## ECONSTOR

Make Your Publications Visible.

## A Service of

Caporale, Guglielmo Maria; Plastun, Alex

# Working Paper <br> Price overreactions in the cryptocurrency market 

DIW Discussion Papers, No. 1718

## Provided in Cooperation with:

German Institute for Economic Research (DIW Berlin)

Suggested Citation: Caporale, Guglielmo Maria; Plastun, Alex (2018) : Price overreactions in the cryptocurrency market, DIW Discussion Papers, No. 1718, Deutsches Institut für Wirtschaftsforschung (DIW), Berlin

This Version is available at: https://hdl.handle.net/10419/175075

## Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]

## Discussion Papers

# Price Overreactions in the Cryptocurrency Market 

Opinions expressed in this paper are those of the author(s) and do not necessarily reflect views of the institute.

## IMPRESSUM

© DIW Berlin, 2018

DIW Berlin
German Institute for Economic Research
Mohrenstr. 58
10117 Berlin
Tel. +49 (30) 897 89-0
Fax +49 (30) 897 89-200
http://www.diw.de
ISSN electronic edition 1619-4535

Papers can be downloaded free of charge from the DIW Berlin website:
http://www.diw.de/discussionpapers

Discussion Papers of DIW Berlin are indexed in RePEc and SSRN:
http://ideas.repec.org/s/diw/diwwpp.html
http://www.ssrn.com/link/DIW-Berlin-German-Inst-Econ-Res.html

# Price Overreactions in the Cryptocurrency Market 

Guglielmo Maria Caporale*<br>Brunel University, London, CESifo and DIW Berlin

Alex Plastun**<br>Sumy State University

January 2018


#### Abstract

This paper examines price overreactions in the case of the following cryptocurrencies: BitCoin, LiteCoin, Ripple and Dash. A number of parametric (t-test, ANOVA, regression analysis with dummy variables) and non-parametric (Mann-Whitney U test) tests confirm the presence of price patterns after overreactions: the next-day price changes in both directions are bigger than after "normal" days. A trading robot approach is then used to establish whether these statistical anomalies can be exploited to generate profits. The results suggest that a strategy based on counter-movements after overreactions is not profitable, whilst one based on inertia appears to be profitable but produces outcomes not statistically different from the random ones. Therefore the overreactions detected in the cryptocurrency market do not give rise to exploitable profit opportunities (possibly because of transaction costs) and cannot be seen as evidence against the Efficient Market Hypothesis (EMH).


Keywords: cryptocurrency market, Bitcoin, overreaction, momentum, abnormal returns, contrarian strategy, trading strategy, trading robot

JEL classification: G12, G17, C63
*Corresponding author. Research Professor at DIW Berlin. Department of Economics and Finance, Brunel University London, UB8 3PH.
Email: Guglielmo-Maria.Caporale@brunel.ac.uk
** Alex Plastun gratefully acknowledges financial support from the Ministry of Education and Science of Ukraine (0117U003936).

## 1. Introduction

The dominant paradigm in financial economics is still the Efficient Market Hypothesis (EMH) that implies that the behaviour of asset prices should be unpredictable (Fama, 1965). However, cognitive biases (Akerlof and Shiller, 2009), different investment horizons (Campbell and Viceira, 2002), noise traders (Black, 1985), the belief of many traders in technical analysis (Taylor and Allen, 1992) and other factors can generate so-called market anomalies, namely certain patterns in price behaviour making prices predictable (at least in the short run).

The most known market anomalies are calendar and size anomalies, price bubbles, M\&A and IPO effects, momentum effects and contrarian trading, over- and underreactions etc. One of the most explored among them is the overreaction anomaly, which was first detected by De Bondt and Thaler (1985), who showed that the best (worst) performing portfolios in the NYSE over a three-year period normally under (over)-performed over the following threeyears. In other words, there were identifiable patterns in price behaviour: after a significant growth corrections should be expected.

Despite a significant number of studies on market overreactions (De Bondt and Thaler, 1985; Brown et al., 1988; Atkins and Dyl, 1990; Bremer and Sweeney, 1991; Ferri and Min, 1996; Choi and Jayaraman, 2009; Mynhardt and Plastun 2013; Caporale et al., 2017; and many others) none of them has focused on the cryptocurrency market, which is the most volatile among financial markets: the average daily price amplitude in this market is more than 10 times higher than in FOREX, 7 times higher than in stock market and more than 5 times higher than in the commodity markets (see Appendix F for details). This feature (combined with the fact that it is a very young market) makes it particularly interesting to examine for possible overreactions.

This paper provides new evidence on the overreaction anomaly in the cryptocurrency market by testing the following two hypotheses: after one-day abnormal price movements (overreactions), on the next day abnormal price (i) counter-movements or (ii) momentum
movements are observed. For this purpose, a number of statistical tests (both parametric and non-parametric) are carried out. A trading robot approach is then used to investigate whether any detected anomalies generate exploitable profit opportunities. The analysis is carried out for four different cryptocurrencies (BitCoin, LiteCoin, Ripple and Dash).

The remainder of the paper is organised as follows. Section 2 reviews the existing literature on the overreaction hypothesis. Section 3 describes the methodology used in this study. Section 4 discusses the empirical results. Section 5 provides some concluding remarks.

## 2. Literature Review

Following the already mentioned study by De Bondt and Thaler (1985), many other papers have tested the overreaction hypothesis, according to which if investors overreact in a given period, in the next period they move in the opposite direction; in the case of short-term overreactions one-day price increases are followed by price falls on the next day and vice versa. For example, Bremer and Sweeney (1991) showed that, after negative daily changes exceeding $10 \%$, price increases on the next day averaged $1.77 \%$ (see also Caporale et al., 2017).

Market overreactions were found not only in stock markets (Brown et al., 1988; Atkins and Dyl, 1990; Larson and Madura, 2003 and many others), but also in the FOREX (Mynhardt and Plastun, 2013) and commodity markets (Cutler et al., 1991). Possible reasons for overreactions are discussed by Plastun (2017). These are psychological (cognitive traps, emotions and other psychological biases), technical (execution of stop losses and margin-calls, the use of technical analysis by traders), related to fundamentals (price-ratio hypothesis) etc.

As already pointed out, the cryptocurrency market is extremely volatile (see Dwyer. 2014); Cheung et al., 2015; Carrick , 2016). Bartos (2015) also reported that it immediately reacts to the arrival of new information and can therefore be characterised as efficient. Similar conclusions were reached by Kurihara and Fukushima (2017), whilst Caporale and Plastun (2017) found evidence of a day-of-the-week anomaly. Of course, as shown by Atkins and Dyl
(1990), incorporating transaction costs into the analysis may dramatically change the results, with abnormal returns becoming very small and statistically insignificant.

## 3. Data and Methodology

To analyse overreactions in the cryptocurrency market we use daily data on the four cryptocurrencies (BitCoin, LiteCoin, Ripple and Dash) with the highest market capitalisation and longest span of data, namely 28.04.2013-31.12.2017.

MacKinlay and Richardson (1991) used the Generalized Method of Moments (GMM) to estimate the expected returns and the cumulative abnormal returns and analyse overreactions. In this paper we carry out instead a number of statistical tests, both parametric (in the case of normally distributed data) and non-parametric (in the case of non-normal distributions); they include Student's t-tests, ANOVA analysis, and Mann-Whitney U tests. The data are divided into two groups, one including observations after one-day abnormal price changes, the other after a day with normal price changes. The null hypothesis to be tested is that they are both drawn from the same population. If they are not, we can conclude that a statistical anomaly is present.

We also run multiple regressions with dummy variables and carry out average analysis. The regressions are specified as follows:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{t}}=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{D}_{1 \mathrm{t}}+\varepsilon_{\mathrm{t}} \tag{1}
\end{equation*}
$$

where $Y_{t}$ - returns on day $t$;
$\mathrm{a}_{\mathrm{n}}$ - mean return on a normal day (a day when there was no overreaction);
$\mathrm{D}_{\mathrm{nt}}$ - a dummy variable for a specific data group, equal to 1 when the data concern an overreaction day, and equal to 0 when they do not;
$\varepsilon_{\mathrm{t}}$ - Random error term at time $t$.
The size, sign and statistical significance of the dummy coefficients provide information about possible anomalies.

According to the overreaction hypothesis, after a day of overreaction there should be a correction, i.e. price counter-movements that are bigger than after normal days. This will be our Hypothesis 1 (H1): Counter-reactions after overreactions differ from those after normal days. However, there might be cases when one day is not enough to overreact; then after an overreaction day we can expect movements in the direction of the overreaction bigger than after normal days. This will be our Hypothesis 2 (H2): Price movements after overreactions in the direction of the overreaction differ from such movements after normal days.

If the results of the statistical tests for H 1 or H 2 point to statistical anomalies, then we apply a trading robot method to establish whether the detected anomalies create exploitable profit opportunities. This approach incorporates transaction costs such as spread, fees and commissions to brokers, bank payments etc., and simulates the actions of a trader according to an algorithm (trading strategy) such that the trading robot fully replicates the actions of market traders, therefore any abnormal profits made by exploiting the detected anomalies would represent evidence against the EMH. The trading robot is a program in the MetaTrader terminal developed in MetaQuotes Language 4 (MQL4).

To test whether the results we obtain differ from random ones $t$-tests are carried out. Specifically, two samples are created, one including results from the trading strategy, another randomly generated trading results. The null hypothesis (H0) is that both data sets belong to the same population, and the alternative (H1) that they do not. If H 0 is rejected we can conclude that the results from the trading strategy are not random and therefore this strategy can generate abnormal profits.

To detect overreactions we follow Caporale et al. (2017), whose approach is consistent with the methodology to identify positive and negative shocks proposed by Lasfer et al. (2003). Therefore returns are calculated as follows:

$$
\begin{equation*}
R_{i}=\frac{\left(\mathrm{High}_{i}-\text { Low }_{i}\right)}{\operatorname{Low}_{i}} \times 100 \%, \tag{2}
\end{equation*}
$$

where $R_{i}$ is the \% daily return, $\operatorname{High}_{i}$ is the maximum price, and $L o w_{i}$ is the minimum price for day $i$.

We use high/low parameters instead of standard open/close because differences between the maximum and minimum prices show the amplitude of the movement during the trading session and are more appropriate when analysing market overreactions.

An overreaction is described by the following inequality:

$$
\begin{equation*}
R_{i}>\left(\bar{R}_{n}+k \times \delta_{n}\right) \tag{3}
\end{equation*}
$$

where $k$ is the number of standard deviations used to identify the overreaction, $\bar{R}_{n}$ is the average size of daily returns for period $n$

$$
\begin{equation*}
\bar{R}_{n}=\sum_{i=1}^{n} R_{i} / n \tag{4}
\end{equation*}
$$

and $\delta_{n}$ is the standard deviation of daily returns for period $n$

$$
\begin{equation*}
\delta_{n}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)^{2}} . \tag{5}
\end{equation*}
$$

The next step is to determine the size of the price movement during the next day. For Hypothesis 1 (the counter-reaction or counter-movement assumption), we measure it as the difference between the next day's open price and the maximum deviation from it in the opposite direction to the price movement on the overreaction day.

If the price increased, then the size of the counter-reaction is calculated as:

$$
\begin{equation*}
c R_{i+1}=100 \% \times \frac{\left(\text { Open }_{i+1}-\text { Low }_{i+1}\right)}{\operatorname{Low}_{i+1}} \tag{6}
\end{equation*}
$$

where $c R_{i+1}$ is the counter-reaction size, and $O p e n_{i+l}$ is the next day's open price.
If the price decreased, then the corresponding definition is:

$$
\begin{equation*}
c R_{i+1}=100 \% \times \frac{\left(\text { High }_{i+1}-\text { Open }_{i+1}\right)}{\text { Open }_{i+1}} \tag{7}
\end{equation*}
$$

In the case of Hypothesis 2 (movement in the direction of the overreaction), either equation (7) or (6) is used depending on whether the price has increased or decreased.

## 4. Empirical Results

A key issue when examining overreactions is how they are defined - for example, as a $10 \%$ price change in Bremer and Sweeney (1991). It should be mentioned that using a constant value may lead to biased results (see Cox and Peterson, 1994 for details). To avoid this trap in this paper a dynamic approach is used: overreactions are defined on the basis of the number of standard deviations to be added to the average return. However, these are influenced by the averaging period, therefore there are two parameters to be chosen on the basis of preliminary calculations.

First we analyse the number of days when returns differ from their mean value using different averaging periods ( $5,10,20,30,40$ and 50 ) and different number of standard deviations. The results are presented in Table 1.

Table 1: Number of overreactions detected in Bitcoin prices during 2013-2017

| Period of averaging | 5 |  | 10 |  | 20 |  | 30 |  | 40 |  | 50 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Indicator | Number | $\%$ |
| Overall | 1600 | 100 | 1595 | 100 | 1585 | 100 | 1575 | 100 | 1565 | 100 | 1555 | 100 |
| Number of abnormal <br> returns (criterion <br> =mean+sigma_dz) | 296 | 19 | 267 | 17 | 241 | 15 | 243 | 15 | 236 | 15 | 227 | 14 |
| Number of abnormal <br> returns (criterion= <br> mean+2*sigma_dz) | 0 | 0 | 101 | 6 | 128 | 8 | 124 | 8 | 106 | 7 | 103 | 7 |
| Number of abnormal <br> returns (criterion = <br> mean+3*sigma_dz) | 0 | 0 | 0 | 0 | 73 | 5 | 71 | 5 | 63 | 4 | 58 | 4 |

As can be seen, each additional standard deviation significantly decreases the number of observed overreactions. The sample size is critical for statistical testing, and therefore the most appropriate number of standard deviations to be added to the average is 1 . Table 1 gives no clear answer concerning the optimal averaging period. That is why additional calculations are needed.

Student's t-tests of the counter-reactions after the day of the overreaction for Bitcoin prices over the period 2013-2017 (see Tables 2 and 3) suggest that the optimal averaging periods starts from 20.

Table 2: T-test of the counter-reactions after the day of the overreaction for the Bitcoin prices during 2013-2017 for the averaging periods 5, 10, 20

| Period | 5 |  | 10 |  | 20 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Normal | Overreaction | Normal | Overreaction | Normal | Overreaction |
| Mean | $2.13 \%$ | $2.98 \%$ | $2.01 \%$ | $3.53 \%$ | $2.00 \%$ | $3.71 \%$ |
| Standard deviation | $3.48 \%$ | $5.27 \%$ | $3.22 \%$ | $6.00 \%$ | $3.23 \%$ | $6.18 \%$ |
| Number of values | 1303 | 296 | 1327 | 267 | 1342 | 241 |
| t-criterion | 2.65 |  | 4.02 |  | 4.19 |  |
| t-critical (p=0.95) | 1.96 |  | 1.96 |  | 1.96 |  |
| Null hypothesis | rejected |  | rejected |  | rejected |  |

Table 3: T-test of the counter-reactions after the day of the overreaction for the Bitcoin prices during 2013-2017 for the averaging periods 30, 40, 50

| Period | 30 |  | 40 |  | 50 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Normal | Overreaction | Normal | Overreaction | Normal | Overreaction |
| Mean | $1.96 \%$ | $3.89 \%$ | $1.94 \%$ | $4.05 \%$ | $1.92 \%$ | $4.19 \%$ |
| Standard deviation | $3.22 \%$ | $6.15 \%$ | $3.21 \%$ | $6.22 \%$ | $3.20 \%$ | $6.30 \%$ |
| Number of values | 1330 | 243 | 1327 | 236 | 1326 | 227 |
| t-criterion | 4.75 |  | 5.10 |  | 5.31 |  |
| t-critical (p=0.95) | 1.96 |  | 1.96 |  | 1.96 |  |
| Null hypothesis | rejected |  | rejected |  | rejected |  |

To choose among averaging periods we test the trading strategy based on counterreactions after the day of the overreaction with a different set of parameters (see Figure 1). The results provide evidence in favour of 30 as an appropriate value for the averaging period; they also corroborate the conclusion that the most appropriate number of standard deviations is 1 .


Figure 1: Testing results for the BitCoin, period 2017 (X - sigma_dz, Y - period_dz)*

* The darker the bars, the more profitable the trading strategy is.

The results for H 1 and H 2 are presented in Appendix B and C and are summarised in Tables 4 and 5.

Table 4: H1 test results: summary*

| Hypothesis | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
| Average analysis | + | + | + | + |
| T-test | + | + | + | + |
| ANOVA | + | + | + | + |
| Mann-Whitney U test | + | + | + | + |
| Regression analysis with dummy variable | + | + | + | + |

*"+" -hypothesis confirmed, "-" - hypothesis rejected.

Table 5: H2 test results: summary*

| Hypothesis | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
| Average analysis | + | + | + | + |
| T-test | + | + | + | + |
| ANOVA | + | + | + | + |
| Mann-Whitney U test | + | + | + | + |
| Regression analysis with dummy variable | + | + | + | + |

* "+" -hypothesis confirmed, "-" - hypothesis rejected.

As can be seen, neither hypothesis can be rejected, which confirms the presence of a statistical anomaly in price dynamics in the cryptocurrency market: after overreaction days price changes in both directions (in the direction of overreaction and counter movement) are bigger than after normal days.

Next we test whether these anomalies can be exploited to make abnormal profits by using a trading robot approach and considering 2 trading strategies. Strategy 1 is based on the standard overreaction anomaly: there are abnormal counter-reactions after the overreaction day. The trading algorithm in this case is specified as follows: the cryptocurrency is sold (bought) on the open price of the day after the overreaction if an abnormal price increase (decrease) has occurred. The open position is closed at the end of the day when it was opened. Strategy 2 is
based on the momentum effect, the so-called "inertia anomaly" (see Caporale et al., 2017 for details): there are abnormal price movements in the direction of the overreaction on the following day. The trading algorithm is specified as follows: after the overreaction day the cryptocurrency is sold (bought) on the open price of the day after the overreaction if an abnormal price decrease (increase) has occurred. Again, an open position is closed at the end of the day when it was opened.

BitCoin prices are used for the analysis (data availability motivated this choice) for the years 2015, 2016, 2017 in turn and then for the whole period 2015-2017. An example of the strategy tester report is shown in Appendix D. The results of the trading robot analysis are presented in Table 6 (both for the Strategy 1 and 2). T-tests are carried out to establish whether or not these results are statistically different from the random ones (see Appendix E for details).

## Table 6: Trading results for Strategy 1 and 2, case of Bitcoin

| Period | Parameters | Strategy 1 | Strategy 2 |
| :---: | :---: | :---: | :---: |
| 2015 | \% successful | $45.71 \%$ | $51.16 \%$ |
|  | profit, USD | -71.20 | 65.83 |
|  | number of trades | 43 | 43 |
|  | t-test | failed | failed |
| 2016 | \% successful | $55.00 \%$ | $47.50 \%$ |
|  | profit, USD | -9.24 | 51.89 |
|  | number of trades | 40 | 40 |
|  | t-test | failed | failed |
| 2017 | \% successful | $42.03 \%$ | $58.33 \%$ |
|  | profit, USD | -6201.85 | 5765.36 |
|  | number of trades | 72 | 72 |
|  | t-test | failed | failed |
|  | \% successful | $46.53 \%$ | $53.55 \%$ |
|  | profit, USD | -6279.29 | 5879.08 |
|  | number of trades | 155 | 155 |
|  | t-test | failed | failed |

As can be seen, the results of Strategy 1 are rather stable and in general imply a lack of exploitable profit opportunities from trading based on counter-movements after overreactions
in the cryptocurrency market. This applies to all periods. The t-test statistics indicate that the results are not significantly different from the random ones (see Appendix F for details); indirect evidence for this is also provided by the number of profitable trades, which is close to $50 \%$. By contrast, Strategy 2 generates profits in each individual year as well as the full sample, but the results are not significantly different from the random ones (as implied by the t-test statistics). The number of profitable trades is close to $50 \%$. Overall, trading based on the "inertia" anomaly cannot be considered profitable.

## 5. Conclusions

This paper examines price behaviour in the cryptocurrency market after one-day abnormal price changes (overreactions). Using data on the cryptocurrency markets that are most liquid and have the highest capitalisation (BitCoin, LiteCoin, Ripple and Dash) for the period 20132017 two different hypotheses were tested: counter-reactions after volatility explosions differ from those after normal days (H1) and price movements after volatility explosions in the same direction of the overreaction differ from those after normal days (H2). For this purpose a variety of statistical tests were performed, including average analysis, t-tests, ANOVA, regression analysis with dummy variables, Mann-Whitney U tests, etc. Neither hypothesis could be rejected, which implies that overreactions cause statistically abnormal price behaviour in the cryptocurrency market.

A trading robot approach was then applied to incorporate transaction costs into the analysis and investigate whether the detected anomalies can be exploited to make abnormal profits. Two different trading strategies were developed: Strategy 1, which is based on the assumption that after the overreaction day counter-movements are bigger than after a normal day and Strategy 2, based on the "inertia anomaly" (after the overreaction day price movements in the direction of the overreaction are bigger than after a standard day).

The trading stimulations suggest that Strategy 1 is unprofitable, i.e. the detected anomalies cannot be exploited to make abnormal profits; Strategy 2 generates stable profits but these are not statistically different from the random results, which again imply the absence of exploitable profit opportunities. Consequently, the existence of overreaction anomalies in the cryptocurrency market cannot be seen as evidence against the EMH.

## References

Akerlof, G.A. and Shiller, R.J., (2009), Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism. Princeton University Press, 2009, 248 p.

Atkins, A.B. and E.A. Dyl, (1990), Price Reversals, Bid-Ask Spreads, and Market Efficiency. Journal of Financial and Quantitative Analysis, 25, 535-547.

Bartos, J., (2015), Does Bitcoin follow the hypothesis of efficient market?. International Journal of Economic Sciences 4(2), 10-23.

Black, F., (1985), Noise. Journal of Finance 41(3), 529-543.
Bremer, M. and R. J. Sweeney, (1991), The reversal of large stock price decreases. Journal of Finance 46, 747-754.

Brown, K. C., W.V. Harlow and S. M. Tinic, (1988), Risk Aversion, Uncertain Information, and Market Efficiency. Journal of Financial Economics 22, 355-385.

Campbell, J.Y. and L.M. Viceira, (2002), Strategic Asset Allocation: Portfolio Choice for LongTerm Investors, Oxford University Press, Oxford.

Caporale, G.M., Gil-Alana, L. and A. Plastun, , (2017), Short-term Price Overreactions: Identification, Testing, Exploitation, Computational Economics. http://dx.doi.org/10.1007/s10614-017-9651-2.

Caporale, G.M. and A. Plastun, (2017), The day of the week effect in the crypto currency market. Working Paper No. 17-19 (October 2017). - Brunel University, London. - Access: http://www.brunel.ac.uk/__data/assets/pdf_file/0010/507772/1719.pdf.

Carrick, J., (2016), Bitcoin as a Complement to Emerging Market Currencies, Emerging Markets Finance and Trade 52, 2321-2334.

Cheung, A., E. Roca and J.-J. Su, (2015), Crypto-Currency Bubbles: An Application of the Phillips-Shi-Yu (2013) Methodology on Mt. Gox Bitcoin Prices, Applied Economics 47, 23482358.

Choi, H.-S. and N. Jayaraman, (2009), Is reversal of large stock-price declines caused by overreaction or information asymmetry: Evidence from stock and option markets. Journal of Future Markets 29, 348-376.

Cox, D. R. and D. R. Peterson, (1994), Stock Returns Following Large One-Day Declines: Evidence on Short-Term Reversals and Longer-Term Performance. Journal of Finance 49, 255-267.

Cutler, D., J. Poterba, and L. Summers, (1991), Speculative dynamics. Review of Economics Studies 58, 529-546.

De Bondt W. and R. Thaler, (1985), Does the Stock Market Overreact? Journal of Finance 40, 793-808.

Dwyer, G. P., (2014), The Economics of Bitcoin and Similar Private Digital Currencies, Journal of Financial Stability 17, 81-91.

Fama, E. F., (1965), The Behavior of Stock-Market Prices. The Journal of Business 38, 34-105.
Ferri, M., G. and C. Min, (1996), Evidence that the Stock Market Overreacts and Adjusts. The Journal of Portfolio Management 22, 71-76.

Kurihara, Y. and A. Fukushima, (2017), The Market Efficiency of Bitcoin: A Weekly Anomaly Perspective. Journal of Applied Finance \& Banking 7 (3), 57-64.

Larson, S. and J. Madura, (2003), What Drives Stock Price Behavior Following Extreme OneDay Returns. Journal of Financial Research Southern Finance Association 26, 113-127.

MacKinlay, A.C. and M. Richardson, (1991), Using generalized method of moments to test mean-variance efficiency. Journal of Finance 46, 511-27.

Mynhardt, R. H. and A. Plastun, (2013), The Overreaction Hypothesis: The case of Ukrainian stock market. Corporate Ownership and Control 11, 406-423.

Plastun A., (2017), "Behavioral finance market hypotheses", Chapter 24 of Financial Behavior: Players, Services, Products, and Markets, edited by H. Kent Baker, Greg Filbeck, and Victor Ricciardi, Oxford University Press USA, New York, 2017, 680 p.

Taylor, M.P. and H. Allen, (1992), The use of technical analysis in the foreign exchange market. Journal of International Money and Finance 11, 304-314.

## Appendix A

Table A.1: T-test of the counter-reactions after the overreaction day for the BitCoin prices during 2013-2017: case of averaging period 5,10 and 20 days

| Period | 5 |  | 10 |  | 20 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Normal | Overreaction | Normal | Overreaction | Normal | Overreaction |
| Mean | $2.13 \%$ | $2.98 \%$ | $2.01 \%$ | $3.53 \%$ | $2.00 \%$ | $3.71 \%$ |
| Standard deviation | $3.48 \%$ | $5.27 \%$ | $3.22 \%$ | $6.00 \%$ | $3.23 \%$ | $6.18 \%$ |
| Number of values | 1303 | 296 | 1327 | 267 | 1342 | 241 |
| t-criterion | 2.65 |  | 4.02 |  | 4.19 |  |
| t-critical (p=0.95) | 1.96 |  | 1.96 |  | 1.96 |  |
| Null hypothesis | rejected |  | rejected |  | rejected |  |

Table A.2: T-test of the counter-reactions after the overreaction day for the BitCoin prices during 2013-2017: case of averaging period 30,40 and 50 days

| Period | 30 |  | 40 |  | 50 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Normal | Overreaction | Normal | Overreaction | Normal | Overreaction |
| Mean | $1.96 \%$ | $3.89 \%$ | $1.94 \%$ | $4.05 \%$ | $1.92 \%$ | $4.19 \%$ |
| Standard deviation | $3.22 \%$ | $6.15 \%$ | $3.21 \%$ | $6.22 \%$ | $3.20 \%$ | $6.30 \%$ |
| Number of values | 1330 | 243 | 1327 | 236 | 1326 | 227 |
| t-criterion | 4.75 |  | 5.10 |  | 5.31 |  |
| t-critical (p=0.95) | 1.96 |  | 1.96 |  | 1.96 |  |
| Null hypothesis | rejected |  | rejected |  | rejected |  |

## Appendix B

## Statistical tests of Hypothesis 1

## Average analysis



Figure B. 1 - Average analysis case of
BitCoin


Figure B. 3 - Average analysis case of


Figure B. 2 - Average analysis case of

## LiteCoin



Figure B. 4 - Average analysis case of Dash

Ripple

## Parametric tests: Student's t-test

Table B.1: T-test of Hypothesis 1 (averaging period = 30, number of standard deviations used to detect overreaction = 1)

| Cryptocurrency | BitCoin |  | LiteCoin |  | Ripple |  | Dash |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Indicator | After normal day | After overreaction day |
| Mean | 2.00\% | 3.71\% | 3.04\% | 4.90\% | 2.43\% | 5.98\% | 4.46\% | 6.25\% |
| Standard deviation | 3.24\% | 6.18\% | 6.27\% | 8.57\% | 4.24\% | 12.34\% | 7.29\% | 9.75\% |
| Number of matches | 1332 | 241 | 1369 | 203 | 1264 | 211 | 1083 | 198 |
| t-criterion | 4.19 |  | 2.97 |  | 4.13 |  | 2.46 |  |
| t-critical ( $\mathrm{p}=0.95$ ) | 1.96 |  | 1.96 |  | 1.96 |  | 1.96 |  |
| Null hypothesis | rejected |  | rejected |  | rejected |  | rejected |  |

## Parametric tests: ANOVA

Table B.2: ANOVA test of Hypothesis 1 (averaging period = 30, number of standard deviations used to detect overreaction $=1$ )

| Hypothesis | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
| F | 40.99 | 26.72 | 62.01 | 9.29 |
| P value | 0.00 | 0.00 | 0.00 | 0.00 |
| F critical | 3.85 | 3.85 | 3.85 | 3.85 |
| Null hypothesis | rejected | rejected | rejected | rejected |

## Non-parametric tests: Mann-Whitney U test

Table B.3: Mann-Whitney $U$ test of Hypothesis 1 (averaging period $=30$, number of standard deviations used to detect overreaction = 1)

| Parameter | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
| Adjusted H | 31.47 | 30.78 | 25.71 | 15.14 |
| d.f. | 1 | 1 | 1 | 1 |
| P value: | 0.00 | 0.00 | 0.00 | 0.00 |
| Critical value | 3.84 | 3.84 | 3.84 | 3.84 |
| Null hypothesis | rejected | rejected | rejected | rejected |

## Regression analysis with dummy variables

Table B.4: Regression analysis with dummy variables of Hypothesis 1 (averaging period = 30 , number of standard deviations used to detect overreaction $=1$ )

| Parameter | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
|  | 0.0200 | 0.0304 | 0.0243 | 0.0446 |
| Mean volatility $\left(\mathrm{a}_{0}\right)$ | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ |
|  | 0.0172 | 0.0188 | 0.0357 | 0.0182 |
| Dummy coefficient $\left(\mathrm{a}_{1}\right)$ | $(0.0000)$ | $(0.0001)$ | $(0.0000)$ | $(0.0023)$ |
|  | 41.00 | 14.28 | 62.01 | 9.29 |
| F-test | $(0.0000)$ | $(0.0001)$ | $(0.0000)$ | $(0.0023)$ |
| Multiple R | 0.16 | 0.09 | 0.20 | 0.08 |
| Anomaly | confirmed | confirmed | confirmed | confirmed |

* P-values are in parentheses


## Appendix C

## Statistical tests of Hypothesis 2

## Average analysis



Figure C. 1 - Average analysis case of
BitCoin


Figure C. 3 - Average analysis case of Ripple


Figure C. 2 - Average analysis case of

## LiteCoin



Figure C. 4 - Average analysis case of Dash

## Parametric tests: Student's t-test

Table C.1: T-test of Hypothesis 2 (averaging period = 30, number of standard deviations used to detect overreaction = 1)

| Cryptocurrency | BitCoin |  | LiteCoin |  | Ripple |  | Dash |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Indicator | After normal day | After overreaction day | After normal day | After overreaction day | After normal day | After overreaction day | After normal day | After <br> overreaction <br> day |
| Mean | 2.47\% | 3.78\% | 3.44\% | 6.19\% | 3.72\% | 6.62\% | 4.96\% | 9.94\% |
| Standard deviation | 4.01\% | 4.66\% | 6.68\% | 9.69\% | 8.92\% | 10.68\% | 14.41\% | 18.38\% |
| Number of matches | 1332 | 241 | 1369 | 203 | 1264 | 211 | 1083 | 198 |
| t-criterion | 4.09 |  | 3.90 |  | 3.74 |  | 3.62 |  |
| t-critical ( $\mathrm{p}=0.95$ ) | 1.96 |  | 1.96 |  | 1.96 |  | 1.96 |  |
| Null hypothesis | rejected |  | rejected |  | rejected |  | rejected |  |

## Parametric tests: ANOVA

Table C.2: ANOVA test of Hypothesis 2 (averaging period = 30, number of standard deviations used to detect overreaction $=1$ )

| Hypothesis | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
| F | 21.06 | 26.72 | 18.40 | 18.58 |
| P value | 0.00 | 0.00 | 0.00 | 0.00 |
| F critical | 3.85 | 3.85 | 3.85 | 3.85 |
| Null hypothesis | rejected | rejected | rejected | rejected |

## Non-parametric tests: Mann-Whitney U test

Table C.3: Mann-Whitney $U$ test of Hypothesis 2 (averaging period = 30, number of standard deviations used to detect overreaction = 1)

| Parameter | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
| Adjusted H | 34.00 | 28.53 | 25.63 | 36.72 |
| d.f. | 1 | 1 | 1 | 1 |
| P value: | 0.00 | 0.00 | 0.00 | 0.00 |
| Critical value | 3.84 | 3.84 | 3.84 | 3.84 |
| Null hypothesis | Rejected | Rejected | Rejected | Rejected |

## Regression analysis with dummy variables

Table C.4: Regression analysis with dummy variables of Hypothesis 2 (averaging period = 30, number of standard deviations used to detect overreaction $=1$ )

| Parameter | BitCoin | LiteCoin | Ripple | Dash |
| :--- | :---: | :---: | :---: | :---: |
|  | 0.0247 | 0.0344 | 0.0372 | 0.0496 |
| Mean volatility $\left(\mathrm{a}_{0}\right)$ | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ |
|  | 0.0132 | 0.0277 | 0.0293 | 0.0502 |
| Dummy coefficient $\left(\mathrm{a}_{1}\right)$ | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ |
|  | 21.07 | 26.72 | 18.40 | 18.58 |
| F-test | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ | $(0.0000)$ |
| Multiple R | 0.11 | 0.13 | 0.11 | 0.12 |
| Anomaly | confirmed | confirmed | confirmed | confirmed |

* P-values are in parentheses


## Appendix D

Example of strategy tester report: case of BitCoin, period 2015, H2 testing
Table D.1: Overall statistics

| Symbol |  | BTCUSD (1 Lot= 10 BTC) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Period |  | Daily (D1) 2015.01.01 00:00-2015.12.31 00:00 (2015.01.01-2015.12.31) |  |  |  |
| Model |  | Every tick (the most precise method based on all available least timeframes) |  |  |  |
| Bars in test | 1312 | Ticks modelled | 19794 | Modelling quality | 90.00\% |
| Mismatched charts errors | 0 |  |  |  |  |
| Initial deposit | 10000.00 |  |  | Spread | Current |
| Total net profit | 65.83 | Gross profit | 252.96 | Gross loss | -187.13 |
| Profit factor | 1.35 | Expected payoff | 1.53 |  |  |
| Absolute drawdown | 57.58 | Maximal drawdown | $\begin{array}{r} 104.11 \\ (1.04 \%) \end{array}$ | Relative drawdown | $\begin{array}{r} 1.04 \% \\ (104.11) \\ \hline \end{array}$ |
| Total trades | 43 | Short positions (won \%) | $\begin{array}{r} 17 \\ (47.06 \%) \\ \hline \end{array}$ | Long positions (won \%) | $\begin{array}{r} 26 \\ (53.85 \%) \\ \hline \end{array}$ |
|  |  | Profit trades (\% of total) | $\begin{array}{r} 22 \\ (51.16 \%) \\ \hline \end{array}$ | Loss trades (\% of total) | $\begin{array}{r} 21 \\ (48.84 \%) \\ \hline \end{array}$ |
|  | Largest | profit trade | 50.65 | loss trade | -37.91 |
|  | Average | profit trade | 11.50 | loss trade | -8.91 |
|  | Maximum | consecutive wins (profit in money) | 6 (94.61) | consecutive losses (loss in money) | $\begin{array}{r} 4(- \\ 60.28) \end{array}$ |
|  | Maximal | consecutive profit (count of wins) | 94.61 (6) | consecutive loss (count of losses) | $\begin{array}{r} -60.28 \\ (4) \\ \hline \end{array}$ |
|  | Average | consecutive wins | 2 | consecutive losses | 2 |

Figure D.1: Equity dynamics


Table D.2: Statement (fragment)

| \# | Time | Type | Order | Size | Price | S / L | T / P | Profit | Balance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2015.01.08 00:00 | buy | 1 | 0.10 | 290.53 | 0.00 | 0.00 |  |  |
| 2 | 2015.01.08 23:59 | close | 1 | 0.10 | 279.10 | 0.00 | 0.00 | -11.43 | 9988.57 |
| 3 | 2015.01.14 00:00 | sell | 2 | 0.10 | 217.66 | 0.00 | 0.00 |  |  |
| 4 | 2015.01.14 23:59 | close | 2 | 0.10 | 167.01 | 0.00 | 0.00 | 50.65 | 10039.22 |
| 5 | 2015.01.15 00:00 | sell | 3 | 0.10 | 166.43 | 0.00 | 0.00 |  |  |
| 6 | 2015.01.15 23:59 | close | 3 | 0.10 | 204.34 | 0.00 | 0.00 | -37.91 | 10001.31 |
| 7 | 2015.01.16 00:00 | buy | 4 | 0.10 | 204.36 | 0.00 | 0.00 |  |  |
| 8 | 2015.01.16 23:59 | close | 4 | 0.10 | 201.87 | 0.00 | 0.00 | -2.49 | 9998.82 |
| 9 | 2015.01.27 00:00 | buy | 5 | 0.10 | 260.27 | 0.00 | 0.00 |  |  |
| 10 | 2015.01.27 22:13 | close | 5 | 0.10 | 246.09 | 0.00 | 0.00 | -14.18 | 9984.64 |
| 11 | 2015.01.29 00:00 | sell | 6 | 0.10 | 221.41 | 0.00 | 0.00 |  |  |
| 12 | 2015.01.29 22:20 | close | 6 | 0.10 | 227.11 | 0.00 | 0.00 | -5.70 | 9978.94 |
| 13 | 2015.03.03 00:00 | buy | 7 | 0.10 | 267.50 | 0.00 | 0.00 |  |  |
| 14 | 2015.03.03 22:20 | close | 7 | 0.10 | 278.68 | 0.00 | 0.00 | 11.18 | 9990.12 |
| 15 | 2015.03.04 00:00 | buy | 8 | 0.10 | 276.32 | 0.00 | 0.00 |  |  |
| 16 | 2015.03.04 22:20 | close | 8 | 0.10 | 266.96 | 0.00 | 0.00 | -9.36 | 9980.76 |
| 17 | 2015.03.05 00:00 | sell | 9 | 0.10 | 267.00 | 0.00 | 0.00 |  |  |
| 18 | 2015.03.05 22:20 | close | 9 | 0.10 | 270.08 | 0.00 | 0.00 | -3.08 | 9977.68 |
| 19 | 2015.03.06 00:00 | buy | 10 | 0.10 | 270.50 | 0.00 | 0.00 |  |  |
| 20 | 2015.03.06 22:20 | close | 10 | 0.10 | 271.91 | 0.00 | 0.00 | 1.41 | 9979.09 |
| 21 | 2015.03.10 00:00 | buy | 11 | 0.10 | 284.62 | 0.00 | 0.00 |  |  |
| 22 | 2015.03.10 22:13 | close | 11 | 0.10 | 285.50 | 0.00 | 0.00 | 0.88 | 9979.97 |
| 23 | 2015.03.19 00:00 | sell | 12 | 0.10 | 250.34 | 0.00 | 0.00 |  |  |
| 24 | 2015.03.19 22:20 | close | 12 | 0.10 | 254.74 | 0.00 | 0.00 | -4.40 | 9975.57 |
| 25 | 2015.03.25 00:00 | sell | 13 | 0.10 | 244.73 | 0.00 | 0.00 |  |  |
| 26 | 2015.03.25 22:20 | close | 13 | 0.10 | 244.55 | 0.00 | 0.00 | 0.18 | 9975.75 |
| 27 | 2015.04.28 00:00 | buy | 14 | 0.10 | 232.64 | 0.00 | 0.00 |  |  |
| 28 | 2015.04.28 22:20 | close | 14 | 0.10 | 226.67 | 0.00 | 0.00 | -5.97 | 9969.78 |
| 29 | 2015.05.01 00:00 | buy | 15 | 0.10 | 236.48 | 0.00 | 0.00 |  |  |
| 30 | 2015.05.01 22:40 | close | 15 | 0.10 | 234.30 | 0.00 | 0.00 | -2.18 | 9967.60 |
| 31 | 2015.06.02 00:00 | sell | 16 | 0.10 | 222.70 | 0.00 | 0.00 |  |  |
| 32 | 2015.06.02 22:20 | close | 16 | 0.10 | 226.60 | 0.00 | 0.00 | -3.90 | 9963.70 |
| 33 | 2015.06.17 00:00 | buy | 17 | 0.10 | 248.97 | 0.00 | 0.00 |  |  |
| 34 | 2015.06.17 22:20 | close | 17 | 0.10 | 247.76 | 0.00 | 0.00 | -1.21 | 9962.49 |
| 35 | 2015.06.18 00:00 | sell | 18 | 0.10 | 247.40 | 0.00 | 0.00 |  |  |
| 36 | 2015.06.18 22:20 | close | 18 | 0.10 | 247.26 | 0.00 | 0.00 | 0.14 | 9962.63 |
| 37 | 2015.06.30 00:00 | buy | 19 | 0.10 | 254.92 | 0.00 | 0.00 |  |  |
| 38 | 2015.06.30 22:20 | close | 19 | 0.10 | 261.72 | 0.00 | 0.00 | 6.80 | 9969.43 |
| 39 | 2015.07.01 00:00 | buy | 20 | 0.10 | 260.84 | 0.00 | 0.00 |  |  |
| 40 | 2015.07.01 22:20 | close | 20 | 0.10 | 256.74 | 0.00 | 0.00 | -4.10 | 9965.33 |
| 41 | 2015.07.02 00:00 | sell | 21 | 0.10 | 255.19 | 0.00 | 0.00 |  |  |
| 42 | 2015.07.02 22:13 | close | 21 | 0.10 | 254.30 | 0.00 | 0.00 | 0.89 | 9966.22 |
| 43 | 2015.07.14 00:00 | sell | 22 | 0.10 | 285.75 | 0.00 | 0.00 |  |  |
| 44 | 2015.07.14 22:20 | close | 22 | 0.10 | 283.18 | 0.00 | 0.00 | 2.57 | 9968.79 |
| 45 | 2015.08.19 00:00 | sell | 23 | 0.10 | 227.22 | 0.00 | 0.00 |  |  |
| 46 | 2015.08.19 22:20 | close | 23 | 0.10 | 216.82 | 0.00 | 0.00 | 10.40 | 9979.19 |
| 47 | 2015.08.20 00:00 | sell | 24 | 0.10 | 217.15 | 0.00 | 0.00 |  |  |
| 48 | 2015.08.20 22:20 | close | 24 | 0.10 | 229.82 | 0.00 | 0.00 | -12.67 | 9966.52 |
| 49 | 2015.08.21 00:00 | buy | 25 | 0.10 | 229.74 | 0.00 | 0.00 |  |  |
| 50 | 2015.08.21 22:13 | close | 25 | 0.10 | 226.55 | 0.00 | 0.00 | -3.19 | 9963.33 |

## Appendix E

t-tests for trading results

Table E.1: t-test for trading results: case of Strategy 1

| Parameter | 2015 | 2016 | 2017 | $2015-2017$ |
| :--- | :---: | :---: | :---: | :---: |
| Number of the trades | 43 | 40 | 72 | 155 |
| Total profit | -71.2 | -9.24 | -6201.85 | -6279.29 |
| Average profit per trade | -2.0 | -0.2 | -89.9 | -43.6 |
| Standard deviation | 16.8 | 21.4 | 488.5 | 341.3 |
| t-test | -0.72 | -0.07 | -1.53 | -1.53 |
| t critical (0,95) | 1.68 | 1.68 | 1.66 | 1.66 |
| Null hypothesis | confirmed | confirmed | confirmed | confirmed |

Table E.2: t-test for trading results: case of Strategy 2

| Parameter | 2015 | 2016 | 2017 | $2015-2017$ |
| :--- | :---: | :---: | :---: | :---: |
| Number of the trades | 43 | 40 | 72 | 155 |
| Total profit | 65.83 | 51.89 | 5765.36 | 5879.08 |
| Average profit per trade | 1.53 | 1.30 | 80.07 | 37.93 |
| Standard deviation | 15.39 | 20.02 | 476.37 | 327.27 |
| t-test | 0.65 | 0.41 | 1.42 | 1.44 |
| t critical (0,95) | 1.68 | 1.68 | 1.66 | 1.66 |
| Null hypothesis | confirmed | confirmed | confirmed | confirmed |

## Appendix F

## Comparative analysis of average daily price amplitude in different financial markets

Table F.1: Comparative analysis of average daily price amplitude in different financial markets

| Instrument | Market | 2014 | 2015 | 2016 | 2017 | Average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EURUSD | FOREX | 0.6\% | 1.1\% | 0.8\% | 0.6\% | 0.8\% |
| Dow-Jones Industrial | Stock Market | 0.8\% | 1.2\% | 1.0\% | 0.5\% | 0.9\% |
| CSI300 |  | 1.5\% | 3.0\% | 1.5\% | 0.9\% | 1.8\% |
| Gold | Commodities | 1.3\% | 1.4\% | 1.5\% | 0.9\% | 1.3\% |
| Oil |  | 1.8\% | 3.9\% | 3.9\% | 2.1\% | 2.9\% |
| BitCoin | Cryptocurrency | 5.0\% | 4.2\% | 2.4\% | 6.3\% | 5.1\% |
| LiteCoin |  | 6.6\% | 6.4\% | 2.9\% | 9.6\% | 7.3\% |
| Dash |  | 22.0\% | 9.0\% | 7.1\% | 11.3\% | 12.1\% |
| Ripple |  | 7.1\% | 4.2\% | 3.2\% | 12.7\% | 7.3\% |

Figure F.1: Visualization of comparative analysis



[^0]:    Terms of use:
    Documents in EconStor may be saved and copied for your personal and scholarly purposes.

    You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

    If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

