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Technological Progress, the Supply of
Hours Worked, and the Consumption-Leisure
Complementarity

Abstract

At least since 1870 hours worked per worker declined and real wages increased in many of
today’s industrialized countries. The dual nature of technological progress in conjunction with a
consumption-leisure complementarity explains these stylized facts. Technological progress
drives real wages up and expands the amount of available consumption goods. Enjoying
consumption goods increases the value of leisure. Therefore, individuals demand more leisure
and supply less labor. This mechanism appears in an OLG-model with two-period lived
individuals equipped with per-period utility functions of the generalized log-log type proposed
by Boppart-Krusell (2016). The optimal plan is piecewise defined and hinges on the wage level.
Technological progress moves a poor economy out of a regime with low wages and an inelastic
supply of hours worked into a regime where wages increase further and hours worked
continuously decline.
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1 Introduction

Many of today’s industrialized countries have seen a significant decline in the amount of
hours worked per worker at least since 1870. According to recent estimates by Huberman
(2004) and Huberman and Minns (2007), a full-time job of a US production worker in
1870 required an annual workload of 3096 hours of work. In the year 2000 this had
come down to 1878 hours of work, an absolute decline of roughly 40%. According to
these authors a similar tendency can be found in Australia, Belgium, Canada, Denmark,
France, Germany, Ireland, Italy, the Netherlands, Spain, Sweden, Switzerland, and the
UK.! At the same time, these countries experienced sustained increases in real wages,
output, and consumption per capita.

What explains these stylized facts? My answer starts with the assertion that the observed
decline in hours worked reflects a fall in the voluntary individual supply of labor. Then, I
argue that the dual nature of technological progress in conjunction with a consumption-
leisure complementarity caused the individual supply of hours worked to fall. On the
one hand, technological progress drives productivity and the growth of real wages and
real incomes. On the other hand, it expands the supply of consumption goods that indi-
viduals buy and enjoy during their leisure time. The consumption-leisure complementar-
ity implies that the value of leisure increases with the amount of available consumption
goods.? This affects the intensive margin of the individual labor supply and motivates
individuals to supply fewer hours worked if their real wages and real incomes increase.

The present paper develops this argument and studies its implications for the compar-
ative economic development of countries over the long run. To accomplish this I use a
standard OLG-model with two-period lived individuals. The novel feature is the indi-
vidual lifetime utility that features per-period utility functions of the generalized log-log
type recently proposed by Boppart and Krusell (2016). My contribution to economic
theory includes the detailed analysis of the decision-theoretic implications of this util-
ity function for two-period lived overlapping generations. Moreover, I show that a new

1Boppart and Krusell (2016), p. 75, use the data of these countries to estimate for the time span 1870-2000
that on average annual hours of work per worker declined at roughly 0.57% percent per year.

2According to Gordon (2016), p.9, technological progress in home entertainment gives rise to a
consumption-leisure complementarity:

Added household equipment, such as TV sets, and technological change, such as the improve-
ment in the quality of TV-set pictures, increase the marginal product of home time devoted to
household production and leisure. For instance, the degree of enjoyment provided by an hour
of leisure spent watching a TV set in 1955 is greater than that provided by an hour listening to
the radio in the same living room in 1935.

Video games constitute a more recent technological advance with similar consequences for the appreciation
of leisure and the labor supply of (young) men (see, e. g., Aguiar, Bils, Charles, and Hurst (2017) or Avent
(2017)).



canonical OLG-model emerges that accounts for the observed decline in hours worked.>
Its dynamical system is available in closed form and gives rise to a stable steady state. To
the best of my knowledge, my research is the first that employs a utility function of the
Boppart-Krusell class in a full-fledged neoclassical growth model.*

In more detail, my main findings include the following. First, I show that the general-
ized log-log utility function, henceforth gll utility function, of Boppart and Krusell (2016)
gives rise to a consumption-leisure complementarity of the kind discussed above, i.e.,
the marginal utility of leisure increases in the amount of contemporaneous consumption.
The complementarity hinges crucially on a preference parameter v € (0,1). It disappears
in the limit v — 0.

Second, I show that the optimal plan of each individual hinges on the level of the real
wage. This gives rise to two regimes. Roughly speaking, in Regime 1 wages are high.
The individual supply of hours worked declines in response to a wage hike, and (—v) is
the wage elasticity. Here, the consumption-leisure complementarity is at work. A higher
wage allows for the purchase of more consumption goods. This increases the value of
leisure. Accordingly, individuals demand more leisure and supply less of their time
endowment to the labor market. In technical parlance, due to the consumption-leisure
complementarity the income effect on the Marshallian demand for leisure dominates the
substitution effect.

In Regime 2 wages are low, and individuals are poor. In spite of the consumption-leisure
complementarity the individual supply of hours worked does not respond to a higher
real wage. The prospect of a low income induces individuals to supply their entire time
endowment to the labor market. While a higher wage means a higher income any ad-
ditional purchasing power is spent on consumption goods rather than on leisure. This
makes intuitive sense. Poor people spend their entire income on consumption goods to
satisfy basic needs. The demand for leisure will only become positive once these needs
are adequately satisfied.

The two regimes suggest that the presence of a consumption-leisure complementarity is

3In the literature, the canonical OLG-model has two defining properties (see, e.g., Acemoglu (2009),
Chapter 9.3, or de la Croix and Michel (2002)). First, two-period lived individuals have preferences over
levels of consumption when young and old that are represented by an additively separable life-time utility
function with per-period log-utility. Second, the neoclassical production sector is Cobb-Douglas. The first
property implies that individual savings and, hence, the process of capital accumulation does not hinge
on the real rental rate of capital. In conjunction with the second property, this excludes multiple steady
states that may arise if the elasticity of substitution between capital and labor is smaller than unity (see, e. g.,
Galor and Ryder (1989) and Galor (1996)). Since there is no appreciation for leisure in the life-time utility
function young individuals supply their entire time endowment to the labor market. Hence, in contrast to
the empirical evidence the canonical OLG-model cannot account for the observed decline in hours worked.

4 Appendix B.2 of Boppart and Krusell (2016) sketches a closed-form solution for the planner’s problem in
a Ramsey model with generalized log-log utilty, Cobb-Douglas production, and a rate of capital depreciation
equal to 100%.



not sufficient for a declining individual supply of hours worked. In addition, the wage
level has to be sufficiently high.

Third, I establish the dynamical system and study the evolution of the economy over the
long run. This highlights the role of technological progress as an engine that liberated
poor people from the necessity to assure a subsistence income by supplying an amount
of working hours that touched upon their physical limits, often deteriorated their health,
and led to premature death. This assertion is based on two arguments. The first argument
looks at an economy void of technological progress that finds itself in Regime 2. I show
that over time the economy remains in this regime and converges towards a steady state
with a stationary real wage. Throughout this evolution individuals supply their entire
time endowment to the labor market. Hence, a poor economy stays poor even though
capital accumulation may induce the real wage to increase along the transition.

According to the second argument, the picture drastically changes if the same economy
is exposed to sustained technological progress that becomes the main driver of real wage
growth. Then, an initially poor economy must leave Regime 2 in finite time. It necessarily
switches into Regime 1 where the individual supply of hours worked declines as wages
increase further. Eventually, this economy converges towards a steady state along which
real wages increase and hours worked decline at constant, yet different rates.

Fourth, I establish the properties of the steady state with sustained technological progress.
Here, real wages grow at a constant rate, g, equal to the exogenous growth rate of tech-
nological knowledge, g4 > 0. The individual supply of hours worked grows approxima-
tively at rate —vgy,, = —vgx since (—v) is its wage elasticity. The growth rate of economic
aggregates is given by the growth rate of aggregate efficient hours worked. The latter is
the sum of the growth rates of (labor-augmenting) technological knowledge, g4, of the
labor force, g1, and of individual hours worked, —vg4. The last two rates represent, re-
spectively, the growth rates of the extensive and the intensive margin of the aggregate
labor supply. Accordingly, per-capita variables grow at rate g4 — vgw = (1 —v) ga.

Hence, even though technological knowledge grows at an exogenous rate, the economy’s
growth rate is endogenous as it depends on the preference parameter v. Intuitively, a
growing stock of technological knowledge applies to an ever declining amount of hours
of work. Therefore, the growth rate of per-capita variables falls short of g4. Moreover,
the greater v the lower the economy’s growth rate since a hike in v speeds up the decline
of the supply of hours worked.

The fifth set of results concerns choice theoretic properties of a lifetime utility featuring
the gll utility function. I show that this per-period utility function does not represent
preferences for consumption and leisure defined over the usual domain Ry x [0,1]. In
particular, for bundles where the level of consumption is high relative to the amount
of leisure the gll utility function ceases to give information about how individuals rank
available alternatives. This property is related to the consumption-leisure complemen-
tarity build into this function. Another important analytical consequence of this com-
plementarity is that parameter restrictions are needed to assure, e. g., monotonicity and



concavity of the lifetime utility function. I establish that these restrictions constrain the
individual choice set even further. However, in light of the empirical evidence I show by
example that there are reasonable parameter values that validate the model.

The sixth set of results sheds light on the underlying analytical structure of the OLG-
model under scrutiny. I argue that my analysis of Regime 1 gives rise to a new canonical
OLG-model that incorporates a declining supply of hours worked. In spite of the compli-
cations related to the inclusion of a labor-leisure decision the model retains its tractability.
In particular, the individual supply of hours worked and individual savings do not de-
pend on the real rental rate of capital.” I show that the reason for these simplifications is
the log-utility of consumption when old. Moreover, I establish that the evolution under
Regime 1 is described by a non-linear difference equation available in closed form. It
gives rise to a unique, globally stable steady state.

The present paper is related to several strands of the literature. First, it fills a gap in the
modern growth literature that largely neglects the fact that hours worked per worker
have been falling for the last 130 years or s0.% Instead, this literature relies on the as-
sumption of an inelastic supply of hours worked. My findings concerning the mechanics
of Regime 1 and 2 suggest that this assumption applies best to low-income countries.

Second, my research relates to a growing empirical literature that documents and inter-
prets the decline of hours worked per worker or per capita across countries and/or over
the long run (see, e. g., Bick, Fuchs-Schuendeln, and Lagakos (2018), Boppart and Krusell
(2016), Greenwood and Vandenbroucke (2008), or Rogerson (2006)). In line with my the-
oretical predictions this literature finds that hours worked per worker are higher in poor
than in rich countries.” Moreover, Bick, Fuchs-Schuendeln, and Lagakos (2018), Section
6.2, provide evidence showing that individuals work indeed more hours because of their
low wages. This suggests that preferences for which the income effect dominates the
substitution effect is an appropriate way to think about a supply of hours worked that
declines in the wage.

5See Bloom, Canning, and Graham (2003) for empirical evidence suggesting that the effect of the real
interest rate on the savings rate is small.

®As an indication of this neglect observe that the subject index of Daron Acemoglu’s comprehensive
treatment of modern growth theory has no entry “hours worked” or “individual labor supply”. There is,
however, an entry “inelastic supply of labor” which is indeed the standard assumption made in this liter-
ature (see Acemoglu (2009), pp. 977-990). Barro and Sala-i-Martin (2004), Chapter 9.3, briefly discus the
labor-leisure choice in the continuous-time Ramsey model with preferences a la King, Plosser, and Rebelo
(1988). However, these authors do not tackle “the introspectively more plausible case in which consumption
and leisure are complements” (ibidem, p. 423).

Related contributions study hours worked and the role of the extensive margin of the labor supply of
individuals and households using models that allow for home production in the spirit of Reid (1934) and
Becker (1965) (see, e. g., McDaniel (2011) or, Greenwood, Seshadri, and Yorukoglu (2005)). Boppart, Krusell,
and Olsson (2017) develop a novel framework to address these issues.



Third, the present paper relates to the literature on discrete-time models with overlap-
ping generations (de la Croix and Michel (2002)). As explained above, my findings for
Regime 1 suggest that the OLG-model with two-period lived individuals endowed with
per-period gll utility functions and firms operating under Cobb-Douglas gives rise to a
suitable new canonical OLG model. It captures the salient empirical finding of declining
individual hours of work. Due to its tractability it may well become the workhorse model
for various other economic applications.

This paper is organized as follows. Section 2 presents the model. Section 2.1 has a de-
tailed discussion of the consumption-leisure complementarity in the lifetime utility func-
tion of individuals, derives the optimal plan of each cohort, and discusses the order of
magnitude of some relevant model parameters. Section 2.2 introduces the firm sector.
Section 3 studies the intertemporal general equilibrium. Its definition is given and ex-
plained in Section 3.1. Here, a particular focus is on the existence and the uniqueness of
the equilibrium in the labor market. Section 3.2 sets up the dynamical system in Regime
1 and provides the analysis of the steady state. The focus of Section 3.3 is on the global
dynamics. Here, I develop the idea that sustained technological progress is an engine
that liberates people from the necessity to work very long hours. Section 4 studies more
general lifetime utility functions to clarify the role of the consumption-leisure comple-
mentarity for the individual supply of hours worked (Section 4.1) and for individual
savings (Section 4.2). Section 5 concludes. All proofs are contained in Section A, the
Appendix.

2 The Model

The economy has a household sector and a production sector in an infinite sequence of
periods t = 1,2,...,c0. The household sector comprises overlapping generations of in-
dividuals who live for two periods, youth and old age. The individual lifetime utility
function features a Boppart-Krusell gll utility function that gives rise to a consumption-
leisure complementarity. Moreover, this lifetime utility function is compatible with a
steady-state path along which per-capita income and consumption grow and the indi-
vidual labor supply declines at a constant rate.

The production sector has competitive firms producing a single good using physical cap-
ital, technology, and labor hours as inputs. This good may be either consumed or in-
vested. In the latter case, it serves as future capital. Henceforth, I shall refer to the single
produced good as the manufactured good. If consumed it is referred to as the consumption
good, if invested as capital.

In all periods, there are three objects of exchange, the consumption good, labor and capital.
Capital at t is built from the savings of period t — 1, and, without loss of generality,
depreciates after use. Households supply labor and capital. Labor is “owned” by the
young; the old own the capital stock. Each period has markets for all three objects of



exchange. Capital is the only asset in the economy. The manufactured good serves as
numeéraire.

Throughout, I denote the time-invariant growth rate of some variable x; between two
adjacent periods by gy. Moreover, I often use subscripts to write first- and second-order
derivatives. For instance, the notation for the derivatives of some function G(x, y) would
be Go(x,y) = 9G(x,y)/dy or Gy (x,y) = 9*G(x,y)/dydx. Ishall also write G instead of
G(x,y) or G(-) whenever this does not cause confusion.

2.1 The Household Sector

The population at t consists of L; young (cohort t) and L;_; old individuals (cohort t — 1).
Due to birth and other demographic factors the number of young individuals between
two adjacent periods grows at rate ¢; < (—1). For short, I shall refer to g; as the popula-
tion growth rate.

When young, individuals supply labor, earn wage income, save, and enjoy leisure as well
as the consumption good. When old, they retire and consume their wealth.

2.1.1 Preferences, Utility, and the Optimal Plan of Cohort ¢

For cohort ¢, denote consumption when young and old by ¢/ and ¢? 1, and leisure time
enjoyed when young by /;. I normalize the maximum per-period time endowment sup-
plied to the labor market to unity. Then, 1 —I; = h;, where h; € [0,1] is hours worked
when young. Individuals of all cohorts assess bundles (c]t/, lt, cf +l) according to a lifetime
utility function

U (e, li,¢f4q) = Inc{ +1n (1 —p(1—=1) () ﬁ) +plncyyy, (2.1)

where ¢ > 0, v € (0,1), are parameters to be interpreted below, and € (0,1) is the
discount factor. Hence, in both periods of life, consumption and leisure are evaluated
according to a Boppart-Krusell gll utility function. Since retirement is legally enforced so
that leisure when old, 7. ;, is equal to unity, the term B In (1 - (1-124) (c24y) %) dis-
appears from U. For ease of notation, I follow Boppart and Krussell and use henceforth

xi=1—1) ()" 2.2)

The term In (1 — ¢x;) reflects the disutility of labor when young. It is more pronounced
the greater is ¢. This parameter represents properties of the labor market that affect the
disutility of labor in the population irrespective of the amount of hours worked and the
level of consumption. For instance, in an economy with demanding occupational safety
regulations ¢ may be lower than in an economy without such regulations. Similarly, if



the labor market gives rise to a good matching between individual career aspirations and
actual occupations then ¢ ought to be low, too. Finally, as suggested by Landes (1998), ¢
may reflect the climatic conditions under which labor is done.

The disutility of labor is also more pronounced the greater is c;. This implies a key prop-
erty of U, namely, the complementarity between consumption when young and leisure
in the sense that U, > 0. Since

U = g
(1=v) () ™ (1—¢xr)?

complementarity requires ¢ > 0 and v € (0,1). Hence, for a young individual the

marginal utility of leisure increases in the amount of the consumption good. This is how
the utility function (2.1) captures the gist of the logic sketched out in the Introduction.?

Since the natural logarithmic function requires a strictly positive argument, the domain
of U cannot include all bundles (c?, I, ¢ ;) € RA, x [0,1]. Those for which 1 — ¢x; <0
must be excluded. Figure 2.1 depicts a typical set of pairs (I;, ¢} ) included in the domain
of U.? Intuitively, to be in the domain the disutility of labor must not be too large, i.e.,
¢/ must not be too high given ;. Accordingly, U is not a utility function that represents
a preference relation > over all bundles (C‘Z i, cf +1) S ]Rﬁ 4 X [0,1].10 Figure 2.1 also
reveals that the domain of U is not convex.

The complementarity between consumption and leisure has an “analytical cost”: U is
not necessarily increasing in cf and not necessarily concave in (c;j, lt, cf +1) 11 As to mono-
tonicity, one readily verifies that

Uy >0 & 1—v—¢x>0. (2.3)

The second term in U is responsible for this property. For small values of ¢] condition
(2.3) will hold since U satisfies the Inada condition limc;t/ _,o U1 = co. However, as shown

in Figure 2.2, for large values of c? condition (2.3) is violated: the marginal utility of

8The utility function (2.1) is also valid with v < 0. For v < 0 one has U, < 0, and leisure and consump-
tion are substitutes. For v = 0, consumption and leisure are neither complements nor substitutes and U
boils down to the log-specification discussed in King, Plosser, and Rebelo (1988). Here, a reasonable solution
requires in addition that ¢ > (14 8) / (2 + B). Finally, U also nests the case where ¢ = 0 so that no utility is
associated with leisure. This assumption is made in the canonical OLG-model (see, e. g., Acemoglu (2009),
Chapter 9.3, or de la Croix and Michel (2002)) where young individuals supply their entire labor endowment
inelastically to maximize the wage income.

Figures 2.1 - 2.5 use the following parameter values: v = 0.2024, ¢ = 0.4, and § = 0.294.

10Gee Definition 1.B.2 of Mas-Colell, Whinston, and Green (1995), p. 9, for the definition of a utility func-
tion.

HThe function U is neither quasi-concave in (c? L, cf +1>. In what follows, I shall focus on the concavity

of U. This substantially simplifies my analysis without affecting economically interesting properties of the
optimal plan derived in Proposition 1.



Figure 2.1: The area shaded in light blue shows pairs (I, c/ ) € [0,1] x R4 that are in the
domain of U, i.e., they satisfy 1 — ¢x; > 0.
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¢/ becomes negative for pairs (I;,c) above the dark blue curve. Figure 2.2 also shows
that the set of bundles for which (2.3) holds, i. e., the blue shaded area, is a subset of the
domain of U. Intuitively, x; increases in c? since v > 0. Hence, given I; the set of values
¢/ > 0 compatible with (2.3) must be smaller than and included in the set that satisfies

1—(])Xt>0.

As to concavity the proof of Proposition 1 below lays open that U is strictly concave if
and only if

1-2v—(1—v)px; > 0. (2.4)

This condition requires v < 1/2. Moreover, as depicted in Figure 2.3, the set of bundles
for which (2.4) holds, i. e., the area shaded in dark blue, is a subset of the set of bundles
in the domain of U for which (2.3) holds. Intuitively, this makes sense since condition
(2.4) may be expressed as (1 — v — ¢x;) — v (1 — ¢px;) > 0. Both terms in parenthesis are
positive if (I;,c}) is in the domain of U and U > 0. Hence, 1 — v — ¢x; > v (1 — ¢px;) > 0.
Accordingly, given I; the set of values ¢] > 0 compatible with (2.4) must be smaller than
and included in the set that satisfies (2.3).

Henceforth, I shall refer to the set of bundles (c?, I, ¢0 1) € R3, x [0,1] that satisfies (2.4)
as the set of permissible bundles and denote this set by P. From the preceding discussion
it should be evident that permissible bundles are physically feasible, lie in the domain of
U, are associated with a strictly positive marginal utility of ¢, and imply that U is strictly
concave.



Figure 2.2: The blue shaded area shows pairs (I;, ¢} ) that satisfy 1 — v — ¢x; > 0 so that
the marginal utility of ¢} is strictly positive.
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Let w; > 0 denote the real wage per hour worked and R;;1 > 0 the perfect foresight real
rental rate paid per unit of savings. I refer to (c?, Iy, cf 4, st) as the plan of cohort t. Then,
the optimal plan of cohort ¢ solves

v

max Inc/ +1n (1 —p(1—1)(c]) H) +BlIncy, 4 (2.5)

(Cty,lt,C?+l,St) ePxR
subject to the per-period budget constraints
C? + S¢ S wt(l — lt) and Cf+1 S Rt-i—lst- (26)

Before I fully characterize the solution to this problem let me introduce the following
assumption.

Assumption 1 It holds that

0<v<p(p)=>TP=VE+P2HP)

2(1+pB)

As will become clear in the Proof of Proposition 1, Assumption 1 assures that the bundle
identified by the Lagrangian associated with the choice problem (2.5) satisfies condition
(24), i.e., it is an element of P. The function 7 (B) is strictly positive and declining on



Figure 2.3: The area shaded in dark blue shows permissible pairs (I;, ¢} ) that satisfy 1 —
2v — (1 — v)¢x; > 0so that U is strictly concave.
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B € [0,1] with 7(0) ~ 0.382 and (1) ~ 0.293. Hence, Assumption 1 imposes a tighter
constraint on v than just v < 1/2 which is necessary for (2.4) to hold.

To simplify the notation define
wg;( (1+5)(-v) )5
(¢(+1+pA-v)) " (1-v(1+p)"

Then the following proposition can be stated and proved.

10



Proposition 1 (Optimal Plan of Cohort t)

Suppose Assumption 1 holds. Then, for cohorts t = 1,2, ...,00 and prices (wy, Ry+1) € ]Ri o the
optimal plan involves continuous, piecewise defined functions

hy = h(wy), cf =c’(w), cfq=c"(w,Rep1), and sy =s(wy). (2.7)

Regime 1: If w; > w, then l; > 0, hy < 1 and

hy = wiw,”,
1-v(1+p) -
y _ -~ Y\-T"F) v . 1-v
Y G N G ) Rt
0 . ﬁRH-l v, 1—v
T g Ay
— # v, 1—v
T arpa-n

Regime 2: If 0 < wy < w, thenl; =0, hy = 1, and c¢¥ (wy) is implicitly given by
(=) (1-9()™)
1—v—g ()™

Moreover, s; = wy — c¥ (wy) = s (wy) and cf 1 = Ry (wi) = ¢ (wy, Reg1).

Y
Ct

—_
_|_
=

= Wt.

Finally, for members of cohort 0, we have ¢§ = Ryso > 0 where sy > 0 is given.

Proposition 1 is a central result of this paper. It makes two important points. First, it
establishes that the optimal plan hinges on the level of the real wage. In particular, this
suggests that the standard assumption of an inelastic labor supply made in almost all
growth models is only plausible if the real wage is sufficiently low. Second, it shows
that the individual supply of hours worked, consumption when young, and individual
savings are independent of the real rental rate of capital.

There are two regimes. In Regime 1 the real wage exceeds the critical level w,, and in-
dividuals supply less then their time endowment to the labor market. As the real wage
increases, the supply of hours worked declines at a constant proportionate rate equal to
v € (0,1). In Regime 2 the real wage is below w,, and individuals supply their entire time
endowment to the labor market. Hence, the individual labor supply is indeed piecewise
defined (see Figure 2.4 for an illustration). Since U is continuous and the set of feasi-
ble values (¢}, I, c? 1) does not drastically expand or shrink the optimal plan involves
continuous functions.

11



Figure 2.4: The individual supply of hours worked h; = h (wy). For 0 < w < w, indi-
viduals supply their entire time endowment to the labor market. For w > w. the wage
elasticity of the individual supply of hours worked is (—v) € (=7 (B),0).

ht

Wt
0 W,

To understand why the individual labor supply is piecewise defined recall that the utility-
maximizing plan involving (c? i cf +1) >> 0 satisfies the first-order condition U, =
wiUy, i. e., the marginal utility of leisure is equal to its opportunity cost in terms of fore-
gone consumption when young. However, for low values of w; this condition cannot be
satisfied as an equality. Intuitively, if the real wage is small then the demand for con-
sumption when young and for leisure will be small, too. Since U satisfies the Inada con-
dition limcty _o U1 = oo whereas lim;,_,o U < o0 it holds for 0 < w; < w, that Uy < w;U;.
The latter inequality is strict whenever w; < w,. Then, the individual demand for leisure
is indeed equal to zero whereas c¢; > 0 (see Figure 2.5 for an illustration).

This behavior makes intuitive sense. When wages and incomes are low then the indi-
vidual demand for consumption goods is positive to satisfy basic needs. The demand
for leisure is zero since the only way to earn a decent income is by working the manxi-
mum of available hours. Rising wages and incomes allow people to adequately satisfy
their consumption needs and to work less. Accordingly, the demand for leisure becomes
positive.

For Regime 1, the Proof of Proposition 1 reveals that the optimal plan of cohort t involves

e (1B -v)
Pxy = px = T4+ 8 d-1) € (0,1). (2.8)

From the definition of x; in (2.2) it is obvious that condition (2.8) ties the optimal choices

12



of ¢/ and I; for all t. The black curve in Figure 2.5 starting at (0, ¢ (w.)) depicts a typical
set of pairs (I, ¢f ) satisfying this condition. It shows that less work goes along with more
consumption when young. Assumption 1 assures that the entire black line lies inside the
set P.

Figure 2.5: The black line shows the optimal pairs (I, ¢{) for all t. Points on the vertical
line [0, ¢} (wc)] correspond to optimal pairs under Regime 2. Points on the black curve
satisfy (2.8) and represent optimal pairs under Regime 1.

o

b

To see that in Regime 1 savings are independent of the real rental rate consider the inter-
temporal trade-off between consumption when young and consumption when old. It is
governed by the first-order condition U; = R;y1U;s. It says that, for any given [y, the
marginal utility of consumption when young is equal to its opportunity cost in terms of
consumption when old. Evaluated at optimal pairs (c}, ;) that satisfy (2.8) this trade-off
delivers the Euler equation

iy BRt11
= . 2.9
c/ 1—v(1+p) 29)

The latter states the desired consumption growth factor of a member of cohort t. The
parameter v reflects the disutility of consumption when young associated with the labor
supply that shows up in the second term of U. Its presence weakens the tendency to
smooth consumption over the life-cycle. In addition, equation (2.9) reveals that the inter-
temporal elasticity of substitution associated with the optimal plan of all cohorts t is equal

13



to unity, i.e,,

4 ()

TR~ (2.10)

The Euler equation (2.9) also implies for Regime 1 that /, ¢/, and s; are independent of
Riy1. At a deeper level, this finding can be traced back to the fact that individuals value
consumption when old according to the logarithmic utility function (see Section 4 for
details).

Regime 1 of Proposition 1 exhibits another intuitive property of the optimal plan: c% , St,
and ¢j; are proportionate to the wage income, w;h;. In particular, one finds that

1—v(1+B) B
(1+pB)(1-v) (1+p)(1-v)

Hence, ceteris paribus, the marginal (and average) propensity to consume when young

C?Z wtht and St = wtht. (211)

declines in v, the marginal propensity to save out of wage income increases in v.

For Regime 2, the optimal plan is no longer available in closed from. This complication
is due to the presence of the disutility of consumption when young associated with the
supply of h; = 1 hours of work.!? Since the utility function of consumption when old is
logarithmic individual savings do not hinge on the real rental rate of capital (again, see
Section 4 for details).

Next, I show that the optimal plan has intuitive behavioral properties.

Proposition 2 (Factor Prices and the Optimal Plan)

Consider the optimal plan of Proposition 1. It holds that

W (w) <0, () (w) >0, ¢ (wp,Rey1) >0, ¢ (ws,Repq) >0, and s (wy) > 0.

For Regime 2, this result is to be expected. As ' (w;) = 0, a higher real wage increases
real income one-to-one. Then, consumption smoothing requires that the higher income
is used to increase consumption when young and old, hence savings. For Regime 1, a
similar intuition holds since

dln (wtht)

—1_
dlnw, v>0

12As v — 0, the expressions of Regime 2 converge, respectively, to ¢} = w;/(1+ ), st = Bw/(1+ B), and
¢} 1 = BRyp1w/ (1 + B), i.e., they coincide with the solution of the canonical OLG-model.
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i.e., the proportionate increase in the wage income induced by a higher wage is still

positive even though the labor supply declines. Clearly, only ¢}, ; increases in response
to a higher R; 1.

The optimal plan of Proposition 1 lends itself to the following intuitive comparative stat-
ics.

Proposition 3 (Comparative Statics of the Optimal Plan)

Consider the optimal plan of Proposition 1.

For Regime 1, it holds that

ohy an aC(t)_H ds;
% <0, % <0, 347 <0, a¢ 0,
oh; aC];’ ac?+1 0s;

For Regime 2, it holds that

% < 0, W > O, % > 0,
ac/ acy 4 st
ﬁ <0, 2B >0, @ > 0.

Proposition 3 shows that the comparative statics properties of the optimal plan hinge on
whether the supply of hours worked responds to the respective parameter change or not.
First, consider Regime 1. For a greater ¢ the disutility of labor is more pronounced. Ac-
cordingly, the labor supply falls. Consumption smoothing dictates that the concomitant
decline in the wage income reduces consumption in both periods of life, hence, savings.
Consumption when young is further reduced since the marginal utility of ¢ falls in ¢.
A greater  increases the value of consumption when old. Therefore, ¢}, ; increases at
the expense of the demand of leisure and of consumption when young. Accordingly, the
labor supply and savings increase.

In Regime 2 parameter changes do not affect the labor supply. However, a greater ¢
reduces the marginal utility of consumption when young whereas a greater 8 increases
the value of consumption when old. Hence, in both cases, c? falls whereas s; and ¢j
increase.
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2.1.2 Some Orders of Magnitude

The validity of Proposition 1 hinges on the parameter restrictions summarized under As-
sumption 1. The main purpose of this section is to show by example that this assumption
is satisfied for reasonable magnitudes of key parameters of the model. In addition, I
present a set of parameter values that delivers particularly simple functional forms for
Regime 1. The latter will be used in Section 3 below.

To derive reasonable parameter values let a generation correspond to 30 years. Then,
is the discount factor over 30 years. The annual discount factor is often estimated to be
around 0.96 (see, e. g., Prescott (1986)).!% This implies B = 0.294, and, from Assumption 1,
a corresponding critical value 7 = 0.352.

Suppose that hours worked per worker and the real wage grow at constant annual rates.
I take the constant annual growth rate of hours worked per worker to be 0.57% (see
Footnote 1). Moreover, suppose the annual growth rate of the real wage is 2%. To match
these data with the model the growth factors of hours worked and of the real wage should
satisfy

M 099433 and ©“HH — 1 0%,
ht wt

According to Proposition 1 these growth factors are linked, i.e.,

—0
e _ (wf“) or 0.9943%0 — 102730,
ht Wi

This gives an estimate of v as,

In.9943 _
vV = —m = 0.288 < v,

and Assumption 1 is satisfied.

A particular simple calibration obtains if I set

1
1 1/3\3

While the values for v and f are not far away form those used above, this calibration
involves a judicious choice of ¢ so that w. = 1. Assumption 1 is satisfied since 1/4 <
(5 — 13) /4. Moreover, one readily verifies that the optimal plan for Regime 1 involves

3
! ] ;
I 4 J— 4 0 _ 4 J—
hy=w, *, ¢ = éwt , Gl = th , and s; = =3

y 2 3 Riy1_ 3 w

13The annual discount factor chosen by Blanchard and Fischer (1989), p. 147, is 0.97 which delivers a value
B = 0.40. Barro and Sala-i-Martin (2004), p. 197, use an annual discount factor of 0.98 which corresponds to
a value B = 0.55. Hence, the value of B is quite sensitive to the chosen value of the annual discount factor.
However, it hardly impacts on the value of 7 which is equal to 0.342 and 0.33 for an annual discount factor
of .97 and .98, respectively.
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2.2 Firms

At all t, the production sector can be represented by a single competitive firm with access
to the production function

Y, =T-K - (AH)"", T>0, 0<y<L1. (2.13)

Here, K; is physical capital and H; the amount of hours of work employed by the firm.
Technological knowledge is represented by A; and advances exogenously at rate g4 > 0.
Accordingly, A; = (1+ g4)'"'A;, with A} > 0 given. The productivity parameter I' > 0
may reflect cross-country differences in geography, technical and social infrastructure
that affect the transformation of capital and efficient hours worked into the manufactured
good.

In each period, the firm chooses the amounts of capital, K¢, and of hours of work, H;, to
maximize the net-present value of profits. Doing so, it takes the evolution of A; as given.
Void of inter-temporal considerations, the respective first-order conditions read

wy=T-(1—7)-K/-A ™" H;" and R, =T-v-K"'-(AH)"7. (214

3 Intertemporal General Equilibrium

3.1 Definition

. o0 . .
A price System Corresponds toa Sequence {ZUt, Rt}til' An allocation is a sequence
0
{C¥/ Zt/ ct/ St, Yt/ Ht/ Kf}?ozl'

It comprises a plan { clt/ A, cf ny st};’il for all cohorts, consumption of the old at t = 1, cf,
and a strategy for the production sector {Y}, Hy, K} ;.

For an exogenous evolution of the labor force, Ly = L (1+ gL)t_1 with L; > 0, an
exogenous evolution of technological knowledge, A; = Aj(1+ g4)"~! with A; > 0,
and a given initial level of capital, K; > 0, an intertemporal general equilibrium with
perfect foresight corresponds to a price system and an allocation that satisfy the following
conditions forall t = 1,2, ..., co:

(E1) The plan of each cohort satisfies Proposition 1.

(E2) The production sector satisfies (2.14).

(E3) The market for the manufactured good clears, i.e.,

Liqacd+ Lic + =Y, (3.1
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where I; is aggregate capital investment.

(E4) There is full employment of labor, i. e,
H; = Lih;. (3.2)

(E1) guarantees the optimal behavior of the household sector under perfect foresight.
Since the old own the capital stock, their consumption at t = 11is Loc{ = R;K; and
so = Ki/Lo. (E2) assures the optimal behavior of the production sector and zero profits.
(E3) states that the aggregate demand for the manufactured good produced at ¢ is equal to
its supply. It reflects the fact that capital fully depreciates after one period. Alternatively,
(3.1) may be interpreted as the resource constraint of the economy at t. According to (E4)
the demand for hours worked must be equal to the supply.

The labor market requires a special treatment. Since both the aggregate demand for hours
worked and the aggregate supply of hours worked are decreasing in the real wage there
may be none, one, or multiple wage levels at which demand is equal to supply. To ad-
dress this issue let me refer to the first condition of (2.14) as the firms” aggregate demand
for hours worked at t and restate it as

1
= /T(1— v

Let Hi = L:h; denote the aggregate supply of hours worked at t. Then, using Proposi-
tion 11 have

Liwlw;" if wy > w,
H; = = H; (wr), (3.4
Li-1 if0 < wy < w,

and the labor market equilibrium can be characterized. To simplify the notation let k; =
Ki/ (AFL).

Proposition 4 (Labor-Market Equilibrium at t)

At all t, there is a unique labor market equilibrium, (@, Hy). The equilibrium real wage is
( 1 e
A (S) KTk AT (= ) 2
W = (3.5)
K\ e 1-vy
AcTO=7)-(£%) ik -ATT T -7) < we

The equilibrium amount of hours worked is

v —qv
L . T—v T . 1—

v <1"(1u:7)) Tk ik AT T(1- ) 2w,

A = (3.6)

L1 ifkl - A7 T(1 =) < w
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Hence, at all ¢, the labor market equilibrium exists and is unique. This is due to two
properties of the labor market that are illustrated in Figure 3.1. First, since v is quite
small the individual and the aggregate supply of hours worked, I (w;) and H; (w;), is
fairly flat. Second, the image of the aggregate demand for hours worked, HY (w;), is R+
since the aggregate production function satisfies both Inada conditions.

For a given aggregate supply of hours worked the labor market equilibrium falls into
Regime 1 if the aggregate demand for hours worked is large (see (@}, H}) in Figure 3.1).
From (3.3) this is more likely the greater K;, A;, or I'. Intuitively, modern industrialized
economies should possess these features. Conversely, economies with a low demand for
hours worked would find their labor market equilibrium in Regime 2 (see (@?, H?) where
A? = L; - 1 in Figure 3.1).

For a given aggregate demand for hours worked the labor market equilibrium is more
likely to be in Regime 1 the smaller the total amount of workers, i.e., the smaller L;.
Intuitively, when L; falls then the aggregate supply of hours worked shifts downwards.
Labor becomes scarcer so that the equilibrium wage increases. Then, even for a low
aggregate demand of hours worked such as H? an equilibrium wage in Regime 1 is
possible.

3.2 Dynamical System for Regime 1 and Steady-State Analysis

The equilibrium conditions (E1) - (E4) require for all ¢t and both regimes that aggregate

saving equals capital investment, i.e.,!*

siLy = It = Kyyq. (3.7)

This section deals with Regime 1. This allows me to focus on the steady state and the dy-
namics in its neighborhood. I postpone the discussion of the dynamics involving Regime
2 to Section 3.3.

4More precisely, if firms and households optimize, the capital market in period ¢ — 1, the labor market in
period t, and market for the manufactured good in period ¢ clear, then the market for capital in period ¢ will
also clear, i. e., (3.7) will hold. To see this consider the market clearing condition of the manufactured good
(3.1). (E1) means that c{ and c? may be replaced by the respective budget constraints of cohort ¢t — 1 and .
This gives

Rysi_1Li_1 +wihi Ly — s¢Ly + I = Y.

Clearing of the capital market in t — 1 means that s;_;L;_1 = I;_1 = K}, clearing of the labor market in ¢
means that i;L; = H;. Then, the market clearing condition of the manufactured good may be written as

RiK; + wiHy — siLy + Iy = Y.

Finally, (E2) implies that firms make zero profits, i.e., R;K; + w;H; = Y}, and, by definition, we have I; =
Ki41. Hence, (3.7) follows.
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Figure 3.1: The labor market equilibrium of period ¢. If the aggregate demand for hours
worked is H{! then the labor market equilibrium is (@}, H}). The individual supply of
hours worked is in Regime 1, i. e., it falls in w;, and aggregate demand for hours worked is
high. If the aggregate demand for hours worked is H? then the labor market equilibrium
is (@?, H?) where H? = L; - 1. The individual supply of hours worked is in Regime 2,
i.e., it does not hinge on wy, and aggregate demand for hours worked is low.

Hy, HY
|
Regime 2 | Regime 1
|
|
|
L
k-
H}
H;l 1
oy
w,
0 ¢

Using Proposition 1, Proposition 4, (2.13), and (2.14) reveals that in Regime 1 the in-
tertemporal general equilibrium may be studied by means of a sequence of a single state
variable, namely, k;. This variable will be constant in steady state.

Define
o |owe | ,
[T(l — 7>Ai_7’/] &)
and
K=l BIr(1—7)) ”] o (3.9)
(1+B)(1—v)(1+gL) (1+g4a)

Assumption 2 It holds that ki > k. and k* > k.

As will become clear from Proposition 5 below, the intuition behind Assumption 2 is the
following. The parameter k. assures that k; > k. implies @; > w.. Hence, if k; > k.

20



Figure 3.2: The Dynamical System under Regime 1.

ki1

kt+1 = kt

1
b P Wl (1)) T y k—"’fi}ﬁ)
LT OB () (gn) () M

T ; Ky

then the economy starts with a real wage compatible with Regime 1. As will become
clear from the following proposition, k*, is the steady state of the equilibrium sequence,
{k¢};2 1. Then, k* > k. assures that over time the equilibrium sequence remains in Regime
1.

Proposition 5 (Dynamical System - Regime 1)

Suppose the initial conditions (Ky,L1, A1) are such that Assumption 2 holds. Then, the transi-
tional dynamics of the intertemporal general equilibrium is given by a unique and monotonous
equilibrium sequence {k;}> |, generated by the difference equation

Blw ™ (r(1 =) o )
S [ s [y el 10

with

lim k; = k*. (3.11)
t—o0

Hence, in Regime 1 the evolution of the state variable is governed by the difference equa-
tion (3.10). Since y(1 —v)/ (1 —9v) < 1 the equilibrium sequence generated by this
equation is monotonous and the steady state is stable, i.e., for k; < k* the equilibrium

21



sequence {k;}{°, increases monotonically, for k; > k* it falls monotonically. This is illus-
trated in Figure 3.2.

The key parameter in the difference equation (3.10) is v. It affects the equilibrium se-
quence through four channels. To see this let me write (3.7) using (2.11) and Proposition 1
as

p .
- Wh (W) Ly = K¢ yq, (3.12)
(1+p8)(1-v)
where @ is the equilibrium wage for Regime 1. Hence, the factor (1 — v) in the denomina-
tor of (3.10) shows the effect of v on the marginal propensity to save. A greater v increases
the fraction of the wage income that is saved and invested, hence, K;; increases. This is
the first channel.

Next, observe that Proposition 1 and 4 imply that the equilibrium individual wage in-
come can be expressed as

y(1-v)

1
Wih () = AV [wz(l‘” (C(1— 7))1*”] g (3.13)

The remaining three channels show how v affects the difference equation (3.10) through
this expression.

The second channel is related to the factor A}"’. It captures that, given k;, a greater A;
increases the equilibrium wage and reduces the individual supply of hours worked. This
channel shows up as (1+g 4)' 7" in the denominator of (3.10) since the latter equation

I=vL, 1. Since g4 > 0 a greater v implies a greater k1.

expresses (3.12) in units of A, |

The third channel reflects all effects of v related to the bracketed term in the numerator of
(3.10). From (3.13) it is clear that this term shows how preference and technology param-
eters affect the equilibrium individual wage income given (K;, A, L;). Finally, v impacts
on how the state variable affects the equilibrium individual wage income. Increasing v
augments the exponent of k; on the right-hand side of (3.10) and accelerates the process
of convergence towards the steady state. Indeed, the speed of convergence defined as

o () 14

T ok d—qv 0
increases in v.
Observe that in the limit v — 0 it holds that
) ) 1+p
_ v o __
lim h(wr) = limwe = 25 gy

and the individual supply of hours worked depends no longer on the real wage. Then,
Proposition 5 states the dynamical system of Regime 1 for the log-specification of the
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utility function used by King, Plosser, and Rebelo (1988) (see Footnote 8). Then, in-
dividuals supply their entire time endowment if lim,_,o h(w;) = limy,ow! = 1, i.e,,
¢ = (1+pB)/(2+ B). Since leisure is associated with utility one still has k. > 0.

Proposition 5 also nests the dynamical system of the canonical OLG model which obtains
if ¢ = 0in the lifetime utility function (2.1). Then, the individual supply of hours worked
is unity for any positive real wage, and there is only one regime. Accordingly, there is no
critical value k.. Moreover, the dynamical system of the canonical OLG-model obtains
from setting w. = 1 and v = 0 in (3.10). Hence, Regime 1 encompasses the canonical
growth model with or without technological progress as special cases.

The following proposition characterizes the steady state of Regime 1.

Proposition 6 (Properties of the Steady State - Regime 1)

Along the steady-state path the growth rate of the real wage is g, = g4 > 0, the real rental rate
of capital is constant. Moreover, it holds that

A

h ., H »
a) %Z(lJrgA) , I%tlz(lJrgA) (1+g1),

Y 0
C C S _
t+1 _ el Sl 1-v
b) Cy - Czt) - st - (1+8A) ’
t

@ . Kt+1 _ 1-v
c) Y, ~ K =(1+4+ga) (1+gL),
8(1 —I—gA)liv

0.
ov <

Hence, in steady state the individual supply of hours worked declines at an approxi-
mate rate v, since (—v) is the wage elasticity of h(w;). The steady-state growth rate of
the aggregate supply of hours worked is approximately equal to —vga + gr. It reflects
the intensive and the extensive margin of the labor supply. Depending on which mar-
gin dominates it may be positive or negative. The growth rates under b) follow from
Proposition 1 as the wage elasticity of cf, ¢t and spis 1 —v.

The findings under a) and b) highlight why the optimal plan of Proposition 1 is consis-
tent with a steady state equilibrium. The steady-state growth factor of individual hours
worked is (1+g;) = (1+g4) ", theoneof ¢, ¢}, ,, and sy is (1 + ga)' " In steady state,
individual wage income, w¢h;, grows at a factor (14 ;) (14 gw) = (1+g4)' ™" that co-
incides with the growth factor of c]t/ , ¢{.1, and s;. Therefore, these growth patterns are
indeed consistent with the individual and the economy-wide budget constraints.

At the level of economic aggregates we obtain from (3.7) that in steady state (1 + gx) =
(1+g4)""" (14 g1). Then, the production function delivers gy = gx.
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Overall, the rule is that the steady-state growth factor of economic aggregates like Y}, K,
or aggregate consumption, Lic] + L;_1cj, is the growth factor of aggregate efficient hours
worked, AyHy = A¢L¢h;. The growth factor of per-capita variables like cf , €1, 1, St, or out-
put per worker, Y;/L;, is the one of efficient individual hours worked, A;H;/L; = A¢h;.
The latter growth factor is (1+ g A)l_v and reflects the attenuating effect of a declining
individual supply of hours worked on the growth rate of per-capita variables.

According to d), the attenuation of the growth factor is more pronounced the greater is
v. Hence, the growth rate of per-capita variables declines in v, and, ceteris paribus, an
economy with a greater v is predicted to grow slower in per-capita terms.

Finally, it is worth mentioning that for all adjacent periods t and ¢ + 1 hours worked
per worker and hours worked per capita grow at the same rate. To see this, denote the
population at t by N; = L; + L;—1. Then, hours worked per capita at ¢ is the product of
hours worked per worker and the labor-market participation rate, i. e.,

H L 1
—t:htxit:htxﬂ.
N; L+ Liq 2431
Hence, in line with the cross-country evidence over the long run the participation rate is
constant (Boppart and Krusell (2016)). Moreover, the growth factor of hours worked is

hiy1/ht and, in steady state, equal to (1 +g4) " ".

3.3 Global Dynamics: Technological Progress as an Engine of Liberation

This section studies the global dynamics of the economy of Section 2. The analysis re-
veals that sustained technological progress is the main cause for why workers have en-
joyed more and more leisure over time. It liberated poor individuals from the necessity
to supply long hours of work to assure a subsistence income. In this sense, technologi-
cal progress has been an engine of liberation.® In the present analytical framework the
intuition behind this assertion is the following.

On the supply side, technological progress increases the marginal product of labor. Ac-
cordingly, real wages increase. During the transition to the steady state the growth rate
of real wages reflects the growth rates of the physical capital stock and of the labor force,
too. However, in the long run it is technological progress alone that drives real wage
growth. In addition, with technological progress the total factor productivity and the
aggregate output of the manufactured good increases.

On the household side, individuals who see their real income increase want to buy more
of the consumption good and consider working less. Additional purchases of the con-
sumption good become feasible since technological progress allows for the total output

15T a related sense, the metaphor “engine of liberation” is also used by Greenwood, Seshadri, and
Yorukoglu (2005) to describe the role of technological change for the liberation of women from the home.
Galor and Weil (1996) develop a related idea.
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of the consumption good to increase. The desire to work less is due to the consumption-
leisure complementarity. As consumption per capita increases the valuation of leisure
increases. Accordingly, individuals want to enjoy more leisure and supply less labor.

I start out in Section 3.3.1 with the analysis of an economy void of technological progress.
Initially, the economy is in Regime 2. Hence, real wages are low and individuals are poor.
As a consequence, they supply their entire time endowment to the labor market. For the
chosen parameter values, I establish that this economy converges towards a steady state
with a constant real wage below w.. Hence, while real wages may grow over time due to
capital accumulation individuals remain poor and supply their entire time endowment
to the labor market.

Section 3.3.2 adds sustained technological progress to an otherwise identical economy.
The initial state of the economy is again in Regime 2. However, due to technological
progress the economy evolves from Regime 2 into Regime 1 where the supply of individ-
ual hours worked continuously declines. Eventually, there is convergence towards the
steady state of Proposition 5.

To straighten the presentation I choose particular parameter values and make the follow-
ing simplifying assumptions. On the production side, let I' = 3/2 and v = 1/3. Then,
from (2.14) the inverse aggregate demand for hours worked is

1
2 (K \3

On the household side, I use the parameter values of (2.12). To simplify further, I abstract
from population growth and set L; = 1 for all . Then, the evolution of the capital stock
(3.7) simplifies to

s (wr) = K. (3.15)

3.3.1 No Technological Progress: The Equilibrium Dynamics in Regime 2

Consider the economy of Section 2 void of technological progress, i.e., A; = 1 for all t.
The initial state of the economy is in Regime 2. Hence, the aggregate supply of hours
worked is H} = 1-1. Then, from (3.14) the equilibrium real wage is @; = Ktl/ 3. Combin-
ing the latter with (3.15) delivers the evolution of the equilibrium real wage in Regime 2
as

D1 = [s (1)) - (3.16)

The following proposition characterizes the steady state and the transitional dynamics of
Regime 2.
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Proposition 7 (Dynamical System - Regime 2)

The difference equation (3.16) gives rise to a unique, strictly positive steady-state equilibrium real
wage W** < w, given by

o = [s (@)} . (3.17)

Suppose 0 < 1 < w, then the sequence {W;}5° | generated by (3.16) converges monotonically

A kok

with limt*)oo Z@t =w .

The point of Proposition 7 is that a poor economy may not escape from poverty without
technological progress but remain forever stuck in Regime 2. The reason is that wage
growth is driven by the process of capital accumulation alone. Due to diminishing re-
turns the latter eventually peters out and the growth of wages comes to halt. This ten-
dency cannot be outweighed by the consumption-leisure complementarity that reduces
the marginal utility of consumption when young and, thus, implies higher savings per
worker.!® The following section shows that sustained technological progress annihilates
the possibility of a steady state involving a stationary real wage.

3.3.2 Global Dynamics with Sustained Technological Progress

Sustained technological progress means that A; grows over time at a constant rate g4 > 0.
Then, equations (3.14) and (3.15) deliver the evolution of the equilibrium real wage in
Regime 2 as

A,

2
W1 = A7 [s ()]

Q=

(3.18)

The economy starts in Regime 2 with an equilibrium real wage @ < @** < w,. Then, as
seen above, even without technological progress @; increases over time. However, tech-
nological progress prevents the economy from converging to the steady state of Propo-
sition 7 since the right-hand side of (A.10) shifts up by a factor (1+ g A)2/ 3 between any
pair of periods t and ¢ 4 1.

Instead, there is a finite ¢ at which the difference equation (3.18) prescribes a real wage
Wy +1 > we. This is illustrated in Figure 3.3. However, since w;, 1 falls into Regime 1 it is
not the equilibrium wage of period t. + 1. Intuitively, at t. + 1 individuals realize that the
real wage is so high that they want to reduce their supply of hours worked. Accordingly,
the aggregate supply of hours worked becomes H; ,, of (3.4) for w; 41 > w.. Equating

16To be precise, it is not difficult to show that in Regime 2 consumption when young, c(w;), is strictly
smaller than ¢ (w;) = w;/ (1 + p) that results for v = 0. Then, the budget constraint when young implies
that s(w;) for v > 0 must exceed s(w;) = pw:/ (14 B) obtained for v = 0.
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the latter with the aggregate demand for hours worked, ch 41 of (3.3), delivers the labor
market equilibrium (@ 1, H; 41).

Observe that at t. + 1 the capital stock and the level of technology will be K; 1 and A; 41,

1—v
te+1

Ly = 1 for all t. It satisfies k; 11 > k. and serves as the initial condition for the dynami-
cal system of Regime 1 as outlined in Proposition 5. Hence, the economy will converge

respectively. Hence, the efficient capital intensity at t, + 1 is kt 41 = Ky 41/ (A ) as

towards k* with ever declining levels of hours worked.!” Along the transition capital
grows faster than efficient labor. Technological progress provides the countervailing force
against a falling marginal product of capital. Accordingly, wages keep growing and in-
dividual hours worked decline.

Hence, technological progress drives the economy out of the poverty Regime 2. The ad-
vantages of productivity growth are not confined to the possibility to buy larger amounts
of the consumption good. They also open the opportunity to enjoy more leisure.

4 General Functional Forms and the Consumption-Leisure Com-
plementarity

The purpose of this section is to deepen the understanding of some key properties of the
optimal plan presented in Proposition 1. In particular, I ask three questions. First, what
is the role of the consumption-leisure complementarity for a negative response of the
individual supply of hours worked to a wage increase? Second, under what conditions is
the individual supply of hours worked independent of the rental rate of capital? Finally,
under what conditions is individual savings independent of the rental rate of capital?

To address these issues I consider a general lifetime utility function U (c¥,1,c®) where
U: R4 x [0,1] x R44. Here, U is differentiable, strongly increasing, and strictly quasi-
concave. The complementarity between consumption when young and leisure means
that Uj» > 0. Moreover, I assume that Uj3 = Uz = 0, i. e, there is time-separability in
consumption, and the consumption-leisure complementarity has no bite when old.

Throughout, I suppress time arguments. Let (c¢¥,1,c% s) denote the optimal plan that
results as the interior solution to the maximization of U (cY, ], c?) subject to the constraints
(2.6), i.e, ¢y +s = w(l —1) and ¢® = Rs. Moreover, let me introduce the following
elasticities

il = —cylélll >0 and 3 = —c"—= >0. (4.1)

171 assume here that the jump from Regime 2 into Regime 1 is not too large in the sense that k; .1 > k*.
A purely qualitative argument cannot exclude this case in which convergence may initially include periods
of a declining real wage. This however requires that the effect of a declining efficient capital intensity on the
real wage exceeds the effect of an increasing level of technology.
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Figure 3.3: The switch between Regime 2 and 1. At f, the equilibrium in the labor market
is (W, Hy ). It results from the intersection between ch and H; = L; = 1. Then,
the difference equation (3.18) delivers w; 1 > w, which is the intersection between and
ch 4+ and Hj = L; = 1. However, for wage levels greater than w, the equilibrium
expression for the aggregate supply of hours worked is Hj , ;. Accordingly, the labor
market equilibrium in period ¢. + 1 is (wtc_‘_l, Htc_i'_]) where Wy 1 > wy 1.

Hi, Hipy Hi, Hiy
I
Regime 2 : Regime 1
I
I o
L=1 Hi (wy)

Hi

H:,H (wr)

thﬁrl (wr)

thc (wy)

0 Wy, We W41

They measure the curvature of U with respect to ¢/ and ¢? at the optimal plan. Since Uj, >
0 whereas Uy = 0, these elasticities may differ. Moreover, 1/ 1751 is the intertemporal
elasticity of substitution defined as the proportionate change in ¢’/c¥ to a change in R
given ¢V and 1.18

18proof: Letc = ¢°/cY. Then, given ¢/ and [, the consumption-savings trade-off gives rise to the first-order
condition

U (¢¥,1,¢% -¢) — RU3 (¥,1,¢Y - ¢) = 0.
Total differentiation with respect to ¢ and R delivers
7R§U33 (c¥,1,¢Y - c)de— Uz (cY,1,6Y - ¢)dR = 0.
Rearranging results in

R-de dinc  —Uz(,1,c0% 1

c-dR ~ dInR ~ @ -Ug (¥, L,c0)  plii’
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4.1 Consumption-Leisure Complementarity and the Individual Supply of Hours
Worked

The following proposition has the answer to the first and the second question.

Proposition 8 (Properties of the Marshallian Demand for Leisure)

The optimal plan (c¥,1,c°, s) involves a demand for leisure that satisfies

a - u c’ 1 Uy >
a > u Uy y >

These comparative statics state the response of the Marshallian demands for leisure to an
increase in the real wage and in the real rental rate. Both responses feature a substitution
and an income effect. First, consider the response to a wage hike (4.2). According to the
substitution effect, represented by (—1), the demand for leisure falls when its opportu-
nity costs increase. The remaining two terms make up for the income effect. It features
nt, 74, and Uy . Interestingly, since both elasticities may differ, 7! > 1 is no longer
sufficient for dl /dw > 0 even if U, > 0 (for instance, think of 17&1 =1/2).

However, for the lifetime utility function (2.1) we have qél = 1. Then, (4.2) boils down to

ﬂ
dw

Z 0 @»-4+n¥+%?u—m§0. (4.4)
Here, the income effect is unequivocally positive, and leisure is a normal good. At the
optimal plan, i.e., given ¢%, 1, ¢’, and Uj, the income effect is more pronounced the greater
7t and Uyp. Intuitively, if (—Uy; ), hence i, is large then the curvature of U with respect
to consumption when young is strong. Accordingly, spending additional wage income
on consumption when young does not add much utility. One would rather want to spend
it on leisure. Moreover, if Uy, is large then the consumption-leisure complementarity is
strong. Spending additional wage income on leisure has a welcome side effect, i.e., it
increases the marginal utility of consumption when young. Hence, spending additional
wage income on leisure becomes more attractive.

For the lifetime utility function (2.1) one readily verifies that

u_ A=-v)1-v(A+B)A-v(A+p)]+v>(1+p)

"= A—v)(1—v(1+p)) > 1

and

Un(1-1) _vA+p)A+A+pA-v) _
U 1-v(1+B) ’
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where lim,_,g 171u = 1 and lim,_o Uy (1 —1)/U; = 0. Hence, as suggested by Proposi-
tion 1, dI/dw > 0 (dh/dw < 0) results since v > 0 implies 17’1“[ > 1land Uy; > 0. In
the limit v — 0 the demand for leisure will no longer respond to changes in the real
wage. However, as v switches to a strictly positive value the consumption-leisure com-
plementarity appears as Up; > 0 and spending on consumption when young becomes
less attractive as 7t/ > 1. It is this sense that the consumption-leisure complementarity
“causes” an income effect that dominates the substitution effect.

Second, consider the response of the Marshallian demand for leisure to a higher rental

rate of capital (4.3). The substitution effect reduces the demand for leisure whereas the in-
>
<
if 7§ > 1 then (—Us) is large. Accordingly, spending income on consumption when old

does not add much additional utility. Instead, the individual will demand more leisure
(and consumption when young), hence dI/dR > 0. The lifetime utility function (2.1) has
75l = 1. Hence, in accordance with Proposition 11 find dl/dR = 0 = dh/dR.

come effect increases it. Obviously, the total effect hinges on whether 7§/ = 1. Intuitively,

4.2 Consumption-Leisure Complementarity and Individual Savings

To derive the comparative statics of s with respect to R recall that s = w(1 — 1) — ¢¥ from
the budget constraint when young. Hence, a change in R delivers

ds dl - dc/
where both, the demand for leisure and the demand for consumption when young gives
rise to a substitution and an income effect. The following proposition shows that in spite
of this complication the comparative statics of individual savings with respect to the
rental rate of capital can be readily characterized. This delivers the answer to the third

question mentioned above.

Proposition 9 (Properties of Individual Savings)

The optimal plan (c¥,1,c°,s) involves savings that satisfies

wl;
B>y o (1 - 1751) <Cy2;7§1 + 2wl — uzz) 0. (4.6)

Since Uy > 0, the term in parenthesis is strictly positive, and the sign of ds/dR hinges

; 1. As the lifetime utility function (2.1) has 7} = 1, the substitution and

the income effects cancel out and ds/dR = 0.7

on whether 7!

90ne readily verifies for Regime 2 that the result corresponding to (4.6) is ds/dR = 0 < (1—n}l) 20,
where U is evaluated at the optimal choice (c¢¥,0,c?). Hence, when 11'5[ = 1 individual savings are also
independent of the rental rate of capital.
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To sum up, this section shows that the lifetime utility function (2.1) exhibits two impor-
tant (and related) assumptions. The first is 75/ = 1. This assumption implies that the in-
tertemporal elasticity of substitution is equal to unity. Moreover, the demand for leisure
and individual savings are independent of the rental rate of capital. It also simplifies the
response of the demand for leisure to changes in the real wage. The second assumption
is the consumption-leisure complementarity, i.e., v > 0. In conjunction with 1/ = 1 this
implies 7! > 1 and Uy; > 0. Accordingly, the demand for leisure increases in the real
wage.

5 Concluding Remarks

The data for many of today’s industrialized countries point to a significant decline in
hours worked per worker at least over the period 1870-2000. At the same time, real
wages, output, and consumption per capita increased. The present paper argues that the
dual nature of technological progress in conjunction with a consumption-leisure comple-
mentarity explains these stylized facts. On the one hand, technological progress drives
productivity and the growth of real wages and real incomes. On the other hand, it ex-
pands the supply of consumption goods that individuals buy and enjoy during their
leisure time. This increases the value of leisure since consumption and leisure are com-
plements. As a consequence, the individual supply of hours worked declines over time.

I make this point in an OLG-model with two-period lived individuals endowed with per-
period utility functions of the generalized log-log type of Boppart and Krusell (2016). I
show that the resulting lifetime utility function features a consumption-leisure comple-
mentarity when individuals are young.?

My analysis suggests that different experiences across countries may reflect an evolution
through different stages of growth. Poor countries may find themselves in a stage where
wages are so low that individuals supply their entire time endowment to the labor mar-
ket. The desire for a declining supply of hours worked manifests itself only if wages are

2In the spirit of MaCurdy (1981), an alternative lifetime utility function generating an individual supply
of hours worked that declines in the real wage even along a balanced growth path would be

1-9

cy> -1 1+e o \1-6 _
(Y7 0 _(f ) (1) 1
U(Cf'l“‘ﬂl)_ 1-0 Y P

where 6 > 1,e > 0,9 > 0,and B > 0. This lifetime utility function represents preferences over the entire
domain R34 , x [0,1]. However, U does not exhibit a consumption-leisure complementarity and, therefore,
has little intuitive appeal. The wage response of the supply of hours worked stems from the ad hoc assump-
tion 171u = I]él = 0 > 1. In light of Section 4 this assumption also implies that all elements of the optimal
plan hinge on the rental rate of capital. Moreover, one can show that the optimal plan under U gives rise to
continuous, piecewise defined functions. However, the critical wage level hinges on the rental rate of capital,
too. For models with two-period lived overlapping generations this suggests that MaCurdy preferences are
unlikely to provide a tractable alternative to the lifetime utility function of equation (2.1).
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sufficiently high and grow further. These qualitative features are consistent with recent
empirical findings suggesting that hours worked per worker are higher in poor than in
rich countries.

On the theoretical front, my analysis derives the appropriate parameter restrictions so
that the lifetime utility function (2.1) retains its intuitively appealing properties and de-
livers tractable expressions describing individual behavior. In conjunction with a produc-
tion sector that operates under Cobb-Douglas it delivers for Regime 1 a new canonical
OLG-model that is likely to have applications in other economically relevant contexts.

Naturally, the results I derive are subject to some caveats. For instance, the actual amount
of hours worked per worker has often been determined in negotiations between an em-
ployers’” association and a trade union, or by government legislation (Huberman and
Minns (2007), p.544). Technological progress may well create the necessary leeway for
declining hours of work. Nevertheless, whether such a decline is implemented may well
depend on the bargaining power of the negotiating parties or on the political represen-
tation of the working class. The role of these factors for the observed decline of hours
worked is still open.

Moreover, my analysis is moot on the potential role of government activity and its effect
on the individual supply of hours worked over the long run. However, a large literature
following Prescott (2004) shows that payroll taxes, pension schemes, or differential labor
market regulations help understand differences in hours worked across countries.

Finally, the pace of technological progress may itself respond to the decline of hours
worked. Labor becomes scarcer when people work less. Accordingly, wages should
increase. However, as suggested by Hicks (1932), entrepreneurs may respond to such a
tendency with additional investments that raise the productivity of labor. For the econ-
omy as a whole, this may result in accelerated productivity growth (see, e. g., Heer and Ir-
men (2014) and Irmen (2017a)). The question is then whether productivity growth causes
hours of work to decline as in the present paper, or whether the decline in hours worked
per worker induces productivity growth. I leave these issues for future research.
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A Appendix - Proofs

A.1 Proof of Proposition 1

For ease of notation I shall most often suppress the time argument. First, I characterize the unique interior
candidate solution to the maximization problem (2.5). This delivers the expressions stated under Regime
1. Then, I show that these expressions are indeed the interior solution to the maximization problem of a
two-period lived individual if Assumption 1 holds. Second, I turn to the corner solution of Regime 2 and
the continuity of the functions stated in (2.7).

Consider an interior solution, (¢¥,1,¢%s) € R3, x (0,1) x R, to problem (2.5) that satisfies the budget con-
straints (2.6). Since preferences are increasing in ¢® both per-period budget constraints will hold as equalities
and can be merged. Accordingly, such a solution will be identified by the Lagrangian

0

E:lncy+ln(lf¢(171) (cy)%) +BInc® + A {w(lfl)fcy—% . (A1)

Withx = (1-1) (¢¥) T the respective first-order conditions read

% _ M%—A:O, (A2)
g %Aw:o, (A3)
% - wan-e-S=0 (Aa5)

Upon multiplication by (1 — ), condition (A.3) may be written as

Px _
a—gowa—1n " (1

Using the latter to replace A in (A.2) and (A.4) delivers, respectively,

1 1
= (%—1_1/) w(l—1) (A7)
and
¢ =BR (% - 1) w(l—1). (A.8)

With (A.7) and (A.8) in the budget constraint (A.5) I obtain (2.8), i.e., ¢x is time-invariant. Using (2.8) in
(A.7) and (A.8) delivers (2.11). Since the optimal plan satisfies (2.3) and (2.8) I have 1 > v(1 + B), hence,
¢¥ >0.Sincel —v(1+ B) < (1+ B)(1 —v), the budget constraint when young, ¢/ +s = w(1 — 1), delivers
strictly positive savings.

From the definition of x with # = 1 — I, T have ¢/ = (xh™1!) . Replacing ¢¥ with this expression in (2.11)
and solving for h delivers /; as stated under Regime 1. Clearly, i; < 1 as long as w; > w,. Finally, using h;
in (2.11) delivers cty, s¢, and c‘t’Jrl = Ryy15¢-
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To see that the solution identified by the Lagrangian (A.1) is indeed a global maximum on P consider the
leading principal minors of the Hessian matrix of U (¢%,1,¢%), i.e.,

0 (1—v—¢x)? +vgx (1 — Px)
D1 (Y1, ¢ = —
1 ( ) (@ —v)(1—gx)?
0 2(1—2v—(1—v)px
Dy (V,1,¢%) = ‘f’@ 7(2 ):P)S,
(c¥) (1—v)"(1—¢x)
D3 (cy,l,c”) _ _LD2 (Cy,l,c")_

(c0)?
First, we have —Dq (¢¥,1,¢°) > 0. Second, observe that D, (c¥,1,¢°) > 0 and —Ds3 (c¢¥,1,¢°) > 0 hold if and
only if condition (2.4) holds. Hence, U is strictly concave for all (¢¥,1,¢°) € P.

What remains to be shown is that the solution identified by the Lagrangian satisfies condition (2.4). With ¢x
of (2.8) this is the case if and only if
1-2v 1+B8)1—-v)
>
1-v = 1+1+8)(1—-v)

or
(1+B)—v(B+B)+1>0.
It is not difficult to show that the latter condition is satisfied if and only if Assumption 1 holds.

From the expression of /i under Regime 1 it is obvious that ; > 1 if w; < w.. Hence, for a real wage below
w, the constraint, I > 0 (h; < 1) becomes binding, and the optimal plan involves I = 0 and i; = 1. Moreover,
consumption when young and old (and A) are determined by conditions (A.2), (A.3), and (A.5). Savings
result form the budget constraint when young. This procedure delivers

P (H_ﬁ(lv) (1¢xm)) . o)

17vf¢xﬁ

which coincides with the expression stated under Regime 2 since x = (¢¥) 7. From (A.9) one readily verifies
that ¢ (w), hence, s(w) and ¢°(w, R) exists for all w > 0. Moreover, under Assumption 1, U (¢¥,1,¢°) is
strictly concave for all (¢¥,1,¢°) € P since Uy (¢¥,0,¢°) = Dy (¢¥,0,¢%) < 0, Uzz (¢¥,0,¢°%) = —ﬁ/(c‘))2 <0,
and U13 =0.

Continuity of the functions stated in (2.7) follows from Theorem of the Maximum.

Finally, observe that members of cohort 0 satisfy their budget constraint when old as equality, i. e., we have
c§ = Rysg > 0. ]

A.2 Proof of Proposition 2

Follows from a simple application of the implicit function theorem to the expressions of Regime 2 and by
inspection of those of Regime 1. |

A.3 Proof of Proposition 3

Consider h; of Regime 1. It holds that

o azhy oy (1+v)w, "
3~ apz <0 M T raTarpa- A varp) "
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as dz/d¢ > 0.
As to ¢/ one finds from (2.11) that dc} /d¢ < 0 since dh; /d¢ < 0. Moreover,

ay 1—1/17
o ___wi-y)

B (1+0+B)(1-v))z

As to s; one finds from (2.11) that ds;/d¢ < 0 since dh;/9d¢ < 0. Moreover, since the marginal propensity to
save and h; increase in B we have ds; /98 > 0.

Finally, consider ¢ ;. Since ¢f ; = Ry 15t, the qualitative results of the comparative statics for s; apply here,
too.

For Regime 2 one obtains the comparative statics for ¢ and B from a straightforward application of the
implicit function theorem. |

A.4 Proof of Proposition 4

Immediate from the aggregate demand for hours worked of (3.3), the aggregate supply of hours worked of
(3.4), and the definition of k;. |

A.5 Proof of Proposition 5

To derive (3.10) use Proposition 1 and the equilibrium wage, @;, of Proposition 4 to express (3.7) as

1

Bt (r(— )] )
AFVLkT = Ky
(1+p)(1-v)
Division by A};lv L;,1 delivers the desired result. Since y(1 —v)/ (1 — qv) < 1 the equilibrium sequence is
monotonous and the steady state is stable. |

A.6 Proof of Proposition 6

The proof of statement a) - c) follow from Proposition 1, Proposition 4, the capital market equilibrium con-
dition (3.7), and the production function (2.13). As to statement d) observe that for g4 > 0

og*

5 = —(1+84)In(1+g4) <0,

A.7 Proof of Proposition 7

As to the existence of a unique steady state 0 < @** < w, consider Figure A.1. For the indicated parameter
values it depicts the function s (w) and the function w3. From Proposition 1, individual savings are

1

_1(3¢w)\s
(w) M , (A.10)

s (w) = o 1
3»—2(3C”T(7">)3
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Figure A.1: The steady state in Regime 2

where s (w) satisfies s(0) = 0 and 5(1) = 1/3.2! Moreover, from Proposition 2 I have s’ (w;) > 0. Figure A.1

reveals a unique intersection at @** > 0. Approximatively, it occurs at @** = 0.55 and s (¥**) = 0.167.

To prove the local stability of the steady state I derive from (3.16) that
dpyy 1 ( s' (W)
W3\ fs (@)
The function s (w;) satisfies

16(wy —s) —5-22/3 . /3 (wy —s)*/3
12 —-4-22/3./3.- Yw; —s
Then, implicit differentiation and evaluation at the steady state delivers s’ (%**) = .339. Hence, with (3.16)

= 1 <W) =0.372 < 1.
3\ [s (1))

7wt:0.

A4
ddy

2
W =1w** 3

Accordingly, the steady state is locally stable.

Global stability over the domain w; € (0,1) follows since s(0) = 0, s(1) = 1/3, s'(w) > 0, and

. db
lim tfl =00
w—0 Ay

21This follows since ¥ (w) is implicitly given by

N|—

1
wfr )

3¢y 3
372<§)

with ¢¥(0) = 0 and ¢¥(1) = 2/3. Moreover, in Regime 2 the budget when young dictates s = w — ¢¥.
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A.8 Proof of Proposition 8

The optimal plan (c?,1,c%,s) that maximizes U (c¢¥,1,¢°) subject to the constraints ¢/ +s = w(1 — 1) and
¢® = Rs, solves

max U (Y, ,R(w(1-1)—¢c")).
cv,1€[0,]]

The respective first-order sufficient conditions are

¥ U; —RU3 =0,
(A.11)
l: U2 — RZUU3 =0,
where U is evaluated at (¢Y, [, R (w(1 —1) — ¢¥)).
Total differentiation of the two equations (A.11) delivers the comparative statics
dl D} dl Dk
w-D ™ &™=D’
where D, Déu, and D% are the following determinants
Uy + R2Ug; Uy 4+ R%wlsz
D = , (A.12)
Uy + RZZUU33 U + R2w2U33
Uy + R?Us3 R%(1—-1)Uss
D!, = , (A.13)
Uy +R?wlss R (Us+ Rw(1—1)Uss)
U11+R2U33 U3+R(w(1—l) —Cy) Uss
Dl = , (A.14)
Uy + R?wlzz  w (Uz + R(w(1—1) —c¥) Usz)

all evaluated at the optimal plan (c¥,1,c?, s) that satisfies (A.11) and the two constraints.
Since U is strictly quasi-concave it follows that

D = Uy (uzz + R2w2U33) + R2Uss Uy, — (Upp)? — 2R2wljpUsg > 0.

As to Dé,, I find from (A.13) that

Dgu = (U11 + R2U33) R (U3 + RZU(l — Z)U33) — (U21 + RZwU33) R? (1 - l) Uss,

gl N P W (g
1+ 1} <1+Rcy<1 17§J>>+U1 (1-1)

Since the term preceding the brackets is strictly positive I obtain

0 1 u
DLZ0 & —1+4¥ <1+(Rccy) (1—’7u>>+uzll(1—l)§o.
3

—R2Us3,

37



Since, D > 0 the sign of dI/dw is determined by condition (4.2).

As to D% I obtain from (A.14) that

Dy (ull + R2U33> w(Us + R (w(l—1)—c’)Us3) - <U21 + RzWUss) (Us + R (w(1—1) —c¥) Us3),

(Us + ¢’Usz) (wlyy — Uy),

U3 [(1—'751) <%’7§I+U21)}r

where use is made of the budget constraints and (A.11). Since Uz > 0 and D > 0 the sign of dl/dR is
determined by condition (4.3). ]

A.9 Proof of Proposition 9

In light of (4.5) the effect of a change in R on s is given by

ds D% ng
drR D D’
where
Uz + R (w(l—1)—c¥)Uss U12+R2wll33
Dy = (A.15)

w(Uz+R(w(1—1)—c¥)Uszz) Uy + RPw?Uss

evaluated at the triple (c¢¥,1,¢?) that satisfies (A.11) and ¢ = R (w(1 —I) — ¢¥). One finds that

D?{V = U3 (1 — 17:15’[) (UZZ — wllu) .
Hence,
A Al de
drR dR dR
u.
U3 (1 - ”él) (Tyzﬂil + U21> U3 (1 - 17?1,1) (U22 — wUlz)
= w —
D D
U3 u wllz u
- 2 (1 _— ) {7’71 1 2wy — Up | . (A.16)
Since Uz > 0 and D > 0 the sign of ds/dR is determined by (4.6). ]
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