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Non-technical summary

Research question

Temporal aggregation generally introduces a moving average (MA) component in the
model for the aggregate variable. A similar feature should be present in the mixed frequency
models, and indeed we show formally that this is in general the case. The effects of
neglecting the MA component have been rarely explicitly considered in a single frequency
context. For mixed frequency models, there are no results available.

Contribution

We close this gap and analyze the relevance of the inclusion of an MA component in
mixed-data sampling (MIDAS) and unrestricted mixed-data sampling (UMIDAS) mod-

els, with the resulting specifications labeled, respectively, MIDAS-ARMA and UMIDAS-

ARMA. We first compare the forecasting performance of the mixed frequency models with
and without the MA component in a set of Monte Carlo experiments, using a variety of
Data Generating Processes (DGPs). Next, we carry out an empirical investigation, where
we predict several quarterly macroeconomic variables using timely monthly indicators. In
particular, we forecast three relevant quarterly U.S. macroeconomic variables: real GDP

growth, real private non residential fixed investment (PNFI) growth and GDP deflator
inflation.

Results

In the Monte Carlo simulations, the short-term forecasting performance is better when
including the MA component, and the gains are higher the more persistent is the se-
ries. Moreover, in general the MIDAS-ARMA specifications are slightly better than the
UMIDAS-ARMA specifications. This pattern suggests that adding the MA component to
the MIDAS model helps somewhat in reducing the potential misspecification due to impos-

ing a specific lag polynomial structure. In the empirical exercise, the inclusion of an MA

component generally improves the forecasting performance substantially. For all variables,
and in line with the simulation results, MIDAS-ARMA is better than UMIDAS-ARMA.



Nichttechnische Zusammenfassung 

Fragestellung 

Durch zeitliche Aggregation einer hochfrequenten Variablen entsteht eine Variable mit niedri-

gerer Frequenz. In Folge der Aggregation tritt in der Dynamik der niederfrequenten Variablen 

dann üblicherweise eine Komponente auf, die einem (gewichteten) gleitenden Durchschnitt 

(GD) entspricht. Eine vergleichbare Komponente sollte auch in Modellen mit gemischten 

Frequenzen, also in Modellen mit hoch- und niederfrequenten Daten vorhanden sein. Wie 

sich die Nichtbeachtung der GD-Komponente auswirkt, ist in den üblichen Zeitreihenmodel-

len bislang kaum explizit betrachtet worden. Für gemischt-frequente Modelle, die sogenann-

ten MIDAS-Modelle, liegen indes überhaupt keine Ergebnisse vor. 

Forschungsbeitrag 

Wir untersuchen die Auswirkungen auf MIDAS- und unrestringierte MIDAS-Modelle (UM-

IDAS-Modellen), wenn eine GD-Komponente mit einbezogen wird. Die sich daraus ergeben-

den Spezifizikationen werden als „MIDAS-ARMA“ bzw. „UMIDAS-ARMA“ bezeichnet. Zu-

nächst wird die Prognosegüte der gemischt-frequenten Modelle mit und ohne GD-

Komponente in einer Monte-Carlo-Simulation unter Berücksichtigung verschiedener Daten-

generierungsprozesse verglichen. Anschließend werden in einer empirischen Untersuchung 

drei makroökonomische US-amerikanische Quartalsvariablen – das reale BIP-Wachstum, 

das Wachstum der realen privaten Anlageinvestitionen (ohne Wohnungsbau) und die Wachs-

tumsrate des BIP-Deflators – unter Verwendung zeitnaher monatlicher Indikatoren prognosti-

ziert. 

Ergebnisse 

In der Monte-Carlo-Simulation zeigt sich bei der Kurzfristprognose eine höhere Treffgenauig-

keit, wenn die GD-Komponente einbezogen wird. Die Prognosegüte verbessert sich umso 

stärker, je höher die Persistenz der Zeitreihe ist. Zudem schneiden die MIDAS-ARMA-

Modelle allgemein etwas besser ab als die UMIDAS-ARMA-Modelle. Daraus lässt sich 

schlussfolgern, dass die Einbeziehung der GD-Komponente dazu beiträgt, potenzielle Fehl-

spezifikationen in MIDAS-Modellen zu verringern. Auch in der empirischen Analyse verbes-

sert die Einbeziehung einer GD-Komponente die Prognosegüte oft deutlich, und MIDAS-

ARMA-Modelle liefern – im Einklang mit den Simulationsergebnissen – treffgenauere Prog-

nosen als UMIDAS-ARMA-Modelle. 
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1 Introduction

The use of mixed-frequency models has become increasingly popular among academics

and practitioners. It is in fact by now well recognized that a good nowcast or short-term

forecast for a low frequency variable, such as GDP growth and its components, requires

to exploit the timely information contained in higher frequency macroeconomic or finan-

cial indicators, such as surveys or spreads. A growing literature has flourished proposing

different methods to deal with the mixed-frequency feature. In particular, models cast in

state-space form, such as vector autoregressions (VAR) and factor models, can deal with

mixed-frequency data, taking advantage of the Kalman filter to interpolate the missing ob-

servations of the series only available at low frequency (see, among many others, Mariano

and Murasawa (2010) and Giannone et al. (2008) in a classical context, and Chiu et al.

(2011) and Schorfheide and Song (2015) in a Bayesian context). A second approach has

been proposed by Ghysels (2016). He introduces a different class of mixed-frequency VAR

models, in which the vector of endogenous variables includes both high and low frequency

variables, with the former stacked according to the timing of the data releases. A third

approach is the mixed-data sampling (MIDAS) regression, introduced by Ghysels et al.

(2006), and its unrestricted version (UMIDAS) by Foroni et al. (2015). MIDAS models are

tightly parameterized, parsimonious models, which allow for the inclusion of many lags of

the explanatory variables. Given their non-linear form, MIDAS models need to be esti-

mated by non-linear least squares (NLS). UMIDAS models are the unrestricted counterpart

of MIDAS models, which can be estimated by simple ordinary least squares (OLS), but

work well only when the frequency mismatch is small.1

In this paper, we start from the observation that temporal aggregation generally in-

troduces a moving average (MA) component in the model for the aggregate variable (see,

e.g., Marcellino (1999) and the references therein). A similar feature should be present in

the mixed frequency models, and indeed we show formally that this is in general the case.

The MA component is often neglected, both in same frequency and in mixed frequency

1The literature on mixed-frequency approaches is vast. The papers cited in the text are a non-exhaustive
list of key contributions to the field. For a review of the mixed-frequency literature, see Bai et al. (2013)
and Foroni and Marcellino (2013) among many others.
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models, likely to preserve the possibility of OLS estimation and on the grounds that it can

be approximated by a sufficiently long autoregressive (AR) component.

The effects of neglecting the MA component have been rarely explicitly considered. In

a single frequency context, Lutkepohl (2006) showed that VARMA models are especially

appropriate in forecasting, since they can capture the dynamic relations between time se-

ries with a small number of parameters. Further, Dufour and Stevanovic (2013) showed

that a VARMA instead of VAR model for the factors provides better forecasts for several

key macroeconomic aggregates relative to standard factor models, as well as producing a

more precise representation of the effects and transmission of monetary policy. Leroux

et al. (2017) found that ARMA(1,1) models predict well the inflation change and outper-

form many data-rich models, confirming the evidence on forecasting inflation by Stock and

Watson (2007), Faust and Wright (2013) and Marcellino et al. (2006). Finally, VARMA

models are often the correct reduced form representation of DSGE models (see, for example,

Ravenna (2007)). For mixed frequency models, there are no results available.

We close this gap and analyze the relevance of the inclusion of an MA component

in MIDAS and UMIDAS models, with the resulting specifications labeled, respectively,

MIDAS-ARMA and UMIDAS-ARMA. We first compare the forecasting performance of

the mixed frequency models with and without the MA component in a set of Monte Carlo

experiments, using a variety of Data Generating Processes (DGPs). It turns out that

the short-term forecasting performance is better when including the MA component, and

the gains are higher the more persistent is the series. Moreover, in general the MIDAS-

ARMA specifications are slightly better than the UMIDAS-ARMA specifications, though

the differences are minor. This pattern is in contrast with the findings in Foroni et al. (2015),

and suggests that adding the MA component to the MIDAS model helps somewhat in

reducing the potential misspecification due to imposing a specific lag polynomial structure.

Next, we carry out an empirical investigation, where we predict several quarterly macroe-

conomic variables using timely monthly indicators. In particular, we forecast three relevant

quarterly U.S. macroeconomic variables: real GDP growth, real private non residential fixed

investment (PNFI) growth and GDP deflator inflation. The latter variable is particularly

relevant, as Stock and Watson (2007) show that the MA component for US inflation is

important, especially after 1984. In fact, while during the 1970s the inflation process could

be very well approximated by a low order AR, after the 1980s this has become less accurate

and the inclusion of an MA component more relevant. Evidence on the importance of the
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MA component for the U.S. inflation is also found by Ng and Perron (2001) and Perron

and Ng (1996). As monthly explanatory variables, we consider industrial production and

employment for the real GDP growth and the PNFI growth, CPI inflation and personal

consumption expenditures (PCE) inflation for the GDP deflator. The inclusion of an MA

component generally improves the forecasting performance substantially. In particular,

adding the MA part to forecast GDP growth one-year ahead ameliorates the MSE up to

10%, while for PNFI we obtain even bigger gains, up to 30% one-year ahead. Also in the

case of GDP deflator we obtain robust improvements, which go up to 15%. For all variables,

and in line with the simulation results, MIDAS-ARMA is better that UMIDAS-ARMA.

Lastly, full sample estimates of MA coefficients are significant and important in most of

MIDAS-ARMA and UMIDAS-ARMA specifications.

The remainder of the paper proceeds as follows. In Section 2 we show that temporal

aggregation generally creates an MA component also in mixed frequency models. In Section

3 we describe parameter estimators for the MIDAS-ARMA and UMIDAS-ARMA models.

In Section 4 we present the design and results of the simulation exercises. In Section 5

we develop the empirical applications on forecasting U.S. quarterly variables with monthly

indicators. In Section 6 we summarize our main results and conclude.

2 The rationale for an MA component in mixed fre-

quency models

The UMIDAS regression approach can be derived by aggregation of a general dynamic

linear model in high frequency, as shown by Foroni et al. (2015), while the MIDAS model

imposes specific restrictions on the UMIDAS coefficients in order to reduce their number,

which is particularly relevant when the frequency mismatch is large (for example, with

daily and quarterly series). In Section 2.1, we briefly review the derivation of the UMIDAS

model, highlighting that, in general, there should be an MA component, even though it is

generally disregarded. In Section 2.2, we provide two simple analytical examples in which,

starting from a high-frequency model without MA term, we end up with a mixed frequency

model in which the MA component is present. We discuss estimation of mixed frequency

models with an MA component in a separate section.
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2.1 UMIDAS regressions and dynamic linear models

Let us assume that the Data Generating Process (DGP) for the variable y and the N

variables x is an ARDL(p, q) process, as in Foroni et al. (2015):

a(L)ytm = b1(L)x1tm + ...+ bN(L)xNtm + eytm (1)

where a(L) = 1− a1L− ...− apL, bj(L) = bj1L+ ...+ bjqL
q, j = 1, ..., N , and the error eytm

is white noise. We assume, for simplicity, that p = q and the starting values y−p, ..., y0 and

x−p, ..., x0 are all fixed and equal to zero.

We then assume that x can be observed for each period tm, while y can be only observed

every m periods. We define t = 1, ..., T as the low frequency (LF) time unit and tm =

1, ..., Tm as the high frequency (HF) time unit. The HF time unit is observed m times in

the LF time unit. As an example, if we are working with quarterly (LF) and monthly (HF)

data, it is m = 3 (i.e., three months in a quarter). Moreover, L indicates the lag operator

at tm frequency, while Lm is the lag operator at t frequency.

We also introduce the aggregation operator

ω(L) = ω0 + ω1L+ ...+ ωm−1L
m−1, (2)

which characterizes the temporal aggregation scheme. For example, ω(L) = 1 + L + ... +

Lm−1 indicates the sum of the high-frequency observations over the low-frequency period,

typically used in the case of flow variables, while ω(L) = 1 corresponds to point-in-time

sampling and is typically used for stock variables. As we will see, different aggregation

schemes will play a role in generating MA components.

To derive the generating mechanism for y at mixed frequency (MF), we introduce a

polynomial in the lag operator, β(L), whose degree in L is at most equal to pm − p and

which is such that the product h(L) = β(L)a(L) only contains powers of Lm, so that

h(L) = h(Lm). It can be shown that such a polynomial always exists, and its coefficients

depend on those of a(L), see Marcellino (1999) for details.

In order to determine the AR component of the MF process, we then multiply both

sides of (1) by ω(L) and β(L) to get

h(Lm)ω(L)ytm = β(L)b1(L)ω(L)x1tm + ...+ β(L)bN(L)ω(L)xNtm + β(L)ω(L)eytm . (3)
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Hence, the autoregressive component only depends on LF values of y. Let us consider now

the x variables, which are observable at high frequency tm. Each HF xitm influences the

LF variable y via a polynomial β(L)bj(L)ω(L) = bj(L)β(L)ω(L), j = 1, ..., N . We see that

it is a particular combination of high-frequency values of xj, equal to β(L)ω(L)xjtm , that

affects the low-frequency values of y.

Only under certain, rather strict conditions, it is possible to recover the polynomials

a(L) and bj(L) that appear in the HF model for y from the MF model, and in these cases

also β(L) can be identified. Therefore, when β(L) cannot be identified, we can estimate a

model as

c(Lk)ω(L)ytm = δ1(L)x1tm−1 + ...+ δN(L)xNtm−1 + εtm , (4)

tm = m, 2m, 3m, ...

where c(Lm) = (1− c1L
m − ...− ccL

mc), δj(L) = (δj,0 + δj,1L+ ...+ δj,vL
v), j = 1, ..., N .

We can focus now on the error term of equation (3). In general, there is an MA

component in the MF model, q(Lm)uytm , with q(Lm) = (1+ q1L
m+ ...+ qqL

mq). The order

of q(Lm), q, coincides with the highest multiple of m non zero lag in the autocovariance

function of β(L)ω(L)eytm . The coefficients of the MA component have to be such that the

implied autocovariances of q(Lm)uytm coincide with those of β(L)ω(L)eytm evaluated at all

multiples of m. Consequently, also the error term εtm in the approximate mixed frequency

model (4), which is the UMIDAS model, in general has an MA structure. It can be shown

that the maximum order of the MA structure is p for average sampling and p-1 for point-

in-time sampling, where p is the order of the AR component in the high frequency model

for ytm (see, e.g., Marcellino (1999) for a derivation of this results).

2.2 Two analytical examples

In this section, we consider two simple DGPs and show that, even in these basic cases,

an MA component appears in the mixed frequency model. In the first example, we consider

an ARDL(1,1) with average sampling, in the second one an ARDL(2,2) with point-in-time

sampling. In both cases, we work with monthly and quarterly variables, therefore m = 3,

as in the empirical applications that will be presented later on. The examples could be

easily generalized to consider higher order models and different frequency mismatches m.
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ARDL(1,1) with average sampling

Let us assume an ARDL(1,1) as HF DGP:

ytm = aytm−1 + bxtm−1 + eytm , (5)

where ytm is a variable unobservable at HF, xtm is the high-frequency variable, eytm is white

noise, and tm is the high-frequency time index. Although we do not observe ytm , we observe

the quarterly aggregated values of the series.

In order to obtain the model for the quarterly aggregated series, let us write (5) as

(1− aL) ytm = bLxtm + eytm . (6)

We consider average sampling, and therefore we define the aggregation operator ω (L) =

1 + L+ L2. Then, we first introduce a polynomial in the lag operator, β(L), which is such

that the product h(L) = β(L) (1− aL) only contains powers of L3. This polynomial exists

and it is equal to (1 + aL+ a2L2) . We then multiply both sides of equation (6) by ω (L)

and β (L) and we obtain:

(
1 + aL+ a2L2

)
(1− aL)

(
1 + L+ L2

)
ytm =

(
1 + aL+ a2L2

)
bL

(
1 + L+ L2

)
xtm +(

1 + aL+ a2L2
) (

1 + L+ L2
)
eytm , (7)

or equivalently:

(
1− a3L3

)
ỹtm =

(
1 + aL+ a2L2

)
bL

(
1 + L+ L2

)
xtm +(

1 + (a+ 1)L+
(
a2 + a+ 1

)
L2 +

(
a2 + a

)
L3 + a2L4

)
eytm , (8)

where ỹtm = (1 + L+ L2) ytm and tm = 3, 6, 9, ... .

As we saw it in Section 2.1, the order of the MA component coincides with the highest

multiple of 3 non zero lag in the autocovariance function of the error term in equation (8),

and it is bounded above by the AR order of the model for ytm .

Eq. (8) is then estimated at quarterly frequency, but making use of all the information

available in the HF variable xtm , and including the MA component, which is of order 1

in this case (being the relevant lag for the quarterly model L3). The model in eq. (8) is

therefore a UMIDAS-AR with an MA(1) component.
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ARDL(2,2) with point-in-time sampling

Let us now assume an ARDL(2,2) as HF DGP:

ytm = a1ytm−1 + a2ytm−2 + b1xtm−1 + b2xtm−2 + eytm , (9)

or, equivalently, (
1− a1L− a2L

2
)
ytm =

(
b1L+ b2L

2
)
xtm + eytm , (10)

where ytm , xtm , eytm and tm are defined as in the previous example.

We consider point-in-time sampling, and therefore ω (L) = 1. Next, we need to multiply

both sides of equation (9) by ω(L) and find a polynomial β(L) such that the product

h(L) = β(L) (1− a1L− a2L
2) only contains powers of L3. In can be easily shown that

β (L) exists and it is equal to

(
1 + a1L+

(
a21 + a2

)
L2 − a1a2L

3 + a22L
4
)
.

The resulting mixed frequency model for the low-frequency variable is:

(
1− (

a31 + 3a2a1
)
L3 − a32L

6
)
ytm =

(
1 + a1L+

(
a21 + a2

)
L2 − a1a2L

3 + a22L
4
) (

b1L+ b2L
2
)
xtm +(

1 + a1L+
(
a21 + a2

)
L2 − a1a2L

3 + a22L
4
)
eytm , (11)

with tm = 3, 6, 9, ... Hence, also in this case there is an MA component in the mixed

frequency model for y. Its order coincides with the highest multiple of 3 non zero lag

in the autocovariance function of (1 + a1L+ (a21 + a2)L
2 − a1a2L

3 + a22L
4) eytm , and it is

bounded above by the AR order of the model for ytm minus one, which is 1 in this example.

Following the same line of reasoning as in the previous example, the MA component is of

order 1.

3 UMIDAS-ARMA and MIDAS-ARMA: forecasting

specifications and estimation

We describe now in more detail the model specifications we consider for forecasting,

and the estimation details. We first recall the main features of the standard MIDAS
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regression, introduced by Ghysels et al. (2006), and its unrestricted version, as in Foroni

et al. (2015). Then, we discuss their extensions to allow for an MA component and we

discuss the estimation of the models.

The starting point for our MF models is equation (4). In order to simplify the notation,

we assume ω(L) = 1 and one explanatory variable xtm
2. Further, we allow for incorporat-

ing leads of the high frequency variable in the projections, which captures asynchronous

releases.

The equation we are going to estimate to generate an hm-step ahead forecast is the

following:

ytm = c̃(Lm)ytm−hm + δ(L)xtm−hm+w + εtm , (12)

where c̃(Lm) is a modified lag structure of equation (4) to obtain a direct forecast and w

is the number of months with which x is leading y.

If εtm is serially uncorrelated, equation (12) represents the UMIDAS-AR model. Given

that the model is linear, the UMIDAS-AR regression can be estimated by simple OLS.

Empirically, the lag length of the high frequency variable x is often selected by means of

an information criterion, such as the BIC.

Adding an MA component to the UMIDAS-AR yields the UMIDAS-ARMA model:

ytm = c̃(Lm)ytm−hm + δ(L)xtm−hm+w + utm + q(Lm)utm−hm , (13)

where utm is a (weak) white noise with E(utm) = 0 and E(utmu
′
tm) = σ2

u < ∞, and all

the remaining terms stay the same as in equation (12). Given that MIDAS models are

direct forecasting tools, we decided to follow a direct approach also when modelling the

MA component.

OLS estimation of the UMIDAS-ARMA model is no longer possible, because of the

MA component in the residuals. We then estimate the model as in the standard ARMA

literature, by maximum likelihood or, as we will actually do to be coherent with the MIDAS

literature, by non-linear least squares (NLS).

2This is an innocuous simplification, as with a generic aggregation scheme ω(L) �= 1 we could just work
with the redefined variable ỹtm = ω(L)ytm .
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The MIDAS-AR specification is a restricted version of the UMIDAS-AR. The MIDAS-

AR model as in Ghysels et al. (2006), specified for forecasting hm periods ahead, can be

written as follows:

ytm = c̃(Lm)ytm−hm + βB(L, θ)xtm−hm+w + εtm , (14)

where

B(L, θ) =
K∑
j=0

b(j, θ)Lj,

b(j, θ) =
exp(θ1j + θ2j

2)∑K
j=0 exp(θ1j + θ2j2)

,

and K is the maximum number of lags included of the explanatory variable.

As it is clear by comparing equation (12) and equation (14), the MIDAS model is nested

into the UMIDAS model.

The MIDAS-AR model in equation (14) is estimated by NLS. Given that it is hm-

dependent, as in the UMIDAS case it has to be re-estimated for each forecast horizon.

Exactly as for the UMIDAS, we extend the MIDAS-AR in equation (14) to incorporate

an MA component:

ytm = c̃(Lm)ytm−hm + βB(L, θ)xtm−hm+w + utm + q(Lm)utm−hm , (15)

where the error term is defined as in (13). Given the nonlinearity of the model, we estimate

its parameters by NLS. Appendix A provides additional details on the NLS estimation

procedures.

To conclude, it is worth briefly comparing the use for forecasting of UMIDAS-ARMA

versus the Kalman filter. The latter is clearly optimal in the presence of mixed frequency

data and linear models. However, UMIDAS-ARMA is equivalent if it is theoretically derived

from a known high frequency linear dynamic model, as UMIDAS-ARMA coincides with

the mixed frequency data generating process. The ranking of the two approaches is unclear

if the high frequency model is mis-specified. Moreover, the Kalman filter can incur into

computational problems when the frequency mismatch is large. Something similar happens

to UMIDAS-ARMA, due to parameter proliferation, and in this case the parsimony of

MIDAS-ARMA can be particularly helpful. Bai et al. (2013) propose a more detailed

comparison of the Kalman filter and the MIDAS approach.
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4 Monte Carlo evaluation

We now assess the forecasting relevance of including an MA component in MIDAS and

UMIDAS models by means of simulation experiments. We use two designs, closely related

to the two analytical examples described in Section 2.2. We present first the Monte Carlo

designs and then the results.

4.1 Monte Carlo design

In the first design, the DGP is the HF ARDL(1,1):

ytm = ρytm−1 + δlxtm−1 + ey,tm , (16)

where ytm is unobservable at HF, but available at LF, while xtm is the HF variable, tm is the

HF time index, the aggregation frequency is m = 3 (as in the case of quarterly and monthly

frequencies), and t is the LF time index, with t = 3tm. We assume that ω(L) = 1+L+L2,

corresponding to average sampling.

The shocks ey,tm are independent and sampled from a normal distribution with zero

mean and variance chosen such that the unconditional variance of y is equal to one. We

consider different combinations of ρ and δl, representing different degrees of persistence

and correlation between the HF and the LF variables. In detail, we evaluate the following

parameter sets:

(ρ, δl) = {(0.1, 0.1) , (0.5, 0.1) , (0.9, 1) , (0.94, 1)} . (17)

Finally, xtm is generated as an AR(1) with coefficient ρ.

In the second design, the DGP is the HF ARDL(2,2):

ytm = ρ1ytm−1 + ρ2ytm−2 + δl1xtm−1 + δl2xtm−2 + ey,tm . (18)

We still assume m = 3 but now ω(L) = 1, so that the LF variable is skip-sampled every

m = 3 observations.

In this second DGP, we consider the following parameter combinations:

(ρ1, ρ2, δl1, δl2) = {(0.05, 0.1, 0.5, 1) , (0.125, 0.5, 0.125, 0.5) , (0.25, 0.5, 0.5, 1)} . (19)
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All the other design features are as in the first DGP.

We focus on typical sample sizes for the estimation sample, with T = 50, 100. The size

of the evaluation sample is set to 50, and the estimation sample is recursively expanded as

we progress in the recursive forecasting exercise. The number of replications is 500.

The competing forecasting models are the following:

1. A MIDAS-AR model, with 12 lags in the exogenous HF variable and 1 lag in the AR

component;

2. A MIDAS-ARMA model, as in the previous point but with the addition of an MA

component;

3. A MIDAS-ARMA model, with only 3 lags in the exogenous HF variable and 1 AR

lag;

4. A UMIDAS-AR model, with lag length selected according to the BIC criterion, where

the maximum lag length is set equal to 12;

5. A UMIDAS-ARMA model, as in the previous point, with the addition of an MA

component;

6. A UMIDAS-ARMA, fixing at 3 the number of lags of the HF exogenous variable.

In all ARMA models there is an MA(1) component, in line with the theoretical results,

but an higher order can be allowed.

We evaluate the competing one-step ahead forecasts on the basis of their associated

mean square prediction error (MSE), assuming that information on the first two months

of the quarter is available (as it is common in nowcasting exercises).
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4.2 Results

In Tables 1 to 4 we report the mean relative MSE across simulations, and numbers

smaller than one indicate that the model is better than the benchmark (model 1, the

standard MIDAS). We also report the 10th, 25th, 50th, 75th and 90th percentiles, to provide

a measure of the dispersion in the results.

Tables 1 and 2 present the results for the first DGP (the ARDL(1,1) with average

sampling), using T = 100 in Table 1 and T = 50 in Table 2. The corresponding Tables 3

and 4 are based on the second DGP (the ARDL(2,2) with point-in-time sampling).

A few key findings emerge. First, adding an MA component to the MIDAS model

generally helps. The gains are not very large but they are visible at all percentiles, with a

few exceptions for the second DGP. The gains are larger either with substantial persistence

(ρ = 0.9 or ρ = 0.94 in the first DGP and ρ1 = 0.25, ρ2 = 0.5 in the second DGP) or with

low persistence in the first DGP (ρ = 0.1), but in the latter case the result is mainly due

to a deterioration in the absolute performance of the standard MIDAS model. The more

parsimonious specification with 3 lags only of the HF variable is generally better, except

when ρ = 0.5.

Second, adding an MA component to the UMIDAS model is also generally helpful,

though the gains remain small.

Third, in general the MIDAS-ARMA specifications are slightly better than the UMIDAS-

ARMA specifications, though the differences are minor. This pattern is in contrast with

the findings in Foroni et al. (2015), and suggests that adding the MA component to the

MIDAS model helps somewhat in reducing the potential misspecification due to imposing

a specific lag polynomial structure.

Finally, results are consistent across sample sizes, and the models do not seem sensitive

to short sample sizes.

5 Empirical applications

In this section, we look at the performance of our MA augmented mixed frequency mod-

els in forecasting exercises with actual data. The analysis focuses on forecasting quarterly

U.S. variables.
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In particular, we consider three relevant quarterly U.S. macroeconomic variables: real

GDP growth, real private non residential fixed investment (PNFI) growth and GDP de-

flator inflation. As monthly explanatory variables, we consider industrial production and

employment for the real GDP growth and the PNFI growth, while we consider CPI infla-

tion and personal consumption inflation for the GDP deflator. A complete description of

data sources and transformations is available in Table 5.

The total sample spans over 50 years of data, from the first quarter of 1960 to the end

of 2015. The forecasts are computed in pseudo real time, with progressively expanding

samples. The evaluation period goes from 1980Q1 to the end of the sample, covering

roughly 35 years. As a robustness check, we will also analyze a shorter sample ending

in 2007Q3, to assess the effects of the recent crisis. At each point in time, we compute

forecasts from 1- up to 4-quarter ahead. The forecasting target is the annualized growth

rate. Although the information contained in the monthly variables updates every month,

we focus on the case in which the first two months of the quarter are already available.3

We consider the models (1) to (7) as described in Section 4.1, plus a simple low frequency

AR(1) model as a further benchmark for the usefulness of the mixed-frequency data. In

particular, we consider the direct forecast resulting from the model:

yt = c+ ρyt−h + et. (20)

We evaluate the forecasts both in terms of mean squared errors (MSE) and in terms of

mean absolute errors (MAE). We then compare the forecasting performance relative to a

standard MIDAS model with an autoregressive component and 12 lags of the explanatory

variable (as the model (1) in Section 4).

In Tables 6 to 8 we report the results for, respectively, the real GDP growth, the real

PNFI growth and the GDP deflator inflation rate. Each table is organized in the same way:

it reports the value of MSE and MAE for each model, the ratio of those criteria for each

model relative to the MIDAS-AR, our benchmark model, and the p-value of the Diebold-

Mariano test, to check the statistical significance of the differences in forecast measures

with respect to the benchmark (see Diebold and Mariano (1995)).

3With the MIDAS setup, we could also report the results when no information or only one month of
information is available. However, for the sake of conciseness we focus only on the case in which we are
two months into the quarter, to have the shortest nowcast horizon. Given that our models are all mixed
frequency, this choice does not bias the comparison.
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The tables are broadly supportive of the inclusion of the MA component in the mixed

frequency models, as the MSE and MAE ratios are often smaller than one for the MIDAS-

ARMA and UMIDAS-ARMA models when compared with their versions without MA.4

More in detail: for forecasting GDP growth, adding the MA component does not provide

substantial improvements with respect to standard mixed frequency models for h = 1,

with industrial production being the best indicator. When h = 2, employment becomes

better than industrial production, and adding an MA term matters, with gains of 8% for

the MIDAS-ARMA model. A similar results holds for h = 3, with gains increasing to

20%. Four-quarter ahead, industrial production returns best, and MIDAS-ARMA leads to

a decrease of 10% in the MSE. For PNFI growth, MIDAS-ARMA is best at all horizons,

with employment preferred to industrial production except for h = 1. The gains are

small for h = 1, 2, 3, in the range 1%-8%, but increase to 30% for h = 4. For GDP

deflator, PCE inflation is systematically better than CPI, and MIDAS-ARMA yields gains

for h = 1 and 2 of, respectively, 15% and 10%. It is also worth mentioning that MSE

and MAE lead to the same rankings, and that the gains from adding the MA parts are

generally statistically significant. Finally, the models perform well with respect to the AR

benchmark. Confirming the widespread evidence in the literature, the mixed frequency

models perform the best at short horizons. However, we get satisfactory results also up to

h = 4.

We now decompose the MSE in bias and variance, as:

MSE = (E(e))2︸ ︷︷ ︸
Bias

+V ar(e)︸ ︷︷ ︸
Variance

(21)

with e = y− ŷ. We find that the MA part helps especially in reducing the bias, suggesting

that the MA part is important to well approximate the conditional mean of y (the optimal

forecast under the quadratic loss). When the models with the MA component are not

performing well, this is due especially to the variance term, instead. Detailed results on

the bias/variance decomposition are presented in Table 9. In particular, in the table we

report the ratio of the bias and of the variance of each model relative to the bias and

variance of the MIDAS-AR model, which is taken as a benchmark.

The MSE and MAE are computed over the entire evaluation sample. To check whether

the performance of our models remains good across the entire sample, in Figure 1 we report

4The models which include an MA component are indicated in bold in the tables, while the lowest MSE
and MAE values are underlined.
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the one-quarter ahead forecasts of the benchmark MIDAS-AR model and of one of the MA

augmented models, together with the realized series. In Figure 2, instead, we report the

4-quarter ahead forecasts.5 It turns out that, on average, MIDAS models perform well

throughout the sample, both with and without an MA component.

Tables 10 and 11 report the full-sample estimates of MA coefficients in MIDAS-ARMA

and UMIDAS-ARMA models that have been used in the forecasting exercise. The cor-

responding t-statistics are shown in parentheses. We observe that many MA coefficients

are significant. For instance, MA(1) coefficient in MIDAS-ARMA-3lags model on GDP

growth equation with employment growth is precisely estimated at horizons h = 1, 2, 3.

This MIDAS-ARMA model was also the best in out-of-sample forecasting exercise, see ta-

ble 6. In case of PNFI, when forecasting one quarter ahead with industrial production as

high frequency predictor, MA coefficient is significant in all models. Same result holds at

longer horizons with employment growth. When it comes to GDP deflator prediction, an

interesting finding is that the MA(2) component is highly strong and significant for most

of the horizons and models.

Finally, to assess whether our results are robust to the exclusion of the recent crisis,

we have rerun the forecast evaluation over a sample ending in 2007Q3. Results do not

change substantially, and remain broadly supportive of the inclusion of the MA component

in the mixed-frequency models. In most of the cases, the best performing model up to

2007 remains the best in the full sample. The magnitude of improvements is also very

comparable. Detailed results are provided in Appendix B.

6 Conclusions

In this paper, we start from the observation that temporal aggregation in general in-

troduces a moving average component in the aggregated model. We show that a similar

feature also emerges when not all but only a few variables are aggregated, which generates

a mixed frequency model. Hence, an MA component should be added to mixed frequency

models, while this is generally neglected in the literature.

We illustrate in a set of Monte Carlo simulations that indeed adding an MA compo-

nent to MIDAS and UMIDAS models further improves their nowcasting and forecasting

5Figures 1 and 2 focus only on a small portion of results that we have available. The same figures for
other models, other forecast horizons and other explanatory variables are available upon request.
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abilities, though in general the gains are limited and particularly evident in the presence

of persistence. Interestingly, the relative performance of MIDAS versus UMIDAS further

improves when adding an MA component, with the latter attenuating the effects of impos-

ing a particular polynomial structure in the dynamic response of the low frequency to the

high frequency variable.

A similar pattern emerges in an empirical exercise based on actual data. Specifically,

we find that the inclusion of an MA component can substantially improve the forecasting

performance of quarterly macroeconomic U.S. variables, as GDP growth, PNFI growth and

GDP deflator inflation. MIDAS-ARMA models perform particularly well, suggesting that

the addition of an MA component to the MIDAS model helps somewhat in reducing the

potential misspecification due to imposing a specific lag polynomial structure. Finally, full

sample estimates of MA coefficients are significant and important in most of MIDAS-ARMA

and UMIDAS-ARMA specifications.
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Table 1: Monte Carlo simulations results: MSE(model) relative to MSE(MIDAS) - DGP:
ARDL(1,1) with average sampling, T = 100.

PANEL (A):
ρ = 0.94, δl = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.974 0.986 0.981 0.968 0.970 0.967
MIDAS-ARMA-3 (3) 0.966 0.981 0.969 0.962 0.959 0.966
UMIDAS-AR (4) 0.997 0.997 0.986 1.005 0.994 0.990
UMIDAS-ARMA (5) 0.969 0.983 0.974 0.970 0.961 0.973
UMIDAS-ARMA-3 (6) 0.971 0.977 0.974 0.971 0.964 0.975

PANEL (B):
ρ = 0.9, δl = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.976 0.989 0.984 0.979 0.973 0.976
MIDAS-ARMA-3 (3) 0.975 0.983 0.988 0.969 0.978 0.971
UMIDAS-AR (4) 1.030 1.024 1.023 1.029 1.038 1.040
UMIDAS-ARMA (5) 1.019 1.018 1.023 1.012 1.024 1.028
UMIDAS-ARMA-3 (6) 0.976 0.979 0.984 0.977 0.977 0.981

PANEL (C):
ρ = 0.5, δl = 0.1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.986 0.990 0.994 0.984 0.983 0.978
MIDAS-ARMA-3 (3) 1.184 1.197 1.178 1.174 1.202 1.176
UMIDAS-AR (4) 1.005 1.000 1.003 1.006 1.013 0.995
UMIDAS-ARMA (5) 1.000 1.005 0.992 0.998 0.993 0.992
UMIDAS-ARMA-3 (6) 1.182 1.212 1.185 1.175 1.198 1.179

PANEL (D):
ρ = 0.1, δl = 0.1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.981 0.985 0.989 0.983 0.980 0.972
MIDAS-ARMA-3 (3) 0.833 0.848 0.846 0.834 0.827 0.828
UMIDAS-AR (4) 0.825 0.837 0.834 0.823 0.824 0.819
UMIDAS-ARMA (5) 0.832 0.841 0.844 0.833 0.831 0.836
UMIDAS-ARMA-3 (6) 0.833 0.846 0.846 0.834 0.829 0.829

Note: The four panels report the results for four different DGPs for 1-quarter ahead horizon (with the infor-
mation of the first two months of the quarter available). The numbers (2) to (6) refer to the corresponding
models described in Section 4. The results reported are the average, median and the 10th, 25th, 75th, 90th

percentiles of the MSE of the indicated model relative to the average, median and the 10th, 25th, 75th, 90th

percentiles of the MSE of the benchmark MIDAS (model (1) in Section 4) computed over 500 replications.
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Table 2: Monte Carlo simulations results: MSE(model) relative to MSE(MIDAS) - DGP:
ARDL(1,1) with average sampling, T = 50

PANEL (A):
ρ = 0.94, δl = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.985 0.975 0.996 0.983 0.990 0.968
MIDAS-ARMA-3 (3) 0.957 0.949 0.982 0.947 0.957 0.944
UMIDAS-AR (4) 0.982 0.984 0.998 0.968 0.986 0.979
UMIDAS-ARMA (5) 0.957 0.950 0.984 0.954 0.965 0.939
UMIDAS-ARMA-3 (6) 0.968 0.950 1.003 0.962 0.975 0.955

PANEL (B):
ρ = 0.9, δl = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.997 1.001 1.012 0.994 0.986 0.982

MIDAS-ARMA-3 (3) 0.973 0.978 1.006 0.964 0.961 0.977
UMIDAS-AR (4) 1.033 1.074 1.041 1.025 1.034 1.013
UMIDAS-ARMA (5) 1.020 1.041 1.040 1.018 1.019 1.016
UMIDAS-ARMA-3 (6) 0.981 0.982 1.023 0.968 0.971 0.983

PANEL (C):
ρ = 0.5, δl = 0.1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.013 1.007 1.010 1.022 0.999 1.014
MIDAS-ARMA-3 (3) 1.188 1.182 1.172 1.179 1.168 1.249
UMIDAS-AR (4) 1.038 1.056 1.054 1.026 1.046 1.064
UMIDAS-ARMA (5) 1.061 1.089 1.059 1.049 1.049 1.062
UMIDAS-ARMA-3 (6) 1.197 1.186 1.181 1.181 1.173 1.241

PANEL (D):
ρ = 0.1, δl = 0.1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.984 0.987 0.989 0.983 0.989 0.973
MIDAS-ARMA-3 (3) 0.824 0.809 0.807 0.825 0.830 0.846
UMIDAS-AR (4) 0.810 0.791 0.814 0.819 0.814 0.820
UMIDAS-ARMA (5) 0.834 0.824 0.826 0.831 0.834 0.853
UMIDAS-ARMA-3 (6) 0.830 0.826 0.816 0.827 0.832 0.859

Note: See Table 2.
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Table 3: Monte Carlo simulations results: MSE(model) relative to MSE(MIDAS) - DGP:
ARDL(2,2) with point-in-time sampling, T = 100

PANEL (A):
ρ1 = 0.05, ρ2 = 0.1, δl1 = 0.5, δl2 = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.007 1.010 1.003 1.007 1.010 1.025
MIDAS-ARMA-3 (3) 1.006 1.006 0.997 1.003 1.014 1.018
UMIDAS-AR (4) 1.014 1.007 1.016 1.005 1.006 1.030
UMIDAS-ARMA (5) 1.015 1.000 1.014 1.007 1.014 1.026
UMIDAS-ARMA-3 (6) 1.007 0.998 1.004 1.006 1.016 1.023

PANEL (B):
ρ1 = 0.125, ρ2 = 0.5, δl1 = 0.125, δl2 = 0.5

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.956 0.955 0.960 0.963 0.949 0.959
MIDAS-ARMA-3 (3) 0.940 0.932 0.950 0.950 0.931 0.943
UMIDAS-AR (4) 0.938 0.921 0.938 0.945 0.929 0.946
UMIDAS-ARMA (5) 0.921 0.927 0.922 0.926 0.908 0.939
UMIDAS-ARMA-3 (6) 0.943 0.921 0.950 0.947 0.932 0.948

PANEL (C):
ρ1 = 0.25, ρ2 = 0.5, δl1 = 0.5, δl2 = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.984 0.968 0.981 0.985 0.991 0.998
MIDAS-ARMA-3 (3) 0.980 0.981 0.982 0.968 0.981 0.999
UMIDAS-AR (4) 1.021 1.032 1.020 1.006 1.032 1.036
UMIDAS-ARMA (5) 0.992 0.987 0.986 0.988 1.001 1.004
UMIDAS-ARMA-3 (6) 0.983 0.978 0.979 0.980 0.985 0.998

Note: The four panels report the results for three different DGPs. The numbers (2) to (6) refer to
the corresponding models described in Section 4. The results reported are the average, median and the
10th, 25th, 75th, 90th percentiles of the MSE of the indicated model relative to the average, median and the
10th, 25th, 75th, 90th percentiles of the MSE of the benchmark MIDAS (model (1) in Section 4) computed
over 500 replications.

21



Table 4: Monte Carlo simulations results: MSE(model) relative to MSE(MIDAS) - DGP:
ARDL(2,2) with point-in-time sampling, T = 50

PANEL (A):
ρ1 = 0.05, ρ2 = 0.1, δl1 = 0.5, δl2 = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.020 1.003 1.024 1.021 1.009 1.017
MIDAS-ARMA-3 (3) 1.003 0.990 1.015 1.014 0.986 0.994
UMIDAS-AR (4) 1.006 0.982 1.036 1.019 1.011 0.988
UMIDAS-ARMA (5) 1.018 0.955 1.033 1.037 1.023 1.030
UMIDAS-ARMA-3 (6) 1.018 1.000 1.024 1.028 1.021 1.010

PANEL (B):
ρ1 = 0.125, ρ2 = 0.5, δl1 = 0.125, δl2 = 0.5

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.017 0.980 1.006 1.004 1.019 1.042
MIDAS-ARMA-3 (3) 0.967 0.934 0.970 0.995 0.953 0.991
UMIDAS-AR (4) 0.971 0.973 0.979 0.979 0.961 0.997
UMIDAS-ARMA (5) 0.983 0.983 0.977 1.000 0.958 0.980
UMIDAS-ARMA-3 (6) 1.009 0.970 1.002 1.016 1.000 1.023

PANEL (C):
ρ1 = 0.25, ρ2 = 0.5, δl1 = 0.5, δl2 = 1

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.016 1.003 0.991 1.005 1.012 1.010
MIDAS-ARMA-3 (3) 0.990 0.993 0.965 0.984 0.988 0.979
UMIDAS-AR (4) 1.046 1.024 1.016 1.047 1.059 1.039
UMIDAS-ARMA (5) 1.041 1.051 1.035 1.018 1.045 1.038
UMIDAS-ARMA-3 (6) 1.016 1.008 1.014 0.991 1.024 1.018

Note: see Table 3.
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Table 5: Data description

Series Source Source Code Transformation Frequency

US data
GDP Deflator FRED GDPDEF Log-difference Quarterly
Real GDP FRED GDP Log-difference Quarterly
Private Nonresidential Fixed Investment FRED PNFI Level Quarterly
Nonresidential (implicit price deflator) FRED A008RD3Q086SBEA Level Quarterly
Real Private Nonresidential Fixed Investment PNFI / A008RD3Q086SBEA Log-difference Quarterly
Consumer Price Index (CPI) FRED CPIAUCSL Log-difference Monthly
Personal Consumption Expenditures: Price Index (PCE) FRED PCEPI Log-difference Monthly
Employment FRED PAYEMS Log-difference Monthly
Industrial Production FRED INDPRO Log-difference Monthly
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Table 6: Forecasting U.S. GDP growth

Explanatory variable: Explanatory variable:
Industrial production growth Employment growth

h=1 h=1
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 4.06 1.00 NaN 1.58 1.00 NaN 4.84 1.00 NaN 1.73 1.00 NaN
MIDAS-ARMA-12lags 4.05 1.00 0.41 1.59 1.01 0.13 4.73 0.98 0.33 1.72 0.99 0.37
MIDAS-ARMA-3 4.27 1.05 0.07 1.60 1.01 0.22 4.76 0.98 0.39 1.72 0.99 0.42
UMIDAS-biclags 4.21 1.04 0.15 1.58 1.00 0.41 4.70 0.97 0.31 1.73 1.00 0.49
UMIDAS-ARMA-biclags 4.18 1.03 0.19 1.59 1.01 0.26 4.37 0.90 0.05 1.67 0.96 0.17
UMIDAS-ARMA-3 4.27 1.05 0.07 1.60 1.01 0.22 4.76 0.98 0.39 1.72 0.99 0.42
AR 7.60 1.87 0.01 1.97 1.25 0.01 7.60 1.57 0.02 1.97 1.14 0.05

h=2 h=2
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 6.68 1.00 NaN 1.86 1.00 NaN 6.07 1.00 NaN 1.79 1.00 NaN
MIDAS-ARMA-12lags 6.35 0.95 0.03 1.84 0.99 0.29 5.58 0.92 0.03 1.76 0.98 0.22
MIDAS-ARMA-3 6.59 0.99 0.31 1.90 1.02 0.16 5.78 0.95 0.12 1.78 1.00 0.41
UMIDAS-biclags 7.05 1.05 0.00 1.94 1.04 0.00 6.07 1.00 0.06 1.79 1.00 0.05
UMIDAS-ARMA-biclags 6.89 1.03 0.12 1.92 1.03 0.02 5.81 0.96 0.15 1.78 1.00 0.45
UMIDAS-ARMA-3 7.04 1.05 0.09 1.89 1.01 0.19 6.10 1.00 0.46 1.82 1.01 0.20
AR 7.77 1.16 0.10 1.98 1.06 0.06 7.77 1.28 0.02 1.98 1.10 0.01

h=3 h=3
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 8.14 1.00 NaN 2.01 1.00 NaN 8.85 1.00 NaN 2.10 1.00 NaN
MIDAS-ARMA-12lags 8.22 1.01 0.34 2.04 1.01 0.28 9.39 1.06 0.21 2.31 1.10 0.03
MIDAS-ARMA-3 7.44 0.91 0.00 1.89 0.94 0.00 7.06 0.80 0.00 1.90 0.90 0.00
UMIDAS-biclags 8.12 1.00 0.45 1.99 0.99 0.19 7.62 0.86 0.00 1.94 0.92 0.00
UMIDAS-ARMA-biclags 12.00 1.47 0.01 2.46 1.22 0.00 15.23 1.72 0.00 3.11 1.48 0.00
UMIDAS-ARMA-3 8.24 1.01 0.42 1.97 0.98 0.16 7.93 0.90 0.07 1.99 0.95 0.07
AR 8.77 1.08 0.11 2.05 1.02 0.19 8.77 0.99 0.43 2.05 0.98 0.19

h=4 h=4
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 9.14 1.00 NaN 2.11 1.00 NaN 11.11 1.00 NaN 2.31 1.00 NaN
MIDAS-ARMA-12lags 8.56 0.94 0.09 2.07 0.98 0.24 11.20 1.01 0.46 2.43 1.05 0.13
MIDAS-ARMA-3 8.27 0.90 0.03 2.02 0.96 0.05 10.14 0.91 0.02 2.16 0.94 0.01
UMIDAS-biclags 8.77 0.96 0.19 2.05 0.97 0.10 10.37 0.93 0.05 2.17 0.94 0.01
UMIDAS-ARMA-biclags 8.91 0.98 0.40 2.10 0.99 0.45 11.13 1.00 0.49 2.38 1.03 0.30
UMIDAS-ARMA-3 10.01 1.09 0.30 2.08 0.99 0.40 9.52 0.86 0.00 2.10 0.91 0.00
AR 8.69 0.95 0.11 2.05 0.97 0.10 8.69 0.78 0.00 2.05 0.89 0.00

Note: The table reports the results on the forecasting performance of the different models. In the columns
”value” we report the MSE and the MAE respectively. In the columns ”ratio” we report the MSE and
MAE of each model relative to the MIDAS-AR benchmark. In the columns ”DM” we report the p-value of
the Diebold-Mariano test. The forecasts are evaluated over the sample 1980Q1-2015Q4. The lowest values
for each variable are underlined.
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Table 7: Forecasting U.S. Real Private Nonresidential Fixed Investment growth

Explanatory variable: Explanatory variable:
Industrial production growth Employment growth

h=1 h=1
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 30.70 1.00 NaN 4.40 1.00 NaN 33.01 1.00 NaN 4.56 1.00 NaN
MIDAS-ARMA-12lags 29.32 0.96 0.06 4.25 0.97 0.02 33.38 1.01 0.18 4.57 1.00 0.33
MIDAS-ARMA-3 28.13 0.92 0.01 4.19 0.95 0.01 33.15 1.00 0.40 4.57 1.00 0.37
UMIDAS-biclags 31.91 1.04 0.22 4.45 1.01 0.24 33.31 1.01 0.18 4.58 1.01 0.12
UMIDAS-ARMA-biclags 29.27 0.95 0.13 4.27 0.97 0.06 34.11 1.03 0.20 4.64 1.02 0.11
UMIDAS-ARMA-3 28.15 0.92 0.01 4.19 0.95 0.01 32.98 1.00 0.48 4.57 1.00 0.37
AR 44.91 1.46 0.01 5.11 1.16 0.01 44.91 1.36 0.02 5.11 1.12 0.05

h=2 h=2
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 38.90 1.00 NaN 4.72 1.00 NaN 36.33 1.00 NaN 4.71 1.00 NaN
MIDAS-ARMA-12 38.59 0.99 0.34 4.74 1.00 0.37 36.13 0.99 0.40 4.74 1.01 0.32
MIDAS-ARMA-3 41.46 1.07 0.07 4.86 1.03 0.11 36.70 1.01 0.29 4.76 1.01 0.21
UMIDAS-biclags 41.92 1.08 0.00 4.87 1.03 0.00 37.84 1.04 0.03 4.78 1.02 0.08
UMIDAS-ARMA-biclags 44.76 1.15 0.00 5.11 1.08 0.00 38.40 1.06 0.03 4.85 1.03 0.07
UMIDAS-ARMA-3 43.93 1.13 0.03 4.92 1.04 0.06 36.69 1.01 0.36 4.80 1.02 0.11
AR 47.14 1.21 0.08 5.18 1.10 0.05 47.14 1.30 0.04 5.18 1.10 0.05

h=3 h=3
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 43.65 1.00 NaN 5.15 1.00 NaN 43.77 1.00 NaN 5.20 1.00 NaN
MIDAS-ARMA-12 41.97 0.96 0.07 4.99 0.97 0.05 40.70 0.93 0.02 5.00 0.96 0.01
MIDAS-ARMA-3 45.90 1.05 0.13 5.21 1.01 0.25 41.31 0.94 0.05 5.06 0.97 0.06
UMIDAS-biclags 52.95 1.21 0.02 5.51 1.07 0.00 45.51 1.04 0.05 5.25 1.01 0.17
UMIDAS-ARMA-biclags 47.52 1.09 0.07 5.26 1.02 0.17 42.62 0.97 0.16 5.06 0.97 0.06
UMIDAS-ARMA-3 45.86 1.05 0.14 5.21 1.01 0.28 41.36 0.95 0.07 5.08 0.98 0.11
AR 55.91 1.28 0.03 5.60 1.09 0.04 55.91 1.28 0.04 5.60 1.08 0.08

h=4 h=4
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 52.70 1.00 NaN 5.72 1.00 NaN 69.36 1.00 NaN 6.18 1.00 NaN
MIDAS-ARMA-12 50.68 0.96 0.21 5.48 0.96 0.04 59.35 0.86 0.02 5.78 0.94 0.01
MIDAS-ARMA-3 50.04 0.95 0.17 5.44 0.95 0.02 48.38 0.70 0.00 5.29 0.86 0.00
UMIDAS-biclags 53.47 1.01 0.41 5.59 0.98 0.16 57.78 0.83 0.01 5.73 0.93 0.01
UMIDAS-ARMA-biclags 54.95 1.04 0.26 5.60 0.98 0.18 56.52 0.81 0.03 5.70 0.92 0.05
UMIDAS-ARMA-3 52.92 1.00 0.48 5.48 0.96 0.12 53.55 0.77 0.01 5.55 0.90 0.01
AR 63.44 1.20 0.04 5.91 1.03 0.17 63.44 0.91 0.01 5.91 0.96 0.03

Note: See Table 6.
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Table 8: Forecasting U.S. GDP Deflator

Explanatory variable: Explanatory variable:
CPI inflation PCE inflation

h=1 h=1
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.65 1.00 NaN 0.61 1.00 NaN 0.51 1.00 NaN 0.52 1.00 NaN
MIDAS-ARMA-12 0.65 0.99 0.42 0.61 1.00 0.45 0.50 0.98 0.37 0.51 0.99 0.28
MIDAS-ARMA-3 0.61 0.94 0.09 0.59 0.97 0.17 0.43 0.85 0.07 0.49 0.95 0.20
UMIDAS-biclags 0.65 0.99 0.42 0.60 0.98 0.22 0.53 1.04 0.24 0.52 1.00 0.47
UMIDAS-ARMA-biclags 0.61 0.94 0.09 0.59 0.97 0.17 0.51 1.01 0.44 0.52 1.00 0.47
UMIDAS-ARMA-3 0.61 0.94 0.09 0.59 0.97 0.17 0.49 0.96 0.11 0.51 0.98 0.14
AR 0.79 1.20 0.11 0.68 1.11 0.07 0.79 1.55 0.00 0.68 1.32 0.00

h=2 h=2
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.79 1.00 NaN 0.67 1.00 NaN 0.55 1.00 NaN 0.55 1.00 NaN
MIDAS-ARMA-12 0.68 0.86 0.08 0.64 0.95 0.09 0.56 1.01 0.38 0.55 1.01 0.36
MIDAS-ARMA-3 0.68 0.86 0.13 0.64 0.96 0.16 0.50 0.90 0.14 0.53 0.96 0.24
UMIDAS-biclags 0.74 0.94 0.31 0.66 0.99 0.38 0.55 1.00 0.49 0.56 1.01 0.44
UMIDAS-ARMA-biclags 0.70 0.89 0.15 0.67 1.00 0.46 0.52 0.95 0.30 0.55 1.00 0.47
UMIDAS-ARMA-3 0.68 0.87 0.13 0.64 0.96 0.16 0.50 0.90 0.14 0.53 0.96 0.24
AR 0.82 1.04 0.43 0.71 1.05 0.27 0.82 1.48 0.00 0.71 1.28 0.00

h=3 h=3
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.80 1.00 NaN 0.69 1.00 NaN 0.57 1.00 NaN 0.57 1.00 NaN
MIDAS-ARMA-12 0.87 1.08 0.29 0.73 1.07 0.15 0.64 1.13 0.04 0.61 1.06 0.07
MIDAS-ARMA-3 0.73 0.91 0.23 0.68 0.99 0.42 0.60 1.05 0.28 0.58 1.01 0.46
UMIDAS-biclags 0.84 1.05 0.31 0.72 1.05 0.17 0.71 1.24 0.05 0.63 1.10 0.03
UMIDAS-ARMA-biclags 0.84 1.05 0.36 0.74 1.07 0.15 0.76 1.33 0.00 0.66 1.15 0.01
UMIDAS-ARMA-3 0.75 0.93 0.25 0.68 0.99 0.43 0.60 1.05 0.27 0.58 1.01 0.45
AR 0.85 1.05 0.39 0.73 1.05 0.26 0.85 1.49 0.00 0.73 1.27 0.00

h=4 h=4
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.86 1.00 NaN 0.74 1.00 NaN 0.63 1.00 NaN 0.61 1.00 NaN
MIDAS-ARMA-12 1.08 1.25 0.00 0.84 1.13 0.00 0.81 1.27 0.00 0.70 1.16 0.00
MIDAS-ARMA-3 0.85 0.98 0.42 0.73 0.99 0.36 0.69 1.09 0.09 0.63 1.04 0.14
UMIDAS-biclags 1.00 1.16 0.00 0.80 1.07 0.01 0.74 1.17 0.01 0.65 1.08 0.02
UMIDAS-ARMA-biclags 1.06 1.23 0.01 0.81 1.09 0.02 0.83 1.31 0.00 0.70 1.15 0.00
UMIDAS-ARMA-3 0.98 1.13 0.06 0.77 1.03 0.20 0.73 1.15 0.02 0.65 1.07 0.05
AR 0.89 1.03 0.41 0.76 1.01 0.41 0.89 1.41 0.00 0.76 1.25 0.00

Note: See Table 6.
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Table 9: Bias/Variance decomposition of MSE

Bias Variance

h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4
GDP with MIDAS1-AR-12lags 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Industrial MIDAS-ARMA-12lags 0.72 0.68 0.59 0.89 1.00 0.97 1.04 0.94
Production MIDAS-ARMA-3lags 0.85 0.97 1.01 0.90 1.06 0.99 0.91 0.90

UMIDAS-biclags 1.09 1.04 1.08 0.87 1.04 1.06 0.99 0.97
UMIDAS-ARMA-biclags 0.96 1.03 1.13 1.06 1.03 1.03 1.50 0.97
UMIDAS-ARMA-3lags 0.85 1.12 1.23 0.98 1.06 1.05 1.00 1.10
AR 3.06 1.02 1.23 1.01 1.84 1.17 1.07 0.95

GDP with MIDAS1-AR-12lags 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Employment MIDAS-ARMA-12lags 0.26 0.70 2.22 1.69 0.98 0.92 0.95 0.93

MIDAS-ARMA-3lags 0.18 1.44 0.51 0.65 0.98 0.94 0.82 0.94
UMIDAS-biclags 5.60 1.00 0.51 0.74 0.97 1.00 0.89 0.95
UMIDAS-ARMA-biclags 19.59 1.52 1.88 1.30 0.90 0.95 1.71 0.97
UMIDAS-ARMA-3lags 0.18 1.40 0.56 0.61 0.98 1.00 0.93 0.88
AR 348.15 4.11 0.87 0.56 1.51 1.24 1.00 0.81

PNFI with MIDAS1-AR-12lags 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Industrial MIDAS-ARMA-12lags 5.39 0.94 0.86 0.86 0.95 0.99 0.96 0.96
Production MIDAS-ARMA-3lags 10.55 1.13 1.54 1.12 0.91 1.07 1.05 0.95

UMIDAS-biclags 0.09 1.38 1.31 1.01 1.04 1.08 1.21 1.01
UMIDAS-ARMA-biclags 1.52 1.50 1.65 1.20 0.95 1.15 1.08 1.04
UMIDAS-ARMA-3lags 10.59 1.54 1.54 0.92 0.91 1.13 1.05 1.01
AR 33.09 2.46 2.77 2.10 1.45 1.20 1.27 1.19

PNFI with MIDAS1-AR-12lags 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Employment MIDAS-ARMA-12lags 0.99 1.15 0.00 0.73 1.01 0.99 0.93 0.86

MIDAS-ARMA-3lags 0.78 0.42 4.78 0.17 1.01 1.01 0.94 0.72
UMIDAS-biclags 0.91 0.85 0.35 0.24 1.01 1.04 1.04 0.86
UMIDAS-ARMA-biclags 0.81 0.32 7.20 0.23 1.04 1.06 0.97 0.84
UMIDAS-ARMA-3lags 0.78 0.44 4.22 0.23 1.01 1.01 0.94 0.80
AR 0.25 2.53 230.03 0.58 1.40 1.29 1.25 0.93

GDP Deflator MIDAS1-AR-12lags 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
with CPI MIDAS-ARMA-12lags 1.08 0.79 0.83 0.95 0.98 0.88 1.15 1.35
inflation MIDAS-ARMA-3lags 0.87 0.61 0.51 0.72 0.94 0.92 1.03 1.07

UMIDAS-biclags 0.63 0.61 0.63 0.98 1.02 1.01 1.18 1.21
UMIDAS-ARMA-biclags 0.87 0.64 0.59 0.76 0.94 0.95 1.19 1.37
UMIDAS-ARMA-3lags 0.87 0.61 0.53 0.69 0.94 0.92 1.06 1.27
AR 0.79 0.62 0.67 0.89 1.24 1.13 1.17 1.07

GDP Deflator MIDAS1-AR-12lags 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
with PCE MIDAS-ARMA-12lags 1.23 1.00 0.88 1.04 0.97 1.01 1.19 1.33
inflation MIDAS-ARMA-3lags 0.45 0.58 0.62 0.77 0.87 0.95 1.15 1.17

UMIDAS-biclags 0.70 0.58 0.60 0.87 1.06 1.07 1.39 1.24
UMIDAS-ARMA-biclags 0.96 0.70 0.49 0.81 1.01 0.99 1.51 1.43
UMIDAS-ARMA-3lags 0.90 0.58 0.62 0.73 0.96 0.95 1.15 1.26
AR 2.09 1.16 1.24 1.45 1.52 1.53 1.54 1.40

Note: The table the decomposition of the MSE of the different models as presented in Section 4 into
bias and variance, for different forecasting horizons. The forecasts are evaluated over the sample 1980Q1-
2015Q4. The numbers reported are the ratio of the bias and of the variance of each model relative to the
bias and variance of the MIDAS-AR model.
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Table 10: Full-sample estimated MA coefficients

Forecasting U.S. GDP growth

Explanatory variable: Explanatory variable:
Industrial Production Employment

h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4
MA(1) MA(1) MA(2) MA(1) MA(1) MA(1) MA(1) MA(1) MA(1)

MIDAS-ARMA-12lags 0.06 0.03 0.11 0.29 0.26 0.39 0.35 0.24 0.12
(0.45) (0.46) (0.72) (1.33) (0.78) (3.59) (2.26) (1.18) (0.42)

MIDAS-ARMA-3lags -0.10 0.05 0.17 0.31 0.32 0.41 0.44 0.37 0.26
(-0.89) (0.73) (1.13) (1.71) (1.20) (4.00) (2.85) (1.95) (1.01)

UMIDAS-ARMA-biclags 0.01 0.06 0.19 0.11 0.25 0.05 0.42 0.25 0.28
(0.08) (0.84) (1.14) (0.43) (1.22) (0.18) (2.98) (1.47) (1.15)

UMIDAS-ARMA-3lags -0.10 0.05 0.17 0.31 0.16 0.41 0.45 0.33 0.27
(-0.89) (0.73) (1.13) (1.80) (0.60) (4.00) (3.03) (1.70) (1.07)

Forecasting PNFI growth

Explanatory variable: Explanatory variable:
Industrial Production Employment

h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4
MA(1) MA(1) MA(1) MA(1) MA(1) MA(1) MA(1) MA(1)

MIDAS-ARMA-12lags -0.33 -0.14 0.13 -0.03 0.13 0.29 0.35 0.46
(-3.82) (-1.15) (0.65) (-0.13) (1.27) (2.22) (2.37) (2.67)

MIDAS-ARMA-3lags -0.39 -0.14 0.15 -0.07 0.11 0.27 0.37 0.48
(-5.83) (-1.54) (1.14) (-0.43) (1.23) (2.86) (2.65) (2.94)

UMIDAS-ARMA-biclags -0.31 0.05 0.17 -0.09 -0.04 0.26 0.35 0.48
(-3.70) (0.50) (1.33) (-0.51) (-0.42) (2.78) (2.41) (2.46)

UMIDAS-ARMA-3lags -0.39 -0.12 0.15 -0.07 0.08 0.29 0.37 0.48
(-5.83) (-1.24) (1.14) (-0.43) (0.83) (3.00) (2.65) (2.98)

Note: The table reports the estimated values of MA coefficients using the full sample 1960-2015. The
values in parentheses are t-statistics calculated with Newey-West standard errors to take into account the
serial autocorrelation of order h− 1, possibly induced by direct forecasting.
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Table 11: Full-sample estimated MA coefficients

Forecasting U.S. GDP deflator

Explanatory variable:
Consumer Price Index

h=1 h=2 h=3 h=4
MA(1) MA(2) MA(1) MA(2) MA(1) MA(2) MA(1) MA(2)

MIDAS-ARMA-12lags .-0.09 -0.31 0.18 -0.30 0.29 -0.08 0.19 0.14
(-1.03) (-2.43) (1.89) (-2.78) (2.78) (-0.67) (1.70) (1.46)

MIDAS-ARMA-3lags -0.09 -0.36 0.20 -0.34 0.28 -0.10 0.18 0.11
(-1.13) (-4.65) (2.09) (-4.48) (2.99) (-0.93) (1.76) (1.08)

UMIDAS-ARMA-biclags -0.09 -0.36 0.18 -0.35 0.25 -0.12 0.16 0.09
(-1.13) (-4.65) (1.78) (-4.58) (2.62) (-1.09) (1.58) (0.91)

UMIDAS-ARMA-3lags -0.09 -0.36 0.20 -0.34 0.28 -0.10 0.18 0.11
(-1.13) (-4.65) (2.06) (-4.44) (2.99) (-0.93) (1.76) (1.08)

Explanatory variable:
PCE Price Index

h=1 h=2 h=3 h=4
MA(1) MA(2) MA(1) MA(2) MA(1) MA(2) MA(1) MA(2)

MIDAS-ARMA-12lags -0.06 0.09 0.13 -0.22 0.25 -0.03 0.19 0.19
(-0.68) (0.55) (1.50) (-1.62) (2.48) (-0.30) (1.84) (2.07)

MIDAS-ARMA-3lags 0.15 0.32 0.14 -0.30 0.24 -0.05 0.18 0.16
(1.97) (3.25) (1.56) (-3.86) (2.95) (-0.53) (1.91) (1.53)

UMIDAS-ARMA-biclags -0.13 -0.29 0.14 -0.30 0.22 -0.06 0.17 0.16
(-1.84) (-3.60) (1.56) (-3.86) (2.63) (-0.63) (1.82) (1.51)

UMIDAS-ARMA-3lags -0.13 -0.29 0.14 -0.30 0.24 -0.05 0.18 0.16
(-1.84) (-3.60) (1.56) (-3.86) (2.95) (-0.53) (1.91) (1.53)

Note: The table reports the estimated values of MA coefficients using the full sample 1960-2015. The
values in parentheses are t-statistics calculated with Newey-West standard errors to take into account the
serial autocorrelation of order h− 1, possibly induced by direct forecasting.

29



Figure 1: Out-of-sample performance: one-quarter ahead

(a) GDP with monthly industrial production (b) PNFI with monthly industrial production

(c) GDP deflator with monthly CPI (d) GDP deflator with monthly PCE
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Figure 2: Out-of-sample performance: four-quarters ahead

(a) GDP with monthly employment (b) PNFI with monthly employment

(c) GDP deflator with monthly CPI (d) GDP deflator with monthly PCE
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A Estimation of (U)MIDAS-ARMA models

In this section we detail the algorithm used to estimate the (U)MIDAS-ARMA models

with non-linear least squares (NLS).

A.1 NLS estimation of MIDAS-ARMA

The MIDAS-ARMA specification is as in (15):

ytm = c̃(Lm)ytm−hm + βB(L, θ)xtm−hm+w + utm + q(Lm)utm−hm .

The estimation procedure, for given orders of the lag polynomials, consists of the following

steps:

Step 1 Get initial values for all the parameters but q(Lm) following Foroni et al. (2015) (the

starting values are chosen with a grid search over a set of values for θ, which minimize

the residual sum of squares). Set the initial values for q(Lm). We initialize the MA

coefficients by a draw from the uniform U(0.1, 0.5) distribution. In principle, it is

possible to include the selection of initial value of q(Lm) into the grid search.

Step 2 Estimate all the parameters, including the weights in the Almon polynomial, simul-

taneously by NLS, numerically minimizing the residual sum of squares, starting from

the initial values obtained in Step 1.

A.2 NLS estimation of UMIDAS-ARMA

The UMIDAS-ARMA specification is as in (13):

ytm = c̃(Lm)ytm−hm + δ(L)xtm−hm+w + utm + q(Lm)utm−hm ,

with p, d and r being the lag orders of c̃(Lm), δ(L) and q(Lm) respectively. The

estimation procedure consists of the following steps:
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Step 1 Get the initial values for all the parameters but q(Lm) by projecting ytm on
∑p

j=0 ytm−hm−j

and
∑d

j=0 xtm−hm+w−j. Set the initial value for q(Lm). We initialize the MA coeffi-

cients by a draw from the uniform U(0.1, 0.5) distribution. In principle, it is possible

to perform a grid search and find a set of starting values of q(Lm) which minimize

the residual sum of squares.

Step 2 Estimate all the parameters simultaneously by NLS, numerically minimizing the resid-

ual sum of squares, starting from the initial values obtained in Step 1.

B Evaluation excluding the Great Recession

To see whether our results are robust, and not driven by the Great Recession, we

recompute the forecast evaluation stopping our evaluation sample in 2007Q3.

Tables 12 to 14 are the equivalent of Tables 6 to 8 for the full sample. Results do not

change substantially, and remain broadly supportive of the inclusion of the MA component

in the mixed-frequency models. In most of the cases, the best performing model up to

2007 stays the best in the full sample also. Also the magnitude of improvements is very

comparable.
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Table 12: Forecasting U.S. GDP growth: evaluation sample 1980Q1- 2007Q3

Explanatory variable: Explanatory variable:
Industrial production growth Employment growth

h=1 h=1
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 3.81 1.00 NaN 1.51 1.00 NaN 4.82 1.00 NaN 1.71 1.00 NaN
MIDAS-ARMA-12 3.83 1.01 0.36 1.53 1.01 0.04 4.81 1.00 0.48 1.70 1.00 0.44
MIDAS-ARMA-3 3.89 1.02 0.26 1.51 1.00 0.47 4.86 1.01 0.45 1.71 1.00 0.49
UMIDAS-biclags 3.88 1.02 0.30 1.51 1.00 0.44 4.74 0.98 0.39 1.72 1.01 0.43
UMIDAS-ARMA-biclags 3.86 1.01 0.35 1.52 1.01 0.36 4.43 0.92 0.10 1.66 0.97 0.24
UMIDAS-ARMA-3 3.89 1.02 0.26 1.51 1.00 0.47 4.86 1.01 0.45 1.71 1.00 0.49
AR 7.37 1.93 0.01 1.94 1.29 0.01 7.37 1.53 0.04 1.94 1.14 0.09

h=2 h=2
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 6.59 1.00 NaN 1.85 1.00 NaN 6.15 1.00 NaN 1.80 1.00 NaN
MIDAS-ARMA-12 6.26 0.95 0.05 1.84 0.99 0.40 5.63 0.92 0.06 1.76 0.98 0.20
MIDAS-ARMA-3 6.53 0.99 0.39 1.91 1.03 0.10 5.76 0.94 0.11 1.77 0.98 0.26
UMIDAS-biclags 7.04 1.07 0.00 1.96 1.06 0.00 6.15 1.00 0.12 1.80 1.00 0.09
UMIDAS-ARMA-biclags 6.74 1.02 0.22 1.92 1.04 0.03 5.76 0.94 0.12 1.77 0.98 0.26
UMIDAS-ARMA-3 6.71 1.02 0.21 1.86 1.00 0.42 6.19 1.01 0.45 1.82 1.01 0.30
AR 7.45 1.13 0.19 1.94 1.05 0.16 7.45 1.21 0.06 1.94 1.08 0.04

h=3 h=3
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 7.76 1.00 NaN 2.00 1.00 NaN 8.79 1.00 NaN 2.12 1.00 NaN
MIDAS-ARMA-12 7.91 1.02 0.27 2.02 1.01 0.28 9.38 1.07 0.23 2.35 1.11 0.04
MIDAS-ARMA-3 6.91 0.89 0.00 1.85 0.93 0.00 6.88 0.78 0.00 1.89 0.89 0.00
UMIDAS-biclags 7.67 0.99 0.32 1.96 0.98 0.12 7.36 0.84 0.01 1.93 0.91 0.01
UMIDAS-ARMA-biclags 11.40 1.47 0.02 2.44 1.22 0.02 16.27 1.85 0.00 3.35 1.58 0.00
UMIDAS-ARMA-3 7.33 0.94 0.12 1.90 0.95 0.04 7.90 0.90 0.13 1.99 0.94 0.09
AR 8.22 1.06 0.23 2.00 1.00 0.49 8.22 0.94 0.03 2.00 0.94 0.03

h=4 h=4
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 8.26 1.00 NaN 2.03 1.00 NaN 10.56 1.00 NaN 2.26 1.00 NaN
MIDAS-ARMA-12 8.08 0.98 0.28 2.04 1.00 0.44 10.94 1.04 0.36 2.43 1.08 0.09
MIDAS-ARMA-3 7.73 0.94 0.06 1.97 0.97 0.14 9.85 0.93 0.09 2.12 0.94 0.03
UMIDAS-biclags 8.26 1.00 0.50 2.00 0.98 0.27 9.89 0.94 0.10 2.11 0.94 0.02
UMIDAS-ARMA-biclags 7.04 0.85 0.04 1.96 0.96 0.26 11.10 1.05 0.31 2.39 1.06 0.18
UMIDAS-ARMA-3 9.45 1.14 0.29 2.01 0.99 0.43 9.26 0.88 0.01 2.06 0.91 0.01
AR 8.09 0.98 0.30 1.99 0.98 0.23 8.09 0.77 0.01 1.99 0.88 0.00

Note: The table reports the results on the forecasting performance of the different models. In the columns
”value” we report the MSE and the MAE respectively. In the columns ”ratio” we report the MSE and
MAE of each model relative to the MIDAS-AR benchmark. In the columns ”DM” we report the p-value of
the Diebold-Mariano test. The forecasts are evaluated over the sample 1980Q1-2007Q3. The lowest values
for each variable are underlined.
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Table 13: Forecasting U.S. Real Private Nonresidential Fixed Investment growth growth:
evaluation sample 1980Q1- 2007Q3

Explanatory variable: Explanatory variable:
Industrial production growth Employment growth

h=1 h=1
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 33.02 1.00 NaN 4.56 1.00 NaN 33.56 1.00 NaN 4.55 1.00 NaN
MIDAS-ARMA-12 30.91 0.94 0.01 4.41 0.97 0.02 34.30 1.02 0.06 4.60 1.01 0.07
MIDAS-ARMA-3 29.68 0.90 0.00 4.37 0.96 0.03 33.90 1.01 0.30 4.60 1.01 0.16
UMIDAS-biclags 34.77 1.05 0.19 4.65 1.02 0.19 33.97 1.01 0.15 4.60 1.01 0.01
UMIDAS-ARMA-biclags 30.99 0.94 0.09 4.44 0.97 0.10 35.23 1.05 0.16 4.69 1.03 0.03
UMIDAS-ARMA-3 29.70 0.90 0.00 4.37 0.96 0.03 33.58 1.00 0.49 4.59 1.01 0.26
AR 43.71 1.32 0.01 5.13 1.12 0.03 43.71 1.30 0.03 5.13 1.13 0.06

h=2 h=2
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 39.79 1.00 NaN 4.87 1.00 NaN 36.79 1.00 NaN 4.75 1.00 NaN
MIDAS-ARMA-12 39.82 1.00 0.48 4.89 1.00 0.42 37.40 1.02 0.21 4.82 1.02 0.13
MIDAS-ARMA-3 42.43 1.07 0.09 5.04 1.03 0.13 37.83 1.03 0.08 4.85 1.02 0.08
UMIDAS-biclags 42.57 1.07 0.00 5.04 1.03 0.00 38.74 1.05 0.03 4.84 1.02 0.09
UMIDAS-ARMA-biclags 46.29 1.16 0.00 5.34 1.10 0.00 39.91 1.08 0.01 4.96 1.05 0.03
UMIDAS-ARMA-3 45.18 1.14 0.04 5.11 1.05 0.07 37.75 1.03 0.22 4.89 1.03 0.04
AR 44.72 1.12 0.22 5.20 1.07 0.15 44.72 1.22 0.07 5.20 1.09 0.06

h=3 h=3
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 43.65 1.00 NaN 5.24 1.00 NaN 42.71 1.00 NaN 5.18 1.00 NaN
MIDAS-ARMA-12 42.16 0.97 0.13 5.11 0.97 0.11 40.70 0.95 0.07 5.06 0.98 0.06
MIDAS-ARMA-3 44.05 1.01 0.36 5.25 1.00 0.47 41.21 0.96 0.19 5.11 0.99 0.22
UMIDAS-biclags 48.10 1.10 0.00 5.46 1.04 0.04 44.94 1.05 0.05 5.25 1.01 0.17
UMIDAS-ARMA-biclags 45.37 1.04 0.10 5.30 1.01 0.28 42.65 1.00 0.48 5.10 0.98 0.19
UMIDAS-ARMA-3 44.00 1.01 0.37 5.24 1.00 0.49 41.27 0.97 0.21 5.14 0.99 0.33
AR 50.82 1.16 0.07 5.52 1.05 0.12 50.82 1.19 0.05 5.52 1.07 0.10

h=4 h=4
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 50.48 1.00 NaN 5.71 1.00 NaN 63.84 1.00 NaN 6.13 1.00 NaN
MIDAS-ARMA-12 47.04 0.93 0.12 5.39 0.94 0.02 54.59 0.86 0.05 5.74 0.94 0.04
MIDAS-ARMA-3 46.28 0.92 0.10 5.34 0.93 0.01 45.45 0.71 0.01 5.21 0.85 0.00
UMIDAS-biclags 47.34 0.94 0.06 5.46 0.96 0.02 54.11 0.85 0.01 5.63 0.92 0.01
UMIDAS-ARMA-biclags 50.38 1.00 0.49 5.50 0.96 0.08 52.81 0.83 0.06 5.67 0.93 0.10
UMIDAS-ARMA-3 48.15 0.95 0.30 5.35 0.94 0.07 52.06 0.82 0.03 5.54 0.91 0.03
AR 56.22 1.11 0.08 5.76 1.01 0.40 56.22 0.88 0.01 5.76 0.94 0.01

Note: See Table 12.
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Table 14: Forecasting U.S. GDP Deflator: evaluation sample 1980Q1- 2007Q3

Explanatory variable: Explanatory variable:
CPI inflation PCE inflation

h=1 h=1
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.63 1.00 NaN 0.60 1.00 NaN 0.42 1.00 NaN 0.48 1.00 NaN
MIDAS-ARMA-12 0.63 1.00 0.49 0.61 1.02 0.29 0.43 1.03 0.29 0.49 1.02 0.23
MIDAS-ARMA-3 0.58 0.92 0.09 0.58 0.96 0.15 0.39 0.95 0.32 0.48 1.02 0.36
UMIDAS-biclags 0.59 0.93 0.19 0.58 0.97 0.19 0.43 1.04 0.29 0.49 1.02 0.29
UMIDAS-ARMA-biclags 0.58 0.92 0.09 0.58 0.96 0.15 0.45 1.08 0.18 0.49 1.03 0.19
UMIDAS-ARMA-3 0.58 0.92 0.09 0.58 0.96 0.15 0.41 1.00 0.47 0.48 1.01 0.39
AR 0.77 1.23 0.15 0.68 1.14 0.06 0.77 1.86 0.00 0.68 1.43 0.00

h=2 h=2
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.83 1.00 NaN 0.68 1.00 NaN 0.51 1.00 NaN 0.53 1.00 NaN
MIDAS-ARMA-12 0.69 0.83 0.08 0.65 0.95 0.14 0.54 1.05 0.11 0.54 1.01 0.15
MIDAS-ARMA-3 0.64 0.77 0.04 0.64 0.93 0.09 0.43 0.84 0.08 0.52 0.98 0.35
UMIDAS-biclags 0.71 0.85 0.14 0.66 0.97 0.27 0.48 0.93 0.30 0.54 1.02 0.40
UMIDAS-ARMA-biclags 0.66 0.80 0.04 0.64 0.94 0.12 0.44 0.85 0.08 0.52 0.98 0.40
UMIDAS-ARMA-3 0.64 0.77 0.04 0.64 0.93 0.09 0.43 0.84 0.08 0.52 0.98 0.35
AR 0.81 0.97 0.46 0.71 1.04 0.33 0.81 1.57 0.01 0.71 1.35 0.00

h=3 h=3
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.83 1.00 NaN 0.70 1.00 NaN 0.51 1.00 NaN 0.54 1.00 NaN
MIDAS-ARMA-12 0.92 1.10 0.28 0.75 1.08 0.14 0.60 1.18 0.03 0.58 1.07 0.08
MIDAS-ARMA-3 0.72 0.87 0.18 0.69 0.99 0.42 0.53 1.04 0.38 0.55 1.02 0.40
UMIDAS-biclags 0.83 0.99 0.48 0.72 1.03 0.32 0.56 1.11 0.18 0.58 1.07 0.14
UMIDAS-ARMA-biclags 0.85 1.01 0.46 0.74 1.06 0.25 0.64 1.26 0.03 0.61 1.13 0.06
UMIDAS-ARMA-3 0.74 0.89 0.19 0.69 0.99 0.43 0.53 1.04 0.37 0.55 1.02 0.40
AR 0.84 1.00 0.49 0.73 1.05 0.29 0.84 1.65 0.00 0.73 1.35 0.00

h=4 h=4
MSE MAE MSE MAE

Value Ratio DM Value Ratio DM Value Ratio DM Value Ratio DM
MIDAS-AR-12 0.85 1.00 NaN 0.75 1.00 NaN 0.55 1.00 NaN 0.59 1.00 NaN
MIDAS-ARMA-12 1.11 1.31 0.00 0.86 1.14 0.00 0.74 1.34 0.00 0.68 1.16 0.00
MIDAS-ARMA-3 0.80 0.95 0.28 0.73 0.97 0.28 0.60 1.08 0.18 0.60 1.03 0.27
UMIDAS-biclags 0.97 1.14 0.03 0.79 1.05 0.05 0.62 1.13 0.08 0.61 1.05 0.14
UMIDAS-ARMA-biclags 1.02 1.21 0.04 0.80 1.06 0.11 0.68 1.23 0.01 0.65 1.11 0.01
UMIDAS-ARMA-3 0.97 1.14 0.10 0.78 1.03 0.23 0.65 1.18 0.05 0.62 1.06 0.10
AR 0.89 1.04 0.39 0.76 1.01 0.43 0.89 1.61 0.00 0.76 1.30 0.00

Note: See Table 12.
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