changes during state 2, where

intermediaries change positions predominantly in response to own shocks. Moreover, when

taking into account the larger variances in state 2, the increase in the price impact of all demand

shocks across regimes is even more pronounced. The price effects more than double in all cases.

Finally, we compare different model specifications through Likelihood Ratio tests as another

means of analyzing the statistical properties of the main results. We compare the log-likelihood

of the unrestricted baseline model, where all structural parameters are allowed to change across

regimes, to three alternative restricted model variants, where some parameters are assumed to

be time-invariant. We set either αF (2) = 0 (see 5), `F (2) = 0 (see 6), or impose both restrictions

simultaneously, that is, αF (2) = `F (2) = 0. Table 2 shows that in all three cases the p-values of

the tests are essentially zero, clearly rejecting the restrictions. We conclude that a model which

allows for fully state-dependent trading behavior of intermediaries is favored by the data.

Table 2: Likelihood Ratio Tests of Restrictions for the MSH-SVAR Model

H1: baseline model specification

H0 : αF (2) = 0 H0 : `F (2) = 0 H0 : αF (2) = `F (2) = 0

1.11E-16 2.13E-04 0

Note: Likelihood Ratio tests comparing the baseline model specification (unrestricted model) with different
alternative specifications in which parameters corresponding to financial intermediaries are set to zero (restricted
model). Numbers represent p-values of the null hypothesis.
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3.4 Impulse Responses and Forecast Error Variances

The matrices discussed so far show differences in the impact effects of the shocks across states.

We now present impulse responses to assess the dynamic effects. The bootstrapped confidence

intervals also provide a further alternative of testing whether the effects are significantly different

across regimes, both upon impact and subsequently. Figure 2 shows the cumulative responses

in both states.5 The dashed line refers to the tranquil state and the solid line to the turbulent

state. The shaded area displays 90% confidence intervals based on 1000 bootstrap replications.

Overall, the figure corroborates the conclusions based on the impact effects. All responses are

significantly different across regimes. In particular, the price effects of all three types of demand

shocks are significantly larger in state 2. Moreover, we again find that financial intermediaries

react stronger to their own shocks during turbulent times while absorbing less of the other

traders’ demand shocks. In contrast, hedgers react more to intermediaries’ demand.

Figure 2: Cumulative Impulse Responses with 90% bootstrapped Confidence Intervals

Note: Comparison of cumulative impulse responses of the three endogenous variables (in rows) to the three
demand shocks (in columns) in state 1 (dashed line) and state 2 (solid line). Shaded areas represent 90%
confidence intervals based on 1000 bootstrapped replications using a fixed design wild bootstrap. Vertical axes
are in absolute changes in case of position variables and percentage changes in case of the futures price, horizontal
axes are in weeks.

The figure also shows that the largest effects occur upon impact with only a limited role for

the dynamics, in particular of prices. This observation is in line with asset prices and finan-

cial market participants responding instantaneously to each other, and has several implications.

First, it suggests that the estimates and the statistical inference based on the impact matrices

capture quantitatively most of the nonlinear effects of intermediary asset pricing. Second, it

implies that other empirical approaches that are based on lead/lag relationships between vari-

ables for the identification of the impact of trading behavior on asset prices, or vice versa, are

5 The cumulative response for a given time horizon is the sum of all responses from the previous horizons until
the current horizon. It therefore naturally stays persistent and is not expected to revert back to zero.
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likely to miss a relevant fraction of the overall effects. Finally, technically, it means that the

underlying assumption of no regime change over the impulse horizon is not crucial as most of

the difference between regimes is on impact. Moreover, this assumption seems plausible for the

chosen horizon of eight weeks as Figure 1 indicates a high persistence of each state. In fact, the

probability of staying in the current state is 0.96 for both states.

As a final means of quantifying the importance of state-dependencies we compute forecast

error variance decompositions. They yield the average regime-specific contribution of the struc-

tural shocks to the variability of the endogenous variables. We focus on the contributions of

the shocks upon impact which are similar to the decompositions for longer horizons. Table 3

shows that during tranquil times less than a fifth of the variability of intermediaries’ positi-

ons is explained by own shocks. They mainly respond to demand shocks of hedgers and other

traders. This is in stark contrast to the turbulent state, where nearly 90% of the variation in

intermediaries’ position is explained by own shocks. Each of the other two shocks contributes

only about 5%. Interestingly, the importance of intermediaries’ demand shocks for price fluc-

tuations remains constant across regimes at 15%, despite a significant increase in the volatility

of their demand shocks in state 2. This finding suggests that the main distinguishing feature

of intermediaries relative to the other two trader groups is the significant decline in their price

elasticity, which does not apply to the other two groups, rather than the increase in demand

volatility in turbulent times, which is common to all three groups.

Table 3: Forecast Error Variance Decomposition

Variable State
Demand
Shock

Hedgers

Demand
Shock

Fin.Int.

Demand
Shock
Others

Position Hedgers
1 0.54 0.09 0.37
2 0.54 0.10 0.36

Position Financial Intermediaries
1 0.23 0.17 0.60
2 0.04 0.88 0.07

Futures Price
1 0.23 0.15 0.62
2 0.31 0.15 0.54

Note: Contribution of the three demand shocks to the forecast error variance of the endogenous variables upon
impact in state 1 and state 2. The results change only marginally for longer horizons given that there is not
much persistence in the first-differenced variables.

4 State Determination and Sensitivity Analysis

In this section, we first estimate exogenous switching models with a single transition variable

to assess the sensitivity of our results and to compare them with estimates from those popular

alternative classes of nonlinear models. We then investigate whether combinations of variables

can be associated with the regimes identified by the Markov switching model through logit

regressions on the smoothed probabilities. The section concludes with a series of robustness

tests of the Markov switching model.
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4.1 Exogenous Switching Models

Prominent examples of exogenous regime switching models are threshold and smooth transition

SVARs. We estimate both types of models applying various transition variables, which reflect

either general financial market or oil market conditions and are available at the weekly frequency.

Following the literature we choose the VIX, the Baa-Aaa corporate bond spread, and the TED

spread as measures of financial market conditions, and the realized volatility of the oil spot price

as an oil market measure.6 Table 4 shows that all variables correlate reasonably and with the

expected sign with the probability of the high volatility state, but are far from identical to it.

Table 4: Correlations

VIX Baa-Aaa spread TED spread Realized volatility

State 2 prob. 0.36 0.40 0.36 0.49

Note: Correlations between smoothed state 2 probabilities and weekly financial variables. Variables are in levels.

Sample period: June 27, 2006 to May 24, 2016. Number of observations: 518. See Table 8 in Appendix A for a

description of the variables.

In the threshold SVAR, the exogenous switching occurs when the transition variable st

exceeds some certain threshold value at a specific observation date t. The threshold is typically

chosen a priori and is often calibrated such that the model replicates some observed empirical

pattern. We set it to be the 2/3-quantile, qs(2/3), of the transition variable over the whole

sample period:

St =

1 if st ≤ qs(2
3),

2 if st > qs(
2
3).

This choice implies that the model dedicates 1/3 of the sample period to the turbulent state,

roughly consistent with the 32% of observations in state 2 in the baseline MSH-SVAR model.

Changing the threshold value to the 3/4-quantile affects the results only mildly.

The smooth transition specification follows (Kilian and Lütkepohl, 2017, Ch. 18) and calcu-

lates the exogenous switching probabilities based on the following logistic function:

St(1) = (1 + exp{−γ(st − µ)})−1

St(2) = 1− St(1),

where st denotes the transition variable, γ > 0 is a slope parameter determining the smoothness

of the transition, and µ is a location parameter defining the midpoint of the transition. To avoid

scaling issues we standardize the exogenous transition variables which allows us to leave the

slope parameter constant across specifications. We set it to γ = 25, but our results are robust

6 The VIX captures options-implied stock market volatility and is found to be linked to balance sheet constraints
of intermediaries (Adrian and Shin, 2014). The Baa-Aaa spread is a commonly used indicator of credit spreads
that signals default risk and possesses informational content for near-term economic growth (Gilchrist and
Zakraj̆sek, 2012). The TED spread, defined as the interest difference between three-month euro interbank
deposits (LIBOR) and three-month U.S. Treasury bills, is an indicator of funding constraints and has been
shown to correlate negatively with liquidity in the currency market (Mancini et al., 2013). The weekly realized
variance is computed following Bollerslev et al. (2009) and we take the square root of it. As this measure is
relatively noisy, we use the 8-week moving average of it as transition variable.
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Figure 3: Exogenous Smooth Transition Probabilities of State 2

Note: Comparison of the smoothed probability of the high volatility state 2, that is, the “turbulent state,” between
the baseline model and a model with exogenous switching. In the baseline model the smoothed probabilities are
endogenously estimated, while in the model with exogenous switching the transition between the two states is
determined by a logistic function of a specific transition variable (the VIX, the Baa-Aaa corporate bond spread,
the TED spread, or the realized volatility of the oil spot price).

to using smaller or larger values. For the location parameter, we use the mean of the transition

variable over the sample period for simplicity.

Figure 3 displays the exogenously identified states from the smooth transition models. No

single transition variable captures both the episodes of general market turmoil and the oil-

market-specific events that the MSH-SVAR model registers. When the VIX is used as a tran-

sition variable, the model partly misses oil-market-specific events, such as the strong oil price

fluctuations in 2007 and towards the end of the sample. The Baa-Aaa spread based model, on

the other hand, accounts for more of the later episode, but relatively late. Moreover, it seems to

miss several of the spikes during the European debt crisis, probably reflecting that the transition

variable refers to U.S. corporate bond yields. Similarly, the TED spread produces essentially

transitions during the global financial crisis. Finally, the transition based on the realized oil

price volatility tends to better capture both types of high volatility episodes, but partly neglects

oil market events at the beginning of the sample and some switches during the European debt

crisis. Moreover, the switches occur with some lag relative to the baseline model.

Table 5 contains the estimation results for both model types. Regardless of the specific

transition variable, the estimated slopes of the demand curves are all highly significant in the

tranquil state. In comparison to the baseline results, the slope for intermediaries is smaller
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in all cases but the change in the coefficient when switching to the turbulent state remains

significant throughout. The variances of their demand shocks are all significant in the tranquil

state, whereas the change in volatility to the turbulent state is only significant in some cases,

and with the opposite sign. For all trader groups the volatility of demand shocks is considerably

larger in the tranquil state, indicating that these models are less able to distinguish between

different volatility regimes. The overall lower precision of the estimates is also reflected in a

general loss of fit of these models relative to the Markov switching model. The latter yields

higher log-likelihoods and is preferred according to both types of information criteria over any

of the exogenous switching models (see second column). In summary, while the main results

hold, the model fit deteriorates, the choice of the transition variable affects the results, and

no single transition variable seems to recover the smoothed probabilities from the MSH-SVAR

model. In the next section we therefore study whether a combination of variables can capture

the smoothed probabilties.

4.2 Regression Analysis of State Probabilities

We relate the smoothed probability of state 2 of the MSH-SVAR model to a number of model-

external variables through logit regressions.7 This analysis can add to the economic interpreta-

tion of the agnostically identified regimes and potentially allows inferring which other markets

are relevant for the trading of intermediaries in the oil futures market.

Since the smoothed probability is a continuous measure, we transform it into a dichotomous

variable by assigning 1 whenever it is above 0.5, and 0 otherwise. Only 16% of the observations

have a probability between 0.10 and 0.90, supporting this transformation. As regressors, we

include a constant and, as suggested by the MS process, one lag of the original state probabi-

lity. Given the high autocorrelation of the smoothed probability, this lag transforms the model

essentially into a specification in first differences. We therefore use first (log) differences of the

other regressors as well, which also reduces the risk of spurious regression. The regressors are

the four variables employed as exogenous transition variable, the log S&P 500 index, the yield

on ten-year U.S. Treasury bonds, a trade weighted U.S. Dollar index and the log oil spot price.

Table 6 shows the point estimates for the different variables, adding them one-by-one. Robust

standard errors are in parentheses. The log odds for each variable has the expected sign and five

out of the seven variables are significant. Increases in the VIX or the Baa-Aaa corporate bond

spread signal higher uncertainty and reflect widening credit spreads, which are both signs of

financial market stress. Increases in the S&P 500, in the ten-year rate, and the oil spot price, on

the other hand, lower the probability of state 2. Lower equity or oil returns seem to have adverse

effects on intermediaries’ trading constraints. Together, the estimates support the conclusion

from Figure 1 that the endogenously identified state 2 in the MSH-SVAR model reflects both

oil and general financial market disturbances.

7 We choose a logit model for several reasons. First, standard OLS regressions seem inappropriate as the assump-
tions of linearity and homoskedasticity are violated. The smoothed probabilities show that many observations
are close to 0 or 1, with only few observations with values in between. We opt for a logit model over a probit
model as the former has fatter tails and is less sensitive to outliers. Probit regressions yield similar results, with
the coefficients being smaller in absolute value as it is usually the case. Standard diagnostics tests like the link
test for model adequacy or the Hosmer-Lemeshow test as well as inspecting the receiver operating characteristic
curve indicate that the model is well specified.
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Table 6: Logit Regressions Baseline Results

Regressor VIX Baa-Aaa TED Realized S&P Ten-year Exchange Oil
spread spread volatility 500 rate rate price

Coefficient 0.19*** 13.05*** 0.95 11.34 −0.22* −6.54*** 0.46 −0.14**

Robust S.E. (0.07) (4.86) (1.46) (12.96) (0.11) (1.68) (0.30) (0.06)

Note: Logit models with dependent variable equal 1 if probability of state 2 of MSH-SVAR model ≥ 0.5, and 0 otherwise.
Explanatory variables are in first differences and include a lag of the endogenous variable and a constant. Pseudo R2 = 0.90
in all models. *, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. Sample period: June 27, 2006 to
May 24, 2016, weekly frequency, 517 observations. See Table 8 in Appendix A for a description of the variables.

Table 7: Logit Regressions Extended Models

Variable (1) (2) (3) (4) (5) (6) (7) (8)

VIX 0.19*** 0.17** 0.19** 0.18* 0.27* 0.24 0.23 0.23
(0.07) (0.07) (0.08) (0.09) (0.16) (0.18) (0.16) (0.15)

Baa-Aaa spread 11.15** 11.60** 12.39** 14.20** 12.71** 11.65** 10.61*
(5.28) (5.16) (5.35) (5.73) (5.68) (5.93) (6.07)

TED spread −1.84 −1.83 −2.17 −2.47 −1.56 −1.25
(1.67) (1.81) (1.64) (1.83) (2.39) (2.57)

Realized volatility 8.26 10.90 7.76 7.85 8.79
(10.78) (12.11) (11.58) (11.11) (10.61)

S&P 500 0.15 0.25 0.29 0.32
(0.23) (0.21) (0.20) (0.19)

10y TB rate −5.48** −6.05*** −5.70***
(2.30) (2.13) (2.07)

Exchange rate 0.29 0.20
(0.29) (0.30)

Oil price −0.07
(0.08)

Observations 517 517 517 517 517 517 517 517

Pseudo R2 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.91

Note: Logit models with dependent variable equal 1 if probability of state 2 of MSH-SVAR model ≥ 0.5, and 0 otherwise.
Explanatory variables are in first differences and include a lag of the endogenous variable and a constant. Robust standard
errors are in parentheses. *, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. Sample period: June
27, 2006 to May 24, 2016, weekly frequency. See Table 8 in Appendix A for a description of the variables.

In Table 7 we add the same variables sequentially to the model. Only two variables remain

significant: the Baa-Aaa spread and the ten-year Treasury rate. The negative coefficient on the

Treasury rate is consistent with “flight to quality” phenomena (Brunnermeier and Pedersen,

2009) in state 2, induced by a commonality of liquidity across asset markets and resulting in

declining yields. Both coefficients are also in line with risk premia and risk-free rates being

important factors for the futures basis and hence for futures price dynamics (Acharya et al.,

2013, Szymanowska et al., 2014).

4.3 Sensitivity Analysis

The section concludes with a number of robustness tests. First, we enlarge the baseline model

by including another trader group, namely, the DCOT group of “Other Reportables.” This

group consists of reportable traders not classified as producers/processors/users, swap dealers,

or money managers (see Appendix A). Second, as in Herwartz and Lütkepohl (2014), we allow

for a third volatility state. Appendix B contains a figure with the smoothed probabilities for

states 2 and 3. Third, we shorten the estimation period to June 12, 2007 until May 27, 2014

to exclude the large oil price swings at the beginning and end of the sample. Fourth, we allow

for a more flexible specification with a switching intercept term. Fifth, we include all financial

variables except of the oil spot price of Table 7 in first (log-)differences as exogenous control
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variables in the model. Sixth, we exclude all exogenous variables from the model. Seventh,

we estimate a model with four lags. Eighth, we allow for predetermined exogenous variables.

Ninth, instead of using the log-change in the oil futures price, we employ the change in the oil

futures-spot basis as a third variable besides the two position variables.

Table 9 in Appendix B contains the key results of these alterations. They are qualitatively

and mostly quantitatively similar to the baseline estimates, which are repeated in the first

row for comparison. In all specifications the demand curve of financial intermediaries steepens

significantly in the turbulent state, and the volatility of their own demand shocks is significantly

larger. The endogenously identified states are similar across specifications and the correlation

between the probability of state 2 in the baseline model and in alternative specifications is

usually quite high (see second column).8 Overall, the main results appear to be robust to the

various alterations of the model and the data.

5 Conclusion

Modern asset pricing theories state that financial intermediaries face numerous frictions through

which they affect the performance of financial markets. One of them is that during volatile times

their trading constraints become binding and their risk-bearing capacity shrinks. Intermediaries

may then be less able to enter new trades and may have to unwind existing positions. Such

occasionally binding constraints lay the theoretical foundation for nonlinearities in the asset

pricing of intermediaries (Brunnermeier and Pedersen, 2009, He and Krishnamurthy, 2013).

This paper contributes to the literature by building a Markov switching in heteroskedasticity

structural vector autoregressive (MSH-SVAR) model that tests for the presence of such nonli-

nearities in the oil futures market. The model contains two endogenously identified states, one

corresponding to low and one to high volatility. The empirical results suggest two central nonli-

nearities. First, the downward-sloping demand curve of intermediaries steepens significantly in

the high volatility regime. The lower price elasticity implies that intermediaries accommodate

given hedging needs of producers, processors and consumers of oil to a lesser extent, and that

the price effect of these demand shocks increases strongly. Second, the volatility of intermedia-

ries’ own demand shocks increases significantly during these episodes. This raises futures price

volatility further.

These findings indicate the existence and empirical relevance of the theoretically predicted

state-dependency of intermediary asset pricing. Quantitatively, the estimates suggest that the

steepening of the demand curve is the more important nonlinearity, and the main distinguishing

feature of intermediaries relative to other trader groups in the oil futures market. Open questions

are whether these nonlinearities are also present at lower frequencies and whether they help to

explain the typically higher volatility of oil prices at high(er) frequencies.

8 One exception is the model with the futures basis, which is more volatile than the futures price. Further, the
more volatile states 2 and 3 of the three-state model depict similar periods as state 2 in the baseline model,
and would thus be jointly correlated with that state.
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Table 8: Definition of Variables

Variable Definition and Source

Position
Hedgers

Net long position of the trader group “Producer/Merchant/Processor/User” in light sweet
crude oil traded at the New York Mercantile Exchange. Standardized first absolute differen-
ces. U.S. Commodity Futures Trading Commission (CFTC), Disaggregated Commitments of
Traders (DCOT) Report.

Position
Financial In-
termediaries

Net long position of the trader group “Swap Dealer” in light sweet crude oil traded at the New
York Mercantile Exchange. Standardized first absolute differences. U.S. Commodity Futures
Trading Commission (CFTC), Disaggregated Commitments of Traders (DCOT) Report.

Futures Price New York Mercantile Exchange light crude oil continuous futures settlement price. Standar-
dized first log-differences. Code: NCLCS00. Datastream.

Initial Jobless
Claims

Number Initial Claims, Weekly, Ending Saturday, Seasonally Adjusted. Standardized first
log-differences. Federal Reserve Economic Data, St. Louis Fed. Series code: ICSA.

Fed Total
Assets

All Federal Reserve Banks Total Assets, Millions of Dollars, Weekly, as of Wednesday, Not
Seasonally Adjusted. Standardized first log-differences. Federal Reserve Economic Data, St.
Louis Fed. Series code: WALCL.

U.S. Macroe-
conomic
Surprise
Indicators

Difference between actual release and the median forecast estimate of economists surveyed
by Bloomberg. Indicators: American Consumer Spending Growth Rates MoM SA (PCE
CRCH:IND), Average Hourly Earnings MoM% SA (AHE MOM%:IND), Average Hourly
Earnings YoY% SA (AHE YOY%:IND), Business Inventories MoM SA (MTIBCHNG:IND),
Capacity Utilization % of Total Capacity (CPTICHNG:IND), Conference Board Leading Indi-
cators MoM (LEI CHNG:IND), Construction Spending Total MoM SA (CNSTTMOM:IND),
Core Producer Price Index (PPI XYOY:IND), CPI Urban Consumers Less Food & Energy
YoY NSA (CPI XYOY:IND), CPI Urban Consumers MoM SA (CPI CHNG:IND), CPI Ur-
ban Consumers YoY NSA (CPI YOY:IND), Durable Goods New Orders Industries MoM
SA (DGNOCHNG:IND), GDP Chained 2009 Dollars QoQ SAAR (GDP CQOQ:IND),
Housing Starts/Permits (NHSPSTOT:IND), Industrial Production MoM 2007=100 SA (IP
CHNG:IND), Initial Jobless Claims SA (INJCJC:IND), Markit Manufacturing PMI SA (MP-
MIUSMA:IND), Markit Services PMI Business Activity SA (MPMIUSSA:IND), Nonfarm
Payrolls Total MoM SA (NFP TCH:IND), Personal Consumption Expenditure CPI YoY SA
(PCE CYOY:IND), Personal Income MoM SA (PITLCHNG:IND), PPI Final Demand MoM
SA (PCE CYOY:IND), PPI Finished Goods SA MoM% (PPI CHNG:IND), Producer Price
Index - Finished Goods (PPI YOY:IND), Productivity Output Per Hour Nonfarm Business
Sector QoQ SA (PRODNFR%:IND), Retail Sales (Less Auto and Gas Stations) SA MoM%
Change (RSTAXAG%:IND), Trade Balance of Goods and Services SA (USTBTOT:IND),
Unit Labor Costs Nonfarm Business Sector QoQ% SAAR (COSTNFR%:IND), University of
Michigan Consumer Confidence Indicator (CONSSENT:IND), US Government Budget Ba-
lance FED (FDDSSD:IND)

10y TB rate 10 Year U.S. Treasury Benchmark Bond Redemption Yield, Weekly, Ending Tuesday. First
absolute differences. Code: USBDS10Y. Datastream.

Baa-Aaa
spread

Difference between Moody’s Seasoned Baa Corporate Bond Yield ©, Percent, Weekly, Ending
Tuesday, Not Seasonally Adjusted and Moody’s Seasoned Aaa Corporate Bond Yield ©,
Percent, Weekly, Ending Tuesday, Not Seasonally Adjusted. First absolute difference. Federal
Reserve Economic Data, St. Louis Fed. Series codes: DBAA and DAAA, respectively.

Exchange
rate

Trade Weighted U.S. Dollar Index: Major Currencies, Index 27.06.2006 = 100, Weekly, Ending
Tuesday. First log-differences. Federal Reserve Economic Data, St. Louis Fed. Series code:
DTWEXM.

Oil price Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma, Dollars per Barrel,
Weekly, Ending Tuesday, End of Period. First log-differences. Federal Reserve Economic
Data, St. Louis Fed. Series code: DCOILWTICO.

Realized
volatility

Square root of the weekly realized variance of the oil spot price, which is given by RVt =∑n
j=1(p

t−1+ j
n
− p

t−1+ j−1
n

)2, where pt denotes the logarithm of the oil spot price and n is the

number of trading days during week t. First absolute differences. Source of the oil price see
above.

S&P 500 Standard & Poor’s 500 Stock Market Index, Weekly, Ending Tuesday. First log-differences
(that is, the return). Yahoo Finance.

TED spread TED Spread, Weekly, Ending Tuesday, End of Period. First absolute difference. Federal
Reserve Economic Data, St. Louis Fed. Series code: TEDRATE.

VIX CBOE Volatility Index: VIX, Weekly, Ending Tuesday, End of Period. First absolute diffe-
rence. Federal Reserve Economic Data, St. Louis Fed. Series code: VIXCLS.

Definitions of Trader Groups in DCOT Reports

Below are the definitions of the four trader groups in the DCOT Reports as stated in CFTC (2017a).
The fifth group of “Non-Reportables” is a residual component.
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Producer/Merchant/Processor/User: An entity that predominantly engages in the production, proces-
sing, packing or handling of a physical commodity and uses the futures markets to manage or hedge risks
associated with those activities.

Swap Dealer: An entity that deals primarily in swaps for a commodity and uses the futures markets to
manage or hedge the risk associated with those swaps transactions. The swap dealer’s counterparties
may be speculative traders, like hedge funds, or traditional commercial clients that are managing risk
arising from their dealings in the physical commodity.

Money Manager: A registered commodity trading advisor (CTA); a registered commodity pool opera-
tor (CPO); or an unregistered fund identified by CFTC. These traders are engaged in managing and
conducting organized futures trading on behalf of clients.

Other Reportables: Every other reportable trader that is not placed into one of the other three categories
is placed into the “other reportables” category.

Non-Reportables: The remainder of total open interest in the specific futures market that is not accounted
for by the other four categories of traders.

B Sensitivity Analysis: Additional Figure and Table

Figure 4: Smoothed Probability of the two volatile States in the Robustness Check

Note: Plot of the endogenously estimated smoothed probability of the two high volatility states, that is, the “tur-
bulent states,” in the robustness check of the baseline model with three different states. Dashed lines correspond
to selected events that are listed below the figure.

26



T
a
b

le
9
:

S
en

si
ti

v
it

y
A

n
al

y
si

s

A
lt

e
rn

a
ti

v
e

sp
e
c
ifi

c
a
ti

o
n

ρ
( ξba

s
e
.

2
t
|T

,
ξ
a
lt

.
2
t
|T

)
A

(1
)

=
Ā
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