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1 Introduction

In various contexts, individuals, firms or institutions compete for partners in matching
markets, and must undertake costly investments prior to matching. These investments
render them more attractive to the other side, thus increasing the chance of getting a
desirable match. For example, individuals invest resources in education and training
with the aim of getting an attractive job, and employers improve their infrastructure
in order to attract better qualified and more productive job candidates. The two-sided
competition in education markets and in the marriage market, as well as the competition
for new business partners, are other examples of this phenomenon.

This paper studies quantitative properties of such bilateral equilibrium investment
behavior. We consider two-sided matching contests with incomplete information about
complementary productive types, and with arbitrary numbers of participants. In our
model, each agent’s utility depends on his/her partner’s pre-match investment and vice-
versa, and these bilateral external benefits induce an investment multiplier effect.

The multiplier effect depends in a complex way on agents’ uncertainty about their
rank in their own population and about the types and investments of potential partners.
Nevertheless, we can show that some of its key features are independent of the distri-
butions from which agents’ types are drawn. Specifically, the correspondence between
investment functions on the two market sides is largely independent of the respective
type distributions.

We also quantify how the strength of the multiplier effect depends on market size.
Intuitively, in a larger market where agents face less uncertainty about their competitor’s
types competition intensifies, accompanied by an increased feedback effect of invest-
ments. Finally, we analyze the interaction of the multiplier effect with other important
factors of the environment such as the costs and benefits of investment, and the signaling
incentives induced by the competition for more productive partners.

Two different functions of pre-match investments have been emphasized in the liter-
ature. First, in situations in which agents care about underlying, hidden characteristics
of their potential partners, privately informed parties may use investments as signals

(Spence 1973). Signaling can induce more efficient matchings, but this benefit is par-
tially offset - and may even be outweighed - by the signaling costs (Hoppe, Moldovanu
and Sela 2009). On the other hand, in many contexts, agents also derive value from their
partner’s prior investment, so that investments play a direct productive role (e.g., Peters
and Siow 2002; Bhaskar and Hopkins 2016). Most pre-match investments observed in
reality have both a signaling and a productive function (Hopkins 2012).

Combining the signaling model of Hoppe, Moldovanu and Sela (2009, henceforth
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HMS) and the investment model of Peters (2007), we study a two-sided matching con-

test with an NTU (nontransferable utility) matching market and the following main
features.

1. There is a finite number of agents on either side of the market, called men and
women, respectively. Men and women are characterized by privately known,
linearly ordered types that are complementary in the production of output. Con-
sequently, the matching that maximizes aggregate output is positively assortative
in types. Signaling can be sustained, as in HMS, without assuming heterogeneity
in investment costs.1 Types are drawn i.i.d. from two commonly known distri-
butions. We study equilibria in which all agents on the same side of the market
use the same, strictly increasing investment strategy so that positively assortative
matching based on observable investments implies positively assortative match-
ing of types.

2. Unlike in the HMS model, however, investments are not completely wasteful
signals in the present model: they generate benefits for partners that are increasing
in the level of investment. As in the complete information setting of Peters (2007),
we assume that these benefits enter agents’ utilities additively.

For the case in which the external benefits to partners are linear functions of in-
vestments, we derive a sharp condition for the existence of a side-symmetric, strictly
separating equilibrium, and we find the unique equilibrium in closed form. Existence
hinges on the strength of the multiplier effect which is determined by the size of the
market in conjunction with the parameters specifying the marginal benefits/costs of in-
vestment: since higher investments on one side of the market induce higher investment
on the other side and vice-versa, the reinforcing process need not necessarily converge
to equilibrium.2 For most cases of practical interest, existence is not an issue, but the
increases in investment needed to signal small quality differences may still be very large
even in markets of moderate size. A related phenomenon currently seems to arise in the
case of US colleges. The New York Times speaks of a ‘paradox’ which in our model,
however, occurs in equilibrium: “Typically, fierce market competition leads to lower
prices, but among elite schools, the opposite occurs, paradoxically. They often find that
raising prices enables them to offer greater benefits to the most coveted potential stu-
dents. (It also allows them to take part in the amenities race: nicer dorms, better food,

1The type-independent marginal cost of investment is normalized to 1.
2This is similar to the occurrence of “ruinous” gift exchanges, as documented in the anthropological

literature following Boas (1897) and Mauss (1935): “A gives 10 blankets to B; after an interval of time
B gives 20 blankets to A... and so it goes on with the number of blankets being given increasing at a
geometric rate” (see Gregory, 1980).
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a climbing wall: things that are regarded as essential to attracting those coveted stu-
dents.)”3 Investments into students’ amenities (and students’ fees) thus steeply increase
across competitors in order to signal (probably much smaller) differences in quality.

We identify the quantity determining the strength of the multiplier effect (in combi-
nation with the parameters describing the marginal benefits of investment) as the spec-

tral radius of a matrix whose components are differences among weighted moments of
adjacent order statistics from a uniform distribution. Building on the characterization
for the case of linear external benefits, we then derive further quantitative results about
equilibrium utilities and efficiency properties of investments in the more general model
with concave external benefits, distinguishing three cases that correspond to qualita-
tively different productive roles of investment.

For environments in which investments are “truly” productive in the sense that all
Pareto efficient and individually rational investments for a given pair of agents are
strictly positive (i.e., exceed the privately optimal investments), we establish lower
bounds on equilibrium investments that depend only on the numbers of men and women
and on the benefits/costs of investment. These bounds provide novel, quantitative in-
sights into how competition, and in particular how the multiplier effect due to external
benefits, alleviate the hold-up problem in small markets with productive investments.

For matching contests in which investments are partially wasteful, we identify the
exact asymptotic behavior of equilibrium utilities as the numbers of men and women go
to infinity. In those cases, equilibrium utilities converge to those in the unique equilib-
rium of a continuum model, for which the return to any possible investment is certain.
This shows in particular that, even though investments are only partially wasteful, the
entire difference between aggregate match surplus and aggregate information rents gets
dissipated through competition.

If the marginal benefit from investment is constant and equal to the marginal cost
(called below the transferable utility or TU investment case), the continuum model does
not even admit a side-symmetric strictly separating equilibrium: the intense competition
together with the certainty of returns drive investments to infinity. However, such an
equilibrium exists in any finite market with the same characteristics! Our main result for
this case demonstrates that in large, balanced markets, the difference between aggregate
match surplus and aggregate information rents is always shared fifty-fifty between men
and women, irrespectively of other economic aspects such as the shares governing the
division of physical surplus in each matched pair and the distributions of types.

3Davidson, Adam (2015): Is College Tuition Really Too High? In: New York Times, 08 Sept 2015.
https://www.nytimes.com/2015/09/13/magazine/is-college-tuition-too-high.html
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Related Literature

Considering one side of the market only, our agents are in a contest situation (see e.g.
the survey of Konrad 2007): they compete by means of sunk investments for heteroge-
neous “prizes,” which correspond to matches with the various potential partners. Recog-
nizing this analogy, a sizeable literature has studied pre-match investment problems as
matching contests, where agents on both sides of a two-sided market make observable
investments and are then matched positive assortatively on the basis of these invest-
ments: the highest ranked worker matches with the highest ranked firm, the second-
highest ranked worker matches with the second-highest ranked firm, and so on. In
these papers, positively assortative matching based on investments is typically assumed,
but it also corresponds to the stable outcome of a frictionless matching market (post-
investment) with nontransferable utility. This is the case for the complete information
models of Peters and Siow (2002), Peters (2007), and Bhaskar and Hopkins (2016),
in which an agent who invests more generates higher benefits for partners, and also
(in equilibrium) for the model of HMS, who assume that investments are completely
wasteful signals about hidden characteristics.

Whenever investments generate external benefits, two-sided matching contests are
much more complex than standard contests with exogenously given prizes because
workers’ valuations for the different prizes (i.e., jobs) depend then on firms’ invest-
ments and vice versa (Peters 2007). This interdependence renders the analysis of non-
cooperative equilibrium behavior in markets with a finite number of participants (at least
two agents on each side of the market) challenging.4 With a few important exceptions
(Peters 2007, 2011; Bhaskar and Hopkins 2016; Cole, Mailath and Postlewaite 2001b;
Felli and Roberts 2016), the literature on pre-match investment problems has circum-
vented this difficulty by focusing on continuum models in which agents behave com-
petitively (e.g., Cole, Mailath and Postlewaite 2001a; Peters and Siow 2002; Nöldeke
and Samuelson 2015; Dizdar 2017).

The work of Peters (2007, 2011) demonstrates that non-cooperative equilibrium in-
vestments in very large (but finite) two-sided matching contests can be quite different
from the investments predicted by a continuum model with competitive agents. More
precisely, for models without signaling concerns and with productive investments, Pe-
ters shows that equilibrium investments in unbalanced matching contests generally do
not converge to competitive (or hedonic) equilibrium investments as the numbers of
men and women go to infinity. In particular, agents at the bottom of the distributions

4Most of the contracting literature has focused on one pair in isolation, e.g. Che and Hausch (1999)
who study the hold-up problem in a bilateral contracting situation with cooperative investments that
benefit the partner.
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generally over-invest. Similar asymptotic results would, a fortiori, apply in our model
for unbalanced matching contests in the case of productive investments (compare sec-
tion 4.2).

We focus instead on a model in which investments also serve as signals, and on
developing results about the multiplier effect due to external benefits. This permits new
quantitative insights into equilibrium investments and utilities for matching contests
with arbitrary numbers of participants, in particular also in markets of small or moderate
size.

Bhaskar and Hopkins (2016) study a model with an NTU matching market and noisy

investments, building on the tournament model of Lazear and Rosen (1981) rather than
on the literature on all-pay contests. Moreover, they assume complete information and
that agents on either side of the market are homogenous before they invest. While their
main focus is on the analysis of a continuum model,5 they also show (under certain con-
ditions) that the corresponding, unique equilibrium is the limit of the non-cooperative
equilibria for a finite model.6

Olszewski and Siegel (2016) characterize asymptotic bidding behavior in one-sided
all-pay contests with many agents and many prizes. Their results allow for complete or
incomplete information and for ex-ante asymmetric agents, but because the prize struc-
ture is given exogenously these findings cannot be applied to characterize equilibrium
behavior in environments with bilateral investments and external benefits. Moreover,
their results only hold for very large contests where particular approximation techniques
can be applied.

Outline

The paper is organized as follows. In Section 2, we introduce the model and define
various pieces of notation. Section 3 presents the basic equilibrium characterization,
the main results about the investment multiplier effect and the closed form solution for
the case of linear external benefits. Section 4 contains the remaining results for the cases
of partially wasteful, TU or productive investments. All proofs are in the Appendix.

5In particular, they prove the existence of a unique equilibrium and show that agents over-invest unless
the two sides of the market are completely symmetric.

6Cole, Mailath and Postlewaite (2001b) and Felli and Roberts (2016) are less directly related to the
present study because they analyze models with a TU matching market (i.e., the division of joint surplus is
fully flexible) and complete information. Cole, Mailath and Postlewaite (2001b) provide a (non-generic)
condition on the ex ante heterogeneity of agents that ensures the existence of a Pareto efficient equi-
librium, and they study potential coordination failures due to a form of market incompleteness. Felli
and Roberts (2016) characterize the inefficiencies that arise, due to hold-up and coordination problems,
when Cole, Mailath and Postlewaite’s condition is violated, and when the matching is determined (post-
investment) by a particular bidding game.
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2 Model

We consider a matching market with n men and k women, where n≥ k≥ 2. If n = k, we
say that the market is balanced. Otherwise, it is unbalanced. Each man is characterized
by a privately known type m ∈ [m,m], and each woman is characterized by a privately
known type w ∈ [w,w], where 0 ≤ m < m < ∞ and 0 ≤ w < w < ∞. Types are drawn
independently from two commonly known, continuous distributions F (for men) and G

(for women) with densities f and g that are strictly positive and continuous on [m,m]

and [w,w], respectively.
All agents simultaneously make costly investments. Men and women are then

matched positive assortatively according to their investments: the man with the highest
investment is matched to the woman with the highest investment, the man with the sec-
ond highest investment is matched to the woman with the second highest investment,
and so on. Ties are broken randomly.

The net utility of a man with type m and investment βM ∈ R+ who is matched to a
woman with type w and investment βW ∈ R+ is

γMmw+δM(βW )−βM,

and the net utility of the woman in this match is

γW mw+δW (βM)−βW .

Here, γM > 0 and γW = 1−γM > 0 are constants, and δM :R+→R+ and δW :R+→R+

are non-decreasing, concave, twice continuously differentiable and satisfy δM(0) = 0
and δW (0) = 0.7 The net utility of an unmatched man (woman) with investment βM

(βW ) is given by −βM (−βW ).
Note that agents’ utility functions are strictly supermodular in their own type and

their partner’s type, so that investments serve as costly signals in an environment satisfy-
ing the standard single-crossing property. HMS’s model of assortative matching based
on completely wasteful signaling corresponds to the case δM = δW ≡ 0. Following the
complete information models of Peters (2007) and Bashkar and Hopkins (2016), the ex-
ternal benefits enter agents’ utilities additively, and are modeled via the non-decreasing
and type-independent functions δM and δW .8

7Large parts of our basic equilibrium characterization, including the existence result of Theorem 2
(if the limit conditions are replaced by analogous conditions about limit superiors) apply for arbitrary
non-decreasing functions δM and δW , but as all our other quantitative results pertain to linear or concave
benefits, we focus on this case from the outset.

8We could easily replace γMmw and γW mw by arbitrary smooth and strictly supermodular functions.
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2.1 Notation

We need several pieces of notation. R+ (R++) denotes the set of non-negative (strictly
positive) real numbers. We represent vectors in a Euclidean space Rl , l ∈ N, with
respect to a fixed orthonormal basis, and we always label coordinates 0, ..., l− 1. Il is
the identity on Rl , and · is the standard inner product: for u,v∈Rl , u ·v = ∑

l−1
i=0 uivi. For

u ∈ Rl , ||u||∞ and ||u||1 denote the vector’s maximum norm and l1-norm, respectively.9

u > 0 (u≥ 0) means that all entries of u are strictly positive (non-negative). For a matrix
A, ||A||∞ denotes the norm maxu6=0

||Au||∞
||u||∞ , and A > 0 (A≥ 0) means that all entries of A

are strictly positive (non-negative).
We let

M1:n ≤M2:n ≤ ...≤Mn:n

and
W1:k ≤W2:k ≤ ...≤Wk:k

denote the order statistics of men’s and women’s types and write Fi:n (Gi:k) and fi:n (gi:k)
for the c.d.f. and p.d.f. of Mi:n (Wi:k). Thus,

Fi:n(m) =
n

∑
l=i

(
n
l

)
F(m)l(1−F(m))n−l, (1)

and
fi:n(m) = n

(
n−1
i−1

)
F(m)i−1(1−F(m))n−i f (m), (2)

and Gi:k and gi:k are given by analogous formulas. For convenience, we also define
M0:n ≡ 0 and W0:k ≡ 0 , so that F0:n = G0:k is the c.d.f. of a Dirac measure at 0.

Next, we define G : R→ Rk as

G j(w) :=

G j:k−1(w) if j ∈ {1, ...,k−1}

0 if j = 0.

For a woman with type w ∈ [w,w], G j:k−1(w) is the probability that j or more out of the
k−1 other women have a type below her own. The entry G0(w)≡ 0 will be convenient
for representing the fact that women do not have to compete for a match with the k-th

Such a generalization would require only minor changes to the present analysis. By contrast, weakening
additive separability would substantially reduce the analytical tractability of the model.

9That is, ||u||∞ = maxi∈{0,...,l−1} |ui| and ||u||1 = ∑
l−1
i=0 |ui|.
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highest type of man. Similarly, we define F : R→ Rn as

F j(m) :=

Fj:n−1(m) if j ∈ {1, ...,n−1}

0 if j = 0.

For any function h : R→ R, we define ∆h
M ∈ Rn as the vector with entries

∆
h
M,i = E[h(Mi+1:n)−h(Mi:n)], i ∈ {0, ...,n−1}.

Similarly, ∆h
W ∈ Rk is the vector with entries

∆
h
W,i = E[h(Wi+1:k)−h(Wi:k)], i ∈ {0, ...,k−1}.10

3 Equilibrium Characterization

In this section, we provide the basic equilibrium characterization, the main quantitative
results about the investment multiplier effect, and the closed-form solution for the case
of linear benefits. We focus on side-symmetric, strictly separating Bayes-Nash equi-

libria, i.e., equilibria where all men use the same, strictly increasing strategy and all
women use the same, strictly increasing strategy.11 Any such equilibrium implements
the surplus-maximizing, positive assortative matching of types. We denote equilibrium
strategies by bM : [m,m]→ R+ (for men) and bW : [w,w]→ R+ (for women).

Suppose that all women use the same, strictly increasing strategy bW . Then, the
investment game among men is equivalent to an all-pay auction with incomplete infor-
mation, n ex-ante symmetric bidders and k heterogeneous prizes.

If n = k, every man is guaranteed to get at least a match with the worst-ranked
partner. For a man with type m, the expected utility from this match (the “k-th prize”)
is

γMmE[W1:k]+E[δM(bW (W1:k))].

The matches with the better-ranked partners then correspond to the k− 1 prizes that
men actually compete for. In particular, for a man with type m the increase in expected
utility associated with getting a match with the partner of type Wi+1:k rather than with

10We suppress the dependence on n and k in the notation for various quantities, such as ∆h
M , ∆h

W . We
will add superscripts in Section 4.1, where we study sequences of matching contests of different sizes.

11If n > k, strict supermodularity and the fact that men want to avoid staying unmatched ensures that
all side-symmetric equilibria are strictly separating (given that positive assortative matching is assumed
as part of the game). If n = k, there is also a side-symmetric equilibrium in which nobody invests.
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Wi:k, i ∈ {1, ...,k−1}, is

γMmE[Wi+1:k−Wi:k]+E[δM(bW (Wi+1:k))−δM(bW (Wi:k))],

which is strictly increasing in m (strict single crossing). Note how the prizes here are
endogenous and depend on the strategy employed by women. This is the defining char-
acteristic of two-sided contests with investments that generate external benefits.

If n> k, men also have to compete for the “k-th prize”. In either case, existing results
for all-pay auctions with incomplete information and with ex-ante symmetric bidders
imply that the contest among men has a unique symmetric equilibrium. Moreover, the
strictly increasing, differentiable equilibrium strategy can be derived by the standard
first-order approach.12 An analogous argument applies for women, who are guaranteed
to get at least a match with the k-th ranked man, Mn−k+1:n.

Thus, a side-symmetric, strictly separating equilibrium of the matching contest cor-
responds to a pair of functions: bM is the symmetric equilibrium strategy of the all-pay
auction among men for which the prizes are determined by the order statistics induced
by G and by the women’s strategy bW , and bW is the symmetric equilibrium strategy of
the all-pay auction among women for which the prizes are induced by the order statis-
tics of F and by the men’s strategy bM. In equilibrium, the types are matched positive
assortatively: for i ∈ {1, ...,k}, the man with type Mn−k+i:n is matched to the woman
with type Wi:k.

A man with type m gets the worst possible match with probability 1 in equilibrium,13

which implies bM(m) = 0.14 Similarly, bW (w) = 0.15 For a man with type m > m who
assumes that all other agents use strictly increasing, differentiable strategies bM and bW ,
the problem of maximizing his expected utility is to choose an s∈ [m,m] that maximizes

k−1

∑
j=0

Fn−k+ j(s)E[γMm(Wj+1:k−Wj:k)+δM(bW (Wj+1:k))−δM(bW (Wj:k))]−bM(s)

= F̂ (s) · (γMm∆
I1
W +∆

δM◦bW
W )−bM(s), (3)

where we have used the following notation.

Definition 1. For u ∈ Rn, let û ∈ Rk denote the vector with entries ûi = un−k+i, i ∈
{0, ...,k−1}.

12Sufficient conditions are known to be satisfied.
13If n = k, he is matched to the woman with type W1:k. If n > k, he stays unmatched.
14If bM(m) were strictly positive, type m could decrease his investment without changing his expected

match.
15If w > 0, we also formally set bW (0) = 0 (so that bW (W0:k) = 0).
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In equilibrium, the first order condition must be satisfied at s = m, i.e.,

b
′
M(m) = F̂ ′(m) · (γMm∆

I1
W +∆

δM◦bW
W ).

Integrating the above, we obtain

bM(m) = γMaM(m)+ F̂ (m) ·∆δM◦bW
W , (4)

where
aM(m) =

(
mF̂ (m)−

∫ m

m
F̂ (s)ds

)
·∆I1

W .16

An analogous derivation yields

bW (w) = γW aW (w)+G (w) · ∆̂δW ◦bM
M , (5)

where
aW (w) =

(
wG (w)−

∫ w

w
G (s)ds

)
· ∆̂I1

M.

In particular, using (4) we have for all i ∈ {0, ...,n−1}:

∆
δW ◦bM
M,i = E[δW (γMaM(Mi+1:n)+ F̂ (Mi+1:n) ·∆δM◦bW

W )

−δW (γMaM(Mi:n)+ F̂ (Mi:n) ·∆δM◦bW
W )]. (6)

Similarly, (5) implies for all i ∈ {0, ...,k−1}:

∆
δM◦bW
W,i = E[δM(γW aW (Wi+1:k)+G (Wi+1:k) · ∆̂δW ◦bM

M )

−δM(γW aW (Wi:k)+G (Wi:k) · ∆̂δW ◦bM
M )]. (7)

Defining T : Rk
+→ Rn

+ and S : Rk
+→ Rk

+ via

Ti(y) := E[δW (γMaM(Mi+1:n)+ F̂ (Mi+1:n) · y)−δW (γMaM(Mi:n)+ F̂ (Mi:n) · y)],

Si(x) := E[δM(γW aW (Wi+1:k)+G (Wi+1:k) · x)−δM(γW aW (Wi:k)+G (Wi:k) · x)],

we obtain the following fixed point characterization of side-symmetric, strictly separat-
ing equilibria of the matching contest.17

16Note that γMaM is actually the men’s equilibrium strategy in the HMS special case where women’s
investments create no benefits for men (δM ≡ 0).

17T maps Rk
+ into Rn

+ because δW , aM and all coordinate functions of F̂ are non-decreasing. An
analogous observation applies to S.
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Lemma 1. The mapping ι : bW 7→∆
δM◦bW
W is a bijection between the set of side-symmetric,

strictly separating equilibria and the set of fixed points of S◦ T̂ .18

The logic behind this fixed point argument is as follows. The equilibrium strategies
determine the vectors of increments in the matching benefits ∆

δM◦bW
W and ∆̂

δW ◦bM
M . Con-

versely, these increment vectors are sufficient to recover the strategies through (4) and
(5). This is due to the fact that the increment vector of each market side determines the
“prize structure” of the all-pay auction played by the other market side. In particular,
the mappings S and T̂ capture how any increment vector for one market side pins down
a unique increment vector for the other side. In equilibrium, the pair of male and female
increment vectors must be consistent with each other. In other words, ∆

δM◦bW
W is a fixed

point of S◦ T̂ and ∆̂
δW ◦bM
M is a fixed point of T̂ ◦S.

We now turn to the observation that will allow quantitative insights into equilibrium
investment behavior and interim expected utilities. Men face the kind of uncertainty
regarding the types of their competitors (and hence about which of the k heteroge-
neous prizes they will win with any particular investment) that is standard in auctions
or in contests with one-dimensional heterogeneity and ex-ante symmetric agents. In-
terestingly, key aspects of how the heterogeneity of the prizes affects the investment

increments given by

∆
bM
M,i = E[bM(Mi+1:n)−bM(Mi:n)]

= γM∆
aM
M,i +

k−1

∑
j=0

E[Fn−k+ j:n−1(Mi+1:n)−Fn−k+ j:n−1(Mi:n)]∆
δM◦bW
W, j , (8)

turn out to be independent of the distribution F (an analogous observation applies for
women, of course).

To see this, note that F(Mi:n) is distributed like the i-th order statistic of n indepen-
dent draws from the uniform distribution U(0,1) (see, for example, Theorem 1.2.5 in
Reiss 1989), and that Fj:n−1 is a polynomial in F . In particular, E[Fj:n−1(Mi:n)] does not
depend on the distribution F (the term is a weighted sum of moments of the i-th order
statistic of n independent draws from U(0,1)). This motivates the following definitions.

Definition 2.

1. Let Θn ∈Rn×n be the matrix with entries θn,i j = E[Fj:n−1(Mi+1:n)−Fj:n−1(Mi:n)]

for i, j ∈ {0, ...,n− 1}. Let Θn,k ∈ Rn×k be the matrix that results from deleting

18Note that if bW is an equilibrium strategy, the equilibrium strategy for men is uniquely determined
by (4).
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the first n− k columns of Θn, and let Θ̂n,k ∈ Rk×k be the matrix that results from

deleting the first n− k rows of Θn,k.19

2. Let r(n,k)> 0 be the real eigenvalue of the matrix ΘkΘ̂n,k satisfying r(n,k)≥ |λ |
for any other eigenvalue λ of ΘkΘ̂n,k.

The existence of r(n,k) follows because ΘkΘ̂n,k is a non-zero and non-negative
matrix (see Theorems 8.1.22 and 8.3.1 in Horn and Johnson 2013). The following
lemma provides the explicit form of Θn and establishes a somewhat surprising fact:
n+1
n−1Θn is a stochastic matrix.

Lemma 2. i) For all i ∈ {0, ...,n−1},

θn,i j =


0 if j = 0

n−1
2n−1

(n
i)(

n−2
j−1)

( 2n−2
i+ j−1)

if j ∈ {1, ...,n−1}.

ii) n+1
n−1Θn is a (row-)stochastic matrix.

Armed with Definition 2, we can write (8) in the following compact form:

∆
bM
M = γM∆

aM
M +Θn,k∆

δM◦bW
W . (9)

Similarly,

∆
bW
W,i = γW ∆

aW
W,i +

k−1

∑
j=0

E[G j:k−1(Wi+1:k)−G j:k−1(Wi:k)]∆̂
δW ◦bM
M, j

implies
∆

bW
W = γW ∆

aW
W +Θk∆̂

δW ◦bM
M . (10)

Thus, the matrix Θn,k (Θk) captures how the type-independent increments in expected
benefits that men (women) obtain from getting partners with higher investments trans-
late into investment increments (Lemma 4 in the Appendix shows that these distribution-
independent matrices also occur in the explicit representations of ∆

aM
M and ∆

aW
W , i.e., they

are also important for computing bid increments for the standard all pay-auction model
with heterogenous prizes, where an agent’s valuation is multiplicative in his/her type
and the prize he/she gets).

If the benefit functions are linear, i.e., if δM(βW ) = dMβW and δW (βM) = dW βM

for constants dM,dW ≥ 0, (9) and (10) allow us to precisely characterize the strength

19That is, the entries of Θ̂n,k are θn,(n−k+i)(n−k+ j), for i, j ∈ {0, ...,k−1}.
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of the multiplier effect, to obtain a necessary and sufficient condition for equilibrium
existence that depends only on n,k,dM and dW , and to derive the unique equilibrium in
closed form.

Theorem 1 (Equilibrium characterization for linear benefits). Assume that δM(βW ) =

dMβW and δW (βM) = dW βM for constants dM,dW ≥ 0. A side-symmetric, strictly sep-

arating equilibrium exists if and only if dMdW r(n,k)< 1. If it exists, the equilibrium is

unique. The equilibrium strategies satisfy

bM(m) = γMaM(m)+dMF̂ (m) ·∆bW
W

bW (w) = γW aW (w)+dW G (w) · ∆̂bM
M ,

where ∆
bW
W and ∆̂

bM
M are explicitly given by

∆̂
bM
M = (Ik−dMdW Θ̂n,kΘk)

−1(γM∆̂
aM
M +dMγW Θ̂n,k∆

aW
W ) (11)

∆
bW
W = (Ik−dMdW ΘkΘ̂n,k)

−1(γW ∆
aW
W +dW γMΘk∆̂

aM
M ). (12)

Equilibrium existence for r(n,k)dMdW < 1 and the closed form follow easily from
(9), (10) and from r(n,k) being the spectral radius of ΘkΘ̂n,k. The condition r(n,k)dMdW <

1 roughly says that the marginal feedback benefit of an additional unit of investment -
that combines the two marginal external benefits from investment dM and dW and the
multiplier r(n,k) - is less than the marginal cost of investment, which is normalized here
to unity. The proof that no equilibrium exists when the condition does not hold is based
on Farkas’ Lemma and uses the left eigenvector associated with the eigenvalue r(n,k).

Remark 1. Lemma 2 implies r(n,n) = (n−1)2

(n+1)2 , so that we immediately obtain the exact

strength of the multiplier effect in all balanced markets.20 For n > k, we obtain that

r(n,k) ≤ (n−1)(k−1)
(n+1)(k+1) because (n+1)(k+1)

(n−1)(k−1)ΘkΘ̂n,k is sub-stochastic. Moreover, r(n,k) can

easily be computed numerically using the explicit form of Θn.21

For the case of general benefit functions, we establish equilibrium existence using
Brouwer’s Fixed Point Theorem.

Theorem 2. If (n−1)(k−1)
(n+1)(k+1)(limβW→∞ δ ′M(βW ))(limβM→∞ δ ′W (βM)) < 1, then there exists

a side-symmetric, strictly separating equilibrium.

Of course, equilibrium strategies always satisfy (4) and (5), and investment incre-
ments always satisfy (9) and (10).

20Note that for n = k, Θk = Θ̂n,k = Θn.
21For n > k, ΘkΘ̂n,k > 0, so that, by Perron’s Theorem, r(n,k)> |λ | for all other eigenvalues λ . This

makes the numerical computation of r(n,k) particularly straightforward.
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3.1 An Illustration: the 2×2 case

We briefly consider here the balanced case with two agents on each side of the market,
and where δM(βW ) = dMβW and δW (βM) = dW βM for constants dM,dW ≥ 0. We have

Θ2 =

(
0 1

3

0 1
3

)
,

so that r(2,2), the spectral radius of Θ2
2 , is equal to 1

9 . Thus, a side-symmetric, strictly
separating equilibrium exists if and only if dMdW < 9. Moreover, we obtain that

(I2−dMdW Θ
2
2)
−1 =

(
1 − dMdW

9−dMdW

0 9
9−dMdW

)
.

The equilibrium strategies satisfy

bM(m) = γMaM(m)+dMF (m) ·∆bW
W = γMaM(m)+dMF(m)∆bW

W,1 (13)

and
bW (w) = γW aW (w)+dW G (w) ·∆bM

M = γW aW (w)+dW G(w)∆bM
M,1,

where ∆
bW
W and ∆

bM
M are explicitly given by

∆
bM
M =

(
1 − dMdW

9−dMdW

0 9
9−dMdW

)(
γM∆

aM
M +dMγW

(
0 1

3

0 1
3

)
∆

aW
W

)

∆
bW
W =

(
1 − dMdW

9−dMdW

0 9
9−dMdW

)(
γW ∆

aW
W +dW γM

(
0 1

3

0 1
3

)
∆

aM
M

)
.

In particular, the relevant, second-row entries (with index 1) are given by

∆
bM
M,1 =

9
9−dMdW

(γM∆
aM
M,1 +dMγW

1
3

∆
aW
W,1)

and
∆

bW
W,1 =

9
9−dMdW

(γW ∆
aW
W,1 +dW γM

1
3

∆
aM
M,1). (14)

To explicitly pin down the equilibrium strategies, we thus only need to identify the
terms ∆

aM
M,1 and ∆

aW
W,1. From Lemma 4 in the Appendix we obtain

∆
aM
M,1 =

1
3

E[M2:3]E[W2:2−W1:2] and ∆
aW
W,1 =

1
3

E[W2:3]E[M2:2−M1:2]. (15)
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For the remainder of this example, we assume that 0 < d = dM = dW < 1 and that
F = G. We show that if F has “increasing virtual values”, i.e., m− 1−F(m)

f (m) is increasing,
and if m = 0, then E[bM(M1:2)] is strictly increasing in γM. Since dE[bM(M1:2)] equals
the expected utility of a woman with type zero (see Lemma 3), this implies, by continu-
ity of the distribution and of the bid functions, that there is a positive measure of (low)
women types whose expected utility decreases when the match share γW = 1− γM of
women increases! As these types get most of their utility from their partner’s invest-
ments that may be relatively high (rather than from the jointly produced matching out-
put, which is low) an increase in women’s share of output leads to a decrease in men’s
investments, and hence to a decrease in the expected utility of low women types. Here
is the argument.

Proof. Note that E[F(M1:2)] = θ2,01 = 1
3 and that E[aM(M1:2)] =

1
3E[M1:3]E[W2:2−

W1:2] (by Lemma 4 in the Appendix). From this, (13), (14), (15) and the assumptions
that F = G and d = dM = dW , we immediately obtain

E[bM(M1:2)] =

(
γME[M1:3]+d

3γW +d γM

9−d2 E[M2:3]

)
E[M2:2−M1:2]

3
.

Since we are interested in the dependence on γM, we substitute γW = 1− γM and write

E[bM(M1:2)] =

(
3d

9−d2 E[M2:3]+ γM

(
E[M1:3]−

d
3+d

E[M2:3]

))
E[M2:2−M1:2]

3
.

Thus, E[bM(M1:2)] is strictly increasing in γM if and only if ( 3
d +1)E[M1:3] > E[M2:3].

Lemma 5 in the Appendix shows that the assumption of increasing virtual valuations
implies 4E[M1:3]≥ E[M2:3]. This completes the proof.

3.2 Equilibrium Utility

Given the separable form of the utility functions, we can use the standard payoff equiv-
alence result for Bayesian incentive compatible mechanisms to represent interim ex-
pected utilities. For a side-symmetric, strictly separating equilibrium, we let UM(m)

denote the expected utility for a man with type m, and UW (w) denote the expected util-
ity for a woman with type w. We write Ψ(m) ∈ [0,w] for type m’s expected type of
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partner and Φ(w) ∈ [m,m] for type w’s expected type of partner. Thus,

Ψ(m) =

E[W1:n]+F (m) ·∆I1
W if n = k

F̂ (m) ·∆I1
W if n > k.

Φ(w) = E[Mn−k+1:n]+G (w) · ∆̂I1
M.

Lemma 3. Agents’ interim expected utilities satisfy:

UM(m) =

E[δM(bW (W1:n))]+ γMmE[W1:n]+ γM
∫ m

m Ψ(s)ds if n = k

γM
∫ m

m Ψ(s)ds if n > k.
(16)

UW (w) = E[δW (bM(Mn−k+1:n))]+ γW wE[Mn−k+1:n]+ γW

∫ w

w
Φ(s)ds. (17)

For completeness, an explicit proof of Lemma 3 is included in the Appendix. In the
next section, we contrast these interim expected utilities with their counterparts in the
model with a continuum of agents.

4 The Productive Role of Investments

In this section, we develop further quantitative results about equilibrium investments
and expected utilities. We distinguish three cases that correspond to three fundamentally
different productive roles of agents’ investments.

1. (Partially) wasteful investments: δ
′
M(0)δ ′W (0)< 1.

2. Monetary transfers under quasi-linear utility (TU): δM(βW ) = βW and δW (βM) = βM.

3. Productive investments: δ
′
M(0)δ ′W (0)> 1 and lim

βW→∞

δ
′
M(βW ) lim

βM→∞

δ
′
W (βM)< 1.

By Theorem 2, a side-symmetric, strictly separating equilibrium exists for all three
cases.

If δ ′M(0) > 0 and δ ′W (0) > 0 investments generate benefits for partners. Yet, if
δ ′M(0)δ ′W (0)< 1, positive investments are still partially wasteful. In this case, the only
pair of Pareto efficient and individually rational investments for a given pair of agents22

is (βM,βW ) = (0,0), and all (βM,βW ) ∈ R2
++ are inefficient.

In the transferable utility case in which δM(βW ) = βW and δW (βM) = βM, all pos-
sible (βM,βW ) are Pareto efficient for a given pair. By contrast, if δ ′M(0)δ ′W (0) > 1,

22Two agents who are already matched before they invest and can write complete contracts would
make such investments.
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the Pareto efficient and individually rational investments for a given pair of agents are
characterized by

δ
′
M(βW )δ ′W (βM) = 1, δM(βW )−βM ≥ 0 and δW (βM)−βW ≥ 0.

In particular, all these pairs of investments strictly exceed the privately optimal levels
βM = 0 and βW = 0.

4.1 Large Contests with Partially Wasteful or TU Investments

Theorem 1 and further examination of the matrix Θn allow us to obtain precise charac-
terizations of the limit properties of equilibrium utilities, as n and k go to infinity, for
matching contests with partially wasteful or TU investments, and to compare these find-
ings with the results for the limit contest with a continuum of agents. For unbalanced
markets, we have to assume that matching with a partner who does not invest and has
the lowest possible type is not better than staying unmatched, which is formalized here
by setting w = 0.23 To simplify notation, we assume w = 0 also for balanced contests
and let m = 0, but these two assumptions do not matter for any of the results.

Condition 1. w = m = 0.

The Continuum Model

We consider here the limit two-sided matching contest with a continuum of agents. The
distribution of women is G, the distribution of men is F/(1− r) for some r ∈ [0,1),24

and types are private information. Let mr denote the r-th quantile of F (i.e., F(mr) =

r), and let Fr(m) = (F(m)− F(mr))/(1− r) for m ≥ mr. The positively assortative
matching is now described by the matching function

ψr(m) =

0 if m < mr

G−1(Fr(m)) if m≥ mr,

which is strictly increasing on [mr,m] , while types below mr stay unmatched. We let
φr denote its inverse, defined on [0,w].

If all other agents invest according to non-decreasing functions bM : [0,m]→ R+

and bW : [0,w]→ R+ that are strictly increasing on [mr,m] and [0,w], then a man who

23If k is large then E[W1:k]≈ w, so w = 0 implies that a match with the lowest-ranked woman is not a
“large prize” for exogenous reasons (i.e., even if the woman does not invest).

24Thus, the total mass of men is 1/(1− r)≥ 1.
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invests bM(s) knows that he will be matched to a woman with type ψr(s) who makes
an investment bW (ψr(s)). Similarly, a woman who invests bW (s) is matched to a man
with type φr(s) whose investment is bM(φr(s)). Thus, returns to investments are here
certain, a significant difference to the finite case.

Equilibrium strategies must clearly satisfy bM(m) = 0 for m < mr (as these types
stay unmatched for sure). Moreover, if bW (0) = 0 and bM and bW are continuous (as in
the equilibrium for the partially wasteful case, Theorem 3i below), issues related to the
question of how to define returns for investments outside of the ranges bM([0,m]) and
bW ([0,w]) do not arise.25

Theorem 3. Assume that Condition 1 holds.

i) If δ ′M(0)δ ′W (0) < 1, then the continuum model admits a side-symmetric equilib-

rium (bM,bW ) such that bM and bW are continuous, bW (0) = 0, and bM and bW are

strictly increasing and continuously differentiable on [mr,m] and [0,w], respectively.

There is a unique equilibrium with these properties. Agents’ equilibrium utilities are

given by

u(r)M (m) = γM

∫ m

0
ψr(s)ds and u(r)W (w) = γW

∫ w

0
φr(s)ds.

ii) If δM(βW ) = βW and δW (βM) = βM, the continuum model does not admit an

equilibrium that implements the positive assortative matching.

Thus, with partially wasteful investments, assortative matching can arise in equi-
librium. With TU investments (case ii), the continuum model does not admit such an
equilibrium.

Limit Characterizations

We now return to our main focus on finite markets. We fix all characteristics of the
environment other than the number of agents. That is, F , G, γM, γW , δM and δW are
arbitrary but fixed throughout Section 4.1. We use here superscripts to highlight the
dependence of strategies, utilities and expected match partners on n and k, writing b(n,k)M ,
b(n,k)W , a(n,k)M , a(n,k)W , Ψ(n,k), Φ(n,k), U (n,k)

M and U (n,k)
W .

We first show that agents’ expected utilities in large matching contests with partially
wasteful investments converge to the equilibrium utilities for the continuum model:

25In contrast, the definition of off-equilibrium payoffs plays an important role in continuum models
with productive investments, and many different outcomes can potentially be supported as equilibria,
depending on the choice of definition. See Peters (2011) for a detailed discussion of this phenomenon.
His qualitative results that in large (but finite) unbalanced contests with productive investments, almost
all types invest at least weakly (and often strictly) too much compared to (Pareto efficient) hedonic equi-
librium investments immediately imply an analogous property for our model with signaling. A thorough
analysis of asymptotic behavior in this case is beyond the scope of the present study, however.
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Theorem 4. Assume that Condition 1 is satisfied and that δ ′M(0)δ ′W (0) < 1. Then, for

all m ∈ [0,m] and w ∈ [0,w]:

lim
k→∞, k

nk
→1−r

U (nk,k)
M (m) = u(r)M (m) and lim

k→∞, k
nk
→1−r

U (nk,k)
W (w) = u(r)W (w).

In finite markets, a type’s expected utility exceeds his/her information rent γM
∫ m

0 Ψ(n,k)(s)ds

or γW
∫ w

0 Φ(n,k)(s)ds by a constant equal to the expected benefit from the guaranteed
partner’s investment, i.e., by E[δM(b(n,n)W (W1:n))] or 0 for men, and by E[δW (b(n,k)M (Mn−k+1:n))]

for women.26 Theorem 4 shows that this extra utility converges to zero if δ ′M(0)δ ′W (0)<
1, and also that information rents converge to their continuum counterparts.

Even though signals are only partially wasteful, Theorem 4 implies that, asymptot-
ically, the entire difference between total match surplus

S(r) :=
∫ m

mr

mψr(m)
f (m)

1− r
dm

and aggregate information rents

γMR(r)
M + γW R(r)

W ,

where

R(r)
M =

∫ m

mr

(∫ m

0
ψr(s)ds

)
f (m)

1− r
dm and R(r)

W =
∫ w

0

(∫ w

0
φr(s)ds

)
g(w)dw,

gets dissipated, in accordance with the prediction of Theorem 3 (i). Note that the dis-
sipation rate is always the same, no matter what the benefit functions δM and δW are
(as long as the condition δ ′M(0)δ ′W (0) < 1 is satisfied). For example, if γM = γW = 1

2 ,

exactly half the available surplus is dissipated in the limit, exactly as in the HMS model
where signals are completely wasteful and bring no benefit to the other side.

In contrast to these convergence results for partially wasteful investments, the con-
tinuum case differs drastically from the finite case under transferable utility. By part (ii)
of Theorem 3, the continuum model does not admit an equilibrium since investments
grow out of bounds. In the finite model, equilibrium strategies become very steep as
n and k grow. Nevertheless, a unique side-symmetric, strictly separating equilibrium
always exists (by Theorem 1 and r(n,k)< 1).

We now analyze in more detail the equilibrium of large finite markets with TU

26Note that the terms γMmE[W1:n] and γW wE[Mn−k+1:n] (the type-dependent component of the lowest
type’s utility from his/her guaranteed match) in (16) and (17) vanish under Condition 1.
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investments. This amounts here to understand how the expected investments of the
lowest types M1:n and W1:n behave as n goes to infinity.

Note first that ex-post budget balance holds here for each matched pair. In particular,
in any balanced market the sum of all agents’ ex-ante expected utilities must be equal
to the ex-ante expected total match surplus. That is, for all n:

E

[
1
n

n

∑
i=1

Mi:nWi:n

]
=
∫ m

0
U (n,n)

M (m) f (m)dm+
∫ w

0
U (n,n)

W (w)g(w)dw

= E[b(n,n)W (W1:n)]+ γM

∫ m

0

∫ m

0
Ψ

(n,n)(s)ds f (m)dm

+E[b(n,n)M (M1:n)]+ γW

∫ w

0

∫ w

0
Φ

(n,n)(s)dsg(w)dw.

As n→ ∞, the integral terms converge to γMR(0)
M and γW R(0)

W (by Lemma 7 in the Ap-
pendix and the Dominated Convergence Theorem), and the left hand side converges to
S(0) (by the LLN for empirical distributions). Thus,

S(0) = lim
n→∞

(E[b(n,n)M (M1:n)]+E[b(n,n)W (W1:n)])+ γMR(0)
M + γW R(0)

W .

Because R(0)
M and R(0)

W are in fact the aggregated core (or stable) payoffs for men and
women in the continuum model, we must have

S(0) = R(0)
M +R(0)

W .

Thus, we obtain

lim
n→∞

(E[b(n,n)M (M1:n)]+E[b(n,n)W (W1:n)]) = γW R(0)
M + γMR(0)

W > 0.

We show that the difference between the expected investment made by M1:n and the ex-
pected investment made by W1:n converges to 0, i.e., limn→∞(E[b

(n,n)
M (M1:n)]−E[b(n,n)W (W1:n)])=

0, leading to our limit characterization of equilibrium utilities in the TU case.

Theorem 5. Assume that Condition 1 is satisfied, and that δM(βW )= βW and δW (βM)=

βM.

i) In large balanced markets, the (per capita) difference between aggregate surplus

and aggregate information rents is shared approximately fifty-fifty between men and
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women, regardless of F,G and γM: for all m ∈ [0,m] and w ∈ [0,w],

lim
n→∞

U (n,n)
M (m) =

γW R(0)
M + γMR(0)

W
2

+ γM

∫ m

0
ψ0(s)ds,

lim
n→∞

U (n,n)
W (w) =

γW R(0)
M + γMR(0)

W
2

+ γW

∫ w

0
φ0(s)ds.

ii) In large, unbalanced markets, each agent on the short side obtains a fraction close

to 1 of the per capita difference between aggregate surplus and aggregate information

rents (on top of her information rent): for all m ∈ [0,m] and w ∈ [0,w],

lim
k→∞,k<nk,

k
nk
→1−r

U (nk,k)
M (m) = γM

∫ m

0
ψr(s)ds,

lim
k→∞,k<nk,

k
nk
→1−r

U (nk,k)
W (w) = γW R(r)

M + γMR(r)
W + γW

∫ w

0
φr(s)ds.

Theorem 5 (i) relies on subtle properties of the matrix Θn. The unbalanced case
in Theorem 5 (ii) is much simpler because only agents on the short side obtain utility
in excess of information rents, and because only a vanishingly small fraction of total
surplus can get dissipated (the investments made by agents failing to match) in large
markets.

4.2 Bounds on Under-Investment when Investments are Productive

Standard incentives for under-investment (the “hold-up” problem) appear in small match-
ing contests with productive investments (case 3) because the direct benefits from in-
creasing one’s investment are realized by the partner. This problem is, at least partly,
mitigated by the competition on each side of the market for the external benefits of
investments coming from the other side. Moreover, the “exogenous” signaling motive
(the competition for partners with higher types) provides additional incentives. Thus,
stronger signaling incentives may sometimes help to alleviate hold-up problems, in par-
ticular in contests with few participants. In contrast, if the signaling motive is very
strong and if Pareto efficient investments are small, or if n and k are very large, sig-
naling will be associated with over-investment in the usual way, driving investments
(further) beyond Pareto efficient levels for most pairs of types (compare footnote 25).

We use our sharp condition for equilibrium existence in the linear case (Theo-
rem 1) to derive some interesting bounds on under-investment. Note first that in-
vestments (βM,βW ) with δ ′M(βW )δ ′W (βM)> 1 are inefficiently low27 while investments

27There would be a way of marginally increasing both agents’ investments that yields a Pareto im-
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(βM,βW ) ∈ R2
++ for which δ ′M(βW )δ ′W (βM)< 1 correspond to over-investment. More-

over, the level sets Lc := {(βM,βW ) ∈ R2
++|δ ′M(βW )δ ′W (βM) = c} are closer to L1 the

closer c is to 1.
We show first that if r(n,k)δ ′M(0)δ ′W (0) < 1, the competition among n men and

k women does not suffice to significantly alleviate the hold-up problem if signaling
incentives are very small: the multiplier effect due to competition for external benefits
is not strong enough for investments to exceed a bounded multiple of those investments
that agents would make if signals were completely wasteful. We formalize this insight
in Theorem 6, where n, k, δM and δW are fixed, and where the conditions on the supports
of types are necessary and sufficient for signaling incentives to become arbitrarily small
independently of the exact form of F and G.28

Theorem 6. Assume that r(n,k)δ ′M(0)δ ′W (0) < 1. If n = k, m(w−w)→ 0 and (m−
m)w→ 0, or if n > k and mw→ 0, then bM(m)→ 0 and bW (w)→ 0 for any side-

symmetric, strictly separating equilibrium.

By contrast, if r(n,k)δ ′M(0)δ ′W (0)> 1, the multiplier effect is too strong for invest-
ments to get stuck at extremely low levels.

Theorem 7. In any side-symmetric, strictly separating equilibrium, it holds that

r(n,k)δ ′M(bW (w))δ ′W (bM(m))< 1.

Thus, if r(n,k)δ ′M(0)δ ′W (0) > 1, the hold-up problem is at least partly alleviated
by competition, and we obtain a quantitative bound on under-investment. Even with
arbitrarily small signaling concerns, it is guaranteed that the investments made by the
highest types, (bM(m),bW (w)), lie above the level set L1/r(n,k).

5 Conclusion

Our paper contributes to the literature that studies bilateral investment behavior in as-
sortative matching markets. We have provided the first quantitative analysis of the mul-
tiplier effect shaping Bayes-Nash equilibrium investments in two-sided matching con-
tests when the investments create external benefits, and studied how the effect interacts
with agents’ signaling incentives. The complex, interdependent nature of equilibrium
behavior gives rise to interesting effects: for example, in small markets, raising the sur-

provement for the pair.
28Thus, ∆

aM
M and ∆

aW
W converge to zero.
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plus share of one side of the market may lead to a decrease in expected utility of some
agents on that side.

We have identified the spectral radius of a particular matrix of moments of order
statistics as the main driver behind the multiplier effect. This characterization has al-
lowed us to shed new light on the relationship between finite and continuum models
of matching contests by deriving the exact asymptotic behavior of equilibrium utili-
ties, as the numbers of men and women go to infinity, in environments with partially
wasteful or TU investments. Finally, our results also provide novel, quantitative insights
into how competition alleviates the hold-up problem in small markets with productive
investments.

Appendix

Proof of Lemma 1. If bW is an equilibrium strategy, it is immediate from (6), (7) and
the definitions of T and S that ∆

δM◦bW
W is a fixed point of S ◦ T̂ . Moreover, the mapping

is one-to-one (if ι(b1
W ) = ι(b2

W ) for two equilibrium strategies b1
W and b2

W , then (4) and
(5) imply b1

W = b2
W ) and onto: if y∗ is a fixed point of S◦ T̂ , then bM(m) := γMaM(m)+

F̂ (m) · y∗ and bW (w) := γW aW (w) + G (w) · ∆̂δW ◦bM
M constitute equilibrium strategies

satisfying ∆
δM◦bW
W = y∗.

Proof of Lemma 2. i) θn,i0 = 0 is obvious. For j ≥ 1, we first rewrite θn,i j using inte-
gration by parts:29

θn,i j = E[Fj:n−1(Mi+1:n)−Fj:n−1(Mi:n)] =
∫ m

m
Fj:n−1(m)( fi+1:n(m)− fi:n(m))dm

=
∫ m̄

m
(Fi:n(m)−Fi+1:n(m)) f j:n−1(m)dm = E[Fi:n(M j:n−1)−Fi+1:n(M j:n−1)].

Using the identities (1) and (2), it follows that

θn,i j = E[Fi:n(M j:n−1)−Fi+1:n(M j:n−1)]

= E
[(

n
i

)
F i(M j:n−1)(1−F(M j:n−1))

n−i
]

=

(
n
i

)
(n−1)

(
n−2
j−1

)∫ m

m
F i+ j−1(m)(1−F(m))2n−1−i− j f (m)dm

=
n−1

2n−1

(n
i

)(n−2
j−1

)( 2n−2
i+ j−1

) ∫ m

m
fi+ j:2n−1(m)dm =

n−1
2n−1

(n
i

)(n−2
j−1

)( 2n−2
i+ j−1

) .

29Observe that the case i = 0 (so that F0:n ≡ 1 on [m,m]) is covered by the argument.
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ii) Case n=2: The formula from (i) yields θ2,01 = θ2,11 =
1
3 . Thus, 3Θ2 is stochastic.

Case n > 2: The entries of the i-th row of Θn can be reinterpreted in a way that
allows computing the row sum as a telescoping sum. Indeed, for j = 2, ...,n−2:

E[Fj−1:n−2(Mi+1:n+1)−Fj:n−2(Mi+1:n+1)]

=
∫ m

m

(
n−2
j−1

)
F j−1(m)(1−F(m))n−1− j fi+1:n+1(m)dm

=

(
n−2
j−1

)
(n+1)

(
n
i

)∫ m

m
F i+ j−1(m)(1−F(m))2n−1−i− j f (m)dm

=
n+1

2n−1

(n
i

)(n−2
j−1

)( 2n−2
i+ j−1

) =
n+1
n−1

θn,i j.

Similarly, for j = n−1 we find:

E[Fn−2:n−2(Mi+1:n+1)] =
∫ m

m

(
n−2
n−2

)
Fn−2(m) fi+1:n+1(m)dm

=

(
n−2
n−2

)
(n+1)

(
n
i

)∫ m

m
F i+(n−1)−1(m)(1−F(m))2n−1−i−(n−1) f (m)dm

=
n+1

2n−1

(n
i

)(n−2
n−2

)( 2n−2
i+(n−1)−1

) = n+1
n−1

θn,i(n−1).

Finally, for j = 1,

E[1−F1:n−2(Mi+1:n+1)] =
n+1
n−1

θn,i1.

Summing up all terms (including θn,i0 = 0) yields n+1
n−1 ∑

n−1
j=0 θn,i j = 1.

Proof of Theorem 1. If dM = 0, the unique fixed point of S ◦ T̂ is 0, and (11) and (12)
follow immediately from (9) and (10). If dM > 0, the fixed point equation becomes

∆
bW
W = γW ∆

aW
W +dW Θk(γM∆̂

aM
M +dMΘ̂n,k∆

bW
W ),

or
(Ik−dMdW ΘkΘ̂n,k)∆

bW
W = γW ∆

aW
W +dW γMΘk∆̂

aM
M .30 (18)

Case r(n,k)dMdW < 1: r(n,k)dMdW is the spectral radius of dMdW ΘkΘ̂n,k. It fol-
lows that Ik− dMdW ΘkΘ̂n,k is invertible, so that (18) yields (12). We must also show
∆

bW
W ≥ 0. As r(n,k)dMdW < 1, (Ik−dMdW ΘkΘ̂n,k)

−1 is given by the convergent series

∑
∞
l=0(dMdW ΘkΘ̂n,k)

l . Thus, (Ik−dMdW ΘkΘ̂n,k)
−1 ≥ 0. Moreover, ∆

aW
W > 0 because aW

30We have derived the equation directly from (9) and (10). This is equivalent to writing down the fixed
point equation S◦ T̂ (y) = y for y = dM∆

bW
W and then dividing this equation by the constant dM > 0.
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is strictly increasing (for j≥ 1, wG j(w)−
∫ w

w G j(s)ds is strictly increasing, and ∆̂
I1
M > 0).

Similarly, ∆̂
aM
M > 0. As Θk ≥ 0, it follows that γW ∆

aW
W +dW γMΘk∆̂

aM
M > 0. Thus, ∆

bW
W ≥ 0

(in fact, ∆
bW
W > 0, because the diagonal entries of (Ik−dMdW ΘkΘ̂n,k)

−1 are positive).
Finally, the explicit form of ∆̂

bM
M , stated in (11), follows from plugging (10) into (9).

Case r(n,k)dMdW ≥ 1: let z := γW ∆
aW
W +dW γMΘk∆̂

aM
M . We have already shown that

z > 0. We have to show that the linear system of equations (Ik− dMdW ΘkΘ̂n,k)v = z

has no solution v ∈ Rk
+. This follows from Farkas’ Lemma and from the fact that the

non-negative and non-zero matrix ΘkΘ̂n,k, has a non-negative, non-zero left eigenvec-
tor w(n,k) associated with r(n,k), i.e., w(n,k)T ΘkΘ̂n,k = r(n,k)w(n,k)T (see Theorem
8.3.1 in Horn and Johnson 2013).31 It follows that

w(n,k)T (Ik−dMdW ΘkΘ̂n,k) = w(n,k)T (1− r(n,k)dMdW )≤ 0 and w(n,k)T z > 0.

Thus, by Farkas’ Lemma, (Ik− dMdW ΘkΘ̂n,k)v = z has no solution v ≥ 0, which con-
cludes the proof for the case r(n,k)dMdW ≥ 1.

Proof of Theorem 2. We must show that S◦ T̂ has a fixed point. Recall that

T̂i(y)=E[δW (γMaM(Mn−k+i+1:n)+F̂ (Mn−k+i+1:n)·y)−δW (γMaM(Mn−k+i:n)+F̂ (Mn−k+i:n)·y)],

and

Si(x) = E[δM(γW aW (Wi+1:k)+G (Wi+1:k) · x)−δM(γW aW (Wi:k)+G (Wi:k) · x)],

for i ∈ {0, ...,k−1}. We prove the theorem for n > k first. In this case F̂0 = Fn−k 6≡ 0,
so that T̂ (y) depends on all entries of y. T̂0(y) has no effect on S(T̂ (y)) because G0 ≡ 0.
Given a vector v = (v0, ...,vk−1) ∈ Rk, we write v−0 for the vector (v1, ...,vk−1).

By assumption, (n−1)(k−1)
(n+1)(k+1)(limb→∞ δ ′M(b))(limb→∞ δ ′W (b)) < 1. We pick two con-

stants, CM and CW , such that limb→∞ δ ′M(b)<CM, limb→∞ δ ′W (b)<CW and (n−1)(k−1)
(n+1)(k+1)CWCM <

1. Then, there are constants 0 < b1 < b2 < ∞ such that i) for all b ≥ b1, δ ′M(b) ≤CM

and δ ′W (b)≤CW , and ii) for all b≥ b2, δM(b)≤CMb.
For each y ∈ Rk

+, γMaM(Mn−k+1:n) + F̂ (Mn−k+1:n) · y is the smallest one of the
terms γMaM(Mn−k+i:n)+ F̂ (Mn−k+i:n) · y, i ∈ {1, ...,k}, that occur in the definition of
T̂−0. Moreover, the smallest entry of F̂ (Mn−k+1:n) = (Fn−k+ j:n−1(Mn−k+1:n)) j=0,...,k−1

31In fact, Lemma 2 implies that for n > k, ΘkΘ̂n,k > 0, so that w(n,k) > 0 by Perron’s Theorem
(Theorem 8.2.8 in Horn and Johnson 2013). For n = k, the first column of ΘkΘ̂n,k = Θ2

n is zero, and the
(n−1)× (n−1)-submatrix that results from deleting the first row and the first column is positive. Thus,
by Perron’s Theorem (applied to the submatrix), w(n,n)0 = 0 and w(n,n)i > 0 for i ∈ {1, ...,n−1}.
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is Fn−1:n−1(Mn−k+1:n), because Fn−1:n−1 first-order stochastically dominates the distri-
butions of the lower order statistics. This implies γMaM(Mn−k+1:n)+F̂ (Mn−k+1:n) ·y≥
||y||∞Fn−1:n−1(Mn−k+1:n). For b≥ b1, we define m(b) via bFn−1:n−1(m(b)) = b1. m(b)

is decreasing in b and converges to m as b→ ∞. We split every T̂i(y), i ∈ {1, ...,k−1},
into two terms: T̂i(y) = AT̂

i (y)+ ε T̂
i (y), where

AT̂
i (y) = E[(δW (γMaM(Mn−k+i+1:n)+ F̂ (Mn−k+i+1:n) · y)

− δW (γMaM(Mn−k+i:n)+ F̂ (Mn−k+i:n) · y))I{Mn−k+1:n≥m(||y||∞)}],

and

ε
T̂
i (y) = E[(δW (γMaM(Mn−k+i+1:n)+ F̂ (Mn−k+i+1:n) · y)

− δW (γMaM(Mn−k+i:n)+ F̂ (Mn−k+i:n) · y))I{Mn−k+1:n<m(||y||∞)}],

where I{·} is an indicator function. We use the mean value theorem and the bound
δ ′W (b)≤CW for b > b1 to obtain an upper bound for AT̂

i (y):

AT̂
i (y) ≤ CW E[(γM(aM(Mn−k+i+1:n)−aM(Mn−k+i:n))

+ (F̂ (Mn−k+i+1:n)− F̂ (Mn−k+i:n)) · y)I{Mn−k+1:n≥m(|y|∞)}]

≤ CW

(
γM∆̂

aM
M,i +

k−1

∑
j=0

E[Fn−k+ j:n−1(Mn−k+i+1:n)−Fn−k+ j:n−1(Mn−k+i:n)]y j

)
= CW

(
γM∆̂

aM
M,i +(Θ̂n,ky)i

)

The terms ε T̂
i (y) are of order o(||y||∞) for ||y||∞→ ∞. Indeed, ε T̂

i (y)> 0 and

k−1

∑
i=1

ε
T̂
i (y) ≤ E[(δW (γMaM(Mn:n)+ F̂ (Mn:n) · y))I{Mn−k+1:n<m(||y||∞)}]

≤ δW (γMaM(m)+ k||y||∞)E[I{Mn−k+1:n<m(||y||∞)}].

As ||y||∞→ ∞, the first factor is of order O(||y||∞), and the second is of order o(1).
Thus, their product is of order o(||y||∞). Combining the estimates, we get

T̂i(y)≤CW (Θ̂n,ky)i +o(||y||∞).
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In particular,

||T̂−0(y)||∞ ≤CW
n−1
n+1

||y||∞ +o(||y||∞),

because n+1
n−1Θn is a stochastic matrix. Consider S then. γW aW (W1:k)+G (W1:k) · x is

the smallest non-zero term among the terms γW aW (Wi:k)+G (Wi:k) · x = γW aW (Wi:k)+

G−0(Wi:k)·x−0, i∈{0, ...,k}, that occur in the definition of S (and γW aW (W0:k)+G (W0:k)·
x = 0). Moreover, γW aW (W1:k) + G−0(W1:k) · x−0 ≥ ||x−0||∞Gk−1:k−1(W1:k). For l ∈
{1,2}, and for b≥ bl , we define wl(b) via bGk−1:k−1(wl(b)) = bl .

We discuss the terms Si(x) for i≥ 1 first. We write Si(x) = AS
i (x)+ εS

i (x), where

AS
i (x) = E[(δM(γW aW (Wi+1:k)+G−0(Wi+1:k) · x−0)

− δM(γW aW (Wi:k)+G−0(Wi:k) · x−0))I{W1:k≥w1(||x−0||∞)}],

and

ε
S
i (x) = E[(δM(γW aW (Wi+1:k)+G−0(Wi+1:k) · x−0)

− δM(γW aW (Wi:k)+G−0(Wi:k) · x−0))I{W1:k<w1(||x−0||∞)}]

Analogously to the estimates for T̂ , it follows that

AS
i (x) ≤ CM

(
γW ∆

aW
W,i +

k−1

∑
j=1

E[G j:k−1(Wi+1:k)−G j:k−1(Wi:k)]x j

)

= CM

(
γW ∆

aW
W,i +

k−1

∑
j=1

θk,i jx j

)
,

and εS
i (x) = o(||x−0||∞). Thus, Si(x)≤CM ∑

k−1
j=1 θk,i jx j +o(||x−0||∞) for i≥ 1. We then

write S0(x), using w2, as S0(x) = AS
0(x)+ εS

0 (x), where

AS
0(x) = E[(δM(γW aW (W1:k)+G−0(W1:k) · x−0))I{W1:k≥w2(||x−0||∞)}],

and
ε

S
0 (x) = E[(δM(γW aW (W1:k)+G−0(W1:k) · x−0))I{W1:k<w2(||x−0||∞)}].

Then εS
0 (x) = o(||x−0||∞), and AS

0(x) ≤ CM

(
γW ∆

aW
W,0 +∑

k−1
j=1 θk,0 jx j

)
. Combining all

estimates for S, and using that k+1
k−1Θk is stochastic, we get

||S(x)||∞ ≤CM
k−1
k+1

||x−0||∞ +o(||x−0||∞),
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and thus

||S(T̂ (y))||∞ ≤ CM
k−1
k+1

||T̂−0(y)||∞ +o(||T̂−0(y)||∞)

≤ CMCW
(k−1)(n−1)
(k+1)(n+1)

||y||∞ +o(||y||∞).

As CMCW
(k−1)(n−1)
(k+1)(n+1) < 1, it follows that there is some K1 < ∞ such that for all y ∈ Rk

+

with ||y||∞ ≥ K1, ||S(T̂ (y))||∞ ≤ ||y||∞. For any K > 0, let BK(0) be the closure of the
ball of radius K in Rk with respect to || · ||∞. T̂ (BK1(0)∩Rk

+) is compact (BK1(0)∩Rk
+ is

compact and T̂ is continuous). Taken together, the two observations imply that there is
some K2 (possibly greater than K1), such that S(T̂ (BK2(0)∩Rk

+))⊂ BK2(0)∩Rk
+. Thus,

the continuous mapping S◦ T̂ maps the compact and convex set BK2(0)∩Rk
+ into itself.

By Brouwer’s Theorem, S◦ T̂ has a fixed point, which concludes the proof for the case
n > k.

The proof for n= k is analogous. In this case, both y0 (corresponding to ∆
δM◦bW
W,0 ) and

x0 (corresponding to ∆̂
δW ◦bM
M,0 ) are irrelevant. Hence, it suffices to show that S−0 ◦ T̂−0 :

Rk−1
+ → Rk−1

+ has a fixed point, and the arguments to obtain the estimates for applying
Brouwer’s Theorem use only the bounds δ ′M(b)≤CM and δ ′W (b)≤CW for b≥ b1.

Lemma 4. ∆
aW
W and ∆

aM
M satisfy

∆
aW
W,i =

k−1

∑
j=1

θk,i jE[Wi+ j:2k−1]∆̂
I1
M, j for i ∈ {0, ...,k−1},

∆
aM
M,i =

k−1

∑
j=0

θn,i(n−k+ j)E[Mi+n−k+ j:2n−1]∆
I1
W, j for i ∈ {0, ...,n−1}.

Proof of Lemma 4. i) Consider i≥ 1 first. Using wG j:k−1(w)−
∫ w

w G j:k−1(s)ds=
∫ w

w sg j:k−1(s)ds
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for j ≥ 1, we find:

∆
aW
W,i = E[aW (Wi+1:k)−aW (Wi:k)]

=
k−1

∑
j=1

E
[∫ Wi+1:k

w
sg j:k−1(s)ds−

∫ Wi:k

w
sg j:k−1(s)ds

]
∆̂

I1
M, j

=
k−1

∑
j=1

(∫ w

w

(∫ w

w
sg j:k−1(s)ds

)
(gi+1:k(w)−gi:k(w))dw

)
∆̂

I1
M, j

=
k−1

∑
j=1

(∫ w

w
wg j:k−1(w)(Gi:k(w)−Gi+1:k(w))dw

)
∆̂

I1
M, j

=
k−1

∑
j=1

(∫ w

w
w(k−1)

(
k−2
j−1

)
G(w) j−1(1−G(w))k−1− jg(w)

(
k
i

)
G(w)i(1−G(w))k−idw

)
∆̂

I1
M, j

=
k−1

∑
j=1

θk,i j

(∫ w

w
w(2k−1)

(
2k−2

i+ j−1

)
G(w)i+ j−1(1−G(w))2k−1−(i+ j)g(w)dw

)
∆̂

I1
M, j

=
k−1

∑
j=1

θk,i jE[Wi+ j:2k−1]∆̂
I1
M, j.

Similarly, for ∆
aM
M,i, i ≥ 1 (if n = k, the term for j = 0 in the following calculation is

trivially equal to zero):

∆
aM
M,i = E[aM(Mi+1:n)−aM(Mi:n)]

=
k−1

∑
j=0

E
[∫ Mi+1:n

m
s fn−k+ j:n−1(s)ds−

∫ Mi:n

m
s fn−k+ j:n−1(s)ds

]
∆

I1
W, j

=
k−1

∑
j=0

(∫ m

m

(∫ m

m
s fn−k+ j:n−1(s)ds

)
( fi+1:n(m)− fi:n(m))dm

)
∆

I1
W, j

=
k−1

∑
j=0

(∫ m

m
m fn−k+ j:n−1(m)(Fi:n(m)−Fi+1:n(m))dm

)
∆

I1
W, j

=
k−1

∑
j=0

θn,i(n−k+ j)E[Mi+n−k+ j:2n−1]∆
I1
W, j.

The proofs for i = 0 follow from analogous calculations (using aW (W0:k) = aM(M0:n) =

0 and 1−G1:k(w) = 1−F1:n(m) = 0).

In Section 3.1, we need the following fact about order statistics of distributions with
increasing virtual valuations.

Lemma 5. Suppose that F has increasing virtual valuations, i.e., m− 1−F(m)
f (m) is weakly
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increasing. Then the following inequality holds:

4E[M1:3]≥ E[M2:3]. (19)

(19) is satisfied with equality if virtual valuations are constant.

Proof. Recall that F1:3 = 1− (1−F)3 and F1:3−F2:3 = 3F(1−F)2. We can thus write

4E[M1:3]−E[M2:3] = 3E[M1:3]+ (E[M1:3]−E[M2:3])

= 3
∫ m

0
(1−F(x))3dx−3

∫ m

0
F(x)(1−F(x))2dx

= 3
∫ m

0
(1−F(x))2(1−2F(x))dx

= 3
(∫ m

0
(1−F(x))2dx−

∫ m

0
(1−F(x))22F(x)dx

)
.

Defining h = (1−F)2/ f , this gives us

4E[M1:3]−E[M2:3] = 3
∫ m

0
h(x) f (x)dx−

∫ m

0
h(x)2F(x) f (x)dx

= 3E[h(M)]−3E[h(M2:2)]

where the random variable M is distributed according to F and where we used that
f2:2 = 2F f . Thus, if h is decreasing, 4E[M1:3]−E[M2:3] is non-negative. Yet this is in-
deed the case since 1/h is the so-called zoom rate associated with the distribution F and
since it is shown in Ewerhart (2013) that the zoom rate being increasing is equivalent
to our assumption of increasing virtual valuations, see also Szech (2011).

Proof of Lemma 3. We give the proof for UM and n = k. The remaining cases are anal-
ogous. Invoking (4) and the formula for aM, we find:

UM(m) = γMmΨ(m)+E[δM(bW (W1:n))]+ F̂ (m) ·∆δM◦bW
W −bM(m)

= γMm
(

E[W1:n]+ F̂ (m) ·∆I1
W

)
+E[δM(bW (W1:n))]− γMaM(m)

= E[δM(bW (W1:n))]+ γM

(
mE[W1:n]+

∫ m

m
F̂ (s)ds ·∆I1

W

)
= E[δM(bW (W1:n))]+ γMmE[W1:n]+ γM

∫ m

m
Ψ(s)ds.

Proof of Theorem 3. Assuming that others invest according to continuous, non-decreasing
functions bM and bW that are strictly increasing and differentiable on [mr,m] and [w,w]
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and satisfy bM(mr) = bW (0) = 0, the maximization problems for types m and w are:

max
s∈[0,m]

[γMmψr(s)−bM(s)+δM(bW (ψr(s)))] , and

max
s∈[0,w]

[γW wφr(s)−bW (s)+δW (bM(φr(s)))] .

This implies the following necessary conditions for equilibrium investments by types
m > mr and w > 0:

b′M(m) = γMmψ
′
r(m)+δ

′
M(bW (ψr(m)))b′W (ψr(m))ψ ′r(m)

b′W (w) = γW wφ
′
r(w)+δ

′
W (bM(φr(w)))b′M(φr(w))φ ′r(w).

Evaluating the second condition at w = ψr(m), multiplying it by ψ ′r(m)> 0, and using
φr(ψr(m)) = m and φ ′r(ψr(m))ψ ′r(m) = 1, we obtain the following system of first-order
ODE for bm and bW ◦ψr:

b′M(m) = γMmψ
′
r(m)+δ

′
M((bW ◦ψr)(m)))(bW ◦ψr)

′(m)

(bW ◦ψr)
′(m) = γW ψr(m)+δ

′
W (bM(m))b′M(m). (20)

In the case δ ′M(0)δ ′W (0) < 1, we may rewrite the system (20) equivalently in standard
form

b′M(m) =
γMmψ ′r(m)+δ ′M((bW ◦ψr)(m))γW ψr(m)

1−δ ′W (bM(m))δ ′M((bW ◦ψr)(m))

(bW ◦ψr)
′(m) =

γW ψr(m)+δ ′W (bM(m))γMmψ ′r(m)

1−δ ′W (bM(m))δ ′M((bW ◦ψr)(m))
.

δ ′M(0)δ ′W (0) < 1 and the continuity of δ ′′M and δ ′′W imply that the Lipschitz condition
guaranteeing a unique pair of continuously differentiable solutions (bM,bW ◦ψr) with
initial values bM(mr) = bW (ψr(mr)) = 0 is satisfied, and clearly both functions are
strictly increasing. Sufficiency conditions for optimality follow immediately from su-
permodularity. The formulas for u(r)M and u(r)W follow from u(r)M (mr) = u(r)W (0) = 0 and
payoff equivalence. This proves part (i).

For part (ii), note that if bM and bW are strictly increasing functions, they are differ-
entiable almost everywhere. In particular, there is a set of full measure in [mr,m] where
both bM and bW ◦ψr are differentiable. But, if bM and bW are equilibrium strategies, the
system (20) must be satisfied for each of these types. However, for δ ′M ≡ 1 and δ ′W ≡ 1,
(20) is violated for any m. This concludes the proof.

In the proofs of Lemma 7 below and Theorems 4 and 5 we use the following well-
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known result about the asymptotic distribution of central order statistics,

Lemma 6. Fix any m ∈ (m, m̄) and set p = F(m) > 0. If ( jn)n∈N is a sequence that

satisfies jn
n − p = o(n−1/2), then

√
n(M jn:n−m)→d N

(
0,

p(1− p)
f (m)2

)
,

where →d denotes convergence in distribution, as n → ∞. In particular, the result

applies for jn = dpne, the ceiling of pn (the smallest integer greater than or equal to

pn).

Proof of Lemma 6. See Theorem 10.3 in David and Nagaraja (2003).

Lemma 7. i) For all m ∈ [0,m] and w ∈ [0,w]:

lim
k→∞, k

nk
→1−r

Ψ
(nk,k)(m) = ψr(m) and lim

k→∞, k
nk
→1−r

Φ
(nk,k)(w) = φr(w).

ii) For all m ∈ [0,m] and w ∈ [0,w]:

lim
k→∞, k

nk
→1−r

∫ m

0
Ψ

(nk,k)(s)ds=
∫ m

0
ψr(s)ds and lim

k→∞, k
nk
→1−r

∫ w

0
Φ

(nk,k)(s)ds=
∫ w

0
φr(s)ds.

Proof of Lemma 7. i) We give the proof for limk→∞, k
nk
→1 Ψ(nk,k)(m) = ψ0(m), i.e., for

the convergence of a given type of man’s expected partner when r = 0. The proof
for r ∈ (0,1) is a bit more cumbersome in terms of notation, but otherwise analo-
gous. The proof for the convergence of Φ(nk,k) is analogous as well. Consider any
m ∈ (0, m̄) and set p = F(m) > 0. Fixing an arbitrary ε > 0 (with m− ε ∈ (0, m̄) and
m+ε ∈ (0, m̄)), the convergence in law of

√
nk(MdF(m−ε)nke:nk−1−(m−ε)) (by Lemma

6) implies that FdF(m−ε)nke:nk−1(m) converges exponentially fast to 1 (in k, or equiva-
lently nk). Moreover Fj:nk−1(m) ≥ FdF(m−ε)nke:nk−1(m) for all j ≤ dF(m− ε)ne (by
stochastic dominance). Similarly, FdF(m+ε)nke:nk−1(m) converges exponentially fast to
0, and Fj:nk−1(m)≤ FdF(m+ε)nke:nk−1(m) for all j ≥ dF(m+ ε)nke. It follows that

Ψ
(nk,k)(m) =

E[W1:nk ]+∑
nk−1
j=1 Fj:nk−1(m)E[Wj+1:nk−Wj:nk ] if nk = k

∑
k−1
j=0 Fnk−k+ j:nk−1(m)E[Wj+1:k−Wj:k] if nk > k

can be written as the sum of a number in [E[WdF(m−ε)nke+k−nk:k],E[WdF(m+ε)nke+k−nk:k]

and an error term that converges exponentially fast to zero. Moreover, as a simple conse-
quence of Lemma 6 (applied to women’s order statistics), limk→∞, k

nk
→1 E[WdF(m−ε)nke+k−nk:k] =
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G−1(F(m−ε)) and limk→∞, k
nk
→1 E[WdF(m+ε)nke+k−nk:k] = G−1(F(m+ε)). Thus, it fol-

lows that

G−1(F(m− ε))≤ liminf
k→∞, k

nk
→1

Ψ
(nk,k)(m)≤ limsup

k→∞, k
nk
→1

Ψ
(nk,k)(m)≤ G−1(F(m+ ε)).

Letting ε → 0 then yields limk→∞, k
nk
→1 Ψ(nk,k)(m) = ψ0(m), for all m ∈ (0, m̄). The re-

sult for m = 0 and m = m̄ now follows immediately from the monotonicity and bound-
edness of Ψ(nk,k).

ii) This follows from (i) and the Dominated Convergence Theorem.

We will use the following two lemmas in the proofs of Theorems 4 and 5. Lemma
8 is due to Varah (1975).

Lemma 8 (Varah, 1975). Let A be a l× l-matrix that is diagonally dominant by rows.

That is, for all i = 0, ..., l−1, |ai,i|> ∑ j 6=i |ai, j|. Set α := mini(|ai,i|−∑ j 6=i |ai, j|). Then

||A−1||∞ ≤ 1
α

.

Lemma 9. ||∆aW
W ||∞ = O

(1
n

)
, and if Condition 1 is satisfied also ||∆aM

M ||∞ = O
(1

k

)
.

Proof of Lemma 9. Let c f := minm∈[m,m] f (m) > 0 and cg := minw∈[w,w] g(w) > 0. We
will prove the lemma using the representations of ∆

aW
W and ∆

aM
M from Lemma 4. Note

first that, for all i ∈ {0, ...,n−1},

∆
I1
M,i = E[Mi+1:n−Mi:n] =

∫ m

m
(Fi:n(m)−Fi+1:n(m))dm + I{i=0}m

=
∫ m

m

(
n
i

)
F i(m)(1−F(m))n−idm + I{i=0}m

≤ 1
c f

∫ m

m

(
n
i

)
F i(m)(1−F(m))n−i f (m)dm + I{i=0}m

=
1

c f (n+1)
+ I{i=0}m,

where I{·} is the usual indicator function. An analogous inequality applies, of course,
for ∆

I1
W,i, i ∈ {0, ...,k−1}. Using Lemma 4 and Lemma 2 (ii), we obtain:

∆
aW
W,i =

k−1

∑
j=1

θk,i jE[Wi+ j:2k−1]∆̂
I1
M, j <

w(k−1)
c f (k+1)(n+1)

= O
(

1
n

)

∆
aM
M,i =

k−1

∑
j=0

θn,i(n−k+ j)E[Mi+n−k+ j:2n−1]∆
I1
W, j <

m(n−1)
cg(k+1)(n+1)

= O
(

1
k

)
,

where the second inequality uses Condition 1.

34



Proof of Theorem 4. Given the results of Lemma 3 and Lemma 7 ii), we still have to
show

lim
n→∞

E[δM(b(n,n)W (W1:n))] = lim
n→∞

E[δW (b(n,n)M (M1:n))] = 0 (balanced case)

and
lim

k→∞,k<nk,
k

nk
→1−r

E[δW (b(nk,k)
M (Mnk−k+1:nk))] = 0 (unbalanced case).

As equilibrium strategies for arbitrary benefit functions satisfying δ ′M(0)δ ′W (0)< 1 are
pointwise dominated by the equilibrium strategies for the case of linear benefit functions
with dM = δ ′M(0) and dW = δ ′W (0) (see the proof of Theorem 6), we need to consider
only the latter case. Starting from (11), we obtain:

||∆̂b(n,k)M
M ||∞ = ||(Ik−dMdW Θ̂n,kΘk)

−1(γM∆̂
a(n,k)M
M +dMγW Θ̂n,k∆

a(n,k)W
W )||∞

≤ ||(Ik−dMdW Θ̂n,kΘk)
−1||∞(γM||∆̂

a(n,k)M
M ||∞ +dMγW ||Θ̂n,k||∞||∆

a(n,k)W
W ||∞) = O

(
1
k

)
,

where the last step uses ||(Ik− dMdW Θ̂n,kΘk)
−1||∞ ≤ 1

1−dMdW
(by Lemma 8, because

Θ̂n,kΘk is sub-stochastic), ||Θ̂n,k||∞ ≤ 1, as well as ||∆̂a(n,k)M
M ||∞ = O

(1
k

)
and ||∆a(n,k)W

W ||∞ =

O
(1

n

)
(by Lemma 9). An analogous argument, starting from (12) shows ||∆b(n,k)W

W ||∞ =

O
(1

k

)
. As E[b(n,n)W (W1:n)] = ∆

b(n,n)W
W,0 and E[b(n,n)M (M1:n)] = ∆

b(n,n)M
M,0 , this proves the claim of

the Theorem for balanced markets.
It remains to be shown that limk→∞,k<nk,

k
nk
→1−r E[b(nk,k)

M (Mnk−k+1:nk))] = 0. Note

that

b(nk,k)
M (m) = γMa(nk,k)

M (m)+dMF̂ (m) ·∆b
(nk ,k)
W

W

≤ F̂ (m) · (γMm∆
I1
W +dM∆

b
(nk ,k)
W

W ) =
k−1

∑
j=0

Fnk−k+ j:nk−1(m)(γMm∆
I1
W, j +dM∆

b
(nk ,k)
W

W, j ).

As ||∆I1
W ||∞ = O

(1
k

)
(see the proof of Lemma 9) and ||∆b(n,k)W

W ||∞ = O
(1

k

)
(see above), the

claim follows immediately from Lemma 6, which implies that for an arbitrary ε > 0
and any sequence jk ≥ εk, the probability that Fnk−k+ jk:nk−1(Mnk−k+1:nk) is larger than
ε converges exponentially fast to 0.

The proof of Theorem 5 i) uses the following lemma.
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Lemma 10. i) The diagonal entries of Θn satisfy:

argmini∈{1,...,n−1}θn,ii =
n
2

if n is even,

argmini∈{1,...,n−1}θn,ii =

{
n−1

2
,
n+1

2

}
if n is odd.

ii) For even n, limn→∞ θn, n
2

n
2

√
πn = 1, and for odd n, limn→∞ θn, n−1

2
n−1

2

√
πn = 1.

Proof of Lemma 10. i) According to Lemma 2 (i), for i ∈ {1, ...,n−1}:

θn,ii =
n−1

2n−1

(n
i

)(n−2
i−1

)(2n−2
2i−1

) =
n−1

2n−1

(2i−1
i

)(2n−1−2i
n−i

)(2n−2
n

) .

For i ∈ {1, ...,n−2}, consider lnθn,ii− lnθn,(i+1)(i+1).

lnθn,ii− lnθn,(i+1)(i+1) =

(
2i−1

∑
l=i+1

ln l−
i−1

∑
l=1

ln l +
2n−1−2i

∑
l=n+1−i

ln l−
n−1−i

∑
l=1

ln l

)

−

(
2i+1

∑
l=i+2

ln l−
i

∑
l=1

ln l +
2n−3−2i

∑
l=n−i

ln l−
n−2−i

∑
l=1

ln l

)
= ln(i+1)− ln(2i)

− ln(2i+1)+ ln i− ln(n− i)+ ln(2n−2−2i)+ ln(2n−1−2i)− ln(n−1− i)

= ln(i+1)− ln(2i+1)− ln(n− i)+ ln(2n−1−2i)

= ln
(

2− 1
n− i

)
− ln

(
2− 1

i+1

)
.

Thus, if n is even, we have θn,ii > θn,(i+1)(i+1) if and only if i≤ n
2−1 (otherwise the

strict reverse inequality holds). The claim for odd n also follows.
ii) This follows from Stirling’s approximation, n! =

√
2πn

(n
e

)n (1+O
(1

n

))
. We

spell out the case of even n.

√
πnθn, n

2
n
2
=
√

πn
n−1
2n−1

n!(n−2)!(n−1)!2(n
2

)
!2
(n−2

2

)
!2(2n−2)!

=
√

n
n−1

2n−1
1√
2

√
n(n−2)(n−1)
n
2

n−2
2

√
2n−2

nn(n−2)n−2(n−1)2n−2(n
2

)n (n−2
2

)n−2
(2n−2)2n−2

(
1+O

(1
n

))(
1+O

(1
n

))
=
√

n
n−1

2n−1
2
√

n−1√
n(n−2)

(
1+O

(1
n

))(
1+O

(1
n

)) .
This ratio converges to 1 as n→ ∞.

Proof of Theorem 5. Proof of part (i) (balanced markets): We show limn→∞(E[b
(n,n)
M (M1:n)]−

E[b(n,n)W (W1:n)]) = 0, i.e., limn→∞

(
∆

b(n,n)M
M,0 −∆

b(n,n)W
W,0

)
= 0.
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Given a vector v = (v0, ...,vn−1) ∈Rn, we write v−0 for the vector (v1, ...,vn−1). We
define Vn ∈ Rn via Vn, j := θn,0 j for j ∈ {0, ...,n− 1}, i.e., Vn is the first row vector of
Θn. Recall also that Θ̂n,n−1 is the (n−1)× (n−1) matrix that results from deleting the
first column (which has all entries equal to zero) and the first row of Θn. (9) and (10)
imply:

∆
b(n,n)M
M,0 = γM∆

a(n,n)M
M,0 +Vn,−0 ·∆

b(n,n)W
W,−0

∆
b(n,n)W
W,0 = γW ∆

a(n,n)W
W,0 +Vn,−0 ·∆

b(n,n)M
M,−0.

Thus, ∆
b(n,n)M
M,0 −∆

b(n,n)W
W,0 = γM∆

a(n,n)M
M,0 −γW ∆

a(n,n)W
W,0 +Vn,−0 ·

(
∆

b(n,n)W
W,−0−∆

b(n,n)M
M,−0

)
. As ||∆a(n,n)M

M ||∞ =

O
(1

n

)
and ||∆a(n,n)W

W ||∞ = O
(1

n

)
(by Lemma 9), and ||Vn,−0||1 = n−1

n+1 (by Lemma 2 ii),

limn→∞

(
∆

b(n,n)M
M,0 −∆

b(n,n)W
W,0

)
= 0 follows from

lim
n→∞
||∆b(n,n)W

W,−0−∆
b(n,n)M
M,−0||∞ = 0,

which we now show. First, using (again) that the first column of Θn is zero, (9) and (10)
yield

∆
b(n,n)M
M,−0 = γM∆

a(n,n)M
M,−0 + Θ̂n,n−1∆

b(n,n)W
W,−0,

∆
b(n,n)W
W,−0 = γW ∆

a(n,n)W
W,−0 + Θ̂n,n−1∆

b(n,n)M
M,−0.

Thus, analogous to (11) and (12), we find the following explicit representations of

∆
b(n,n)M
M,−0 and ∆

b(n,n)W
W,−0 (using only the entries of Θ̂n,n−1):

∆
b(n,n)M
M,−0 = (In−1− Θ̂

2
n,n−1)

−1(γM∆
a(n,n)M
M,−0 + γW Θ̂n,n−1∆

a(n,n)W
W,−0)

∆
b(n,n)W
W,−0 = (In−1− Θ̂

2
n,n−1)

−1(γW ∆
a(n,n)W
W,−0 + γMΘ̂n,n−1∆

a(n,n)M
M,−0).

It follows that

||∆b(n,n)W
W,−0−∆

b(n,n)M
M,−0||∞ = ||(In−1− Θ̂

2
n,n−1)

−1(In−1− Θ̂n,n−1)(γW ∆
a(n,n)W
W,−0− γM∆

a(n,n)M
M,−0)||∞

= ||(In−1 + Θ̂n,n−1)
−1(γW ∆

a(n,n)W
W,−0− γM∆

a(n,n)M
M,−0)||∞

≤ ||(In−1 + Θ̂n,n−1)
−1||∞(γW ||∆

a(n,n)W
W,−0||∞ + γM||∆

a(n,n)M
M,−0||∞).
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But, ||(In−1+Θ̂n,n−1)
−1||∞ =O(

√
n). Indeed, from Lemma 2 (ii), we know that mini∈{1,...,n−1}(1+

θn,ii−∑ j 6=i θn,i j) = mini∈{1,...,n−1}
(
2θn,ii +

2
n+1

)
. Hence, Lemma 10 implies

lim
n→∞

(√
πn
2

min
i∈{1,...,n−1}

(1+θn,ii−∑
j 6=i

θn,i j)

)
= 1.

Thus, by Lemma 8, limsupn→∞

2||(In−1+Θ̂n,n−1)
−1||∞√

πn ≤ 1, so that ||(In−1+ Θ̂n,n−1)
−1||∞ =

O(
√

n). Using ||∆a(n,n)M
M ||∞ = O

(1
n

)
and ||∆a(n,n)W

W ||∞ = O
(1

n

)
, it follows that ||∆b(n,n)W

W,−0−

∆
b(n,n)M
M,−0||∞ = O( 1√

n).

Proof of part (ii) (unbalanced markets): Analogous to the argument in the main
text, the sum of all agents’ ex-ante expected utilities is bounded by ex-ante expected
aggregate match surplus:

E

[
1
k

k

∑
i=1

Mnk−k+i:nkWi:k

]
>

nk

k

∫ m

0
U (nk,k)

M (m) f (m)dm+
∫ w

0
U (nk,k)

W (w)g(w)dw

= γM

∫ m

0

∫ m

0
Ψ

(nk,k)(s)ds f (m)
nk

k
dm+E[bM(Mnk−k+1:nk)]+ γW

∫ w

0

∫ w

0
Φ

(nk,k)(s)dsg(w)dw.

The strict inequality in the bound above is due to the fact that the investments of the men
who fail to match are lost. Note that limk→∞,k<nk,

k
nk
→1−r E

[1
k ∑

k
i=1 Mnk−k+i:nkWi:k

]
=

S(r) (by the LLN for empirical distributions), limk→∞,k<nk,
k

nk
→1−r

∫ m
0
∫ m

0 Ψ(nk,k)(s)ds f (m)nk
k dm=

R(r)
M and limk→∞,k<nk,

k
nk
→1−r

∫ w
0
∫ w

0 Φ(nk,k)(s)dsg(w)dw = R(r)
W (by Lemma 7 and the

Dominated Convergence Theorem), and S(r)=R(r)
M +R(r)

W (as R(r)
M and R(r)

W are the aggre-
gate core utilities in the continuum model). Thus, limsupk→∞,k<nk,

k
nk
→1−r E[bM(Mnk−k+1:nk)]≤

γW R(r)
M + γMR(r)

W . We show now that limk→∞,k<nk,
k

nk
→1−r E[bM(Mnk−k+1:nk)] = γW R(r)

M +

γMR(r)
W , i.e., the fraction of the difference between aggregate surplus and aggregate in-

formation rents that is dissipated converges to 0. Indeed, by the above observations,
E[bM(Mnk−k+1:nk)] = O(1) (in the considered limit). Moreover, for any ε > 0 and
any sequence jk ≥ εk, E[bM(Mnk−k− jk:nk)] converges to zero exponentially fast (e.g.,
because, by Lemma 6, the probability that Fnk−k:nk−1(Mnk−k− jk:nk) is greater than ε de-
clines exponentially). Thus, all investments that are wasted in expectation, E[bM(M1:nk)],...,E[bM(Mnk−k:nk)]

are at most of order 1, and, for any ε > 0, at most εk of these are not exponentially small.
Consequently, the per-capita expected utility that is lost converges to zero.

Proof of Theorem 6. Consider the equilibrium strategies b̃M and b̃W for the case of
linear benefit functions δ̃M(βW ) := δ ′M(0)βW and δ̃W (βM) := δ ′W (0)βM (the equilib-
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rium exists, by Theorem 1, because r(n,k)δ ′M(0)δ ′W (0) < 1). The limit conditions on
type supports imply b̃M(m) → 0 and b̃W (w) → 0. Indeed, if n = k, then aM(m) ≤
m(w−w) and aW (w) ≤ (m−m)w, and if n > k, then aM(m),aW (w) ≤ mw. Thus,
aM(m)→ 0 and aW (w)→ 0, so that ∆

aM
M ,∆aW

W → 0. Thus, using (12), it follows that

∆
b̃W
W = (Ik− δ ′M(0)δ ′W (0)ΘkΘ̂n,k)

−1(γW ∆
aW
W + dW γMΘk∆̂

aM
M )→ 0 (Θk and Θ̂n,k are fix).

Similarly, ∆
b̃M
M → 0 (using (11)). Hence, b̃M(m) = γMaM(m)+δ ′M(0)F̂ (m) ·∆b̃W

W → 0,

and b̃W (w) = γW aW (w)+δ ′W (0)G (w) · ∆̂b̃M
M → 0.

To complete the proof of the Theorem, we show that, for any equilibrium of the
matching contest with benefit functions δM and δW , it holds that bM(m) ≤ b̃M(m) for
all m ∈ [m,m] and bW (w)≤ b̃W (w) for all w ∈ [w,w]. First, the concavity of δW and δM,
the mean value theorem, and the identities (6) and (7) imply the following bounds for
∆̂

δW ◦bM
M and ∆

δM◦bW
W :

∆̂
δW ◦bM
M ≤ δ

′
W (0)(γM∆̂

aM
M + Θ̂n,k∆

δM◦bW
W ),

∆
δM◦bW
W ≤ δ

′
M(0)(γW ∆

aW
W +Θk∆̂

δW ◦bM
M ).

Thus (as all entries of Θk are non-negative),

(Ik−δ
′
M(0)δ ′W (0)ΘkΘ̂n,k)∆

δM◦bW
W ≤ δ

′
M(0)(γW ∆

aW
W +δ

′
W (0)γMΘk∆̂

aM
M ). (21)

Applying (Ik− δ ′M(0)δ ′W (0)ΘkΘ̂n,k)
−1 = ∑

∞
l=0(δ

′
M(0)δ ′W (0)ΘkΘ̂n,k)

l ≥ 0 to both sides
of the vector inequality (21) yields

∆
δM◦bW
W ≤ δ

′
M(0)∆b̃W

W = ∆
δ̃M◦b̃W
W .

∆̂
δW ◦bM
M ≤ ∆̂

δ̃W ◦b̃M
M follows from an entirely analogous argument. bM(m) ≤ b̃M(m) now

follows from (4), and bW (w)≤ b̃W (w) follows from (5).

Proof of Theorem 7. Consider the expression (6) for ∆
δW ◦bM
M,i (i ∈ {0, ...,n−1}). Invok-

ing the concavity of δW and the mean value theorem, we obtain the following lower
bound:

∆
δW ◦bM
M,i ≥ δ

′
W (bM(m))(γM∆

aM
M,i +(Θn,k∆

δM◦bW
W )i).

Analogously, (7), the concavity of δM, and the mean value theorem imply

∆
δM◦bW
W,i ≥ δ

′
M(bW (w))(γW ∆

aW
W,i +(Θk∆̂

δW ◦bM
M )i),
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for all i ∈ {0, ...,k−1}. Thus,

∆̂
δW ◦bM
M ≥ δ

′
W (bM(m))(γM∆̂

aM
M + Θ̂n,k∆

δM◦bW
W ),

∆
δM◦bW
W ≥ δ

′
M(bW (w))(γW ∆

aW
W +Θk∆̂

δW ◦bM
M ).

As all entries of Θk are non-negative, we get:

(Ik−δ
′
M(bW (w))δ ′W (bM(m))ΘkΘ̂n,k)∆

δM◦bW
W

≥ δ
′
M(bW (w))(γW ∆

aW
W +δ

′
W (bM(m))γMΘk∆̂

aM
M ). (22)

If δ ′M(bW (w)) = 0, then the claim of the theorem holds trivially. Otherwise, the right
hand side of (22) is a positive vector. Thus, ∆

δM◦bW
W solves

(Ik−δ
′
M(bW (w))δ ′W (bM(m))ΘkΘ̂n,k)∆

δM◦bW
W = z,

for some z > 0. In the proof of Theorem 1, we have shown that this is possible if and
only if r(n,k)δ ′M(bW (w))δ ′W (bM(m))< 1.

Acknowledgement

Deniz Dizdar gratefully acknowledges financial support from the FRQSC.

References

[1] Bhaskar, V., and E. Hopkins (2016): “Marriage as a Rat Race: Noisy Pre-Marital
Investments with Assortative Matching,” Journal of Political Economy 124, 992-
1045.

[2] Boas, F. (1897) Kwakiutl Ethnography (ed) H. Codere. Chicago: University Press
(1966).

[3] Che, Y.-K., and D. B. Hausch (1999) “Cooperative Investments and the Value of
Contracting,” The American Economic Review 89(1), 125-147.

[4] Cole, H. L., G. J. Mailath, and A. Postlewaite (2001a): “Efficient Non-
Contractible Investments in Large Economies,” Journal of Economic Theory 101,
333-373.

40



[5] Cole, H. L., G. J. Mailath, and A. Postlewaite (2001b): “Efficient Non-
Contractible Investments in Finite Economies,” Advances in Theoretical Eco-

nomics 1, Iss. 1, Article 2.

[6] David, H. A., and H. N. Nagaraja: Order Statistics, Wiley-Interscience, 2003.

[7] Dizdar, D. (2017): “Two-sided Investment and Matching with Multidimensional
Cost Types and Attributes,” forthcoming American Economic Journal: Microeco-

nomics.

[8] Ewerhart, C. (2013): “Regular type distributions in mechanism design and ρ-
concavity, ” Economic Theory 53(3), 591-603.

[9] Felli, L., and K. Roberts (2016): “Does Competition Solve the Hold-Up Prob-
lem?” Economica 83, 172-200.

[10] Gregory, C. A. (1980): “Gifts to Men and Gifts to God: Exchange and Capital
Accumulation in Contemporary Papua” Man (New Series) 15(4), 626-652.

[11] Hopkins, E. (2012): “Job Market Signaling Of Relative Position, Or Becker Mar-
ried To Spence,” Journal of the European Economic Association 10, 290-322.

[12] Hoppe, H. C., B. Moldovanu, and A. Sela (2009): “The Theory of Assortative
Matching Based on Costly Signals,” Review of Economic Studies 76, 253-281.

[13] Horn, R. A., and C. R. Johnson: Matrix Analysis, Cambridge University Press,
2013.

[14] Konrad, K. A. (2007): “Strategy in Contests - An Introduction,” Discussion Paper
SP II 2007-01, Berlin Wissenschaftszentrum.

[15] Lazear, E. P., and S. Rosen (1981): “Rank-Order Tournaments as Optimum Labor
Contracts,” Journal of Political Economy 89, 841-864.

[16] Mauss, M. (1935): The Gift. London: Routledge & Kegan Paul (1974).
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