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Abstract

We survey the literature on the economic consequences of the structure of social

networks. We develop a taxonomy of ‘macro’ and ‘micro’ characteristics of social inter-

action networks and discuss both the theoretical and empirical findings concerning the

role of those characteristics in determining learning, diffusion, decisions, and resulting

behaviors. We also discuss the challenges of accounting for the endogeneity of networks

in assessing the relationship between the patterns of interactions and behaviors.
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1 Introduction

Humans are inherently social beings. We rely on each other for sustenance, safety, gover-

nance, information, and companionship. Production, exchange and consumption of goods

and services largely take place in social settings where the patterns and nature of interactions

influence, and are influenced by, economic activity. This embeddedness of many economic

transactions means that abstracting from social structure comes with the risk of severely

misunderstanding behaviors and their causes.1 In particular, designing many economic poli-

cies requires a deep understanding of social structure. Consider the following representative

examples:

• Criminality is often a social behavior and accounting for peer influences and networks

of interactions can lead to more effective policies aimed at reducing crime.

• Increasing the employment rate and wages of a disadvantaged group requires under-

standing that many jobs are obtained via social contacts and the underlying social

networks exhibit patterns that can result in persistent inequality and poverty traps.

• Improving the human capital investments of a given group must account for the fact

that one’s decisions regarding education and labor market participation are often heav-

ily influenced by decisions of family and friends, both through learning and comple-

mentarities.

• Integrating schools not just in terms of ethnic or racial composition, but in terms of

friendship formation and cross-group interactions, requires understanding when and

why students are compelled to seek friendships with others similar to themselves.

• Enhancing new technology adoption requires a proper understanding of how peoples’

opinions and beliefs are shaped by word-of-mouth communication.

• Sustaining informal risk-sharing and favor exchange depends on social norms and sanc-

tions, and social structure provides new insights into how communities overcome basic

incentive problems.

This is, of course, only a partial list of the many economic behaviors that are shaped

at a fundamental level by network patterns of interaction. For instance, beyond such “so-

cial” networks, other interactions, such as international trade and political alliances, have

inherent network structures that shape the impact of policies and help us understand con-

flict and other inefficiencies. Given the importance of social context and the emerging tools

1See Granovetter (1985) for a seminal discussion.
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researchers are currently developing to account for it, there has been a rapid growth of anal-

yses of economic behavior that consider social context, appearing in an array of applied and

theoretical literatures both within and outside of economics. We do not attempt to provide

a comprehensive survey of the economic literature on social networks.2 Instead, we provide

a framework for understanding how networks of interactions shape behavior.

Most importantly, there are robust regularities in how network structure relates to be-

havior, involving the network-based notions of density and distribution of connections, seg-

regation patterns, and the positions of key nodes. Our narrative - using this framework -

pulls together major insights that have emerged from empirical and theoretical analyses of

how social structure relates to the behaviors and well-being of the people in a society.

We emphasize that the relationship between social structure and economic behavior is

not unidirectional, as the relationships that constitute a given network are endogenous and

determined partly by economic behaviors. In particular, the symbiotic relationship of social

context and behavior complicates empirical analysis, since the relationships among most of

the variables of interest are endogenous. It is thus essential for many economic questions

to understand how networks form, evolve, and interact with behaviors. From an empirical

perspective, these questions arise at a unique time in which large network data sets are

rapidly becoming available, along with the computing power to analyze them.

In Section 2, we first elaborate on a few specific examples in order to ground the discus-

sion and illustrate our major themes. In Section 3, we propose a classification of network

characteristics and discuss how they relate to behavior, and we use this classification as the

base for the remainder of the article. Sections 4 through 7 present detailed descriptions of

how specific network characteristics relate to economic behavior. In Section 8, we discuss

some challenges that arise with empirical analyses in networked settings, devoting particular

attention to endogeneity problems, which are ubiquitous in the study of social interactions.

We close with a summary and some concluding remarks in Section 9.

2 Illustrative Examples

In order to ground our discussion, we start by expanding on some of the examples mentioned

in the Introduction in which network structures are of primary importance in determining

behavior. Each of the following four examples illustrates a theme that we elaborate upon

2Some aspects of networks have been covered in previous surveys. See, in particular, Jackson (2003,

2004, 2005, 2011), Ioannides and Datcher-Loury (2004), Granovetter (2005), Jackson and Yariv (2011),

Jackson and Zenou (2015), as well as the books by Demange and Wooders (2003), Vega-Redondo (2007),

Goyal (2007), Jackson (2008a), Benhabib, Bisin and Jackson (2011), Jackson and Zenou (2013), and

Bramoullé, Galeotti and Rogers (2016).
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below.

First, many criminal behaviors do not occur in isolation, but rather take place in a

social context.3 Indeed, criminals often have friends or acquaintances who have themselves

committed several offenses. These social ties among criminals can serve as a means whereby

individuals actively or passively influence one another to commit crimes. In fact, not only the

behavior of direct friends, but also that of the larger structure of an individual’s network,

predicts criminal behavior. Influence occurs through a number of channels, as criminal

behaviors involve many complementarities, including role models, learning, and increased

opportunities, which can lead individuals to undertake criminal acts. Moreover, some crimes

inherently involve team production (e.g., production and trafficking of illegal drugs and

goods) and require criminals to work with accomplices. These complementarities can then

feed back and affect the social network in which an individual resides, as they may constitute

relevant components of the decision to invest in relationships. This, in turn, can reinforce

behaviors and erode investments in more productive human capital and opportunities.

Second, we observe persistent inequality on a number of dimensions (e.g., wages, pro-

motions, health, etc.) between ethnicities, genders, and other social classes. Important

components of these differences relate to segregation patterns in interaction, as segregation

in network structures affects how information flows, what access individuals have to various

opportunities, and how decisions are made. In sufficiently segregated networks, different

behaviors, norms, and expectations can persist in different communities which, in turn, can

have consequences for human capital investments, career choice, and various other behaviors.

Once outcomes differ across communities, individuals have different investment incentives

since they have different opportunity costs of, and benefits from, education and other de-

cisions. The differences in costs and benefits stem from complementarities in behaviors, as

there are often advantages to choosing similar behaviors to our neighbors. For instance,

returns to education are higher if one has educated friends who can provide information

about the optimal pursuit of an education, and eventually can serve as contacts for access

to skilled jobs. So optimal behavior is likely to be different across communities even if un-

derlying preferences are not systematically different. The differences can be reinforced by

complementarities and thus become persistent. Hence, it is essential for economists to un-

derstand why networks often exhibit strong segregation patterns, why those structures seem

to be so persistent, and how those patterns affect behavior and outcomes. Recent studies

have made significant progress on each of these facets.

Third, one of the most extensively studied network phenomena is diffusion. The spreading

3It is well-established that crime is, to some extent, a group phenomenon, with sources of crime and

delinquency that can be traced to the social networks of individuals (see e.g. Sutherland (1947), Sanercki

(2001), Warr (2002), Calvó-Armengol and Zenou (2004), Patacchini and Zenou (2012)).
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of ideas, information, behaviors, and diseases, are all network-based phenomena. A most

prominent application is from epidemiology: how does a contagious disease spread through

a population? Finer details of network structure have only recently been systematically

incorporated in answering this kind of question. Features such as segregation, network

density, the distribution of links, the joint characteristics of linked individuals, as well as

potential changes in the network arising from individuals’ reactions to the contagion, are all

important to understand. A second application of diffusion centers on technology adoption:

when should we expect a new technology be widely adopted? What do the dynamics of

market penetration look like, and what factors determine success or failure of adoption?

More generally, it is important to understand which aspects of network structure enhance

or impede diffusion. How do the answers to these questions depend on the nature of the

diffusion process?

Fourth, and finally, cooperative behavior prevails in some environments, and not others.

Particular manifestations of behaviors that require cooperation include informal risk sharing

and favor exchange, the provision of various (local) public goods, and economic exchange;

all of which matter greatly in the development of a society. These are all inherently network

phenomena, as people react to their neighbors, and what they hear about others’ behaviors.

Pro-social behavior is routinely observed, even in contexts with little in the way of formal

institutions to provide sanctions. This is true in both the developing world and the developed

world, as many interactions are more easily governed by social sanctions than relying on

costly formal contracting. The means of providing appropriate incentives often relies in

large part on social structure. For example, information about misbehavior can spread

quickly through an individual’s network, leading to negative reactions in future interactions

for those whose actions conflict with social norms. Social structure plays a prominent role

in determining the forms of cooperative behavior that can be maintained.

3 Classifying Network Characteristics

With these motivating examples in hand, we now offer a framework through which to un-

derstand how structural properties of a network impact the behaviors of the agents who

comprise the network.4 The framework is based on the fundamental characteristics of net-

works. We focus on four major characteristics (that we define below for those new to the

subject): degree distributions, homophily patterns,5 clustering, and the centrality of nodes.

Naturally, there are many other facets of such inherently complex structures that can also

be important. We focus on these four because they are particularly prominent, fundamental,

4See Jackson (2014).
5Homophily is the tendency of agents to associate with other agents who have similar characteristics.
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and provide essential insights.

In discussing impacts of network structure on behavior it is useful to first divide network

characteristics into two categories: (i) those that are at the “macro”, “global”, or “aggregate”

level, and (ii) those that are the “micro”, “local”, or “individual” scale. For example,

the macro/global/aggregate characteristics include those such as the density of links or

segregation patterns, while the micro/local/individual characteristics include those such as

whether some given person’s friends are friends with each other.

Althgouth there does not exist an exact split between macro and micro network char-

acteristics, this distinction is useful. The macro/micro distinction allows us to separate

fundamentally different sorts of questions. Macro questions address issues that are society-

wide, such as identifying the conditions under which a process of contagion is likely to lead

to a persistent level of infection, or the extent to which polarized views are likely to coexist

in society. The micro questions, on the other hand, address issues that tend to focus on

a given individual or a small subset of society, such as how influential a given agent is in

shaping the opinions of others, or whether or not two friends have sufficient incentives to

exchange favors.

In addition, beyond the pedagogical usefulness of the macro/micro distinction, there is

an accompanying methodological distinction. Answers to these different sorts of questions

tend to rely on different approaches, with different models, data, and analyses. Finally, the

literature has generated distinct insights across these two dimensions. We highlight these

differences throughout the exposition.

3.1 Macro/Global/Aggregate Network Patterns and Behavior

There are a variety of characteristics through which researchers describe and classify networks

when looking at the role of macro/global/aggregate patterns in shaping behavior. We focus

on two of the most prominent such characteristics, as they are particularly pertinent in

analyzing the impact of network structure on behavior. To simplify the exposition, most of

our discussion considers a network of relationships that is represented by a simple graph: two

nodes are either connected to each other or not; there is no weight or direction associated

with the relationships. Much of what we discuss can be readily extended to the case of

weighted, directed, or multiple, links between nodes (see Section 3.2.3).

3.1.1 Degree Distributions

Each individual in the network has some certain number of connections to other agents:

this number is called the agent’s “degree”. Perhaps the most basic macro characteristic is

the degree distribution, which is simply the distribution of degrees across the population
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of agents. As is standard in describing distributions, its basic moments such as mean and

variance are vital statistics. The average (mean) degree in society measures the density of

links in society, capturing the fraction of possible links between all pairs of nodes that are

present in a network. Sometimes it is important to track the full richness of the distribution

of degrees across nodes.

Higher moments of the distribution vary across settings and these are known to have

significant consequences for behavior. For example, consider fixing the mean of a degree dis-

tribution while increasing its variance. As the variance rises, the distribution puts increasing

weight on both low and high (relative to the mean) degree nodes. Qualitatively, the net-

work can increasingly resemble a “hub and spoke” structure, in which some highly connected

nodes that take on the role of hubs, whereas many other low-degree nodes typically connect

to the hubs. When considering diffusion through a network, higher moments of the degree

distribution can have a first order effect on outcomes. Since hubs are highly connected, they

tend to be highly exposed to other nodes and so can be easily infected by disease or become

early adopters of a technology. Next, they are positioned to diffuse the disease or technology

to their many connections. Similarly, in the case of social learning, hub-like agents can be

well-positioned both to encounter novel information, and also to share it with many others,

making them particularly influential in the system. We discuss these points more below.

In contrast, networks with low variance are closer to being “regular”, in which agents

have the same degree. Note, though, that even in perfectly regular networks, it need not

be true that all nodes are equally important or influential. Network positions can still

be heterogeneous. One implication of this observation is, naturally, that even a degree

distribution is not a complete description of a network.

Figure 1 depicts two degree distributions from data sets analyzed in Jackson and Rogers

(2007a). In each panel, the log of the proportion of nodes with connectivity of at least the

given degree (i.e., the log of the complemetary cdf of the degree distribution) is plotted as a

function of the log of the degree. The blue curve is the empirical distribution and the pink

curve is the fit obtained from their model of network formation. The depicted data sets in

Figure 1 are a portion of the www in which nodes are web pages and links are hyperlinks

between pages (left panel) and a network among economics researchers in which individuals

are linked if they have coauthored a published paper (right panel). For our present purposes,

the most important observation is that the distributions of degree are radically different in

the two networks (bearing in mind the effect of the log-log scale). The near-linear pattern

in the www network corresponds to a case in which there are relatively more high degree

nodes and low degree nodes, and relatively fewer nodes with intermediate degrees than in

7
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Figure 1: Fit of two degree distributions, reprinted from Jackson and Rogers (2007a). Pink:

Fit of complementary cdf from their model; Blue: complementary cdf from the data; (left)

Notre Dame www data set from Albert, Jeong, and Barabasi (1999), (right) Economics

co-author data set from Goyal, Van Der Leij and Moraga-Gonzalez (2006). The two degree

distributions are quite different in their curvatures, with the web data set having much

fatter tails in the distribution than the co-author data, which is more regular. Reprinted

with permission of the AER.

the coauthor network. The www network is, in this sense, has more of a “hub-and-spoke”

structure, with numerous very highly connected web pages (hubs) and many other far less

connected pages (e.g., see Albert, Jeong, and Barabasi (1999); Huberman and Adamic

(1999)). On the other hand, despite significant heterogeneity across researchers, the coauthor

network exhibits relatively more regularity and less variance. Such differences could occur for

a number of reasons. For example, one reason is that while time clearly places a constraint

on the number of coauthors a researcher is able to collaborate with, there is no obvious

counterpart to that constraint in terms of the number of hyperlinks a webpage maintains,

thus allowing for the possibility of greater absolute numbers and, therefore, heterogeneity of

links. Other reasons include whether nodes meet each other via the network (which gives an

advantage to nodes who already have many connections), and the extent to which there is

some heterogeneity in the value of connecting to different nodes.

Two of the most prominent degree distributions are the Poisson distribution and the

power distribution (or scale-free distribution, related to a Pareto distribution). These dis-

tributions both arise naturally in many contexts, and are well-understood. These can be

thought of as limiting cases, bounding a space of plausible degree distributions, and serve as
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benchmarks.

The Poisson distribution arises when links are formed uniformly at random (and are not

too dense), so that the degree differences across nodes simply reflect the randomness inherent

in binomial random variables. This sort of network, analyzed in the seminal work of Erdős

and Rényi (1959, 1960), have a binomial degree distribution which is then well-approximated

by a Poisson distribution.

Although some observed social and economic networks have Poisson distributions, many

have fatter tails than a Poisson distribution, exhibiting more heterogeneity than would arise

uniformly at random. At the other extreme, the distribution that exhibits a power law has

much greater variation in degrees. It is usually derived from a form of a “rich-get-richer”

dynamic, characterized by a cumulative process in which nodes gain connections in propor-

tion to the number of connections that they already have. In other words the nodes with

the higher degrees are the nodes that gain new links at higher rates, amplifying differences

across nodes.6 The term ‘power’ reflects the fact that the likelihood of a given number of

connections is proportional to the degree raised to a power, which corresponds to a distri-

bution that has an unbounded variance as the number of nodes grows. Power distributions

are said to have ‘fat tails’, as the relative likelihood of very high degree and very low degree

are higher than if links were formed uniformly at random and, correspondingly, intermediate

degree nodes are less prevalent than in a distribution with links formed uniformly at random.

The term ‘scale-free’ refers to the fact that the relative frequency of nodes with degree d

compared to nodes of degree d′, is the same as the relative frequency of nodes with degree

kd compared to nodes of degree kd′, when rescaling by an arbitrary factor k > 0.7

When one analyzes the degree distributions of many social networks from a statistical

perspective, it is often claimed that a “power-law” is found. However, it is more accurate

to say that many social networks exhibit ‘fat tails’, as when closely analyzing the distri-

butions, they are often significantly different from both a power distribution and a Poisson

distribution, but instead lie somewhere between (e.g., see Jackson and Rogers (2007a)).

More systematic analysis of how network structures differ across applications, and why some

applications exhibit certain features that others do not is still needed. Some of this can be

traced to network formation models, which offer predictions as to why network structure

depends on specific aspects of how they form. However, the connection between the forma-

tion process and what is observed in different applications from an empirical standpoint is

still mostly anecdotal. This is an important area for further work, since differences network

structures (such as degree distributions) have important implications for diffusion processes,

6See Price (1976); Mitzenmacher (2004); Barabasi and Albert (1999); Jackson and Rogers (2007a);

Jackson (2008a) for more on processes leading to each of these, as well as other, degree distributions.
7Observing that the distribution has the form f(d) = cd−γ , it follows that f(d)/f(d′) = (d/d′)−γ =

f(kd)/f(kd′).
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as we discuss shortly.

3.1.2 Assortativity and Correlations in Degrees

In this subsection and the next, we briefly discuss ways in which the properties of one’s

neighbors vary with one’s own characteristics. We think of these as macro-level properties,

since the idea is to capture these dependencies at the aggregate level in a society. We begin

here by posing the question: are highly connected nodes more likely to be connected to

other high degree nodes, and low degree nodes with other low degree nodes? The answer

is frequently affirmative (e.g., see Newman (2003); Jackson and Rogers (2007a)). One

explanation for this phenomenon, known as (positive) assortativity, is that nodes are born at

different times, introducing certain correlations as a function of age. For instance, academics

initiate their research careers at different points in time. Older researchers have had more

opportunities to collaborate with other researchers (tending to give them higher degree) and

also relatively more opportunities to collaborate with other older researchers, producing a

positive correlation in the degrees of connected nodes. This is true of a variety of settings in

which nodes and connections accumulate in tandem over time (e.g., see Jackson and Rogers

(2007a); Jackson (2008a)). Assortativity patterns turn out to have implications for time

patterns in homophily (Bramoullé et al. (2012)) as well as contagion processes (Newman

(2002); Jackson and Lopez-Pintado (2013)).8

3.1.3 Homophily and Segregation Patterns among Nodes

The degree distribution is a purely structural characteristic that it is invariant to relabelling

the nodes in a network. Yet, in social and economic contexts, actors generally come with

relevant attributes, such as ethnicity, gender, age, education, experience, interests, income,

etc., and those attributes are often related to the interaction pattern in systematic ways. It

is frequently the case that individuals more likely to be linked to others who share similar

characteristics. This phenomenon is known as homophily, and it refers to the fairly pervasive

observation in working with social networks that having similar characteristics (age, race,

religion, profession, education, etc.) is often a strong and significant predictor of two indi-

viduals being connected (McPherson, Smith-Lovin, and Cook (2001)).9 This means that

social networks can, and often do, exhibit strong segregation patterns: since most of the links

8It is worth noting that there are also dissortative (negatively assortative, in which high degree nodes

tend to be connected to low degree nodes) networks. For instance, dissortativity has been found in some

patterns of trading relationships (e.g., Bernard, Moxnes and Ulltveit-Moe (2014) and Blum, Claro, and

Horstmann (2012)). These networks are such that hubs tend to be connected to relatively isolated nodes.
9Note that if one considers degree to be such an attribute; e.g., as a proxy of ‘popularity’, then assortativity

can be viewed as a particular form of homophily.
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connect similar nodes, there are relatively fewer links connecting nodes of different types.

Segregation can occur because of the decisions of the people involved and/or by forces that

affect the ways in which they meet and have opportunities to interact (Currarini, Jackson

and Pin (2009, 2010), Tarbush and Teytelboym (2014)). Clearly, capturing homophily

requires one to model or at least explicitly account for characteristics of nodes that exhibit

a dimension of heterogeneity across the population. Homophily, and other segregation pat-

terns, mean that two networks that have the same degree distribution might have strikingly

different properties in terms of how different groups of nodes interconnect with each other.

This can have profound implications for how behaviors are chosen and evolve over time.

Consider, for example, Figure 2, which depicts a friendship network among high school

students in the United States (from the National Longitudinal Survey of Adolescent Health

– ‘AddHealth’). It turns out that the (self-reported) friendships are strongly related to

ethnicity, with students of the same ethnicity being significantly more likely to be connected

to each other than students of different ethnicities. If one is interested in how information

spreads through social learning, such homophily patterns are important to understand. As

homophily increases, the propensity for a diffusion to gain hold within a particular group

rises, sometimes at the expense of the speed and extent of diffusion throughout the entire

population, as we discuss in more detail below. Further, given sufficiently strong homophily,

one can imagine different norms or cultures emerging, e.g. regarding cooperative behavior,

and so different groups may have quite different outcomes. It could also be that, in a diffusion

context, different prevalences will be sustained in different areas of the network, which in

turn can lead to welfare and behavioral differences across groups.

Figure 2: A Network of the Friendships in a High School from the Ad Health Data Set:

green=Asian, blue=Black, red=Hispanic, yellow=White, pink=other/unknown. (Reprinted

from Jackson (2007).)
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3.1.4 Component and Community Structures

We now turn to discussing how the structure of a network dictates the shape and character-

istics of the community that surrounds a given agent. A basic concept is that of a network

component; i.e., a set of nodes such that all pairs have at least one path connecting them,

and such that the addition of any other node breaks this connectedness property. So a com-

ponent is a maximal set of path-connected nodes. An easy way to think about finding the

component structure of a network is via the following algorithm. Start from any agent, and

examine each of her links to find all of her neighbors. Then, from each neighbor, repeat the

process, and continue from the next set of nodes that are reached, and so on. Assuming

there are a finite number of nodes, this process is guaranteed to reach a state after which

no new nodes can be found; at which point the current set of nodes that have been reached

form a component. Repeating this process starting from a node that was not included in the

first component will then identify a second component, and so on, until the full component

structure of the network has been identified.

The number of components that a network separates into, and the size distribution of

those components, has implications for various processes, especially diffusion processes. In

particular, there is a strong sense in which a network with many small components can be

thought of as being more segregated than a network with fewer and larger components. In

the limit, one obtains a network in which all nodes belong to the same component, which

is often simply referred to as being ‘path-connected’ or, more simply, ‘connected’. In a

path-connected network, it is possible, depending on the particular process in question, for

information or behaviors to spread from any node to any other node, given enough time.

On the other hand, for networks with many small components, information or behavior that

originates among nodes in one component has no natural way to spread to nodes in other

components (presuming that the network describes the feasible avenues of diffusion).

From a theoretical perspective, the number and sizes of components has been extensively

studied in the context of relatively simple random graph models (e.g., see Bollobás (2001)).

A straightforward insight is that, having higher probabilities of links existing between any

two nodes is likely to result in a network with fewer and larger components than one formed

with lower probabilities of links between any two nodes, which is simply an expression of

the fact that additional links will occasionally connect two nodes who otherwise would have

been in separate components and, following the addition of that ’bridge’, the two components

merge. What is perhaps more surprising, and applies to many random graph models, is that

changing the probabilities by relatively small amounts can lead to dramatic changes in the

component structure. This happens because the number of links grows quadratically in the

number of nodes, and so slight increases in the probability per link can lead to much higher

probabilities that at least one pair of nodes from two different groups ends up having a
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relationship. Thus, as a graph becomes denser, one property that emerges is the existence

of a giant component(i.e., a component that incorporates a non-trivial proportion of nodes),

even in the limit as the population grows without bound, and which dwarfs the next largest

component.10 In the classic Erdos-Renyi random graph model, for example, there is a phase

transition in the linking probability such that a giant component emerges sharply beyond

that threshold. Above this threshold, one can further study the expected size of the giant

component and, more generally, the distribution of sizes of all of the components in the

graph (again, see Bollobás (2001)).

Beyond a study of component structure, there can also be more subtle, but distinct,

“community structures” within a network. For example, there may be various “types” of

agents (e.g., based on ethnicity, age, profession, etc.), such that agents of the same type

are more likely to connect with each other, whereas agents of other types are less likely to

connect with each other. A natural question is then whether these type-based communities

can be identified from looking at the network data (see Copic, Jackson and Kirman (2009)).

Beyond detecting such type-based communities, there is a large literature on trying to detect

communities within networks (whether based on types or not) and many algorithms for doing

so (see Newman (2004) for an early survey).

Finally, there is great scope for studying finer correlation patterns within a given network.

The literature has paid relatively less attention to such questions, but one can imagine, e.g.,

structures that originate due to different kinds of links jointly defining a network. Such a

’multigraph’ approach may prove useful in thinking about patterns in a network where, say,

some links represent friendships, whereas others represent professional relationships, etc.

3.1.5 Average Distance and Network Diameters

The final category of macro network properties that we discuss concerns the distance between

nodes, where distance is measured according to the network topology. That is, the distance

between any two nodes in a network is the number of links along the shortest path between

two nodes (and is typically taken to be infinite if the nodes are in separate components). If

one considers a network of individuals in which a link represents the ability to communicate,

the distance between a given pair of individuals is the number (plus one) of intermediaries

through which a message must pass in order to get from one individual to the other. More

generally, the distance between nodes has important economic consequences, playing a role

in dictating the speed of learning or diffusion, the efficiency of exchange and trade, and the

10Having two large components becomes very unlikely in a large random network, since it would require

that none of the many possible bridges across the two large components forms; noting that the number of

possible bridges between the components is equal to the product of the numbers of nodes in each of the

components.
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accuracy of communicating information.

A well-studied and robust regularity of social networks is that they have short average

distances between nodes, even in very large and quite sparse networks. The seminal experi-

ments of Stanley Milgram (Milgram (1967)) asked individuals to send a letter to a personal

acquaintance, with the goal of the letter being passed on and eventually reaching a target

recipient, who was a great geographic distance from, and unknown to, the initial individual.

Even though participants were given little information about the target, many of the let-

ters that eventually reached their targets, with median and averge numbers of hops needed

being around five or six. Migram’s experiments were conducted on the population of the

United States; given the size and sparcity of connections (Milgram defined a link in terms

of “first-name basis”) the short length the realized path lengths were.

This kind of experiment has been implemented more recently via email (Dodds, Muhamad

and Watts (2003)), and on social media sites (e.g., Backstrom et al (2012)). The main

finding of these studies replicates the essence of Migram’s thesis, namely, that when asked to

forward a message to a personal acquaintance, with the goal of eventually reaching a given

target, a message typically has to pass through a remarkably small number of individuals,

even in very large and sparse networks. This finding may be surprising for two separate

reasons. First there is the basic issue of whether or not a short path exists between randomly

chosen pairs of individuals, who are typically geographically and demographically diverse.

But given that such a path exists, it is still far from obvious how individuals are able to

navigate the network and find such a path with highly incomplete information about the

network structure. What these experiments show is that people are often able to forward

the messages in a way that reaches the target relatively efficiently without knowing much

about the larger network.

The findings of these experiments, while surprising, are robust. The existence of short

paths is well-understood from a theoretical perspective too. The main observation to bear

in mind is that, when links are sparse, a random network tends to have very few cycles,

so that a tree-structure underlies the network. This means that, starting from any node

and successively tracing all the paths emanating from that node, one reaches exponentially

many others as a function of the number of links one moves outward – and so the typical

path length tends to vary in proportion to the log of the number of nodes in the network.

Another way to see this relationship is to note that the number of potential paths of length

two between a pair of nodes is n − 2 (any other node could serve as an intermediary). So,

the only way that those two nodes are not connected by such a path is if all of those possible

paths fail to exist. Similarly, there are (n−2)(n−3)/2 possible paths of length three between

a pair of nodes, and so for them to be at a distance of more than three, additionally, all

of those paths also have to fail to exist as well. The number of possible paths between
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two nodes expands exponentially with the distance in this way, and so it quickly becomes

unlikely for all such paths to fail to exist unless links become quite rare. Theorems bounding

distances by such methods have been proven for increasingly rich network models, starting

from simple ones (Erdős and Rényi (1959)), to ones with richer degree distributions (Chung

and Lu (2002)), to ones rewired from networks with high clustering (Watts and Strogatz

(1998)), to ones with rich sets of node characteristics and homophily (Jackson (2008b).

The finding that subjects are able to find short paths in a network, is remarkable because

people often have poor knowledge of networks beyond their immediate friendships (e.g., see

Friedkin (1983); Krackhardt (1987, 2014); Banerjee, Chandrasekhar, Duflo, and Jackson

(2014)). Nonetheless, even though people do not know the details of the network, they

typically use information related to geography, occupation, and other demographics, and

forward messages to others who share characteristics with the target (see Watts (2016),

as well as Kleinberg (2000a,b)). So, homophily actually helps in navigation, and people

instinctively take advantage of it.

The combination of empirical and theoretical studies has shown that even very large and

relatively sparse societies are “small” in terms of the average distances in their networks.

Given that links often represent the possibility of transmission of a disease or information,

or the possibility to pass on a learned behavior, this understanding suggests why things can

spread across an entire population very quickly.

Although average path length is clearly a useful summary statistic, there are other mea-

sures of distance that are often considered when one desires richer information about the

spectrum of distances in a network, just as average degree is informative of, but does not com-

pletely describe, the degree distribution. While describing the full distribution of distances

across pairs of nodes is a formidable task – much more so than for degree, as it happens –

one measure that is tractable to estimate is the maximum distance across all pairs of nodes

in a network, which is termed the network’s ‘diameter’. While precise expressions for diam-

eter are generally difficult to obtain in many network models, it is possible to identify and

prove bounds on the diameter in some growing random graph models (Bollobás and Riordan

(2004) as well as some strategic network formation models (Jackson and Rogers (2005)).

Indeed, diameters tend to be small in random graphs for the reasons cited above, whereas it

is for very different reasons that diameters are low for networks in which individuals choose

links strategically. When people choose links and obtain higher value from having shorter

paths to other individuals, diameters become limited because if the diameter were sufficiently

large, then one could find two individuals who are quite distant in the network who would

therefore see sufficiently large benefits to connecting to each other and greatly shortening

many paths in the network. Diameters are directly useful for providing bounds for some

diffusion processes that travel via shortest paths. Further, just as the component structure
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of a network places limits on the extent of diffusion, the diameter of a network places limits

on how long processes can take to reach the entire network.

3.2 Micro/Local/Individual Network Analyses and Behavior

On the micro side, we identify three main perspectives that have received extensive atten-

tion. Each of these perspectives are fundamental to understanding behavior in networks and

continue to generate important new insights.

3.2.1 Clustering and Support

The first perspective focuses on clustering patterns of links. Essentially, clustering is a mea-

sure of the local correlation or dependence among the locations of links. To what extent is

the presence of a link correlated with the presence of nearby links? Roughly, under indepen-

dence, links would be uniformly distributed across the graph, whereas under dependence,

links would form in locally dense regions creating clusters.11

The importance of clustering traces back to the pioneering social network research of

Simmel (1908). Coleman (1988) provides specific discussion of the role of clustering (or

more general forms of “closure”) in enforcing social norms.

There are various related statistics in the literature that have been used to capture this

basic notion of clustering and two of these are as follows. One is the frequency with which

neighbors of any given node tend to be neighbors of each other, which is referred to as a

“clustering coefficient” or “transitivity”.12

In Figure 3 (left), the clustering coefficient of node i measures, across all pairs of nodes j

and k that are each connected to i, the proportion of pairs that are connected to each other.

The second distinct, but related, measure is whether or not two linked nodes have some third

node to which they are both connected. In Figure 3 (right), this measure asks, for a pair of

neighbors i and j, whether there exists at least one node k that is connected to both i and j.

This measure of having a “friend in common” or “shared neighbor” is also termed “support”

by Jackson, Rodriguez-Barraquer and Tan (2012), who study its role in providing incentives

for individuals i and j to act cooperatively in a relationship, with the interpretation that a

common neighbor can help support the provision of incentives in a relationship.

Although clustering and support both relate to the presence of “triangles” or “triads” in

a network, they are different concepts. To make the point starkly, as illustrated in Figure

11Clustering can appear in cases of extreme homophily, even with independence - simply because links

form among groups of individuals who all have the same characteristics (e.g., see Graham (2014)). However,

correlation persists in many settings, even after conditioning on nodal characteristics (e.g., see Jackson,

Rodriguez-Barraquer and Tan (2012)).
12See Jackson (2008a) for more detailed definitions.
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Figure 3: Left: clustering - what fraction of node i’s neighbors, j and k, are neighbors of

each other? Right: support - what fraction of links ij have a neighbor in common?

4, one can have a network for which every link is supported, and yet have the clustering

of some nodes be more limited. Indeed, in this network all links are supported and so the

support measure is 1. However, only 1/3 of the pairs of friends of the most central agent are

friends with each other (e.g., considering the middle-most node 1 and his neighbors 2, 3, 4

and 5, we see that 2 is a friend of 3, but not of 4 or 5, etc.). Thus, the clustering in this

network is much lower than the support measure.
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Figure 4: A network with support equal to 1, but clustering well below 1. Every two linked

nodes are supported (they have at least one neighbor in common), while the middle five

nodes each have many neighbors who are not connected to each other.

While there are various formal definitions of that relate to clustering, it is nonetheless true

across definitions that social networks tend to exhibit higher correlations in local linkings

than would be predicted by a model in which links are formed independently across pairs of

nodes at random. For example, Newman (2003) discusses several large coauthor networks

and finds total clustering coefficients of 0.496 for computer science - so that on average almost

50 percent of the coauthors of a computer science researcher in the data are coauthors of each

other - and 0.43 for physics. One factor to keep in mind for coauthorship networks is that

whenever a paper has more than two authors, triads are necessarily created, and this will
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cause clustering and support measures to increase. A similar mechanism is at play whenever

links are generated through participation in small groups. Even so, note that, given the

sparsity of these networks (i.e., low link densities overall), the clustering coefficients would

be dramatically smaller if there were no correlations in presence of links across triads of

nodes. Moreover, such high clustering appears in many contexts that do not involve the

explicit formation of groups or teams.

We note that clustering and support, although inherently local phenomena, are often

measured in the aggregate. For instance, researchers often aggregate clustering coefficients

across nodes to arrive at a measure of average clustering for the network as a whole. Nonethe-

less, as their implications for behavior operate on a local level, we find it more natural to

think of them in the micro category. In particular, these sorts of local patterns of interac-

tion are important in providing incentives for individuals to behave in certain ways, as such

patterns determine who is aware of a given individual’s behavior. For instance, if one person

cheats another person and they have a friend in common, then that friend in common can

react with some punishment, as we discuss in more detail below.

In principle, the intuitive notion of clustering is aimed at capturing the extent to which

links tend to gravitate together to bring sets of nodes into close and dense contact with

others, such that one tends to observe both short path lengths as well as the presence of

redundant paths. Redundancy is also economically important. For example, if links represent

a stochastic transmission of information, then the probability that the information gets from

one node to another increases with the presence of redundant paths, all else equal. For the

most part, the statistical measures that have been developed to capture clustering tend to

focus exclusively on triads – groups of exactly three nodes at a time. While certainly useful,

it seems reasonable to conjecture that the clustering properties of a graph may have features

that cannot be captured by imposing the limitations implied by these measures. Thus, one

possible direction for research is to develop other ways to meaningfully, yet parsimoniously,

capture the extent and consequences of more general or flexible clustering in a network.

3.2.2 Centrality Measures

A second category of micro-level analysis quantifies and measures the centrality of a node

in a network. The qualitative idea is to identify the extent to which a node is centrally

located in a network. While intuitive at a general level, it turns out that the appropriate

notion of centrality is tied to the details of an application. Indeed, centrality may relate to a

node’s potential power, influence, or prestige. While related, these are distinct concepts that

differ across applications. The literature has thus developed numerous different measures of

centrality, each having its own logic and domain of relevance.
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In particular, there is a taxonomy of four major classes of centrality measures.13 Perhaps

the most basic one is (i) simply counting how many connections a given node has, i.e., using

degree to capture centrality. This may be thought of as a measure of the popularity of a

node, and so its immediate influence or the number of other nodes that it can contact. There

are many richer definitions of centrality that keep track of: (ii) how close a given node is to

others, on average, where close is again in the sense of network topology, and so how quickly

it can reach other nodes, or (iii) the extent to which a given node is a critical connector lying

on many paths between other nodes or forms a bridge between other groups of nodes, or (iv)

the extent to which a given node is well connected to other important nodes. In this last case,

notice that “importance” becomes a recursive notion, as the importance of one’s neighbors

is a function of the importance of their neighbors, and so on. Thus, quantifying centrality

in this last category typically requires solving a system of equations (e.g., involving an

eigenvector calculation) that grows with the size of the population. These richer measures

of centrality (or reach, bridging, influence, etc.) are relevant in part because they have

implications for the seeding of diffusion processes, or a node’s impact as an intermediary in

various transactions, as we discuss below.

As with clustering, the various measures that the literature has proposed for capturing

centrality have proven very useful, but are not yet comprehensive – certainly continued re-

search will develop further aspects of centrality. As mentioned, the intuitive goal is to capture

how important a given node is by virtue of its position in the network. The subtleties arise

because “importance” is highly dependent on context. If one is studying epidemiological

diffusion, then the measure needs to capture the extent to which a node contributes to the

spread of a disease. On the other hand, if one is studying a game with local complemen-

tarities, importance may instead be aimed at the extent to which one individual’s actions

influence the actions of many other agents. A position that is central under one notion may

not be particularly central under another notion. In principle, the range of centrality notions

is potentially as broad as the range of applications one considers. This leaves much room for

methodological studies that characterize various centrality measures in terms of the prop-

erties they satisfy, and to propose new measures as well (see Dequiedt and Zenou (2014);

Bloch, Jackson, and Tebaldi (2015) for some recent examples). We discuss how distinctions

between centrality measures are becoming evident from empirical studies in Section 7.

3.2.3 Tie Strength and Multigraphs

In many studies, both empirical and theoretical, connections between individuals are coded

as binary quantities: either present or absent. In many contexts, such a formulation is

13This builds from Jackson (2008a). Earlier discussions and taxonomies can be found in Freeman (1979)

and Borgatti (2005).
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adequate to capture the phenomena that one wants to understand, and given the advantages

of tractability this is expedient. On the other hand, binary links are clearly an abstraction.

In some contexts, forcing the relationship between two individuals to be coded as either “on”

or “off” may obscure important aspects of the process under consideration. For example,

if one is studying opinion formation, it may be that a given individual pays attention to

a number of sources, but puts significantly more weight on the opinions of some contacts

relative to others. If one wants to understand the evolution of this individual’s opinion, it

would be important to capture the heterogeneity in these links. Generally, the way this is

done is to assign weights, or strengths, to every link. Then one can, for example, formally

model the network by writing down a matrix where each element captures the intensity or

frequency of the relationship from one node to another. It may also be important to encode

the flexibility to have asymmetric, or directed, links, in which one node may link to another

without that link being (fully or partially) reciprocated. Returning to the example of opinion

formation, it may well be that one person puts high weight on the opinion of another, but

this second person puts little or no weight on the first person’s opinion.

One simple way to incorporate a basic form of link heterogeneity is to allow for a distinc-

tion between “strong” and “weak” links. In fact, such an approach has been quite influential,

especially from an empirical perspective. This influence derives in part from the findings in

the pioneering work of Granovetter (1973, 1974), where it is argued that weak ties can be of

particular importance in passing information through a network, as many job referrals (and

hence, ultimately, jobs themselves) are passed across weak ties with significant frequency.

Individuals who are acquainted but do not have a close personal relationship can, and often

do, provide valuable information to each other.14

Related to how one chooses to conceive of the strength of connections is a consideration

of the timing of interactions in relationships. The frequency with which people interact can

vary both across relationships, exhibiting significant heterogeneity across the population,15

as well as over time, so that they may be nonstationary. There is some evidence that

interactions exhibit nonstationarities (e.g., Barabasi (2011)) of this sort, and understanding

the dynamics of interactions is an increasingly active area of research.

Another way in which one can enrich the coding of a network is via a multigraph; i.e.,

by keeping track of multiple types of relationships that may simultaneously exist between

pairs of nodes. A person may have one person from whom she would ask to borrow money

when necessary, and a different friend to whom she would turn for advice; or these two

relationships could be with the same person. More generally the idea is that, for some

14Weak ties have also been shown to be important in criminal behaviors (Patacchini and Zenou (2008))

and migration decisions (Giulietti, Wahba and Zenou (2014)). For some background on the empirics of

weak ties in the labor market, see Topa (2011).
15In fact, frequency was part of Granovetter’s operational definition of strength.
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applications, understanding how individuals interact with and influence each other requires

one to understand, and collect data on, several different kinds of relationships. In fact, many

network data sets include multiple sorts of relationships (e.g., Banerjee, Chandrasekhar,

Duflo, and Jackson (2013)), which encode richer information than simply identifying whether

two people are close or not. Furthermore, we emphasize that the idea of a multigraph can

result in very different conclusions than thinking in terms of a strong/weak dimension, as it

could be that a pair who share only one type of relationship interact regularly and frequently

and have a strong relationship, and another pair who share multiple relationships interact

very infrequently and may be thought of as having a weak connection.16

3.3 The Blur Between Micro and Macro Measures

Before proceeding, we remind the reader that, as we have hinted at throughout this sec-

tion, our macro and micro distinction is not always completely clear cut. For instance,

recursive formulations of centrality measures that are used in a micro analysis require one

to consider aspects of the entire network. Thus, although one might focus on how some

individual’s position matters – a decidedly micro analysis – the relevant measure of that per-

son’s position could be based on information about the network that extends beyond that

individual’s local neighborhood. In this sense, although the focus may be micro-oriented, it

could nonetheless involve global aspects of the network. Hence, the distinction is not always

a bright line. Nevertheless, it is still useful to distinguish whether one is examining the roles

and behaviors of specific individuals or small groups of individuals (a micro/local/individual

analysis), as compared to overall structure of the network and its societal implications (a

macro/global/aggregate analysis). This distinction correlates well with the kind of analyses

and models researchers use.

4 A Basic Macro Analysis of Network Structure and

Behavior: Density and Degree Distributions

Network density, referring to the fraction of possible links that are present in a graph (ac-

counting for weights if necessary), relative to population size, is a basic and fundamental

16There could be a conflict between two activities and associated norms. Consider, for example, crime and

education, and their respective networks. On the one hand, in the crime network individuals are sometimes

induced to commit crime by their criminal peers, while in the education network they are induced to study

harder by their peers. If these two networks are different so that peers are also different, then there can

be a conflict between these two activities. See Chen, Zenou and Zhou (2015) for such an analysis and

Cohen-Cole, Liu and Zenou (2015) for an empirical application.
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property. Its properties have implications across a wide range of settings, including conta-

gious diseases, industrial organization, research and development, security and vulnerabil-

ity, and various diffusion processes. In order to provide some focus to our exposition, we

discuss the important implications of network connectivity for diffusion, one of the most

prominent and pervasive applications of network analysis, as it illustrates many of the im-

portant insights. These insights have wide implications to more specific topics related to

diffusion including learning, epidemics, opinion formation, and financial contagions.17 This

wide applicability is in large part responsible for the significant interest in exploring diffusion

processes. Finally, diffusion processes tie in very closely to the basic architecture of a pop-

ulation’s network, and so very cleanly illustrate how density and degree distributions affect

transmission. Although density and degree distributions are of paramount importance to

many applications, due to space constraints, we limit our discussion to diffusion processes.

In a canonical diffusion process, a disease, piece of information, behavior, opinion, or

product is introduced to a small fraction of the population. Let us focus on the case of a

disease, which, after being introduced, spreads through the population across links in the

network, according to a given, often stochastic, process. There may also be a decay process

such that the disease dies off from infected individuals at some rate. One typically wants to

understand if the disease eventually dies out, or if instead it becomes endemic in a population

and, if so, what proportion of agents are infected in the long run.

Not surprisingly, the density of connections in a network is well-known to be a critical

determinant of the contagion of communicable diseases and of the diffusion of a new product.

A fairly obvious effect is that denser networks, all else held equal, enhance contagion and

diffusion processes (Anderson and May (1992), Rogers (1995), Colizza and Vespignani

(2007)). Greater numbers or frequency of interactions lead to increased opportunities for

spreading diseases, information, and experiences. This conclusion has recently been estab-

lished for a variety of diffusion processes (Jackson and Rogers (2007b), Lopez-Pintado

(2008)) and confirmed via careful statistical analyses of some processes in field studies of

learning and diffusion (e.g., Alatas et al. (2016)).

Of particular interest are the comparative statics of how contagion depends on changes to

the network structure. For example, if we compare the same diffusion process occurring sep-

arately on two different networks, how does the extent of diffusion depend on the differences

in connectivity between the two networks, all else held equal? It turns out that diffusion

processes often exhibit sharp phase transitions: there is a critical threshold in connectivity

such that on networks with connectivity slightly below that level a diffusion will die out and

not take hold in a society, whereas slightly above that threshold the diffusion can be exten-

sive. It is thus possible that two societies with slightly different densities could experience

17For surveys see Jackson and Yariv (2011); Lamberson (2016).
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very different responses to the same diffusion process (e.g., Watts (2002); Lopez-Pintado

(2008)).

One can see some of the basic insights behind this sort of phase transition in the orig-

inal random graph formation models of Solomonoff and Rapoport (1951) and Erdős and

Rényi (1959, 1960) (see Bollobás (2001) for details). In that framework, links are formed

independently across pairs of nodes according to a given probability. One of the important

objects of analysis in that framework is the existence and size of a giant component – a

component of individuals who are path connected and comprise a majority of individuals

in the network – as the group size gets arbitrarily large. As mentioned, the emergence of a

giant component occurs sharply across a threshold in the probability that links are formed,

treated as a function of the size of the population. This probability is the relevant notion

of density for this model, since it specifies the expected proportion of possible links that

will form. The interest in the giant component, for our present purpose, is that when link

probabilities are low enough that a giant component fails to exist, then the possibility for

diffusion to a large portion of the society is naturally limited by the component structure

of the network and, in particular, the fact that a randomly chosen pair of agents are very

unlikely to have a path connecting them in the graph. On the other hand, when there exists

a giant component, then widespread diffusion has the potential to occur.18

While studying how changes in the density of a network impact a diffusion process delivers

intuitive results, it is important to clarify what is meant by density outside of the confines

of the random graph models just discussed. In a world in which every agent is treated

identically, the notion of density is straightforward: the number of connections per agent

(per time) is a simple measure. However, in a world with heterogeneity in numbers of

connections, the notion of density must be treated more carefully. In certain cases one can

make an unambiguous comparison, such as, for instance, a situation in which all nodes have

increased connectivity. But more generally, knowing only that one society has a greater

average connectivity than another does not necessarily allow one to conclude that it is

more conducive to diffusion – other aspects of the degree distribution are important as well.

In other words, when considering a change from a baseline degree distribution to a new

distribution in which some nodes gain additional links while other nodes lose links, one

18One can tune the link probability to incorporate a probability that two connected individuals would

communicate with each other. For instance, an agent might have thousands of acquaintances, but might

only interact with dozens of them during a limited time period in which he or she is contagious. From

that perspective, tuning link densities to represent the number of per-period interactions would be the right

approach for an empirical estimation. Modern epidemiological models are quite intricate, tracking travel

patterns and geography, heterogeneity in individuals, and interactions via schools, mass transportation,

health care, and others - mostly via simulation due to limited tractability. But some of the basic insights

from random graph models still underlie those models.

23



cannot make clearcut conclusions simply by comparing the change in average degree.

Analytically, a concept that allows one to pin down the effects of a degree distribution

change on diffusion outcomes is that of first order stochastic dominance (FOSD). One degree

distribution FOSDs another if, for every possible absolute level of connectivity, the propor-

tion of agents who have at least that degree rises. The nature of the results mentioned

above, in which an increased density leads to higher diffusion outcomes typically apply to

random networks that are ordered in the sense of first order stochastic dominance. Some

of those results have been verified in empirical work. For example, studying 631 villages in

Indonesia, Alatas et al. (2016) have verified that if a network’s degree distribution FOSDs

another’s distribution, then there is better information aggregation on poverty status within

the network; i.e., there is an overall lower error rate in ranking the income distribution of

the people in the network - consistent with earlier theoretical predictions (e.g., Jackson and

Rogers (2007b)).

It is important to note that, since FOSD is a very structured relationship, it does not

always allow one to compare two degree distributions, thus leaving open the question of how

a diffusion process may respond to general changes in the degree distribution.

Even though the FOSD notion of density operates on the full distribution of connectivity

in a society, it is still concerned primarily with the aggregate level of connections across a

society, as opposed to finer details regarding how that connectivity is distributed - such as the

variance of those connections. Some less expected insights of how network structure impacts

diffusion and contagion processes emerge when focusing on changes in higher moments of the

degree distribution. More precisely, one tool that has been used in the literature is that of

a mean-preserving spread, which, in a strong sense, increases the variation in connectivities

while holding average connectivity fixed. Taking a mean-preserving spread thus has the effect

of increasing the frequencies both of highly connected agents and also of poorly connected

agents, leaving fewer agents with near-average connectivity. Under a mean-preserving spread,

a network will consist of more and stronger hubs, which are conducive to diffusion, but also

more poorly connected agents, who are less exposed to, and able to spread, diffusion. How

will a society’s susceptibility to diffusion change as a result of these opposing forces?

One main finding is that a mean-preserving spread can increase the susceptibility of a

population to contagion and diffusion. Such a result demonstrates that the effect of increasing

the prevalence of hubs dominates the effect of increasing the numbers of poorly connected

nodes. To prove such a result, one typically leverages the fact that highly-connected nodes

serve as hubs of transmission for two separate reasons. First, they are quite likely to come

in contact with the diffusion by virtue of their high level of exposure. Second, when infected

they are then likely to spread the transmission to many other agents. These effects are often

stronger than the countervailing effect that poorly connected nodes become harder to infect
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and less likely to transmit the diffusion. From these intuitions, one can see that the presence

of even a few very highly connected hubs can serve to keep a contagion active quite robustly.

This conclusion has been reached in the context of simple contagions (Pastor-Satorras and

Vespignani (2001)), more complicated diffusions that involve strategic complementarities

such as in new product adoption (Jackson and Yariv (2005); Jackson and Rogers (2007b);

Jackson and Yariv (2007); Lopez-Pintado (2008); Galeotti et al. (2010)), and has even been

found to enhance a population’s ability to coordinate its actions in voting settings (Kearns,

Judd, Tan, and Wortman (2009)).19

Note that, even when a society becomes more susceptible to a contagion process remain-

ing endemic as a result of a mean-preserving spread of the degree distribution, it is not

obvious that one should generally expect a higher prevalence in the long run. That is, there

may well not be a clear sense in which a mean-preserving spread unambiguously translates

into “higher” diffusion outcomes. The reason goes back to the higher proportion of poorly

connected nodes along with the additional hubs. It can well be that a mean-preserving

spread makes it easier for a society to sustain a diffusion, due to the increased role of hubs,

but at the same time, it lowers the expected prevalence of the diffusion, since there are more

hard-to-reach nodes (see Jackson and Rogers (2007b)). In this case, the society is more

susceptible to contagions remaining endemic, as the hubs are continually being infected and

spreading it to others, but a high proportion of the population is nonetheless only rarely in-

fected, as the exposure of poorly connected nodes is very limited. So there can be a sense in

which the contagion actively infects a small proportion of agents, creating a strong disparity

in outcomes for agents as a function of their positions in the network. Whether or not the

prevalence responds positively or negatively to a mean-preserving spread depends on further

details of the characteristics of the diffusion process and degree distribution (see Galeotti

and Rogers (2015)).20

It is also worth noting that, while it has received less attention in the context of diffusion

compared to treatments of degree distributions, assortativity also can impact diffusion. For

example, if highly connected nodes – the hubs – tend to me connected to other highly

connected nodes, then their tendency to enable an endemic infection can be amplified. Notice

that one may also expect the presence of assortativity to strengthen the possibility that, while

becoming more susceptible to infection, a network experiencing a mean-preserving spread

19A general approach to using stochastic dominance of degree distributions to rank contagion and diffusion

processes was developed in several contexts by Jackson and Yariv (2005); Jackson and Rogers (2007b);

Jackson and Yariv (2007) (see more discussion in Jackson and Yariv (2011) and further development in

Lamberson (2011)).
20There is great scope diffusion processes, depending on the features or applications one wants to consider.

There is also the consideration of recovery, and of the possibility of latent states such as contagion without

active infection, which have been modeled in the epidemiology literature.
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may have a quite low prevalence if many poorly connected nodes are mostly connected

(sparsely) only to each other.

More generally, there are many settings in which there are richer aspects to how diffusion

occurs on a local level. It is important to distinguish between simple “mechanical” sorts of

diffusion processes, in which individuals’ behaviors are either passive or taken to be exoge-

nous, from more complex processes in which, for example, people must interpret possibly

heterogeneous information that they hear from others (as in social learning) or must make

a choice when they care how their decisions match with others (as in games on networks).21

For instance, in the the case of technology diffusion, a given individual’s behavior might

depend on which technology the majority of an individual’s neighbors use. Outcomes in this

case are driven by the structure of the network, but now in the context of multiple equilibria

and more complicated interactions on a local level. In addition, it may be that individuals

manipulate information so as to deliberately shift the opinions and actions of others, which

adds a further layer to the process. There is a growing literature on such strategic interac-

tions in networks (e.g., Jackson and Yariv (2007); Lopez-Pintado (2008); Galeotti et al.

(2010)), which is surveyed by Jackson and Zenou (2015); Bramoullé and Kranton (2016).22

To discuss some of the implications of strategic decisions, consider, for example, incorpo-

rating the possibility of costly immunization into an analysis of disease diffusion. If agents

can choose to immunize before the diffusion process takes hold, the results on density and

degree distributions can change dramatically. The main idea is that, if the density of con-

nections increases, then the incentive to immunize increases as well. The higher density puts

upward pressure on diffusion, but the higher immunization rate puts downward pressure

on immunization. The combined effects in equilibrium can result in a lower prevalence in

the denser society.23 More generally, it is clear that the incorporation of agents’ incentives

into diffusion models is important and will produce insights that go beyond the existing

conclusions that rely more on exogenous decision rules. Indeed, consider the choice of an

individual who has to decide whether or not she wants to receive a vaccination. The optimal

choice depends on the choices of the people she is linked to. There is typically imperfect

information in that individuals have a good sense of the aggregate number of others who

make a similar vaccination choice, but do not know the identity of these people and the

ones with whom they are connected. In a series of laboratory experiments, Charness, Feri,

Melendez-Jimenez and Sutter (2014) show that players tend to vaccinate if their degree is

above a certain threshold and less otherwise, and, moreover, that the frequency of active

21For more discussion around this mechanical/strategic distinction, see Jackson (2008a).
22There is also an important literature on dynamic networks. For recent surveys, see Özgür (2011) and

Pin and Rogers (2016).
23Papers that contribute to this line of modeling and derive such a result include Geoffard and Philipson

(1997), Kremer (1996), Toxvaerd (2012), and Galeotti and Rogers (2015).
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players increases with connectivity.

Much of the literature, and hence our discussion, has discussed the eventual, or steady-

state outcomes of diffusion processes. Beyond such a consideration, one may also be inter-

ested in the dynamics of the diffusion process itself, that lead through some time path from

an initial seed to a steady-state outcome obtained in the long run. The question of networks

will be conducive to faster contagions is clearly distinct from the question of which networks

will lead to higher prevalence in the long run. One property here that is important is the

path lengths connecting agents (recall the discussion from Section 3.1.5). One would expect

that nodes that are closer will pass information (or behaviors) more quickly from one to

another, and thus the steady-state may be reached more quickly.

Redundancy in the network will also play an important role. That is, nodes that have

many distinct paths between them, as opposed to a unique path, are more robustly connected.

This becomes particularly relevant in situations where links are “active’ ’ probabilistically. In

such a case one may wish to consider the probability that information diffuses from one node

to another. Redundant connections will increase this probability and hence make diffusion

more likely to occur.

In summary, some basic aspects of overall network structure, such as the distribution of

degrees, can have important consequences for a variety of processes, such as diffusion and

learning, in well-defined ways.

5 Characteristics of Nodes and Macro Patterns of In-

teraction: Homophily and Segregation

Next, let us discuss the remaining macro characteristics of a network: homophily and segre-

gation patterns. Examining the impact of homophily and its roots has been one of the more

active and interesting areas of recent study relating network structure to behavior. There

are a number of insights that can be found looking across this literature. Most basically,

homophily enables different patterns of behavior to persist across different groups. This

happens through a variety of mechanisms, some of them more mechanical and others more

richly strategic. If a network has strong homophily then, as most links are, by definition,

within groups, there are relatively fewer bridges across groups. As a consequence, when

a contagion that is spread through contact that requires more than just one interaction is

seeded in one group, the diffusion can remain confined within certain areas of the network,

or take a very long time to reach other parts of the network. Similarly, if one enriches the

process so that people are viewed as making active choices and, for instance, wish to match

choices of their neighbors, such as adopting a new technology, then one can end up with
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different norms of behavior, technologies, or standards across groups in the network, and

these can be persistent. Moreover, these equilibria are generally strict, and so can be viewed

as quite resilient to change. In addition, opinions are often formed in part by talking with

others, and in this context homophily biases who talks to whom, and can thus slow social

learning and allow for different beliefs to persist, even about basic facts. The impact of

homophily on these different types of interactions has been explored in the literature, and

some fundamental conclusions have emerged.

For instance, when subjects in experimental labs repeatedly play games that involve

coordination among multiple equilibria, they often eventually coordinate successfully (e.g.,

Cooper, DeJong, Forsyth and Ross (1990), Van Huyck, Battalio, and Beil (2011), Banks,

Plott and Porter (1988)). Conventions, which operate through social norms, can guide ex-

pected behaviors and help people coordinate in settings in which there are multiple possible

stable (equilibrium) outcomes. For instance, one can consider questions of whether people

are polite in their exchanges, are corrupt, obey certain laws prohibiting smoking or drug

use, or whether university departments hire their own students or ones from other univer-

sities, which technology or standard do people adopt, and so forth. What is focal in the

presence of multiple equilibria is not always obvious, and so one can expect that different

conventions or expectations might arise in different cultures. In particular, with high levels

of homophily, groups can become insular and then sustain different conventions (e.g., Morris

(2000)). Homophily can also affect whether information flows easily from one group to

another or is instead impeded (e.g., Golub and Jackson (2012)). These effects can have

pronounced implications across a range of important applications including access to em-

ployment opportunities (Granovetter (1974), Calvó-Armengol and Jackson (2004, 2007),

Ioannides and Datcher-Loury (2004), Jackson (2007), Bayer, Ross, and Topa (2008), Bea-

man (2012), Gautier and Holzner (2013), Rubineau and Fernandez (2015), Battu, Seaman

and Zenou (2011), Zenou (2013, 2015)), social mobility (Calvó-Armengol and Jackson

(2009), Munshi and Rosenzweig (2009), Bervoets and Zenou (2016)), marriage markets

(Skopek, Schulz, and Blossfeld (2011)), health behavior (Centola (2011)), and educational

achievement (Calvó-Armengol, Patacchini and Zenou (2009)). For example, in the labor

market, homophily isolates workers of one ethnicity from workers of another ethnicity, which

then limits the extent to which individuals in one group hear about openings and oppor-

tunities known to the other group. This effective separation in opportunities can lead to

poverty traps, since if few of an individual’s friends invest in education or are employed,

then this lowers the returns to education and employment and so makes it less attractive

for the individual to become educated and to search for a job. This can lead to persistent

differences in education, employment, wages, and incarceration rates, across groups.

Shared history and expectations help people from a similar background to predict each
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others’ behaviors with more accuracy than they predict the behavior of people with different

backgrounds. In laboratory settings, people do indeed play differently in simple games such

as ultimatum, dictator, and public good provision depending on their cultural background

– with subjects deviating from self-interested play and with levels of cooperation dependent

upon their backgrounds (Henrich, Heine, and Norenzayan (2010)). As people can better

predict similar individuals’ behaviors, this leads to beliefs that are closer to common knowl-

edge and can facilitate coordination, whereas interacting with people from different cultures

can lead to costly miscoordinations in behavior (Jackson and Xing (2014)). These conse-

quences, in turn, can reinforce the homophily. Since it is easier to coordinate behaviors with

similar others, it can be advantageous to form relationships with similar others.

Another important insight is that homophily has countervailing effects on diffusion and

social learning processes. On the one hand, increased density within groups accelerates

and strengthens diffusion and learning within a group, but then the decreased interactions

across groups can slow or even eliminate broader spreads. This sort of pattern is found in

recent laboratory experiments on coordination of behavior (e.g., voting, Kearns, Judd, Tan,

and Wortman (2009), trust, Goeree et al. (2010), Currarini and Mengel (2012)), in a

field experiment on the convergence of political opinions of French students (Algan et al.

(2015)) and also is seen in theoretical results on learning processes (Golub and Jackson

(2012), Dandekar, Goel, and Lee (2013)) and diffusion processes (Jackson and Lopez-

Pintado (2013)). What is perhaps most interesting is that homophily can actually enhance

widespread diffusion. For instance, by having more homophily one might actually increase

the likelihood of a society-wide diffusion: increased density within groups allows a process to

get a toe-hold and incubate within a group, and then eventually spread to a larger population

(Jackson and Lopez-Pintado (2013)), whereas in a less homophilous society, there may not

exist dense enough clusters of relationships to foster the diffusion reaching critical mass in

the first place.

Financial contagion is also an important topic in which homophily (in the form of specific

correlations in the interaction structure of organizations) offers some insights. Indeed, since

the recent financial crisis, the discourse about bank safety has widened from viewing the

riskiness of financial institutions as individual firms to also understanding and quantifying

systemic risk. Interconnections among financial institutions create potential channels for

contagion and amplification of shocks. Furthermore, the way the institutions are financially

connected is crucial for understanding the risk exposure of the system as a whole where shocks

to some of its parts can develop into a wider breakdown of banks and financial institutions

through cascades of insolvencies and domino effects (see Gai, Haldane, and Kapadia (2011)).

Consider, for example, four banks located in four different regions that are linked through

their balance sheets and that face negatively correlated liquidity shocks (Allen and Gale
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(2000)). In such a situation, it can be optimal for banks to hold part of their deposit base in

other regions to provide liquidity in times of elevated liquidity demand in their own region.

In the case of a banking crisis in one region, the claims of other banks on this region lose value

and can cause a banking crisis in the adjacent regions. The crisis can gain momentum and

spread in a contagion effect to all regions. As a result, contagion can spread more easily if the

network topology has the form of a circular exposure of one region against its neighboring

regions. On the contrary, if the regions are fully connected, the network is more resilient in

absorbing losses. More generally, financial contagion can exhibit a form of phase transition as

interbank connections increase: as long as the magnitude and the number of negative shocks

affecting financial institutions are sufficiently small, more complete interbank claims enhance

the stability of the system (Allen and Gale (2000), Freixas, Parigi, and Rochet (2000)).

However, beyond a certain point, such interconnections start to serve as a mechanism for

propagation of shocks and lead to a more fragile financial system (Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2015), Elliott, Golub and Jackson (2014).24 In sum, there are strong

connections between the financial network architecture and the likelihood of systemic failures

due to contagion of counter-party risk (Cohen-Cole, Patacchini and Zenou (2015)).25

Returning to social, as opposed to financial, networks, there are also interesting inter-

actions between homophily and geographic segregation. There is some evidence that even

slight ethnic preferences in friendships and social interactions can lead to separation in a

geographical space (Schelling (1971), Cutler, Glaeser and Vigdor (1999), Patacchini and

Zenou (2016), De Marti and Zenou (2016)). The essential insight, first exposed by Schelling

24Consider a set of organizations (for instance, countries, industries, or sectors) linked through a network of

financial interdependencies where segregation (homophily) among different segments of the economy prevails.

This means that the relative intensity of nodes’ connections with others can vary between their own group

and other groups. This captures the difference between integration across industries and integration within

industries. It can be shown (Elliott, Golub and Jackson (2014)) that increasing homophily can eventually

sever connections between groups of organizations and lead to lower financial contagion. This is because

lower-degree networks fragment at lower levels of homophily than high degree networks. So at high levels of

homophily, lower-degree networks can actually be more robust.
25Modeling network topology and default cascades helps identify critical institutions in a banking system.

For instance, one can provide a measure of resilience that allows for a given network to predict the spread

of distress (Amini, Cont, and Minca (2012, 2016)). One can also determine a threat index, which measures

the decrease in payment within the banking system following a reduction in net worth at one institution

(Demange (2011)). The latter is related to the intercentrality measure of the key player (Ballester, Calvó-

Armengol, Zenou (2006), Zenou (2016)) described in Section 7 below. In both cases, it would be optimal to

target the institutions with the highest threat index and/or the highest intercentrality measure. Targeting

these key banks may not necessarily mean restricting their number of connections because it could result in a

financial architecture that is less efficient, more fragile, and harder to monitor (Gofman (2013)). Background

on various parts of this literature are provided by Summer (2013); Benoit et al. (2015); Cabrales, Douglas

Gale and Piero Gottardi (2016).
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(1971), is that once the minority (e.g., racial) share in a neighborhood exceeds a critical

tipping point some majority group members may have a (slight) preference to leave (see also

Card, Mas, and Rothstein (2008)). This can then start a cascade in which other majority

members move out as the racial composition shifts even further. This implies that, with only

a modest preference of the racial majority to live next to others who are similar could result

in nearly complete residential segregation, because of the instability of intermediate points

where one agent’s residential location depends on the actions of other agents in the neighbor-

hood. As a result, because of this kind of homophily-driven behavior, even a relatively small

fraction of minority agents could cause the neighborhood to change from essentially a major-

ity neighborhood to completely minority one. This phenomenon helps to explain a pattern in

which blacks live in cities and whites in suburbs: for instance, American metropolitan areas

are segregated by race, both by neighborhood and across jurisdiction lines. In 1980, after

a century of suburbanization, 72% of metropolitan blacks lived in central cities, compared

to 33% of metropolitan whites (Boustant (2010)). The general point is that even slight

homophilistic preferences can generate dramatically different outcomes compared to neutral

preferences.

Because people often make deliberate choices when forming links, the empirical tests of

the issues mentioned above and hence their policy implications are difficult to execute well

because of the possible endogeneity of the network. The specific concern is often that in-

dividuals have unobserved characteristics that are associated with their outcomes, and that

these characteristics are also associated with the decision to establish links. The precise

mechanism that is often articulated assumes that individuals exhibit homophily in these un-

observed characteristics, making it more likely that individuals with similar characteristics

form links with each other. If these characteristics are also correlated with the outcomes of

interest, researchers will find that individuals who are connected have correlated outcomes

even in the absence of any true peer effects. For example, a correlation between individuals

and their peers in school performance may be due to an exposure to common factors (e.g.

having good teachers) rather than to social interactions. We will address this endogene-

ity issue below (see Section 8) and will argue that having a structural approach explicitly

modeling homophily-related behaviors can be very helpful in dealing with this issue.

6 Micro Analyses: Clustering and Local Interaction

Patterns

Having discussed the effects of large-scale network structure on aggregate behaviors and

outcomes, we now shift the focus to individual outcomes. To illustrate the distinction in
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terms of a diffusion process, in the previous sections we were concerned with the total

prevalence of a diffusion process; the local counterpart to that question is an assessment of

the likelihood that a given individual will be infected, as a function of her local neighborhood

in the network.

There are at least two different ways in which local patterns of social networks, in par-

ticular the extent to which there are “tightly-knit” groups, relate to behavior. One is that

information travels quickly and reliably among tightly clustered groups of people. For in-

stance, if any individual misbehaves and his or her friends are all friends with each other,

then if that news flows stochastically through the links in the network, this can lead many

of his or her friends to quickly hear that news. In contrast, if the individual’s friends do not

know each other, then it can be that many of his or her friends never hear the news. One

may be interested in the flow of information per se, but it could also be that the flow of

information is important for strategic reasons, e.g., in order to provide information on which

to condition future plays of a game. A second, somewhat related, effect is that groups of in-

dividuals who are tightly knit and largely friends with each other can more easily collectively

ostracize an individual, thereby enforcing social norms and behaviors. The local patterns of

friendships are thus not only important in how information about behavior spreads, but also

in how people are able to coordinate in responding to a behavior.

These aspects of social networks are related to basic theories of social capital (e.g., Cole-

man (1988), Putnam (2000)) that posit that closure and strongly reinforced relationships

help foster cooperation. Those theories, however, have only recently been formally modeled

and analyzed directly, rather than through a reduced form approach. A series of recent

studies have provided detailed theories of exactly how structures of relationships might in-

fluence behavior, and which specific sorts of patterns in social networks we should be looking

for in determining whether a society is well-adapted to fostering cooperative behaviors. In

particular, there are several studies (Bloch, Genicot, and Ray (2008), Lippert and Spagnolo

(2011), Jackson, Rodriguez-Barraquer and Tan (2012), Ali and Miller (2012, 2016)) that

have explored how having friends in common and other local clique structures can help en-

force cooperative behavior.26 The literature has investigated both how this works through

communication, patterns of ostracism (Jackson, Rodriguez-Barraquer and Tan (2012); Ali

and Miller (2016)), as well as social collateral (Karlan, Mobius, Rosenblat, and Szeidl

(2009)).

Let us begin by discussing in a bit more detail the idea that social networks that are

highly clustered can enhance communication among the friends of a given individual. If

networks are highly clustered, then an individual’s misbehavior towards one of his or her

26This idea can be viewed as a network embodiment of some related ideas of Ostrom (1990) of community

monitoring and enforcement.
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friends can quickly become known to that individual’s other friends, since they tend to

have direct connections with the agrieved agent. Such networks allow agents to react to

an individual’s misbehavior in a timely manner. Anticipating the ability of one’s friends to

punish provides strong incentives to maintain cooperative behavior. To elaborate, to ensure

that individuals contribute to some public good, or provide costly favors to others, and are

generally cooperative, well-behaving individuals can be rewarded with high future reciprocity,

and poorly-behaving individuals can be punished with low future reciprocity. These rewards

and punishments are then provided through the actions of that individual’s friends and

neighbors. If those friends and neighbors are made quickly aware of the individual’s behavior,

then they can react quickly. This is important for providing the right incentives, as the threat

of a punishment in the near future will have the greatest scope for disciplining behavior. If

instead, the setting is such that it takes a long time for one’s friends to learn of misbheavior

then it becomes difficult to provide incentives for individuals to behave according to some

desired social norm. In an extreme case, networks that look more like trees can enable an

individual to misbehave in some relationships, and never have that information come back

to affect other relationships (Raub and Weesie (1990), Lippert and Spagnolo (2011), Ali

and Miller (2012, 2016)).27

The second insight is that a pair of individuals who exchange favors or who enter into

some other sort of non-binding relationship can have stronger incentives to behave efficiently

if they have friends in common, i.e., the notion of support discussed in Section 3.2.1 above.

Those common friends can react to a misbehavior (in an incentive compatible manner) by

ostracizing the individual, and thereby providing incentives for that individual to behave

cooperatively/efficiently. Without considering any issues of information passing, there is

also a question as to how a society must be structured so that if an individual fails to

provide favors when asked, the subsequent “punishment” leads to minimal disruptions in

the cooperative behavior in the society at large. If two individuals have friends in common,

then when one of them fails to provide a favor to another, i.e., going against an efficient

social convention, then those common friends can refuse to provide future favors to the

individual who failed to provide the favor. This requires only “local” disruptions in the

efficient cooperation in a society, and need not affect other parts of the society, whereas

without such local structures contagion of the breakdown of cooperation might spread more

broadly, leading to more costly consequences. Indeed as found by Jackson, Rodriguez-

Barraquer and Tan (2012) for 75 villages in southern rural India, one sees a very high

27Beyond the basic idea that information flows help in enforcing behavior there are interesting questions

regarding the incentives to truthfully pass information about misbehavior (Ali and Miller (2012, 2016)).

For example, reporting misbehavior can lead to costly breakdowns in cooperative behavior, and so incentives

also need to be balanced so that individuals observing some misbehavior have proper incentives to tell others

rather than to cover it up.
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level of favor exchange relationships in which there are friends in common that support that

relationship, and this support can be more prevalent when the relationships in question

involve explicit favor exchange rather than being more purely social. They also find that

the level of support is significantly higher than what would arise if links were formed at

random and significantly higher than levels of clustering. There are also studies that suggest

micro-network characteristics are related to money transfers and loan repayments (Karlan,

Mobius, Rosenblat, and Szeidl (2009, 2010); Blumenstock, Eagle and Fafchamps (2011);

Alatas et al. (2016)) as well as risk-sharing (Bloch, Genicot, and Ray (2008), Ambrus,

Mobius, and Szeidl (2014), Alatas et al. (2016), Mobius and Rosenblat (2016)).

A different insight concerning how local patterns of networks influence behavior has

less to do with incentives, but rather concerns behavior reinforcement. In particular, high

clustering can have effects on diffusion in which behaviors exhibit complementarities. In

situations where behaviors have high levels of complementarity (for instance, when an indi-

vidual requires that many of his or her friends adopt a behavior before being willing to do

so as well), high clustering can enable the behavior to be adopted at a local level. If the

network is properly intertwined in terms of its local neighborhoods, then this can ultimately

enhance diffusion as it allows for the reinforced interactions at a local level that are neces-

sary to get the diffusion rolling. For example, by studying the spread of health behavior

through a network-embedded population by creating an Internet-based health community,

containing 1528 participants recruited from health-interest World Wide Web sites, Centola

(2010) shows that a network with more clustering is advantageous, even if the network as

a whole has a larger diameter. Individual adoption was much more likely when participants

received social reinforcement from multiple neighbors in the social network. The behavior

spread farther and faster across clustered-lattice networks than across corresponding random

networks.

The full understanding of the importance of local nework structure is still in its infancy,

as detailed studies of how these structures facilitate and reinforce information flows, and

also provide incentives for behavior, have only recently emerged. It is also worth noting

that useful measures of local structure should extend well beyond clustering and support,

as other aspects of the neighborhoods of a node or link are important in reinforcements

of behaviors, for instance. A good measure should ultimately be behaviorally important,

analytically tractable, and lend itself to computation in applied work.

7 Micro Analyses: Centrality and Behavior

Another important area in which “micro” analyses of networks have been very useful is in

understanding the role of individuals in learning, contagion, and diffusion processes, as well
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as understanding how differences between individuals might arise. Studying these topics

involves defining an individual’s importance, influence, or centrality in a network.

As already discussed, there are many ways of measuring individual centrality in a network

(see Wasserman and Faust (1994) and Jackson (2008a) for overviews). Conceptually,

centrality is fairly straightforward: we want to identify which nodes are in the “center” of

the network. In practice, identifying exactly what we mean by “center” can be subtle, but

often it involves issues of power or influence.

As mentioned above, there are roughly four different ways of measuring node centrality:

connectivity, closeness, intermediation, and having well-connected neighbors. The simplest

index of connectivity is the number of direct links stemming from each node in the network,

also known as the degree of a node. Closeness and decay centrality are measures of how close

an agent is to all other agents in the network. The most central agents can quickly interact

with all others because they are close to all others. These measures of centrality capture how

easily an individual reaches others; e.g., how informed a given individual is in the context

of information flows. Intermediation is also clearly important in measuring centrality. This

is what betweenness centrality captures. Consider identifying the shortest path between

every pair of agents in the network. Betweenness centrality is equal to the number of these

shortest paths on which the given agent lies. The idea is that intermediation between a

given pair of agents occurs most efficiencly along the shortest path connecting them, and so

a central agent will play an important role as an intermediary, or as a coordinator. Such

central agents have more control over the flow of information in the network. As such

betweenness is related to the notion of structural holes developed by Burt (1992), who

postulates that social capital is created by a network in which people can broker connections

between otherwise disconnected segments. The last class of centrality measures puts forward

the importance of being connected to well-connected agents. This is what characterizes

eigenvector centrality, which assigns relative scores to all agents in the network based on the

concept that connections to high-scoring agents contribute more to the score of the agent

in question than equal connections to low-scoring agents. It thus captures indirect reach so

that being well-connected to well-connected others makes one more central. Google’s early

versions of PageRank (Page, Brin, Motwani, and Winograd. (1998)) were a variant of the

eigenvector centrality measure. Similarly, Katz-Bonacich centrality (due to Katz (1953)

and Bonacich (1987)) considers all possible paths in a network (not only the shortest ones)

but assigns a lower weight to links that are further away from the agent. As a result, Katz-

Bonacich centrality captures the influence an agent has not only on her friends, but on their

connections, and so forth, with decreasing weight as one moves further away from the agent.

It should be clear from this discussion that notions of centrality are varied and nuanced

enough so that it is critical to carefully consider the role of centrality for a given question of
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interest. As these different measures capture fundamentally different aspects of the position

of a node in a network, they have different uses when trying to understand how a node’s

position relates to different behaviors. The idea that more central people may exhibit dif-

ferent behaviors from less central people appeared early in the literature, both in terms of

theory (e.g., Simmel (1908), Katz and Lazarsfeld (1955), Burt (1992)) as well as in empir-

ical observations (Coleman et al. (1966)).28 More recent data have enabled much cleaner

studies of such effects, and allowed researchers to understand the workings of centrality in

much finer detail. For example, Christakis and Fowler (2010) combine Facebook data with

observations of a flu contagion, showing that individuals with more friends were significantly

more likely to be infected at an earlier time than less connected individuals.29

More generally, better-connected individuals are subjected to greater complementarities

in behaviors, and also exude greater influence. The combination of these effects, for exam-

ple, is seen in a tractable model of how behavior depends on network positions by Ballester,

Calvó-Armengol, Zenou (2006), which has been the foundation for empirical investigations

that have found evidence that individual position in a network can have significant effects

on an individual’s educational attainment as well as on that individual’s friends (Calvó-

Armengol, Patacchini and Zenou (2009)). More general models of interactions with comple-

mentarities make broad predictions about how individual behavior depends on position in a

network as well as how that translates into overall behavior in the network (Galeotti et al.

(2010)), and some of those predictions have recently been confirmed in laboratory settings

(Charness, Feri, Melendez-Jimenez and Sutter (2014)). Indeed, in an environment in which

the agents are uncertain about the precise network structure, the latter show in a series of

experiments that, in the presence of strategic complements, players are active if their degree

is above a certain threshold and inactive otherwise. They also show that the frequency of

active players increases with connectivity.

To emphasize that which measure of “centrality” or “influence” is appropriate to predict

behavior is context-dependent, let us discuss an interesting historical example, namely, the

rise to prominence of the Medici family in 15th century Florence, as discussed by Padgett

and Ansell (1993).30 The family was not the wealthiest nor the most politically prominent.

Nonetheless, they eclipsed other families partly by leveraging their position in the network as

a central connector: they had much higher betweenness centrality than others. This provided

28For example, Mehra, Kilduff and Brass (2001) find that workers with higher betweenness centrality

perform better in the workplace.
29There are some exceptions to this insight. For example, if individuals strategically transmit information

(Hagenbach and Koessler (2010)), then they may deliberately hide information that they may not wish to

spread from better connected individuals, something that has been found in theoretical (Lee and Persson

(2010)) and empirical investigations (Banerjee et al. (2014)).
30See Jackson (2008a) for more details on the centrality measures in this example.
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the Medici with important roles as an intermediary and coordinator, both politically and

economically, sitting in a unique position to mobilize other families. Interestingly, the Medici

do not stand out so dramatically when measured by other centrality concepts, and so using

other centrality measures would not lead one to view the Medici as particularly central or

influential. This does not mean that betweenness is a measure that performs well generally,

but that it can be very useful in settings where being a connector or an intermediary is

particularly important.

In models with behavioral complementarities, measures of a person’s centrality need to

incorporate aspects of the network beyond how many friends the individual has (i.e. degree

centrality). For example, in cases in which there are strong complementarities in behaviors

such as in crime or education, Katz-Bonacich centrality has proven useful in describing

the activity of each agent (Ballester, Calvó-Armengol, Zenou (2006)). If, for instance, we

consider a game with complementarities where the utility depends on the profile of actions

in an appropriate (linear) way, then the best response mappings essentially become identical

to the centrality relationships, and the equilibrium condition is equivalent to the solution of

equations from which centrality is derived. This should not come as a great surprise since,

as stated above, the Katz-Bonacich centrality belongs to the a class of centrality measures

for which the centrality of an agent is recursively related to the centralities of the agents she

is connected to. This is clearly related to the fixed point argument of the Nash equilibrium

in actions since the best-reply function of each agent is such that the action of an agent (i.e.

his/her centrality measure) depends only on her set of neighbors and their centralities. This

is the central idea of the Katz-Bonacich centrality, which mainly captures the importance of

feedback and social multiplier effects.

Revisiting the crime example, the most central agents (in terms of Katz-Bonacich cen-

trality) in a given network are also the most active criminals. Quite naturally, this leads to

interesting policy implications in terms of crime reduction. One could target “key players”

in a network in order to reduce total crime. Specifically, if we could choose to push one

person’s criminal activity to 0 and remove all her existing links from the network, which

player’s removal would lead to the highest overall criminal activity reduction when account-

ing for equilibrium effects? Here again centrality measures can help in determining such a key

player. The intercentrality measure (Ballester, Calvó-Armengol, Zenou (2006); Ballester,

Calvó-Armengol, and Zenou (2010); Ballester and Zenou (2014); Zenou (2016)), which not

only looks at how central an agent is, but also at how this agent contributes to the centrality

of others, helps define key players in networks. It turns out that, at least in theory, the

intercentrality measure is useful not only in reducing crime (Liu, Patacchini, Zenou, and

Lee (2012), Lindquist and Zenou (2013)), but also in determining which firm(s) should be

subsidized in R&D networks in order to maximize total activity (König, Liu, and Zenou
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(2014)) or which bank(s) should be bailed out in order to avoid a financial crisis (Julliard,

Denbee, Li, and Yuan (2013)).

The usefulness of Katz-Bonacich related measures has also been confirmed empirically

in a context of peer effects. Looking at education performance of fourth graders in rural

Bangladesh, Hahn et al. (2015) randomly allocate these students to groups of four. They

show that, if a student (randomly) ends up in a group with high centrality, he or she tends

to perform better both individually and collectively. Hahn et al. (2015) also show that

the Katz-Bonacich centrality is a key determinant of this performance, and that other cen-

tralities, such as the betweenness and the eigenvector centrality, matter less. These results

and the ones mentioned above indicate that there is a class of centrality measures (Katz-

Bonacich, eigenvector and diffusion centrality) that can predict relatively well the impact of

peers on criminal and educational behaviors and can explain the importance of certain indi-

viduals in a diffusion process. Of course, the intercentrality measure (key player) is context

dependent, relies on estimating the peer-effect model, and may not be appropriate in other

contexts.

In contrast, when studying the diffusion of information, Katz-Bonacich centrality is not

necessarily a strong predictor of which people are the most influential seeds for the process;

other centrality measures can outperform it. Indeed, in investigating microfinance diffusion

in 43 different villages, Banerjee, Chandrasekhar, Duflo, and Jackson (2013)31 find that

the degrees of the first contacted individuals (i.e. the set of original injection points in a

village) are not significantly correlated with the extent of the eventual diffusion, nor are

their Katz-Bonicich centralities. Instead, the eigenvector centrality of the initial injection

points, and a related, more general, centrality measure based directly on modeling diffusion

( ‘diffusion centrality’), are the only significant predictors of eventual diffusion in their data.

More generally, eigenvector-related centralities have been shown to have both theoretical and

empirical importance in various settings including whether a society efficiently aggregates

information (Golub and Jackson (2010)), how much criminal activity a society engages in

(Calvó-Armengol and Zenou (2004), Ballester, Calvó-Armengol, and Zenou (2010)), and

how a society can best mitigate externalities (?).

To varying extents, centrality measures extend readily to the domain of networks that are

described by weighted and directed links, or by multigraphs. As a simple illustration, when

links are directed, then one can distinguish between in-degree and out-degree. The recursive

formulations of centrality, in their formal definitions, already apply directly to weighted

graphs. Closeness and betweenness can readily be extended to multigraph settings.

New studies of centrality are providing us with more knowledge about the similarities

31See also Cai, de Janvry, and Sadoulet (2015) who study the influence of social networks on the decision

to adopt a new weather insurance product in rural China.
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and differences between different measures of centrality, and provide us with better ideas of

which ones might be appropriate for different applications. For example, ? show that degree,

eigenvector, and Katz-Bonacich centralities are all special cases (different extreme points) of

the notion of ‘diffusion centrality’ that they defined in Banerjee, Chandrasekhar, Duflo, and

Jackson (2013). In particular, each of these notions is defined via walks emanating from

nodes, with degree just looking at walks of length one and the others accounting for walks of

all lengths emanating from a given node, and diffusion centrality allowing for all variations

in walk-length - thus nesting all three of the other centrality notions. Furthermore, using the

insight that eigenvector and Katz-Bonacich centralities belong to the same class of centrality

measures for which the centrality of an agent is recursively related to the centralities of the

agents she is connected to, Dequiedt and Zenou (2014) propose an axiomatic characterization

of these classes of centrality measures using similar axioms for variations on the centrality

measures, and Bloch, Jackson, and Tebaldi (2015) provide characterizations for families

of centrality measures including those mentioned above and others - showing exactly what

they have in common and how they differ. Continuing to bring more discipline to how we

measure centrality, and when we use which measures, is important.

While centrality notations are useful to researchers, one might question whether people

embedded in a network, but unaware of its details, could nonetheless identify highly central

people. If so, how might people come to know who is influential in their community? Using

data from the same villages in India, ? show that people living in these villages are fairly

accurate at identifying those who are most central in their villages. They also show that

this ability can come from simply listening to gossip through their networks: in the model,

people hear information about others according to a simple gossip process in proportion to

those nodes’ abilities to diffuse information (according to diffusion centrality) - and thus

simply by naming people they hear about most frequently, they can identify those best able

to diffuse information.

While the notion that centrality matters in various diffusion and influence settings is long-

standing, the science of distinguishing how to best measure centrality and which measures

have consequences in which economic settings, is still maturing.

8 Endogeneity of Networks and Other Empirical Chal-

lenges

Having discussed some of the major insights from our taxonomy outlined in Section 3, both

empirical and theoretical, we now discuss some of the major challenges faced when doing

empirical analyses of behaviors and effects that occur in the context of social networks. A
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prominent topic that falls into this category is that of peer effects, which arise in many

settings and impact a wide range of policy decisions. The estimation of peer effects and

other network processes are complicated by several factors, to which we now turn.

The challenges in accurately estimating interactive effects in networked settings include:32

1. Identification: a model of behavior on networks must be specified so that individuals’

influences on one another can be identified and distinguished from other sources of

influence.

2. Endogenous networks and homophily: people have proclivities to link to others similar

to themselves, both on observed (to the researcher) characteristics and unobserved

characteristics that could influence their behavior. By failing to account for similarities

in (unobserved) characteristics, similar behaviors might be mistakenly attributed to

interactive effects when they are actually due to underlying characteristics or exposure

to common stimuli.

3. Computation: the set of possible networks is exponential in population size, which

raises substantial computational hurdles in modeling endogenous network formation as

the relative probability of seeing the observed network often needs to be compared to

other possibilities when estimating how the observed network of relationships depends

on observed and unobserved characteristics.

4. Measurement error: relationships are observed with noise and often only at specific

points in time, and so the observed network may be an imperfect proxy for the true

set of relevant interactions.33

5. Misspecification: there are many different functional forms that could describe how

neighbors’ behaviors interact with each other, and seemingly small changes in the

model, including omitting variables, can lead to large changes in predicted behaviors.

6. Multiple types of relationships: individuals interact in many ways and few datasets

track all interactions, so it is difficult to fully identify the mechanisms by which nodes

influence one another.

Several of these issues are well-studied in broader contexts, especially as some are not

unique to networked settings. Nonetheless, others are just beginning to be understood and

systematically addressed.

32This taxonomy is drawn from Jackson (2013) (see also Jackson (2014)).
33Indeed, observational data on social networks is often incomplete. For a discussion of measurement error

in social networks, see Chandrasekhar and Lewis (2012). They propose a set of corrections for commonly

used network statistics and a two-step estimation procedure using graphical reconstruction.
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Let us discuss the first two of these challenges in the context of measuring peer effects in

education. For example, consider the estimation of how a student’s test scores or grades de-

pends on her own characteristics and the performance of her peers, as well as other potential

influences such as the characteristics of her peers.

A first challenge is the fact that the mutual interaction between behaviors can make it

difficult to disentangle the effects of individual and group characteristics from the influences

of each others’ behaviors. For example, an individual’s grades may depend on his or her

peers’ grades, as well as on other background characteristics. But then the peers’ grades

depend, for their part, on the individual’s grades, which are also influenced by the charac-

teristics. The system of equations that is defined in order to sort out the precise interactions

can be indeterminant. In the context of linear interaction models, this issue was termed the

reflection problem in an important paper by Manski (1993). There are various and more

flexible specifications for the patterns of effects for which the potential indeterminacy can

be overcome, including ones in which the peer effects operate in nonlinear ways (see Brock

and Durlauf (2000); Blume, Brock, Durlauf, and Ioannides (2011)). Although the reflec-

tion problem was an important issue in the early peer-effects literature, since it prompted

researchers to think carefully about model specification and identification, it has since be-

come clear that it applies mostly to a sort of simple reduced-form model, and is not an

issue in many other micro-founded models. For instance, as emphasized by Blume, Brock,

Durlauf, and Ioannides (2011) and Blume, Brock, Durlauf, and Jayaraman (2015), the

reflection problem is functional form dependent - not applying to many nonlinear models,

and being even nongeneric in linear models. An additional, complemetary, insight is that

network information, rather than only group-level information, can enable identification, as

then the full feedback patterns pointed out by Manski (1993) can be disentangled by taking

advantage of the fact that different individuals have different sets of peers, and therefore

different exposures and net effects, as shown by Bramoullé, Djebbari, and Fortin (2009).34

A major concern with the interpretation of parameter estimates from this type of esti-

mation is that correlations in residual outcomes (e.g., grades or test scores after controlling

for the individual characteristics such as parental income and education, etc.) between peers

need not be the (causal) effect of peer behaviors. Instead, these correlations may be at least

partly due to some correlated but unobserved characteristics. More specifically, individuals

who are peers may be similar in terms of unobserved characteristics that also affect the out-

comes, generating correlation in outcomes between peers as a result. Consider, for example,

a youth’s decision to initiate drug use. Is it because his/her friend initiated drug use (en-

dogenous peer effects)? Or is it due to the fact that some peer background characteristics,

34See Blume, Brock, Durlauf, and Jayaraman (2015) and De Marti and Zenou (2015) for discussions of

equilibrium as well as identification issues with partial network knowledge.
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such as common exposure to a substance-abusing parent that caused both children to adopt

the same behavior? Or is it because they live in a neighborhood with special characteristics?

The ability to distinguish between these explanations is crucial for policy purposes. When

true peer influence (or other sorts of diffusion) effects operate, intervening to alter one child’s

behavior may affect others’ behaviors as well (social multiplier effects). Absent such peer

effects, but when children initiate substance use because adults in their environment provide

opportunities to do so, these multiplier effects would not exist. Correctly distinguishing

social interaction from other effects is thus important in accurately gaging the benefits of

interventions, and therefore to making a proper assessment of the welfare consequences of

such policies (e.g., see Brock and Durlauf (2000)).

One way that this problem has been addressed in the literature (Bramoullé, Djebbari, and

Fortin (2009); Calvó-Armengol, Patacchini and Zenou (2009); Boucher and Fortin (2016))

is to exploit the architecture of network contacts to construct instrumental variables for the

social interaction effect. Since peer groups are individual-specific in social network contexts

(usually, different people have different groups of friends (i.e., different local neighborhoods)

in rich enough ways that allows for identification, the characteristics of indirect friends are

natural candidates. The idea is that a change in the action of a friend of a friend only

interacts with a friend’s behavior and not directly with the individual’s behavior.

This brings us to the second major challenge outlined above: the endogeneity of the

network itself.35 Unfortunately, the sort of instrumental variable strategy described above is

valid only if the network can be treated as exogenous, which is not usually the case unless

one has access to an appropriately controlled field experiment. For example, suppose that

the decision to form a friendship is dictated by the choices of the individuals involved. The

decision is likely to depend on the joint characteristics of the two agents, not only in terms of

observed characteristics but also in terms of unobserved characteristics that could influence

their behaviors. It could then be that behaviors of friends of friends are correlated in ways

that invalidate instrumenting on friends of friends as a method to identify peer effects.

Properly accounting for these possible unobserved factors that correlate with network

formation then requires one to be lucky enough to have data where the network was formed

exogenously (e.g., see Carrell, Fullerton, and West (2009); Carrell, Sacerdote and West

(2013); Algan et al. (2015); Lindquist, Sauermann and Zenou (2015)), or to be able to

plausibly rule out unobserved factors, or to develop instruments that are plausibly exogenous

to the interaction structure, or else explicitly model network formation and try to account for

factors that could have substantial influences on behaviors and also on network formation.36

35See Blume, Brock, Durlauf, and Ioannides (2011) for discussion of how issues of selection fundamentally

differ from the identification of a model itself.
36See, e.g., Acemoglu, Garcia-Jimeno, and Robinson (2015) who study the direct and spillover effects

of local state capacity using the network of Colombian municipalities. They exploit both the structure of
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In many situations, controls and effective instruments for network formation may be

under-powered, and a careful modeling of network formation can help account for the en-

dogeneity of the network.37 As above, a basic issue that needs to be accounted for in so

doing is that, under homophily, linked individuals are likely to be similar both on observed

and unobserved characteristics. For example, youths who are relatively under-supervised (in

terms of parental attention) may form friendships with others who are under-supervised, and

so forth. Without fully accurate measurements of all the characteristics that might affect

friendship formation, one has to infer the process of formation to account for the missing

data. Otherwise, if the variables that drive this process of network formation are not fully

observable, potential correlations between these unobserved factors and the target regressors

are potentially major sources of bias, as they correlate with patterns of interaction and then

are mis-attributed to peer interaction. The scale of this bias can be large in practice, as

pointed out by Aral, Muchnik, and Sundararajan (2009).

One approach to dealing with unobserved correlations comes from Goldsmith-Pinkham

and Imbens (2013).38 The idea is as follows. Under homophily, pairs of friends tend to

be more similar than pairs of non-friends in terms of their observed and unobserved traits.

Thus, if one sees two people who are friends but are not similar along observed traits, then

they are more likely to be similar along unobserved traits. Similarly, if two individuals are

similar on observed traits but are not friends, then they are more likely to be dissimilar in

the full profile of unobserved traits. If one writes down an explicit model for how friendships

might depend on observed and unobserved traits, then this perspective allows one to infer

the likelihood that different pairs of individuals are similar or different on unobserved traits.

Once one infers similarities on unobserved traits, then it is possible to correct for the effects

of those traits on behaviors and remove some of the bias that comes from simply ignoring

the presence of such traits. Goldsmith-Pinkham and Imbens (2013) illustrate this in the

context of a simple network formation model, but one could enrich the model to address

some of the further concerns we discuss below.39

the network of municipalities over which spillovers take place, and then the historical roots of local state

capacity as a source of exogenous variation.
37Even when careful controls, natural experiments, or other instruments are readily available, having some

theory behind the formation process can be essential in properly structuring an analysis and identifying

(alternative) hypotheses.
38One can also jointly estimate a model of behavior and network formation as in Badev (2013).
39Brock and Durlauf (2001), Blume, Brock, Durlauf, and Ioannides (2011) and Blume, Brock, Durlauf,

and Jayaraman (2015) describe how to use selection corrections to address endogenous social structure. In

particular, Blume, Brock, Durlauf, and Jayaraman (2015) propose a variant of the control function invented

in Heckman (1979) and extended in Heckman and Robb (1986) to address the endogeneity of networks.

The fundamental idea of Heckman is that self-selection can be incorporated into the analysis rather than

using instrumental variables. The idea that selection on unobservables can aid in identification of social
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This brings us to the third challenge in working with network data and properly account-

ing for the endogeneity of the networks: computing models of network formation.40 Gener-

ally, the formation of links in a network is not independent across pairs of individuals, and

there will often be strong correlations across pairs in the presence of relationships. There

are many possible reasons underlying such correlations. People meet each other through

friends of friends (e.g., Jackson and Rogers (2007a)). People may benefit from the indirect

connections that others bring (e.g., Jackson and Wolinsky (1996)). People may wish to

have their friends be friends with each other (e.g., under structural balance theory as in

Cartwrighth and Harary (1956)). Having tight cliques of friends may help enforce behaviors

that are not otherwise sustained in a network without cliques or local clustering and support

(Coleman (1988); Jackson, Rodriguez-Barraquer and Tan (2012); Ali and Miller (2012)).

People might also be forming links based on homophily or location (Graham (2014); Leung

(2014)), which then leads to correlation if not all characteristics are observed. This means

that one cannot model network formation on a link-by-link basis, but rather must explicitly

account for interdependencies in how sets of links are formed. Once one does this, to fully

confront the resulting structure, one is then faced with specifying a model at the network

level as opposed to, say, the link level.

There is a powerful and natural formulation of such models known as “exponential ran-

dom graph models” that incorporate such interdependencies (ERGMs or p∗ models - see

Robins et al (2007); Jackson (2008a) for background). The ERGM model class can nest

any random graph model, can incorporate arbitrary interdependencies in connections and

admit a variety of strategic (choice-based) network formation models, and so it is quite

flexible and powerful. However, because the number of possible networks on a given set

of nodes is an exponential function of the number of nodes, it is practically impossible to

estimate the likelihood of a given network at even a moderately large scale and thus there

is an important computational hurdle that must be overcome in working with data (see

the discussion in Chandrasekhar and Jackson (2013)).41 Thus, one somehow needs models

of networks that incorporate the link dependencies observed in the data, but yet allow for

effects via control functions was first shown in Brock and Durlauf (2001). See Del Bello, Patacchini and

Zenou (2015) for an application of the control function approach to study network effects in education.
40For recent surveys of the econometrics of network formation, see Chandrasekhar (2016); Graham (2015),

and for background on strategic network formation see Jackson (2008a); Mauleon and Vannetelbosch (2016).
41Any model that specifies probabilities at a network level then has to be estimated by comparing the

likelihood (or conditional probability if Bayesian) of the observed network to other potential networks.

As the number of networks explodes exponentially with the number of nodes, one would then have to

estimate probabilities of alternative networks via sampling rather than exhaustive calculation. Unfortunately,

standard sampling methods based on MCMC techniques do not work except in extreme cases, as shown by

Bhamidi, Bresler, and Sly (2008); and yet those models are being widely applied even though the estimation

of parameters as well as standard errors may be inaccurate.
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practical estimation.

One approach around this obstacle is, instead of modeling network effects at either the

link level (and thus failing to incorporate interdependencies) or the full network level (and

thus failing computability), to model things at a subnetwork level, which is then computable

and also allows for rich sets of link interdependencies, as shown by Chandrasekhar and

Jackson (2013, 2015). Another approach is to model the network as an evolving process

as in Price (1976); Barabasi and Albert (1999); Jackson and Rogers (2007a); Snijders

(2001); Christakis et al. (2010); Mele (2013); König, Tessone, and Zenou (2014), as such

models allow for dependencies in that new links form at various points in time based on the

currently existing network at the time of formation. For instance, network formation can

be modeled as a sequential process where in each period a single randomly selected agent

(or pair of agents) has the opportunity to form a link. A key assumption in these models

that enables tractability is that agents either follow some rule of thumb (e.g., preferential

attachment) or act to maximize their payoffs but do not take into account possible future

changes to the network. This avoids complications with the presence of multiple equilibria,

and can also greatly simplify the computational burden of analyzing these models. All of

these models have yet to be integrated back with explicit models of individual behavior and

potentially of latent characteristics (as in Goldsmith-Pinkham and Imbens (2013)), which

is a natural next step. A challenge here is in making the dynamic models rich enough to fit

a multitude of applications, and yet still retaining computability.42

Finally, there is much that can still be accomplished with partial identification. Indeed,

it can be enough to put constraints on the relationships between variables to rule out certain

patterns in the data, and this can be done without a fully identified model of network

formation (e.g., Brock and Durlauf (2007)). Partial identification approaches have been

very successful in some areas, such as finance and industrial organization (e.g., Hansen

and Jagganathan (1991); Berry, Levinsohn, and Pakes (1995)), but have mostly not been

applied in network settings. More generally, the scientific method examines predictions of

the models and rejects them when their predictions fail, which does not always require full

identification. In particular, it may be easier to identify that a model fails to hold, than

that it does hold – it is not a symmetric undertaking. Of course, not rejecting a model or

theory does not then imply causation, but it is still possible to make substantial progress by

rejecting models and then replacing them. This observation may be particularly relevant to

the modeling of network formation, which, because of various challenges mentioned above

faces full-identification hurdles. There is a vast middle ground that is not as ambitious as

42Transition dynamics can contain distinct information from steady-state behavior (Brock and Durlauf

(2010)) and a dynamic generalization of Manski’s linear-in-means model can be identified (Brock and Durlauf

(2001)).
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proving causation, utilizing instead partial or limited identification, and which should not

be overlooked, as it is still very useful in pushing the science forward, especially for network

formation.

9 A Summary of Lessons and Themes Emerging from

the Literature Relating Network Structure to Eco-

nomic Behavior

In this paper, we have highlighted the importance that social networks have in determining

economic behaviors. In order to bring out the insights we have collected, we pull together

and summarize some key components of our exposition.

First, regarding the macro analyses of networks and behavior:

1. The distribution of connectivity in a society is critical in fostering diffusion processes:

• Many contagion or diffusion processes exhibit sharp phase transitions in how

connected the society is – less densely connected societies exhibit no diffusion and

societies that have densities (slightly) above a critical threshold exhibit substantial

diffusion;

• Not only does the average number of relationships per capita in a society matter,

but also higher variance in connectivity matters since highly connected individuals

can serve as hubs that facilitate diffusion and contagion;

• The impact of the network’s degree distribution depends on how the infection or

behavior spreads from node to node.

2. Homophily and segregation patterns can both help and hinder diffusion:

• High levels of homophily can lead groups to be insular and to maintain different

customs and behaviors from other groups, and can enable poverty traps and under-

investment due to complementarities in behaviors, as well as slow the spread of

information across groups, but

• High homophily can also help incubate behaviors or infections within one group

that might not take hold otherwise, and then those behaviors or infections can

spread to a whole society.

Next, regarding the micro analyses of networks and behavior:

1. The centrality of individuals can affect their behaviors and have implications for their

influence on diffusion, learning, and behaviors in a society:
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• Better connected individuals can hear new information sooner and have high

levels of influence on the eventual spread of information and/or the adoption of

new products in a society;

• The notions of centrality that best predict the influence of a particular individual

for diffusion and behaviors with complementarities are often based on iterative

measures of how well-connected the individual’s friends are (e.g., eigenvector,

Katz-Bonacich and diffusion centralities);

• The (many) different notions of centrality all capture different aspects that turn

out to be important in different settings (betweenness for intermediation, Katz-

Bonacich for games of complements, eigenvector and diffusion centrality for learn-

ing and diffusion, key player for reducing crime, distance and gossip centrality for

informedness, degree for short-lived processes).

2. The extent to which an individual’s friends are friends with each other, as well as the

extent to which pairs of friends have friends in common, can have important implica-

tions for cooperative behavior:

• High clustering can help enable information spread about (mis)behaviors of an

individual to his or her friends and help provide fast societal reactions and effective

incentives;

• Having friends in common can help in providing incentives to individuals to ex-

change favors; and

• Having high local clustering can help reinforce behaviors that exhibit complemen-

tarities and help them survive and spread compared to what might occur in more

dispersed network structures.

And finally, regarding the endogeneity of networks:

1. The endogeneity of friendships and social relationships is important to model and

observe:

• The substantial homophily that social networks exhibit can lead connected indi-

viduals to exhibit similar behaviors and beliefs even after correcting for observed

characteristics, which can substantially contaminate estimation of peer effects;

• Statistical models of network formation need to incorporate elements beyond the

link level in order to capture network effects;

• Individuals may not have incentives to form relationships in ways that are most

beneficial for a society; and
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• The formation of friendships can be governed not only by the preferences of in-

dividuals, but also by biases in the opportunities that individuals have to meet

each other as distorted both by individual characteristics and by existing network

structure.

We have provided two sets of organizing principles. First, we have suggested a taxonomy

of network properties, aimed at distinguishing between local and aggregate features of the

network. Large networks are complicated objects and, given the inherent limitations involved

in attempting to simplify and summarize them, it is useful to have in mind a classification

of properties that capture essential properties of networks. Second, we have illustrated the

importance that those network properties have for economic outcomes and behavior. The

chosen contexts also demonstrate that the classification of network properties aligns with

natural research questions.

Finally, we should like to emphasize that the overlap of theoretical and empirical work

in network economics has been not only healthy for developing deeper understandings of

how network structures matter in economics, but is also maturing to a point at which policy

implications are emerging. Just as one example, in the context of criminal networks, it has

been estimated that, not only can a key player policy substantially reduce total crime in a

network, but it can also outperform other reasonable – but, from a network perspective, naive

– police policies such as targeting the most active criminals (Lindquist and Zenou (2013)).

Moving forward, it is our hope and expectation that network economics will greatly aid

in the understanding of policies in many arenas including poverty, development, education,

public health, segregation, business cycles, finance, politics, and international relations.43
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Yann, Andrea Galeotti and Brian Rogers, Oxford: Oxford University Press.

Boustant, L.P. (2010), “Was postwar suburbanization white flight? Evidence from the black

migration,” Quarterly Journal of Economics 125(1), 417–443.
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Rogers, Oxford: Oxford University Press.

Brock, W.A. and S.N. Durlauf (2000), “Discrete Choice with Social Interactions,” Review

of Economic Studies 68:2, 235–260.

Brock, W.A. and S.N. Durlauf (2001), “Interactions-based models,” In: JJ Heckman and E

Leader (Eds.), Handbook of Econometrics, Vol. 5, Amsterdam: Elsevier, pp. 3297–3380.

Brock, W.A. and S.N. Durlauf (2007), “Identification of binary choice models with social

interactions,” Journal of Econometrics 140, 52-75.

Brock, W.A. and S.N. Durlauf (2010), “Adoption curves and social interactions,” Journal of

the European Economic Association 8(1), 232-251.

52



Burt, R.S. (1992), Structural Holes, New York: Academic Press.

Cabrales, A. and D. Gale and P. Gottardi (2016) “Financial contagion in networks,” in

The Oxford Handbook on the Economics of Networks, edited by Bramoullé, Yann, Andrea
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Erdős, P. and A. Rényi (1960), “On the evolution of random graphs,” Publication of the

Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61.

Freeman, L.C. 1979. “Centrality in Networks: I. Conceptual Clarification. ”Social Networks,

1:215-39.

Friedkin, N. E. (1983): “Horizons of Observability and Limits of Informal Control in Orga-

nizations,” Social Forces, 61:1, 5477.

Freixas, X., Parigi, B. and J. Rochet, (2000), “Systemic risk, interbank relations and liquidity

provision by the central bank,”Journal of Money, Credit and Banking 32, 611–638.

Gai, P., Haldane, A. and S. Kapadia (2011), “Complexity, concentration and conta-

gion,”Journal od Monetary Economics 58(5), 453-470.

56



Galeotti A. and B. Rogers (2013), “Strategic immunization and group structure,”American

Economic Journal: Microeconomics 5(2), 1–32.

Galeotti A. and B. Rogers (2015), “Diffusion and Protection Across a Random

Graph,”Network Science 3(3), 361–376.

Galeotti A., Goyal S., Jackson M.O., Vega-Redondo F. and L. Yariv (2010), “Network

games,”Review of Economic Studies 77, 218–244.

Gautier, P.A. and C.L. Holzner (2013), “Simultaneous Search and Network Efficiency,” Un-

published manuscript, Tinbergen Institute.

Geoffard, P-Y. and T. Philipson (1997), “Disease eradication: Private versus public vacci-

nation,”American Economic Review 87(1), 222–230.

Giulietti, C., Wahba, J. and Y. Zenou (2014), “Strong versus weak ties in migration,”CEPR

Discussion Paper No. 10248.

Goeree, J.K., McConnell, M.A., Mitchell, T., Tromp, T. and L. Yariv (2010), “The 1/d law

of giving,”American Economic Journal: Microeconomics 2(1), 183–203.

Gofman, M. (2013), “Efficiency and stability of a financial architecture with too-

interconnected-to-fail institutions,” Unpublished manuscript, University of Wisconsin-

Madison.

Goldsmith-Pinkham, P. and G. Imbens (2013), “Social networks and the identification of

peer effects, ” Journal of Business and Economic Statistics 31(3), 253–264.

Golub, B. and M.O. Jackson (2010), “Naive learning in social networks and the wisdom of

crowds,”American Economic Journal: Microeconomics 2(1), 112–149.

Golub, B. and M.O. Jackson (2012), “How homophily affects the speed of learning and

best-response dynamics,”Quarterly Journal of Economics 127(3), 1287–1338.

Golub, B. and E. Sadler (2016) “Learning in social networks,” in The Oxford Handbook

on the Economics of Networks, edited by Bramoullé, Yann, Andrea Galeotti and Brian
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