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Non-technical summary

Research question

Many economic variables, such as the gross domestic product, grow over time. To analyse

the cyclical properties of such variables, as for example the business cycle, they are often

corrected for a trend. For this purpose, there are several filtering techniques available.

Recently, the widely known Hodrick-and-Prescott filter (HP filter) has been criticised by

Hamilton (2017), as it induces spurious cycles and suffers from an end-of-sample bias

when applied to a typical economic time series. Furthermore, a smoothing parameter

must be chosen, which is most often selected on an ad hoc basis. As an alternative,

Hamilton proposes a filter that is based on a regression (Hamilton filter). In this study,

the properties of the Hamilton filter are analysed and compared to those of the HP filter.

Contribution

I contribute by providing theoretical and empirical insights on how the Hamilton filter

addresses or attenuates the indicated drawbacks to the HP filter. Thus, I illustrate the

properties of the Hamilton filter so that users can sensibly apply the filter.

Results

The Hamilton filter is also based on ad hoc assumptions and also induces a certain cyclical

structure in a typical economic time series. The Hamilton filter most strongly emphasises

cycles that exceed the duration of regular business cycles, i.e., longer than eight years, and

completely mutes certain shorter-term fluctuations. Due to this, the Hamilton filter falls

short of reproducing the chronology of US business cycles. Nonetheless, the amplification

of cycles longer than business cycles can be regarded as a desirable property for some

applications. For instance, a credit-to-GDP gap derived via the Hamilton filter indicates

that imbalances prior to the global financial crisis started earlier than shown by the Basel

III credit-to-GDP gap, which is derived using the HP filter. In general, I find that at the

end of the sample the Hamilton filter produces more robust cycle estimates than the HP

filter, which can be important if policy measures draw upon these estimates.



Nichttechnische Zusammenfassung

Fragestellung

Viele ökonomische Variablen, wie zum Beispiel das Bruttoinlandsprodukt, wachsen im

Zeitverlauf. Um die zyklischen Eigenschaften solcher Variablen, also zum Beispiel den

Konjunkturzyklus, analysieren zu können, werden sie häufig um einen Trend bereinigt.

Dafür stehen verschiedene Filterverfahren zur Verfügung. Der weit verbreitete Hodrick-

und-Prescott-Filter (HP-Filter) wurde vor Kurzem von Hamilton (2017) kritisiert, da bei

seiner Anwendung auf typische ökonomische Variablen Scheinzyklen und Verzerrungen

am Beginn und am Ende der Stichprobe entstehen. Zudem muss ein Glättungsparameter

gewählt werden, was meist ad hoc geschieht. Als Alternative schlägt Hamilton einen auf

einer Regression basierenden Filter vor (Hamilton-Filter). In dieser Studie werden die

Eigenschaften des Hamilton-Filters analysiert und mit denen des HP-Filters verglichen.

Beitrag

Ich arbeite sowohl theoretisch, als auch empirisch heraus, inwiefern der Hamilton-Filter

die Nachteile des HP-Filters vermeiden oder abmildern kann. Somit gebe ich Einblicke

in die Eigenschaften des Hamilton-Filters, wodurch Nutzer in die Lage versetzt werden

sollen, den Filter sinnvoll zu verwenden.

Ergebnisse

Auch der Hamilton-Filter basiert auf Ad-hoc-Annahmen und erzeugt eine spezifische

zyklische Struktur in typischen ökonomischen Zeitreihen. Der Hamilton-Filter hebt Zy-

klen besonders hervor, die länger als reguläre Konjunkturzyklen sind, d. h. länger als

acht Jahre. Außerdem löscht der Filter gewisse kürzerfristige Schwankungen. Daher kann

der Hamilton-Filter beispielsweise die US-amerikanischen Konjunkturzyklen nicht kor-

rekt reproduzieren. Die Hervorhebung von Zyklen, die länger als Konjunkturzyklen sind,

kann jedoch für manche Anwendungen wünschenswert sein. Zum Beispiel signalisiert eine

Kredit/BIP-Lücke, die mit Hilfe des Hamilton-Filters bestimmt wurde, Ungleichgewichte

vor der globalen Finanzkrise früher als die Kredit/BIP-Lücke nach Basel III, die auf dem

HP-Filter basiert. Im Allgemeinen zeigt sich, dass der Hamilton-Filter am Stichprobenen-

de robustere Zyklus-Schätzungen liefert als der HP-Filter, was von großer Bedeutung sein

kann, wenn sich Politikmaßnahmen auf diese Schätzungen stützen.
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1 Introduction

A series of studies points out that the Hodrick and Prescott (1981, 1997) filter (HP
filter) induces spurious cycles: in theory, when applied to difference stationary data, and
empirically, when applied, for instance, to GDP, total credit, the credit-to-GDP ratio,
house prices, equity prices and bond prices across G7 countries (see Harvey and Jaeger
(1993); King and Rebelo (1993); Cogley and Nason (1995); A’Hearn and Woitek (2001);
Pederson (2001); Schüler (2018)). In line with these studies, Hamilton (2017) argues that
the typical economic time series is best approximated by a random walk, i.e., a difference
stationary process, and thus one should not use the HP filter as a general approach for
detrending economic time series. Hamilton (2017) also stresses that the HP filter suffers
from an end-point bias and is commonly used with an ad hoc smoothing parameter that
is at odds with a statistical formalisation of the problem. As an alternative, he proposes
a regression filter.

However, when applied to a random walk, Hamilton’s (2017) regression filter reduces to
a difference filter. In the case of difference filters, we know that certain cycle frequencies
are cancelled and others emphasised. However, there has been no discussion of how
these difference filters, and thus Hamilton’s regression filter, behave when applied to
difference stationary data and how this compares to the characteristics of the HP filter.
The purpose of this paper is to address this gap by discussing the cyclical properties of
Hamilton’s regression filter, emphasising potential distortions and their implications for
applied economic analyses.

Specifically, I contrast the cyclical properties of Hamilton’s 2-year and 5-year regression
filters to the characteristics of the HP filter with smoothing parameters 1,600 (HP (1600))
and 400,000 (HP (400000)) for the case of quarterly data. While the 2-year regression
filter and the HP (1600) filter have been suggested for business cycle analysis, the 5-year
regression filter and the HP (400000) filter have been recommended for the analysis of
financial variables, such as cycles in total credit or the credit-to-GDP ratio as in Basel III
(see Hamilton (2017) or the recommendation ESRB/2014/1).1 Here, cycles that exceed
the duration of regular business cycles, or medium-term cycles, are also of interest.

My findings suggest that Hamilton’s regression filter is not subject to the exact same
drawbacks as the HP filter. However, the regression filter still modifies the original cycli-
cal structure of economic time series. The characteristics of a detrended component is
strongly determined by ad hoc assumptions, such as the consideration of a 2-year or 5-year
specification. In general, Hamilton’s regression filter most strongly emphasises frequen-
cies that are longer than typical business cycle frequencies, i.e., longer than eight years,
and completely mutes shorter-term fluctuations, which has consequences for economic
analyses. For instance, the 2-year regression filter amplifies the variance of medium-term
and longer-term cycles by a maximum factor of around 64 and mutes 2-year cycles com-
pletely. However, neglecting 2-year cycles (and emphasising longer-term cycles) reflects
a strong assumption, as a typical recession, i.e., a half cycle, lasts about one year, which
would thus be cancelled; see, for instance, the NBER’s Business Cycle Dating Committee,
Watson (1994), Harding and Pagan (2002), or – for similar statistics across 17 advanced

1Furthermore, see Basel Committee on Banking Supervision (2010). “Guidance for National Author-
ities Operating the Countercyclical Capital Buffer”, December.
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economies – Jordà, Schularick, and Taylor (2017).2 As a consequence, I find that the
2-year regression filter does not capture all expansionary and contractionary phases as
classified by the NBER, such as the quick contraction and recovery in US GDP around
1980. Due to the amplification of medium-term frequencies, but also the dampening of
short-term cycles, detrended US GDP is marked by a prolonged contraction over that
period.

Nonetheless, the amplification of medium-term frequencies can be argued to be a de-
sirable property for some applications. For instance, an advantage of the 5-year regression
filter over the HP (400000) filter is that it extracts medium-term frequencies more equally.
That is, 30 year cycles are amplified over 8 year cycles by a factor of only 3.9 in the former
and by a factor of 7.9 in the latter case. This can be argued to be favourable for the analy-
sis of medium-term frequencies, which is the goal of the Basel III credit-to-GDP gap. Due
to this property, I find that the 5-year regression-filtered credit-to-GDP gap indicates that
pronounced levels of imbalances prior to the global financial crisis started more than four
years earlier than detected using the HP (400000) filter.3 While the lead time reduces in
a real time exercise, the 5-year regression-filtered series nevertheless signals pronounced
levels of imbalances one year prior to the HP-filtered indicator. In general, differences
between the two filters diminish in a real time setting, although this is mostly due to
revisions of the HP-filtered real time series compared to the full sample ones. Thus, I find
that the regression filter has more robust real time properties, suggesting it has a smaller
end-of-sample bias.4

Above all, the “correct” filter depends on the researcher’s objective, i.e., the feature
of the data she would like to focus on. If the objective is to remain agnostic about
the importance of the different cyclical characteristics, one should use first differences to
detrend a typical economic time series. For difference stationary data, such transformation
preserves all dynamics of a series, while the HP filter – but also the regression filter –
extract specific frequencies of a time series, masking potentially relevant fluctuations.

The paper is structured as follows: In Section 2, I characterise the HP filter and
Hamilton’s regression filter and reflect on Hamilton’s critique of the HP filter. Next, I
compare the cyclical properties of the two filters when applied to a stationary series and
to a difference stationary series. In Section 4, I discuss the filters’ effects on US GDP and
the US credit-to-GDP ratio. Section 5 concludes.

2 Characterising the filters

This section characterises the HP filter and Hamilton’s regression filter. Furthermore, I
review Hamilton’s critique on the HP filter and reflect on how his regression filter improves
on the issues raised.

2The NBER’s Business Cycle Dating Committee reports that the average duration of a contraction is
11.1 months for the period 1945-2009.

3I define pronounced levels of imbalances as a value of each gap prior to the global financial crisis that
is equal or exceeds its previous value during the savings and loan crisis.

4Weak real time properties of the HP filter have also been identified in the seminal study by Christiano
and Fitzgerald (2003), in which they compare the HP filter to their optimal finite-sample approximations
of the band-pass filter. In addition to their analysis, I also study the real time performance of a medium-
term HP filter, i.e., the HP filter (400000), which allows medium-term frequencies to be analysed.
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Hodrick and Prescott filter: The HP filter decomposes an observed, possibly non-
stationary time series, yt, into its cyclical and secular (or trend) component:

yt = τt + ψt, (1)

where τt is the secular and ψt the cyclical component. To separate these two compo-
nents, one minimises the variance of ψt subject to a penalty for variation in the second
difference of τt,

min
[τt]Tt=1

[
T∑
t=1

(yt − τt)2 + λ

T∑
t=2

((τt+1 − τt)− (τt − τt−1))2

]
, λ > 0, (2)

where λ controls the smoothness of the extracted trend. The higher its value, the
smoother is the trend. Using quarterly data, λ is most commonly set to 1,600 for analysing
business cycles. Furthermore, a value of 400,000 is recommended in the Basel III regu-
lations for constructing a credit-to-GDP gap. This value has also been used in several
academic studies researching on financial imbalances (see, for instance, Behn, Detken,
Peltonen, and Schudel (2013); Anundson, Gerdrup, Hansen, and Kragh-Sørensen (2016);
Bauer and Granziera (2016)).

As shown by King and Rebelo (1993), the HP filter yields a stationary detrended
component as long as the fourth differences of the original series are stationary.

Hamilton (2017) references three specific drawbacks to the HP filter. First, a series
of studies indicates that the HP filter induces spurious cycles, or spurious dynamic re-
lationships (see Harvey and Jaeger (1993); King and Rebelo (1993); Cogley and Nason
(1995); A’Hearn and Woitek (2001); Pederson (2001); Schüler (2018)). Specifically, the
HP filter induces spurious cycles when applied to difference stationary time series, which
is a leading example of a typical economic time series. Hamilton (2017) argues that a
typical economic time series is best described by a random walk, as suggested by simple
economic theory or out-of-sample forecasting exercises.5 Given this evidence, Hamilton
(2017) concludes that we should not be using the HP filter as an all-purpose method for
detrending economic time series.

Second, the HP filter is a two-sided (or symmetric) filter, i.e., it considers both future
and past observations to determine the cyclical component at a given time period. Thus,
an extracted cyclical component at time t has the artificial ability to predict its future
values, provided it is not at the end of the sample. This implies an end-of-sample bias as
filtered values in the middle of the sample and at the end are very different. It can lead
to substantial biases in small-samples.6 Applying the HP filter on an expanding sample
may eliminate this problem. Nonetheless, Hamilton (2017) notes that due to the way in
which cycle and trend are characterised, changes in the one-sided trend and its implied
cycle are still forecastable to some degree.

Third, the common choice λ = 1, 600 is ad hoc and at odds with a statistical formal-
ization of the problem. That is, Hodrick and Prescott motivated their choice of 1,600

5Just recently, Schüler (2018) empirically supports this finding for a broad set of macroeconomic and
financial variables in the context of G7 countries.

6For instance, De Jong and Sakarya (2016) note that there may still be non-stationarity in the cyclical
component near the start or end of the sample.
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based on prior beliefs about the magnitudes of changes in the cyclical component relative
to the trend component.7 There have been suggestions for finding an optimal value of
λ, but these – relying on strong assumptions – produce values of the smoothing param-
eter that are at odds with the common choice. Specifically, an optimal value of λ may
be rationalized when formulating the HP filter as an optimal filter in a structural time
series framework (see Hodrick and Prescott (1981); Harvey and Jaeger (1993); King and
Rebelo (1993)). Here, λ = σ2

ψ/σ
2
ν , where σ2

ψ is the variance of the cyclical component (see
Equation (1)) and σ2

ν is the variance of the second difference of the trend component, i.e,

τt = 2τt−1 − τt−2 + νt. (3)

This specific formulation of the HP filter requires that ψt and νt are white noise
and E[ψtνt] = 0, which are clearly unrealistic assumptions, as also noted by Hodrick
and Prescott (1981, 1997). Estimating such an optimal λ, Hamilton (2017) finds that
it should be close to 1 rather than 1,600, for a series of macroeconomic and financial
variables. Next, I present Hamilton’s alternative.

Hamilton’s regression filter: Hamilton (2017) proposes an OLS regression of the
observed non-stationary time series, yt, at date t + h on a constant and its four most
recent values as of date t, i.e.,

yt+h = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3 + vt+h. (4)

The stationary, or cyclical, component is then obtained from the residuals,

v̂t+h = yt+h − β̂0 − β̂1yt − β̂2yt−1 − β̂3yt−2 − β̂4yt−3. (5)

In the case of quarterly data, Hamilton (2017) suggests employing h = 8 for analyses
concerned with business cycles and h = 20 for studies interested in credit or financial
cycles.8

This procedure rests on results by Den Haan (2000), who shows that forecast errors are
stationary for wide range of non-stationary processes. Thus, the filter has the advantage
that we do not have to know the true data-generating process before applying it. As
it uses four lags of the observed time series, it yields stationary residuals as long as the
fourth differences of the original time series are stationary.

How does the filter improve on the drawbacks of the HP filter? Regarding Hamilton’s
(2017)’s first critique – appropriateness of a filter for a typical economic time series – it is
important to note that the regression filter reduces to a difference filter when applied to a
random walk. In this case the OLS estimates of Equation (4) converge, in large samples,
to β1 = 1 and all other βj = 0 (Hamilton, 2017, pp. 16-17). Thus, the forecast error is

7“Our prior view is that a five percent cyclical component is moderately large as is a one-eighth of
one percent change in the growth rate in a quarter. This led us to select

√
λ = 5/(1/8) = 40 or λ = 1600

as a value of the smoothing parameter” Hodrick and Prescott (1981, p. 6)
8Actually, Hamilton (2017) recommends h = 5 years, as he refers to the analysis of debt cycles on

the basis of the dataset developed by Jordà, Schularick, and Taylor (2016), which has a yearly sampling
frequency. Thus, h = 20 is the analogue for a quarterly sampling frequency.
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simply the difference of yt+h and yt, i.e.,

ṽt+h = yt+h − yt. (6)

However, it is known that difference filters also have the potential to induce spurious
cycles, as is the case, for instance, with the Kuznets (1961) filter. Applied to a stationary
quarterly series, this filter amplifies cycles of duration just above 5 years, while relatively
muting others (see, for example, Pederson (2001)).

Regarding his second criticism – symmetry of the HP filter – the regression filter is
an asymmetric filter, i.e., it does not use information of future realisations. For instance,
when applied to a random walk in large samples, it only uses information at time t + h
and t to determine the value of the cyclical component at time t+ h. However, Hamilton
(2017) recommends to determine the β-coefficients of his regression filter using the entire
sample. Thus, the filter exploits the entire sample to construct estimates of the cyclical
component as well. In this vein, the filter is also subject to potential small-sample biases,
such as finite-sample approximations of filter weights or structural breaks.

Related to the ad hoc formulation of the HP smoothing parameter, Hamilton’s re-
gression filter is also based on ad hoc assumptions that influence the properties of the
extracted cyclical component by assuming h to be 8 or 20.

Thus, Hamilton’s regression filter also has specific properties and is based on certain
assumptions that determine the characteristics of the detrended component. In light
of this, I discuss in detail the cyclical properties of Hamilton’s regression filter in large
samples in the next section, contrasting them to the ones of the HP filter.

3 Contrasting the cyclical properties

To discuss the cyclical properties of the HP filter and Hamilton’s regression filter, I first
introduce the concept of a power transfer function (PTF) that completely describes the
way these filters modify the cyclical characteristics of a series given a large sample; both
for the case of a stationary series and a difference stationary series.

I study the characteristics of Hamilton’s regression filter by examining the cyclical
properties of difference filters. I justify this approach by the fact that Hamilton’s re-
gression filter reduces to a difference filter when applied to a random walk process (see
Equation (6)). And as the typical economic time series is best approximated by a random
walk process (see Hamilton (2017)), this is the empirically relevant case for studying the
cyclical properties of Hamilton’s regression filter.9

3.1 Power transfer functions for stationary data and difference
stationary data

Assume that ψt is a stationary stochastic process with an autocovariance-generating func-
tion defined as gψ(z) ≡

∑∞
t=−∞ γtz

t, where z denotes a complex scalar and γt the autoco-

9I assess the validity of this approach in the empirical exercise.

5



variances. The spectral density of ψt is then defined as

Sψ(ω) ≡ 1

2π
gψ(e−iω), (7)

where i is the imaginary unit and ω ∈ [−π, π] the cycle frequency in radians. Fil-
tering ψt with a time-invariant filter that has absolutely summable weights, say ξt =∑∞

j=−∞ hjψt−j, implies that the spectral density is altered via a transfer function. This

transfer function can be denoted by h(e−iω) and the exact relation between the spectral
density of ψt and the spectral density of the filtered series, say ξt, is

Sξ(ω) = H(ω) · Sψ(ω), (8)

where H(ω) ≡ |h(e−iω)|2 is the power transfer function. The PTF completely describes
the change in the relative importance of the cyclical components in ψt.

10 When H(ω) > 1,
the amplitude of the cycle component ω of ψt is increased. When H(ω) < 1, the amplitude
of the respective cycle component is dampened. Such amplification and dampening of
frequencies in the stationary component ψt may give rise to spurious or artificial cycles.

If the observed time series, say yt, is difference stationary (for example, follows a
random walk process), the filters amplify and dampen other cyclical characteristics of ψt.
To illustrate, let

yt = α + yt−1 + ψt, (9)

where α is a scalar intercept. Assuming ψt is white noise, we obtain a random walk
with possible drift (when α 6= 0). The PTF illustrating the effects of a filter on ψt can
be derived by the following steps: first, yt is differenced to render the series stationary
and, second, smoothed with the filter, adjusted for the use of a difference operator. Or
put differently, the application of a filter on yt “uses up” one difference operator (see,
for example, Cogley and Nason (1995) or Murray (2003)). Thus, the filter operates as a
two-step linear filter. The PTF of interest, say J(ω), which describes the effects on the
stationary component ψt, can be derived by

Sξ(ω) = H(ω)Sy(ω) = J(ω)S∆y(ω) = J(ω)Sψ(ω) (10)

where J(ω) = H(ω)/H∆(ω) andH∆(ω) is the power transfer function of the first difference
filter.11

Next, I discuss the PTFs of the HP and the difference filters in both settings, i.e.,
when applied to a stationary series and a difference stationary series.

3.2 The cyclical properties of the HP filter and difference filters

Figure 1 shows the PTFs relevant for stationary data. Specifically, it introduces the PTFs
of the HP filters (black lines) with a smoothing parameter of 1,600 and 400,000 and of
the 2-year (∆8) and the 5-year (∆20) difference filters (red lines). Figure 2 presents the

10The transfer function can be decomposed into gain and phase, where the square of the gain is the
power transfer function, i.e., h(e−iω) = |h(e−iω)|e−iΘ(ω). Θ(ω) refers to the phase. Note that changes in
the importance of frequencies are fully described by the power transfer function.

11The power transfer function of the first difference filter is shown in Appendix A.1.
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effects of these filters on difference stationary data.12 In all graphs, the y-axis shows the
squared gain induced by each filter across frequencies (PTF) as well as the values of the
spectral density (S(ω)) of a hypothetical time series (blue line), a white noise process with
spectral density of one at all frequencies to illustrate the distortions induced by the filters.
It is this case for which the PTFs of filters indicate exactly how the cyclical structure of
the underlying series would be modified. The x-axis gives the cycle length in radians.13

The shortest cycle length is at π (2 quarters, if using quarterly data) and the longest at
0 radians (∞). Furthermore, the scale of cycle duration is non-linear, i.e., the closer to
0 radians, the larger the increase in cycle length. To make it easier to read the graphs, I
mark business cycle frequencies (1.5-8 years) in blue and medium-term cycle periods (8-30
years) in purple, assuming a quarterly sampling frequency. The latter area is argued to
be important for financial variables, such as the credit-to-GDP ratio.14
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Figure 1: Power transfer functions of HP and difference filters: Effects on (trend)
stationary data

Notes: The blue area indicates business cycle frequencies (1.5-8 years) and the purple area medium-term cycles (8-30
years), assuming quarterly data. PTF denotes the power transfer function and S(ω) is the spectral density. To illustrate
the distortions of the filters, the blue line shows the spectral density of a white noise process with a value of one at
all frequencies. Filtering this white noise process with the indicated procedures would lead to amplified and dampened
frequencies as shown by the black and red lines.

Figure 1 illustrates that the HP filter is a high-pass filter, where shorter-term frequen-
cies pass without distortion (PTF of one) up to a threshold that depends on the chosen
smoothing parameter. The higher the smoothing parameter is, the longer the duration
of cycles that pass the filter. That is, in the case of the HP (400000) filter, longer-term
frequencies are apparent in the detrended component: up to cycles with a duration of
around 30 years. In contrast, the difference filters amplify certain frequencies by a factor
of 4, while completely cancelling others (PTF of zero). In the case of the ∆8 filter, these
amplified cycles are of a duration of around 4 years, 1.3 years, 0.8 year and 0.58 year.
Furthermore, the removed cycles are around the duration of ∞ (the trend), 2 years, 1
year, 0.68 year, and 0.5 year. Thus, if one passes a white noise process through this filter,

12The exact formulas of the power transfer functions are given in Appendix A.1.
13The conversion to cycle duration in years using quarterly data is π/(2ω), where ω is the value of the

x-axis, e.g., π/(2π) = 0.5 years, which is the shortest cycle duration that can be measured using quarterly
data.

14See, for instance, Drehmann, Borio, and Tsatsaronis (2012); Borio (2014); Aikman, Haldane, and
Nelson (2015); Hiebert, Klaus, Peltonen, Schüler, and Welz (2014); Schüler, Hiebert, and Peltonen (2015,
2017); Strohsal, Proaño, and Wolters (2015a,b); Rünstler and Vlekke (2016); Galati, Hindrayanto, Koop-
man, and Vlekke (2016); Verona (2016)).
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it would have amplified and cancelled cycles of these durations. Similar results hold for
the ∆20 filter, except that more cycle frequencies are amplified and cancelled.15 Such
amplification and dampening of cycles may lead to spurious dynamics, as it modifies the
properties of the original stationary series.
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(c) Black line: HP (400000) filter
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(d) Red line: ∆20 filter

Figure 2: Power transfer functions: The filters’ effects on difference stationary data
Notes: The blue area indicates business cycle frequencies (1.5-8 years) and the purple area medium-term cycles (8-30
years), assuming quarterly data. PTF denotes the power transfer function and S(ω) is the spectral density. To illustrate
the distortions of the filters, the blue line shows the spectral density of a random walk process whose first difference has
a spectral density with a value of one at all frequencies. Filtering this random walk process with the indicated procedures
would lead to amplified and dampened frequencies as shown by the black and red lines.

By contrast, if these filters are applied to a difference stationary series such as a random
walk, the effects on the stationary component take the form as shown in Figure 2. I mark
in blue the assumed time series process, i.e., a random walk whose first difference has
a spectrum of one at all frequencies. For comparison purposes, I keep the PTFs of the
corresponding HP filter in all graphs.

These graphs can be used to illustrate the phenomenon of spurious cycles in HP-
filtered data. First, the PTFs of the HP filters peak and so a detrended series would be
mainly characterised by the frequencies around this peak. These are cycles of a duration
around 7.5 years for the HP (1600) filter and about 30 years for the HP (400000) filter.
Hence, the duration of expansions and contractions of cycles in the detrended component
are biased towards the peak frequencies. Second, the larger the smoothing parameter,
the stronger the distortions are, as shorter-term frequencies are muted relatively more
strongly (see Schüler (2018)). That is, the PTF of the HP (1600) filter peaks at a value
of around 13, but at a value of about 204 for the HP (400000) filter, implying that in

15Here, cycles of a duration of around 10 years, 3.3 years, 2 years, 1.4 years, 1.1 years, 0.9 year, 0.8
year, 0.68 year, 0.6 year, and 0.52 year are amplified, while those of duration ∞ (the trend), 5 years, 2.5
years, 1.7 years, 1.2 years, 1 years, 0.8 year, 0.7 year, 0.6 year, 0.56 year, and 0.5 year are cancelled.
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the latter case shorter-term frequencies become relatively less important. For instance,
in the case of the HP (1600) filter, cycles of duration 7.5 years are amplified over yearly
cycles by a factor of around 26. Using the HP (400000) filter entails 30-year cycles being
amplified over yearly cycles by a factor of around 408.

For the ∆8 and ∆20 filters, spurious cycles take a different form, as neither PTF
peaks. Here, cycles shorter than 2 years (∆8 filter) and shorter than 5 years (∆20 filter)
are almost completely cancelled. Furthermore, cycles slightly longer than 2 years and 5
years are amplified beyond their presence in the original series, as the red lines are located
above the blue line. Thus, in some sense, the higher-order difference filters act as low-pass
filters in this setting, except that amplification increases with longer cycle durations.

A close comparison of the HP and difference filters suggests important differences in
the amplification and dampening of certain cycle frequencies. Overall, both difference
filters have a maximum factor of amplification (around 64 and 400) that is larger than
the maximum factor of amplification of the corresponding HP-filter specification (about
13 and 204). Furthermore, while the ∆8 filter most strongly amplifies cycles that are
longer than business cycle frequencies, these are cancelled by the HP (1600) filter. As
a result, fluctuations in the business cycle range are dampened relatively more strongly
(and even erased) by the ∆8 filter. By contrast, the medium-term filters do not differ
to such an extent. Only the relative amplification of medium-term versus business cycle
frequencies stands out. For instance, the ∆20 filter amplifies 30-year cycles over 8-year
cycles by a factor of about 3.8, compared to a factor of around 7.9 for the HP (400000)
filter.

Overall, both filters lead to distortions when applied to a typical economic time series.
Clearly, in the case of a difference stationary series, the only way to remain agnostic about
the relative significance of frequencies is to use a first difference filter. Figure 3 illustrates
in green the PTF of the first difference filter when applied to a stationary process (left)
and the PTF of the first difference filter when applied to a difference stationary process
(right). While in the left panel we see the usual result that the first difference filter
amplifies cycles shorter than 1.5 years when applied to a stationary series, the right
panel indicates that, when applied to a difference stationary process, none of the cycle
frequencies of the stationary component are altered (PTF of one), while removing the
unit root.

4 Detrending US GDP and the US credit-to-GDP

ratio

In this section, I compare HP-filtered series to regression-filtered series using actual time
series in order to highlight the filters’ implications for applied research. Specifically, I
apply the filters to US log GDP and the US credit-to-GDP ratio.16 Compared to the
large-sample properties discussed in the previous section, additional small sample issues

16I obtain real US GDP spanning from 1947Q1 to 2017Q2 from FRED. I download the US credit-to-
GDP ratio from the BIS. It spans from 1952Q1 to 2016Q4. Credit reflects loans to the private non-financial
sector.
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(b) Filter applied to difference stationary
series

Figure 3: Green line: Power transfer functions of the first difference filter
Notes: The blue area indicates business cycle frequencies (1.5-8 years) and the purple area medium-term cycles (8-30
years), assuming quarterly data. PTF denotes the power transfer function and S(ω) is the spectral density. To illustrate
the distortions of the filters, the blue line shows the spectral density of a white noise process with a value of one at all
frequencies in the left panel. In the right panel, the blue line shows the spectral density of a random walk process whose
first difference has a spectral density with a value of one at all frequencies. Filtering these processes with the indicated
procedure would lead to amplified and dampened frequencies as shown by the green lines.

of the filters become relevant in this empirical exercise.17

Similarly to the previous section, I compare the HP (1600) filter to the version of the
regression filter that regresses each variable at date t + 8 on the four most recent values
as of date t (2-year regression filter). Furthermore, I contrast the HP (400000) filter with
a regression of each variable at date t + 20 on the four most recent values as of date t
(5-year regression filter). Given that policy indicators such as the Basel III credit-to-
GDP gap are real time indicators, I report for all filters the detrended series using full
sample information as well as information from an expanding sample, mimicking a real
time situation.

In Figure 4, I present the detrended series obtained through the HP (1600) filter
(black) and the 2-year regression filter (red). In the upper panel, I show the results of
US log GDP and in the lower panel, the detrended credit-to-GDP ratio. Furthermore,
the left panel uses full sample information, while the right panel presents results derived
on an expanding window. Figure 5 presents the same charts but contrasts the detrended
components obtained through the HP (400000) filter and the 5-year regression filter.
In addition to these charts, I report descriptive statistics in Table 1, such as standard
deviations, first-order autocorrelations, but also the correlations of each filter’s full sample
and real time estimate. Furthermore, Table 2 shows the contemporaneous correlations of
the HP-filtered and regression-filtered components using the full sample and the real time
estimates.

Using full sample information: As suggested by the power transfer functions of the
previous section, the detrended series of the 2-year regression filter have greater volatility

17To support the assumption that the theoretical insights of the difference filters in large samples
can be transferred to the regression filters for this empirical exercise, I show in Appendix A.2 that the
regression filters (also in real time) indeed produce a detrended series that is highly correlated with the
respective difference filter. In addition, the exercise indicates that there are some small-sample issues,
as, for instance, the correlation of the ∆8 difference filter and the 2-year regression filter decreases from
0.92 to 0.81 for log GDP when considering the real time estimate instead of the full sample one.
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Figure 4: HP (1600) filter (black) versus 2-year regression filter (red)
Notes: Grey area depicts NBER dates of recessions. Black vertical lines indicate the onset of systemic banking crises as
defined by Laeven and Valencia (2012).

Table 1: Descriptive statistics

Standard deviations First-order autocorrelations Correlation
log GDP (×100) Credit-to-GDP log GDP Credit-to-GDP fs and rt

Filter fs rt fs rt fs rt fs rt log GDP credit-to-GDP

HP (1600) 1.50 1.62 1.69 2.19 0.85 0.89 0.92 0.96 0.54 0.17
2-year regression 3.25 3.19 3.96 3.83 0.91 0.93 0.87 0.94 0.90 0.91
HP (400000) 2.91 3.02 6.04 6.24 0.96 0.96 0.99 0.99 0.68 0.70
5-year regression 4.65 4.50 9.05 8.78 0.95 0.96 0.96 0.98 0.77 0.90

Notes: fs denotes full sample and rt stands for real time. Bold numbers indicate significance at least at the 10% level.
Statistics are derived using HAC standard errors. The sample period is 1953Q4 to 2017Q2 for GDP and 1958Q4 to 2016Q4
for the credit-to-GDP ratio, reflecting the largest common sample for each indicator across detrending methods.

than the HP (1600)-filtered ones, for instance, in the case of full sample GDP (see upper
left panel of Figure 4). Here, the historical volatility of 2-year regression-filtered GDP
is more than double the figure of the HP (1600)-filtered series (3.25 vs. 1.50, see Table
1). Due to the fact that the 2-year regression filter most strongly emphasises frequencies
that are longer than typical business cycle frequencies (longer than 8 years) and cancels
fluctuations around a 2-year duration, it does not capture all phases as classified by the
NBER. For instance, it is a stylised business cycle fact that a typical recession lasts around
1 year (see, for instance, the NBER’s Business Cycle Dating Committee, Watson (1994),
Harding and Pagan (2002), or – for similar statistics across 17 advanced economies – Jordà
et al. (2017)), representing a half cycle that is eliminated by applying this filter.18 This
can be seen, for instance, when considering the full-sample regression-filtered GDP series.
It does not indicate the quick contraction and recovery around the 1980 recession, but

18The NBER’s Business Cycle Dating Committee reports that the average duration of a contraction is
11.1 months for the period 1945-2009.
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instead suggests a prolonged contraction. The amplification of cycles that are longer than
typical business cycles seems to be more consequential for the full-sample credit-to-GDP
ratio. While shorter duration cycles are apparent for the 2-year regression-filtered credit-
to-GDP ratio, the classification of phases is primarily driven by medium-term cycles.
Such observations are in line with recent empirical evidence. Studies find that the credit-
to-GDP ratio has important variation at medium-term frequencies, which is in contrast
with GDP (e.g., Galati et al. (2016); Schüler (2018)). These are amplified by the 2-year
regression filter and cancelled by the HP (1600) filter. Still, first-order autocorrelations of
the detrended indicators, i.e., their persistence, differ only marginally and range between
0.85 and 0.96 (see Table 1).

Table 2: Contemporaneous correlations of
HP-filtered and regression-filtered series

Variable 2-year regression 5-year regression
Filter fs rt fs rt

log GDP

HP (1600) 0.72 0.79 – –
HP (400000) – – 0.75 0.84

Credit-to-GDP
HP (1600) 0.24 0.86 – –
HP (400000) – – 0.69 0.92

Notes: fs denotes full sample and rt stands for real time.
The fs columns refer to the correlations of both detrended
components, i.e., using HP and regression filters, that ex-
ploit the entire sample. The rt columns refer to the correla-
tions of both detrended components, i.e., using HP and re-
gression filters, that are constructed on an expanding sam-
ple. The sample period is 1953Q4 to 2017Q2 for GDP and
1958Q4 to 2016Q4 for the credit-to-GDP ratio, reflecting
the largest common sample for each indicator across de-
trending methods.

Using the medium-term filters, Figure 5 and Table 1 indicate that the historical volatil-
ity of the detrended components is, again, larger using the regression filter. However,
differences are smaller than in the case of the 2-year regression filter and the HP (1600)
filter. For instance, volatilities only differ by a factor of around 1.5 in the case of the
full sample credit-to-GDP ratio. The smaller difference in volatilities is in line with the
PTFs presented in the previous section. Furthermore, and also in line with the PTFs,
the 5-year regression filter leaves more shorter-term fluctuations in the detrended com-
ponents. For instance, the recovery of the full-sample credit-to-GDP gap around 1995
or after the global financial crisis is faster using the 5-year regression filter. As such,
the 5-year regression filter can be argued to be preferable when extracting medium-term
cycles, as for instance suggested in Basel III. The 5-year regression filter extracts a range
of cycles, rather than focussing on a few frequencies. Due to this property, the regression
filter indicates imbalances prior to the global financial crisis much earlier than the HP
filter. This is illustrated by comparing the red and black lines in the lower left-hand panel
of Figure 5, where the red line reaches a magnitude equal to or higher than at the savings
and loan crisis already in 2001Q4, while the black line does so only in 2006Q1. Still, both
filters capture the onset of both systemic banking crises (black vertical lines). In the case
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Figure 5: HP (400000) filter (black) versus 5-year regression filter (red)
Notes: Grey area depicts NBER dates of recessions. Black vertical lines indicate the onset of systemic banking crises as
defined by Laeven and Valencia (2012).

of GDP, none of the detrended series closely matches NBER recession dates, which is, of
course, due to the focus of the medium-term filters on non-business cycles frequencies.

Real time exercise: Differences between the HP-filtered and regression-filtered series
become less prominent in the real time exercise. This is suggested by the contemporaneous
correlations of the full sample and real time detrended components presented in Table
2. For instance, the correlation of HP (1600)-filtered and 2-year regression-filtered GDP
increases from 0.72 (full sample) to 0.79 (real time). The change for the credit-to-GDP
ratio is even stronger. In this case, the correlation increases from 0.24 (full sample) to
0.86 (real time). Similar results emerge for the medium-term filters.

Differences diminish when turning from the full sample to the real time estimate
mostly due to revisions in the HP-filtered series. This is supported by the correlations
between the full sample and real time estimates presented in Table 1. For instance, the
two HP (1600)-filtered series are correlated by only 0.54 in case of log GDP, but by 0.90
for the 2-year regression filter. Similarly, for the credit-to-GDP ratio and the medium-
term filters, the correlation is only 0.70 for the HP (400000) filter, but 0.90 for the 5-year
regression filter. Thus, the regression filter’s real time performance can be argued to be
more robust than the one of the HP. It produces more similar estimates to the full sample
case. This feature can be related to asymmetric formulation of the regression filter and
the symmetric formulation of the HP filter.

Altogether, this supports the view that the 5-year regression filter should be preferred
for studying medium-term fluctuations, as is the goal of the Basel III credit-to-GDP gap.
For instance, also in the real time exercise of the credit-to-GDP ratio, the 5-year regression
filter detects imbalances of a magnitude similar or higher than those during the savings
and loan crisis as early as 2002Q1, while the HP (400000) filter does so only in 2003Q1.
In case of log GDP, both the 2-year regression filter and the HP (1600) filter miss the
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double dip recession around 1980.

5 Conclusion

In this note, I compare the cyclical properties of the regression filter suggested by Hamilton
(2017) to the HP filter. Overall, I find that Hamilton’s (2017) regression filter is not
subject to the exact same drawbacks as the Hodrick and Prescott (1981, 1997) filter (i.
spurious cycles, ii. end-of-sample bias, iii. ad hoc assumptions regarding the smoothing
parameter). However, I show that Hamilton’s regression filter also modifies the original
cyclical structure of a series and is based on ad hoc assumptions that determine the
characteristics of the detrended component. While the HP filter suffers from the problem
that, for instance, the duration of extracted cycles is to a large extent determined by the
smoothing parameter chosen on an ex ante basis, the regression filter completely erases
certain fluctuations and emphasises cycles that exceed regular business cycle frequencies.
In a real time exercise, the differences between the HP filter and the regression filter are
less severe. This, however, is due to revisions in the HP filter when switching to the
one-sided version for the real time analysis. As such, the regression filter can be argued
to be more robust in a real time setting, suggesting that it has a smaller end-of-sample
bias.

Above all, the “correct” filter depends on the researcher’s objective, i.e., the feature
of the data she would like to focus on. If the objective is to remain agnostic about
the importance of the different cyclical characteristics, one should use first differences to
detrend a typical economic time series. For difference stationary data, such transformation
preserves all dynamics of a series, while the HP filter – but also the regression filter –
extract specific frequencies of a time series, masking potentially relevant fluctuations.
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A Appendix

A.1 Power transfer functions of filters

This section lays out the power transfer functions depicted in Section 3. Note that the
power transfer functions H(ω) refer to those relevant for stationary data and J(ω) to
those relevant for difference stationary data. The J(ω) are derived by H(ω)/H∆(ω),
where H∆(ω) is the power transfer function of the first difference filter.

The PTFs capturing the effects of the HP filters with λ = 1, 600 and λ = 400, 000 on
ψt are (see King and Rebelo (1993))

HHP(λ)(ω) =

[
4(1− cos(ω))2

4(1− cos(ω))2 + 1/λ

]2

. (11)
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The PTFs of the difference filters are

H∆(ω) = |(1− e−iω)|2 = 2(1− cos(ω)), (12)

H∆8(ω) = 2(1− cos(8ω)), and (13)

H∆20(ω) = 2(1− cos(20ω)). (14)

The J(ω) for the HP filter is

JHP(λ)(ω) = HHP(λ)(ω)[H∆(ω)]−1 =
8(1− cos(ω))3

(4(1− cos(ω))2)2 + 1/λ
, (15)

and J(ω)s for the difference filters are

J∆(ω) = H∆(ω)[H∆(ω)]−1 = 1, (16)

J∆8(ω) = H∆8(ω)[H∆(ω)]−1 =
1− cos(8ω)

1− cos(ω)
, and (17)

J∆20(ω) = H∆20(ω)[H∆(ω)]−1 =
1− cos(20ω)

1− cos(ω)
. (18)

A.2 Comparison of difference filters and Hamilton’s regression
filters

Under the assumption of a random walk, the regression filter suggested by Hamilton
(2017) reduces to a difference filter in large samples. In my analysis of the theoretical
properties, I exploit this fact to shed light on the spectral properties of the regression
filter. This Appendix explores whether the close link between the difference filters and
regression filters holds for the empirical exercise, that is for actual economic data and
given only small samples. For this purpose, Figure 6 shows three different detrended
components in each panel: the one obtained by the respective difference filter in purple,
the regression filter in solid red, and the real time regression filter in dotted red. For ease
of comparison, all series are normalised. Furthermore, Table 3 provides information about
the contemporaneous correlation of the detrended components shown in the graphs.

Overall, the results suggest that the differences between the series are marginal as, for
instance, the correlations of the difference-filtered series with the others is always above
0.75. It is 0.92 for the 2-year regression filter and the 8-quarter difference filter in the case
of GDP and 0.91 for the 5-year regression filter and the 20-quarter difference filter for
credit-to-GDP. Still, the exercise points towards small sample issues of the regression filter,
as, for example, considering the correlations of log GDP and the 2-year regression filter.
In this case, the correlation of the 2-year regression-filtered series with the ∆8-filtered
series decreases from 0.92 in the full sample to 0.81 in the real time exercise.
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Figure 6: Comparing difference filter (purple), regression filter (solid red), and real time
regression filter (dotted red)

Notes: Grey area depicts NBER dates of recessions. Black vertical lines indicate the onset of systemic banking crises as
defined by Laeven and Valencia (2012). All series are standardised.

Table 3: Contemporaneous
correlation between

difference-filtered and
regression-filtered series

Variable ∆8 ∆20

Filter fs rt fs rt

log GDP

2-year regression 0.92 0.81 – –
5-year regression – – 0.81 0.84

Credit-to-GDP
2-year regression 0.77 0.77 – –
5-year regression – – 0.91 0.88

Notes: fs denotes full sample and rt stands for
real time. The fs columns refer to the correlations
of the regression-filtered components that exploit
the entire sample and the difference-filtered series.
The rt columns refer to the correlations of the
regression-filtered components constructed on an
expanding sample and the difference-filtered se-
ries. ∆8 and ∆20 refers to the 2-year and 5-year
difference filters respectively.
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