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Abstract

This paper presents the first investigation of the effects of optimal energy taxation in an urban
spatial setting, where emissions are produced both by residences and commuting. We show
that the optimum is generated by real estate taxes of a particular form along with a commuting
tax, which yield the same tax liabilities as a carbon tax. We then analyze the effects of these
taxes on urban spatial structure, showing that they reduce the extent of commuting and the
level of housing consumption while increasing building heights, generating a more-compact city
with a lower level of emissions per capita.
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1. Introduction

In step with growing concerns about the impact of global warning, urban research has

increasingly focused on the energy consumption of cities. This research reflects the recognition

that residential and commercial land-uses are important generators of greenhouse gas (GHG)

and local emissions along with the transportation and industrial sectors. Their importance is

seen in Table 1, which shows energy use by sector, with emissions from electricity generation

“distributed” according to the final users of the electricity. As can be seen, when their electricity

use is taken into account via the distribution method, the residential and commercial sectors

each account for an appreciable 16.9% of total emissions, with their 33.8% total exceeding the

shares of industry and transportation. Therefore, economic analysis of policies designed to

control emissions should ideally include these two real-estate sectors in its focus along with

other sources.

In advancing this goal, some researchers have studied the relationship between a building’s

energy use and its structural characteristics, with notable contributions by Costa and Kahn

(2011), Chong (2012) (who also draws a link to climate), and Kahn, Kok and Quigley (2014).

Using a hedonic approach, Eichholtz, Kok and Quigley (2010) ask whether the market values

green buildings, finding that energy-efficient commercial structures indeed command higher

rents. Glaeser and Kahn (2010) extend the focus beyond residential energy use to include

emissions from driving and public transit, generating a ranking of US cities according to their

overall carbon footprints. Zheng, Wang, Glaeser and Kahn (2011) extend this approach to

Chinese cities.

In parallel with these empirical efforts, other researchers have imbedded energy usage into

the familiar monocentric-city model of urban economics, with the ultimate goal of appraising
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the effect of urban policy interventions on emissions. These studies, which rely on numerical

simulations of realistically calibrated urban models, include Larson, Liu and Yezer’s (2012)

study evaluating the energy-use impacts of higher gasoline taxes, better vehicle fuel efficiency,

urban greenbelts, and housing density restrictions. Larson and Yezer (2015) ask how such pol-

icy impacts vary with city size, while Borck (2016) explores the effect of building-height limits

on urban GHG emissions. Tscharaktschiew and Hirte (2010) study the impact of emission

taxes and congestion on emissions from commuting.

Although this second group of studies has greatly increased our understanding of the links

between urban spatial structure, energy use, and emissions, an important question remains

unanswered. In particular, no study has analyzed optimal urban form when both housing and

commute trips generate emissions. The present paper fills this crucial gap in the literature.

We add energy use and both GHG and local emissions to the housing sector of the standard

urban model, doing so in a novel and realistic fashion, while also recognizing the emissions from

commuting. With both types of emissions assumed to reduce consumer utilities, the analysis

then develops the conditions that characterize the optimal city, which embody a trade-off

between the environmental gains from lower emissions and the losses from achieving them.

The form of these optimality conditions reveals that real estate taxes of a particular form

along with a commuting (or gasoline) tax are needed to generate the optimum. The resulting

tax liabilities are in fact the same ones that would be generated by a carbon tax on gasoline

and on the fuels used to produce residential energy. Despite this equivalence, the analysis

focuses on the real estate and gasoline taxes themselves rather than on the underlying carbon

tax, partly because doing so facilitates second-best analysis, where one or more of these taxes

is set at zero. For example, zero real estate taxes can be imposed, forcing the gasoline tax to

address emissions from both residences and commuting, an exercise that is impossible under

a carbon tax.1 With this theoretical foundation, numerical simulation analysis then derives

the changes in urban form that follow from imposition of the optimal taxes. The simulation

results thus show how urban spatial structure responds to optimal energy taxation, in both

first-best and second-best cases.2

More specifically, the model relies on principles from the engineering and architecture
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literatures by assuming that residential energy use from heating and cooling depends on a

building’s exposed surface area, reflecting heat transfer through exposed surfaces. According to

Ching and Shapiro (2014), a building’s energy use per square foot of floor space is proportional

to its surface area per square foot of floor space, with surface area including the sides of the

building along with the roof. Since the roof area stays constant as the height of the building

increases, surface area increases less rapidly than floor space as height grows. The result is

energy economies from building height, with energy use per square foot of floor space falling

as height increases, a pattern seen in the empirical results of Larson et al. (2012).

If a building’s total energy use (and hence its total emissions) just depended on its square

footage of floor space, the appropriate residential energy tax would just be a tax per square foot

of space. But with surface area mattering instead, the analysis shows that residential energy

taxes should include a tax per square foot of floor space along with a tax on the building’s

footprint, which captures energy usage that depends on the roof area (equal to the footprint).

When buildings completely cover the land, as in the standard urban model, the footprint tax is

just a tax on the entire land input, hence a land tax. By raising the land cost to the developer,

this land tax encourages the construction of energy-efficient tall buildings. Note that the land

tax adds to the tax burden on land already inherent in the housing tax.3

In addition to these taxes on residential land-use, the model prescribes a commuting tax

per mile to address GHG and local emissions per mile driven. This prescription emerges from

a model without traffic congestion, in contrast to the work of Larson et al. (2012) and Larson

and Yezer (2014), where congestion is realistically modeled.

While a carbon tax is equivalent to a commuting tax in conjunction with the two real estate

taxes, as noted above, the political feasibility of these equivalent schemes may differ, as is clear

from recent experience in the United States. Imposition of a national carbon tax has been

blocked, mainly by Republican opposition, but greater policy flexibility exists at the state and

local levels. Moreover, that fact that real estate and gasoline taxes are already levied at the

subnational level may make the use of these taxes for environmental purposes more palatable

than imposition of a state or local carbon tax. Furthermore, focus on the three taxes allows

exploration of partial, second-best solutions, such as a state-level increase in the gasoline tax
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in pursuit of environmental goals with no change in real estate taxes.

In the numerical analysis, we calibrate the model in the most realistic possible fashion

and then use it to predict the impact on urban spatial structure from imposing the optimal

taxes on floor space, land, and commuting. The numerical results thus allow a comparison

of the optimal city, where the emissions externalities are addressed, to the laissez-faire city,

where no intervention is undertaken. With emissions generated by housing consumption and

commuting, the expectation is that optimal energy taxation will reduce the levels of both

activities, leading to a city that is more spatially compact than a city without such taxes. The

simulations show whether this broad conjecture is confirmed while illustrating the details of

the city’s adjustment to taxation. In addition, by relying on three separate taxes rather than

an equivalent carbon tax, we are able to explore second-best cases where some taxes are set at

zero and provide numerical answers, as mentioned above.

As is well known, welfare analysis in urban economics is best carried out by focusing on a

fully-closed city, where resources leakages are absent (see Pines and Sadka (1986)). The rental

income from land in such a city accrues to the residents rather than leaking to absentee owners,

and tax revenue is also redistributed to the residents in lump sum fashion, eliminating another

potential leakage. The city simulated in the paper has both these features.

One of the paper’s innovations is its modeling of energy economies from building height,

and this feature’s connection to previous work should be noted. The models of Larson et al.

(2012) and Larson and Yezer (2014) include a similar feature, although in a discrete fashion.

In particular, energy use per square foot is assumed to decrease discontinuously as building

height passes through several discrete critical points, in contrast to the present continuous

formulation. The model of Borck (2016), by contrast, includes no energy benefits from tall

buildings. His exercise of imposing building-height limits therefore generates no sacrifice on this

dimension, but the resulting supply restriction, by raising the price of floor space throughout

the city, reduces residential emissions by shrinking individual dwelling sizes. The urban sprawl

created by height limits, however, has an offsetting effect on emissions from commuting. The

present paper borrows from Borck’s (2016) approach while incorporating height economies.

The plan of the paper is as follows. Section 2 presents the theoretical analysis, which
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includes a demonstration of the equivalence between our taxes and a carbon tax. Section

3 explains the setup of the simulation model, and Section 4 presents the simulation results.

Section 5 offers conclusions.

2. Model

2.1. The setup

The model is based on the standard model of a monocentric city, adapted to include energy

use. In addition, the surface area of buildings, previously not an issue in urban modeling, plays

a prominent role, as explained above. To incorporate surface area, suppose that buildings are

square, occupying a land area of ` and completely covering that land, as in the standard

urban model.4 Structural density (capital per unit of land) is S and floor space per unit of

land is given by h(S). The h function is the intensive form of a constant-returns floor-space

production function, and it satisfies h′ > 0 and h′′ < 0. Since floor space per unit of land is the

most natural index of building height, h(S) can also be viewed as the height of the building.

Therefore, each of the four sides of the building has area h(S)
√
` (height × width), and the

area of the roof is `. Surface area is then

4h(S)
√
` + `. (1)

Letting e denote energy use per unit of surface area, the building’s energy use is e times (1).

Energy use per unit of land is then given by

(4h(S)
√
` + `)e

`
=

4h(S)e
√
`

+ e. (2)

The second term is energy use per unit of land due to heat transfer through the building’s

roof, while the first term captures heat transfer through the sides. It is clear from (2) that

a building occupying more land has greater energy efficiency per unit of land, which would

prompt the developer to increase `, an incentive that is absent in the standard urban model

(where ` is matter of indifference).5 To abstract from this issue, we fix `, and without loss of
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generality set the value at 16 so that energy use per unit of land becomes6

h(S)e + e. (3)

Again, the last term captures energy use due to heat transfer through the roof (whose area

matches the lot size), while the first term captures energy use from heat transfer through

the building’s sides, a transfer that is proportional to the floor space it contains. Note that

the presence of the additive e term in (3) means that energy use increases less rapidly than

floor space, implying energy economies from building height. Equivalently, dividing (3) by

square footage (h(S)) shows that energy use per square foot is e + e/h(S), an expression

that is smaller in a taller building. Each unit of residential energy use generates ψ units of

“composite” emissions (GHG plus local), so that (using (3)) residential emissions per unit of

land are given by ψ(h(S)e + e).

Let the cost per unit of energy be normalized to unity, and assume that the developer

bears the building’s energy cost. In addition, let p denote the price per square foot of housing,

r denote rent per unit of land, and i denote the price per unit of capital. Then, using (3), the

developer’s profit per unit of land is

ph(S) − iS − r − energy cost per unit of land = (p− e)h(S) − iS − e − r. (4)

In the absence of taxes, the developer would choose S to satisfy

(p− e)h′(S) = i, (5)

and land rent r would be determined by the zero-profit condition:

r = (p− e)h(S) − iS − e. (6)

The form of both conditions is familiar from the standard urban model (see Brueckner (1987)).
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Note that in a fully realistic model, e would be another choice variable of the developer,

who could reduce energy use by improving the insulation of his building and taking other

costly steps. This choice would in turn be influenced by residential energy taxes, a channel

that is absent from the current model. Another point to note is that e will depend on climate,

a possibility that is addressed in the sensitivity analysis of section 4.4. In addition, the model

abstracts from the “urban heat island” effect, under which a concentration of tall buildings

itself raises the ambient temperature, affecting e.

Energy is also used as workers commute to the CBD. Let the cost per mile of commuting

(on a round-trip basis) be denoted t, so that commuting from a residence x miles from the

CBD costs tx per period. The parameter t includes private energy costs, as reflected in the cost

of fuel. Suppose that composite (GHG plus local) emissions per round-trip mile of commuting

are given by γ, so that the energy used in commuting from a distance x generates γx worth of

emissions.

Several other sources of residential energy use have been omitted from the model: kitchen

appliances, such as refridgerators and stoves, and hot-water heaters. These sources can be

viewed as generating a fixed amount of energy use that does not increase proportionally with

the physical size of the dwelling.7 This fixed usage presumably accounts for empirical findings

showing that residential energy use per square foot of floor space falls as dwelling size rises (see,

for example, Larson, Liu and Yezer (2012)). Since a city’s total energy use from household

appliances will thus be roughly proportional to the number of dwellings but unaffected by

urban form, we omit it from the analysis. Energy used in producing the nonhousing good

consumed by households (the commodity c introduced below) is also omitted from the model

(Larson and Yezer (2014) include it).

2.2. Emissions and energy taxes

As explained in more detail below, GHG and local emissions are aggregated in a fashion

that allows them to be treated as a single composite quantity. Let µ denote the social damage

from each unit of composite emissions, which is endogenous in the model. Then, the taxes

needed to support the social optimum can be derived from the model. These taxes are as

follows:

7



• A tax of τq = µψe per square foot of floor space, addressing emissions from energy
use due to heat transfer through the sides of a building

• A tax of τ` = µψe = τq per unit of land, addressing emissions from energy use due
to heat transfer through a building’s roof

• A tax of τt = µγ per mile of commuting, addressing emissions due to energy use in
commuting

To demonstrate the need for these taxes analytically, let utility be given by v(c, q, G),

where c is consumption of a nonhousing good, q is consumption of housing floor space, and

G gives the level of composite (GHG plus local) emissions affecting the city’s residents. Two

equivalent approaches to the social planner’s problem used in deriving the optimal taxes are

possible, following the past literature. Under the first approach, the planner minimizes the

city’s resource consumption, subject to several constraints: achievement of a fixed utility level

u for its residents, the requirement that the city fits its population, and a condition giving the

city’s overall emissions G.8 Under the second approach, which is dual to the first, the planner

maximizes the common utility level of urban residents subject to a resource constraint, the

population constraint, and the G condition. Since the first approach is somewhat simpler, the

present analysis follows it.

To start, observe that the fixed-utility constraint, which can be written v(c, q, G) = u for

some constant u, implies c = c(q, G), with the derivatives of this function equaling minus

the marginal rates of substitution: cq = −vq/vc < 0 and cG = −vG/vc > 0 given vG < 0

(subscripts denote partial derivatives). Using the c(q, G) function and letting x denote the

distance to the city’s edge and ra denote the opportunity cost of land (agricultural rent), the

city’s resource consumption is given by

∫ x

0
2πx

[
iS +

h(S)

q
(c(q, G) + tx) + h(S)e + e + ra

]
dx. (7)

In (7), the choice variables S and q are implicitly functions of x. The first term in the integrand

captures capital usage, the second term equals c consumption plus commuting cost per person

at distance x multiplied by the population at x. That population equals the area 2πxdx of the
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ring at x times h/q, where h/q gives population density (housing square footage per unit of

land divided by square feet per dwelling). The remaining terms capture building energy use

and the opportunity cost of land.

Letting L denote the city’s fixed population, the population constraint is written

∫ x

0
2πx

h(S)

q
dx = L, (8)

and the multiplier associated with this constraint is λ. Total emissions G satisfy

∫ x

0
2πx

(
ψ[h(S)e+ e] + γ

h(S)

q
x

)
dx = G, (9)

where 2πx(xh(S)/q)dx gives total commute miles for consumers living in the ring at x. The

multiplier associated with this constraint is µ > 0, the social damage from an extra unit of

emissions.

The planner chooses values of G and x and values of S and q at each distance to minimize

(7) subject to (8) and (9). After forming a Lagrangean expression using (7)–(9), the optimality

conditions for S and q are generated by differentiating inside the integrals, while the condition

for x comes from differentiating with respect to the limits of integration. After a modest

amount of manipulation (see the Appendix), these conditions reduce to equations that identify

the taxes required to support the optimum. The first equation is

c(q, G) + q
vq

vc
+ (t+ µγ)x = −λ, (10)

Recognizing that the consumer will set vq/vc equal to the price p per square foot of housing,

the first two terms correspond to total consumption expenditure in a decentralized equilibrium.

The tx term is the money cost of commuting, but (10) shows that this cost must be supple-

mented by a tax of µγ ≡ τt per mile traveled, as in the third bullet point above. The term

−λ is constant over x and corresponds to the common income of consumers in a decentralized

equilibrium. Note that, ignoring differences in automobile fuel efficiency, the commuting tax

has the same form as a gasoline tax.
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The next condition is
(
vq

vc
− e− µψe

)
h′(S) = i. (11)

Comparing to the profit-maximization condition (5) and recognizing vq/vc = p, (11) implies

that the net price received by the developer per unit of floor space should be reduced below

p− e by the amount µψe ≡ τq, an emissions tax per square foot of floor space (as in the first

bullet point above).

The laissez-faire equilibrium condition determining the distance x to the edge of the city

would set r evaluated at x equal to ra, and using (6), this condition is written

(p− e)h(S) − iS − e = ra, (12)

where p and S are the p and S values at x. By constrast, the optimality condition for x reduces

to
(
vq

vc
− e− µψe

)
h(S) − iS − e − µψe = ra, (13)

where vq/vc is also evaluated at x. Comparing (12) and (13) indicates that, in addition to

the tax of τq = µψe per square foot of housing floor space, a tax per unit of land equal to

µψe ≡ τ` = τq is also needed, which reduces land rent by that amount (as in the second

bullet point above). With these two taxes subtracted in the equilibrium condition, it then

corresponds to the optimality condition.

Note that the housing tax corresponds to a standard property tax (levied, however, as an

excise tax instead of an ad-valorem tax), while the land tax matches taxes of this type levied

in some cities (in excise not ad-valorem form, however). Observe also that the property tax,

if levied in ad-valorem fashion, is equivalent to separate ad-valorem taxes levied at a common

rate on land and housing capital (see Brueckner and Kim (2003)). An additional ad-valorem

land tax on land would add to the tax burden, with the combined taxes equivalent to a split-

rate tax structure that taxes land and capital at different rates (see Oates and Schwab (1997)).

While the excise form of the current housing and land taxes disrupts this simplicity, it remains

true that the land tax adds to the tax burden on land already present in the housing tax.
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Recall that the multiplier µ appearing in the tax terms equals the marginal social damage

from emissions. From the first-order condition for G, the multiplier equals

µ = −

∫ x

0
2πx

h(S)

q

vG

vc
dx > 0. (14)

The integral weights the MRS between G and c by population and sums across distance to

yield the social damage from an extra unit of G.9

It is important to note that, because the planning problem portrays a city where the cost

of land is the agricultural opportunity cost and where taxes are absent from the objective

function, the corresponding decentralized city must have several features. First, the rental

income generated in the city must accrue to its residents. In particular, the city must be “fully

closed” in the sense of Pines and Sadka (1986), with differential land rent (the amount in

excess of ra) earned as income by the residents. The residents are thus viewed as owning a

corporation that acquires the city’s entire land area from its outside owners at a rental price ra,

with the land then rented to the residents themselves in a competitive market. The residents

thus share the aggregate rental income net of ra generated by the city, in effect paying rent

to themselves. Second, since tax revenue is absent from the planning problem, the revenue

from the energy taxes must be redistributed to the residents on an equal per capita basis.

With these two requirements, the differential rent and tax revenue generated in the city stays

within it, as envisioned in the planning problem. The ensuing numerical analysis imposes both

requirements.

2.3. Equivalence to a carbon tax

The real estate and commuting taxes that have just been derived embody the tax liabilities

that would be generated by a carbon tax, making the two approaches equivalent. To see this

equivalence, note that under a carbon tax, the fuels producing energy for various uses would

be taxed according to the carbon emissions they yield. The tax on gasoline would equal the

social damage from emissions µ times the number of kilograms of carbon generated per gallon,

denoted ξg. The resulting tax payment per mile of commuting would equal this expression
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times gallons/mile, denoted ωg, yielding µξgωg. Since γ, emissions per mile, equals ξgωg, this

tax payment equals our commuting tax per mile, µγ.

Similarly, letting ξhc denote carbon emissions per unit of fuel used in residential heating

and cooling, the tax per unit of fuel is µξhc. The tax per kwh of residential energy use is then

µξhcωhc, where ωhc is units of fuel per kwh. Letting ψ = ξhcωhc, the tax per kwh is then µψ.

Multiplying by kwh per unit of land (h(S)e+ e), the total tax liability per unit of land is then

µψ[h(S)e+ e], which includes a tax of µψe per unit of land and a floor-space tax liability of

µψe times floor space h(S) per unit of land.10 Given the equivalence to a carbon tax, it is

appropriate to view our commuting and real estate taxes as energy taxes, even though they

are levied differently.

2.4. Predicting the impact of energy taxation

A main goal of the numerical analysis presented in section 3 is to illustrate the impact on

the spatial structure of the city from levying optimal energy taxes. In principle, these effects

might be predictable in advance through an appropriate comparative-static analysis, relying

on Pines and Sadka’s (1986) extension of Wheaton’s (1974) comparative-static analysis to the

present context of a fully closed city.

Unfortunately, however, the required comparative statics cannot be inferred from Pines

and Sadka’s results. Imposition of the land tax, for example, can be viewed as equivalent

to an increase in the agricultural rent ra, which Pines and Sadka (1986) analyze. However,

the present tax change corresponds to an increase in ra combined with an increase in income

equal to the rebated per capita land-tax revenue, whose impact cannot be inferred from the

results they present. A similar point applies to the effects of the commuting tax. Moreover,

as mentioned above, the tax on housing square footage is similar to a standard property tax,

whose effects are analyzed by Brueckner and Kim (2003). While they show that the property

tax causes the city to shrink spatially when the elasticity of substitution between housing and

c does not exceed unity (as under the Cobb-Douglas preferences imposed below), Brueckner

and Kim’s model is not fully closed, nor does it incorporate redistribution of tax revenues.

The previous literature thus cannot be used directly to predict the separate effects of

the three taxes in the current model, and the need to predict their combined effects makes
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the prediction task even more daunting. Hence, in the next section, we present results from

numerical simulations.

3. Simulation Setup

3.1. Preliminaries

To evaluate the effect of imposing the optimal energy taxes, we numerically compare the

urban equilibrium without any taxes to the equilibrium where the taxes are imposed, relying

on the first-best optimal tax formulas. The approach thus shifts from the orientation of the

planner, whose goal was to minimize the city’s resource consumption, to analysis of equilibria,

knowing that an equilibrium where taxes are imposed according to the optimal formulas is

efficient.

We impose specific functional forms in order to simulate the model numerically. Parameters

are taken partly from published sources and partly calibrated to replicate key features of

American cities. The utility function is assumed to take the following form:

v(c, q, G) ≡ Ac1−αqα − νG, (15)

where 0 < α < 1, ν > 0 is the marginal damage from composite emissions, and A = 106/

[(1−α)(1−α)αα]. While the first part of (15) corresponds to standard Cobb-Douglas preferences

over c and q, total composite emissions G appears in the third linear term. Using data from US

metropolitan areas (MSAs), Davis and Ortalo-Magné (2011) show that the expenditure share of

housing is remarkably constant across MSAs and over time, which supports the Cobb-Douglas

assumption. However, the unitary implied price elasticity does not match the inelastic form

of housing demand recently estimated by Albouy, Ehrlich and Liu (2016). Nevertheless, we

follow the implications of Davis and Ortalo-Magné (2011), setting α equal to their estimated

average expenditure share of housing (0.24). The parameter ν is set to generate a realistic

value for µ, the marginal social damage from emissions, as explained further below.

In the consumer budget constraint, income is set equal to the 2011 US value of median

household income, equal to $51,324. Commuting costs per mile are made up of monetary and
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time costs of commuting and are set at t = $503.53 per mile per year (see the Appendix for

details). City population is set at L = 750, 000 households.11

As in Bertaud and Brueckner (2005), housing production is assumed to be Cobb-Douglas,

which yields the intensive production function h(S) = ρSβ, where β < 1. Ahlfeldt and

McMillen (2014) use data from several cities to estimate the elasticity of substitution between

land and capital and find that it is close to one, which supports the Cobb-Douglas assumption.

In the simulation, we set ρ = 0.00005 and β = 0.745. Agricultural land rent ra is set at $58,800

per square mile (see the Appendix).

The computation of e is unfamiliar and closely tied to the model, and it proceeds as follows.

For a square k-story building with floor space of q, surface area is Ak = 4kH
√
q/k+q/k, where

H is the height of one story (the first term is the area of the sides and the second the area

of the roof, assumed flat). The Residential Energy Consumption Survey (RECS)12 provides q

values for detached single-family homes of 1, 2, and 3 stories, and assuming H = 12 feet, the

previous formula can be used to compute Ak, k = 1, 2, 3. Using the survey data underlying

the RECS tables (which show square footages for individual sampled houses), the surface-area

value for each house can be computed and the median among them derived. This median

surface-area value is A = 8, 458.82. Next, we use the RECS data to get median energy use

for space heating and air conditioning across all detached single-family houses (with different

numbers of stories), which equals 42,721 thousand BTUs or 12,520.29 kwh. We associate this

median value with the median single-family surface area A, which allows us to divide 12,520.29

kwh by A = 8, 458, 82 to get a value for energy use per square foot of surface area. This value

equals e = 1.4016 kwh/square foot, and it can then be applied to buildings of all heights.13

As mentioned above, the value of ν in the utility function is chosen to generate a realistic

value for µ and thus realistic tax rates. For GHG emissions, a consensus value of µ is $40

per metric ton of CO2, or $0.04/kg.14 By appropriate choice of the units of local emissions,

this $0.04/kg applies to those emissions as well. The GHG components of γ and ψ, the

commuting and residential emissions parameters, can be derived from available data, as seen in

the Appendix. By applying the $0.04/kg µ value to these γ and ψ components, the components

of the tax rates τt, τq and τ` that pertain to GHG emissions follow immediately.
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To derive the local emissions components of γ and ψ, we use tax rates that should be

applied to correct for local emissions from commuting and residences, which are available in

our sources. Each tax rate implicitly combines a social damage parameter and a local emissions

value (the local component of either γ or ψ). However, by choice of units for local emissions,

the social damage can be set at the same $0.04/kg value used for GHG emissions. Knowing

this µ value and the required tax rates, the local emissions components of γ and ψ can then

be inferred (the units of these emissions are thus chosen). Knowing both their GHG and local

components, the overall γ or ψ values are then determined, and the commuting and residential

taxes follow by applying µ = $0.04/kg (see the Appendix for details).

This procedure yields γ = 554.375 kg CO2 equivalent/mile, and multiplying by µ =

$0.04/kg yields a commuting tax of $22.18/mile. The procedure also yields ψ = 0.4283 kg

CO2 equivalent/kwh, and multiplying by µ and e yields taxes of τq = τ` = $0.04/kg × 0.4283

kg/kwh × 1.4016 kwh/sq ft= $0.024/square foot. Finally, the value of ν, the utility function

parameter, that generates a µ of $0.04/kg is ν = 0.00176.

While the commuting tax represents 4.4% (22.175/503.53) of commuting costs t, a com-

parison to the existing gasoline tax gives a better sense of its magnitude.15 The τt rate $22.175

mile has been scaled up by the 625 annualizing factor, and dividing by this value gives a tax

of $0.035 for each mile driven. Multiplying by 20 miles/gallon, an estimate of average fuel

economy for light vehicles,16 this value implies a tax of $0.71 per gallon. By comparison, the

average gasoline tax paid in the US is $0.487/gallon, so that the optimal tax is about 46%

larger.17 Our tax is smaller than Parry and Small’s (2005) optimal US gasoline tax, which

equals $1.01/ gallon (lying below European taxes, whose maximum rates are around $4.00

gallon).18 Parry and Small’s larger tax, however, addresses other externalities (congestion,

accidents) in addition to emissions.

Although the exposition of the model assumes for simplicity that all land is used for

housing, we assume in the simulations that a fraction 0.75 of each annulus is available for

residential use. It should also be noted that the model and its calibration do not reflect

existing real estate taxes, which are in effect assumed to be zero. For the property tax, this

assumption is appropriate given that the distortionary nature of tax means that it would not
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be present at the social optimum. In line with the absence of real estate taxes, the value of

commuting cost per mile t from above reflects subtraction of the $0.487/gallon gasoline tax

from the monetary component of commuting costs, leading to a net-of-tax value.

Even though our our assumed emissions damage of $40 per metric ton ($0.04/kg) seems to

be representative of current views,19 some much larger values can be found in the literature.

Moore and Diaz (2015), for example, derive a value of $220/metric ton, or $0.22/kg. To explore

the effect of such a larger value, we also simulate the first-best outcome with µ = $0.22.

3.2. Solution procedure

In the standard urban model, consumer maximization determines the housing price p as a

function of utility u and the other variables of the model, given by p(x, y, t, u) (see Brueckner

(1987)).20 The function q(x, y, t, u) gives the associated solution for housing consumption, and

the developer’s profit maximization problem yields analogous functions S(x, y, t, u), r(x, y, t, u),

and D(x, y, t, u), where D = h(S)/q is population density.

The arguments of these functions are modified in the current framework. The utility

argument is replaced by u + νG (see (15)), and commuting cost per mile t is replaced by

t + τt to capture the tax on commuting. In addition, letting R denote total differential land

rent and T denote total tax revenue, the income y is replaced by y + (R + T )/L to capture

redistribution of equal per capita shares of total differential land rent and taxes.21 Therefore,

p is now written as p(x, y+(R+T )/L, t+ τt, u+ νG). In addition, the S, r and D functions

now depend on this same new list of arguments along with e and τq.
22

To solve the model, the first step is to set land rent at x equal to agricultural rent ra plus

the land tax τ`, with the condition written as

r(x, y + (R + T )/L, t+ τt, u+ νG, e, τq) = ra + τ`. (16)

This condition is used to solve for utility u as a function of the remaining variables (which

include x and ra). The u solution is then substituted back into the r, S, and D functions.

When this substitution is made, G drops out as a determinant of r, S and D, but all three

variables now depend on x and ra + τ`, as captured in the new functions r̂, Ŝ and D̂.
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Using D̂, the condition analogous to (8) stating that the city fits its population is written

∫ x

0
2πx D̂(x, y + (R + T )/L, t+ τt, e, τq, x, ra + τ`)dx = L. (17)

An additional condition states that differential land rent integrates to R and another condition

sets T equal to total tax revenue.23 A condition defining µ, the social damage from emissions,

comes from (14), and G is given by a modified version of (9).24 The resulting set of five

equilibrium conditions determines solutions for the five endogenous variables R, T , x, µ, and

G, with the µ solution then yielding the optimal taxes. Note that while µ is endogenous, the

targeted value is $0.04/kg, which is generated by appropriate choice of ν.25

To solve for the equilibrium, we use an iterative procedure. It starts with guesses for initial

values of R, T and µ. Given these values, the population condition (17) is solved for x. With

the solution in hand, the integrals in the R, T and µ conditions are computed, using the initial

guesses of R, T and µ in evaluating the integrands. The integrals then give updated values of

the variables R, T and µ, which are substituted in (17), yielding a new solution for x. The

process continues until convergence is achieved, which occurs after relatively few iterations.

The equilibrium value of G is then computed from the modified (9).

4. Simulation Results

4.1. No-tax equilibrium

We first solve for the no-tax equilibrium.26 The procedure is to set τt = τq = τ` = 0 and

then to solve (17) and (18) for x and R. Figures 1–5 show the spatial contours of h(S), D, r, p,

and q in the no-tax city, represented by the light-blue/gray curves, and Table 2 gives the central

(CBD) values of these variables. The solution gives x = 30.33, which implies an average

commuting distance of 14.83 miles, slightly longer than the average commute for workers in

MSAs of 1–3 million inhabitants (13.74 miles, from the National Household Travel Survey).27

Population (dwelling) density falls from 4002.69 dwellings per square mile at the CBD to 24.76

at x (average density is 259.53), and building height h(S) falls from 22.50 at the CBD to 0.40

at x.28 Land rent r falls from $13.2 million per square mile to $58, 880 = ra. Units of q are
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chosen such that the average dwelling size is 2,196.23 square feet, with q rising from 1,501.03

square feet at the CBD to 4,288.49 at the city border x.29 Based on the same normalization,

the housing price p falls from $8.65 per square foot at the CBD to $2.17 at x. Despite the

presence of rent redistribution and the emissions externality, these spatial patterns are familiar

from the standard urban model. Total composite emissions G in the city are 5.96 × 109 kg

(5.96 million metric tons), and per-capita emissions equal 7946.07 kg. Residential energy use

is responsible for 22% of total emissions, with commuting responsible for the balance of 78%.

4.2. The first-best equilibrium

We now turn to the model solution when emissions taxes are levied. As explained above,

the optimal taxes are given by τ ∗q = τ ∗` = $0.024/sq ft and τt = $22.18/mile. On average,

the housing tax corresponds to an ad valorem tax of 0.45% on housing rent, the land tax

amounts to an ad valorem tax of 0.57%, and the commuting tax to 4.4% of commuting costs,

as mentioned above. Note that the average rates of the housing and land taxes are given by

τq/p and τl/r averaged across the city’s x values, while the rate of the commuting tax, which

is just τt/t, is spatially invariant.

Table 2 gives the central values of D, h(S), r, p and q in the taxed city, and Figures

1–5 show the spatial contours of these variables, which are represented by the dark-red/black

curves. The figures show that, relative to the no-tax city, the D, h(S), r, p contours rotate

clockwise, while the q contour rotates counterclockwise. These figures actually pertain to the

µ = $0.22 case considered below, where the rotation of the contours is more visible than in the

µ = $0.04 case, in which the contours lie closer together but follow the same patterns.

In response to the optimal taxes, the city shrinks spatially, with the urban boundary lying

at x = 28.98. Compared to the no-tax case, the radius of the city thus shrinks by 4.5%,

with its overall land area (πx2) falling by 9.2%. This finding confirms the expectation that

energy taxation makes cities more compact by discouraging long commutes, reducing housing

consumption, and increasing building heights. In the taxed city, population density at the

CBD is 4334.88 dwellings per square mile, 8.3% higher than in the no-tax city, and density

falls to 27.51 at x (average density is 284.27). Building height h(S) at the CBD is 23.93, 6.3%

higher than in the no-tax city, and height falls to 0.43 at x. Land rent r at the CBD is $14.4
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million per square mile, 8.3% higher than in the no-tax city, and r falls to ra = 58, 880 at x.

The housing price p at the CBD is $8.86 per square foot, 2.4% higher than in the no-tax city,

and p falls to $2.26 at x. Dwelling size q at the CBD is 1474.11 square feet, 1.8% smaller than

the CBD value in the no-tax city, and q rises to 4169.40 at the new x. Average dwelling size

is 2148.86 square feet, 2.2% lower than in the no-tax equilibrium.

Total emissions G in the taxed city are 5.71×109 kg and per-capita emissions equal 7624.12

kg, with both values naturally smaller than in the no-tax city. The emissions reduction, at

4.2%, is relatively modest, matching the sizes of the optimal taxes (particularly the commuting

tax, which raises commuting cost by 4.4%). Residential energy use is responsible for 23% of

total emissions, with commuting responsible for the balance of 77%.

The contour rotations in Figures 1–5 are similar to the effects of an increase in the

commuting-cost parameter t in the closed-city version of the standard model. While a higher

commuting cost per mile is a consequence of the present model’s commuting tax, partly ac-

counting for this similarity of effects, many additional forces are at work in generating them.

These forces include responses to the land tax τ`, which tends to raise the cost of land and

thus encourages developers to economize on land in production of housing, tending to raise S

and building height h(S). But since the housing tax τq (which is analogous to a property tax)

is a tax on output of housing floor space, it tends to depress S and h(S), offsetting the effect of

the land tax. The housing tax also tends to reduce the dwelling size q as consumers substitute

toward nonhousing consumption. The tax’s effects on h(S) and q, both being negative, have

an ambiguous effect on population density (h/q), as discussed in detail by Brueckner and Kim

(2003). These varied tax effects are mediated by the impacts of redistribution of differential

land rent and tax revenue, adding to the complex interplay of forces affecting urban form in

the taxed city. Interestingly, though, this interplay yields qualitative impacts similar to the

effects of increase in commuting cost in the standard model.30

To get a sense of magnitudes, the optimal housing and land-tax rates, which are on the

order of 0.5%, can be compared to actual US property-tax rates, expressed as a percentage

of rent rather than value. Recall that a standard ad-valorem property tax is absent from the

model, with the rate set to zero. Letting κ denote the property-tax rate on value and θ denote
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the discount rate, the property-tax rate expressed as a percentage of rent is given by κ/(κ+θ).31

Assuming θ = 0.04 and using a representative 1.5% property-tax rate,32 so that κ = 0.015,

this expression reduces to 0.27, indicating that the existing property tax claims about 25% of

rent. The average housing and land-tax rates of about 0.5% represent only one-fiftieth of this

value. Thus, the revenue raised by environmental real estate taxes would be tiny compared to

existing property-tax revenue.

The effects of a much larger target value of µ, equal to $0.22/kg, are shown in the third

column of Table 2 (recall that Figures 1–5 actually illustrate this case). This µ value is

generated by increasing ν, the utility function damage parameter, from 0.00176 to 0.00941.

As can been from the table, the commuting tax τt is now $121.96/mile (a rate of 24.2%),

which corresponds to a large gasoline tax of $3.90 per gallon. The real estate taxes rise to

$0.13 per square foot, with average ad valorem rates of 2.21% and 2.25% on housing and land,

respectively (about one-tenth of existing property-tax rates). In response to these taxes, x

shrinks to 24.26 miles, a 20% reduction relative to the no-tax case, with the city’s overall land

area falling by 36%. Emissions per capita fall by 19%. CBD building height rises by 36%

relative to the no-tax case, with central population density rising by 49%. Land rent at the

CBD rises by 51% and the housing price rises by 13%, while the central dwelling size falls by

9%. All these effects are much larger than those generated by the smaller value of µ, showing

that the first-best optimal taxes yield dramatic changes in urban structure when the social

damage from emissions lies at the upper end of the range of recognized values.

The benefit from imposing the optimal taxes can be gauged by computing the compensating

variation (CV) associated with the change. It equals the reduction in income needed to restore

the no-tax utility level when all the endogenous variables are held at the levels prevailing in

the first-best city. For the larger µ value, the CV is equal to 0.35% of income or $177.81, a

modest number similar to that associated with other corrective policies in monocentric cities.

Brueckner (2007), for example, found a gain of 0.7% of income from imposition of congestion

pricing. The CV associated with the smaller µ value, however, is much lower, at 0.02% of

income or $10.48. Thus, the gain from corrective taxation is quite small when emissions

damages are moderate in size.
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4.3. Second-best optima

The equilibrium in a city with optimal emissions taxes can be found in a different, equiv-

alent manner to the one use above. Under this alternate approach, the taxes are treated as

parameters, with the equilibrium system solved for x, R, T conditional on τt, τq and τ`. Then,

the value of u conditional on the taxes is determined by (16). The optimal values of the

taxes (the ones that maximize u) can then be determined by a search procedure. Note that

this procedure makes no use of the first-best optimal tax formulas, and thus does not require

computation of a value for µ, the marginal social damage from emissions.

This approach gives the same numerical answers as the original approach and thus need

not be used in finding the first-best equilibrium. But use of the approach is necessary in

investigating the properties of second-best optima, which are utility-maximizing equilibria with

one or two of the three taxes constrained to equal zero.33 With some taxes set at zero, the

utility-maximizing value(s) of the remaining tax(es) can be found using a search procedure.34

The value of the utility function parameter ν remains at the original value of 0.00176, which

was consistent with a µ value of $0.04/kg in the first-best case.

First, we constrain the commuting tax to be zero. The resulting second-best optimal

housing and land taxes are notably higher than in the first-best case, while no longer being

equal. The second-best optimal housing and land taxes are τq = 0.085/sq ft and τ` = 0.053/sq

ft, values that are about triple and double, respectively, the first-best values. The housing tax

now amounts to 1.6% of housing rents and the land tax to 1.3% of land rents, on average,

still well below existing property-tax rates. The second-best city’s x value, equal to 28.91, is

about 0.3% smaller than the first-best value of 28.98. When commuting is not taxed, setting

the housing and land tax at their first-best levels would lead to a city that is too spread out,

since commuting costs are below social costs. Hence, both the housing tax and land tax must

be raised, making the city more compact, even more so than the first best city, although the

difference is small. Interestingly, this second-best city has a density contour that lies between

the relatively flat one of the no-tax city and the steep contour of the first-best city. The same

observation applies to the building-height contour, while the p contour rotates counterclockwise

relative to the first best contour, showing the reduced value of access to the CBD in the absence
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of the commuting tax (the q contour rotates clockwise). Table 2 gives the central values D,

h(S), q, p and r in the second-best city along with emissions per capita.

When the housing tax is set to zero, the second-best optimal land and commuting taxes are

both somewhat higher than the first-best values, given by τ` = 0.027/sq ft and τt = 23.73/mile

(the average rates are 0.65% and 4.7%). These taxes lead to a spatial city structure similar

to that of the first-best city. The boundary distance x is 28.97, only slightly smaller than

the first-best value. The absence of a housing tax leads to larger dwellings (and a lower p)

at all distances relative to the first-best city, tending to increase the city’s spatial area, but

this effect is partly countered by the higher taxes on land and commuting. The increased land

tax in particular leads to taller buildings at all distances, so that the pattern of population

density is very similar to that in the first-best city. Table 2 again provides central data for this

second-best city.

Next, we set the land tax to zero. The optimal second-best housing and commuting taxes

are higher than their first-best values, given by τq = 0.032/sq ft and τt = 23.90/mile, with

average tax rates of 0.61% and 4.7%. In this case, the urban boundary is x = 29.30, 1% above

the first-best level. The absence of the land tax thus causes the city to expand beyond the

efficient size. The increases in the housing and commuting taxes partially compensate for the

absent land tax. But dwellings are larger at all distances than in the first-best city (p is lower),

and buildings are shorter everywhere. As a result, population density is lower at all distances

out to the first-best boundary, accounting for the larger x. See Table 2 for further information.

Finally, we set both housing and land taxes at zero, so that the commuting tax is the

only second-best tax. Its optimal value is then τt = 26.49/mile or 5.3% of average commuting

costs, with the tax increasing by $4.31/mile relative to the first best. The urban boundary is

x = 29.39, which is 1.4% above the first-best level. As in the previous exercise, the absence of

taxes on housing and land causes dwellings to be too large and buildings to be too short. While

the commuting tax increases to counteract this tendency, the city remaings larger than optimal

and population density is inefficiently low in the center. See Table 2 for more information. As

would be expected, the compensating variations associated with all of these second-best tax

schemes are smaller than the first-best value (the values are well below 1% of income).
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If policy makers were to consider use of existing urban taxes to counteract a city’s emissions,

it would be natural for them to focus on the gasoline tax, not heeding this paper’s prescription

for taxes on land and housing. Dividing τt from the last exercise by the annualizing factor

of 625 yields a cost per mile driven of $0.042, and multiplying by 20 miles/gallon yields a

corresponding gasoline tax of $0.84/gallon, $0.13 higher than the first best tax of $0.71/gallon.

Therefore, as a result of opting not to levy housing and land taxes, policy makers would have

to raise the gasoline tax 13 cents above the first-best level.

4.4. Sensitivity analysis

This subsection provides sensitivity analyses. One by one, we vary some of the more

interesting parameters, increasing each of the parameters by 50% of the benchmark value.

The results of these exercises are shown in Table 3. Note that since ν is held fixed at the

original value, the given parameter changes will cause the emissions damage µ to diverge from

its previous target value. For parameter changes that do not involve other elements of the

optimal tax formulas, the tax changes (which allow occur in the same proportion) reflect the

change in µ.

First, we increase income by 50% from the benchmark value of $51,324, to $76,986. This

value corresponds to the household income in very rich metro areas such as San Francisco

or Boston. In the standard urban model, such an increase leads to higher average housing

consumption, longer commutes, and urban sprawl. Obviously, these effects increase emissions.

In the first-best city, the income increase leads to a 41% increase in x and a 53% increase in

emissions per capita relative to the benchmark first-best city. Interestingly, the optimal taxes

each fall by about 2%, reflecting the same decrease in µ.

Next, we increase population from L = 750, 000 to 1,125,000. Comparing first-best cities,

the population increase leads to a 4% increase in x. Emissions increase by 44% while emissions

per capita decrease by 4%, matching a pattern observed by Larson and Yezer (2015).35 Each

of the taxes increases by 54%, reflecting a large increase in µ.

A further exercise is to increase annual commuting cost t from $503.53 to $755.30 per mile.

Comparing first-best cities, the commuting-cost increase leads to a 26% decrease in x and a

29% decrease in emissions per capita, with both changes partly reflecting the higher private
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cost of commuting. Each tax increases by 5%.

Finally, we vary the energy efficiency of buildings, e, and the emissions intensity γ of

commuting. Comparing first-best cities, an increase in e (which could also be caused by a

change in the local climate) reduces x by 1% and raises emissions per capita by 11%. In

response to the higher e, τq and τ` rise by 50%, while τt rises by far less than 1%, indicating a

small change in µ.36 Again comparing first-best cities, an increase in γ reduces x by 1% and

increases emissions per capita by 36%. The commuting tax rises by 50%, while the housing

and land taxes rise are almost unchanged.

5. Conclusion

This paper has presented the first investigation of the effects of optimal energy taxation

in an urban spatial setting, using a model that incorporates emissions economies from tall

buildings. The first-best optimal tax structure has taxes on housing, land and commuting,

which match the tax liabilities that would be generated by a carbon tax. Since emissions

come from housing consumption and commuting, optimal taxation reduces the levels of both

activities, generating a more-compact city with a lower level of emissions per capita. In response

to optimal taxation, the spatial area of the city shrinks by 9.2%, with its central population

density rising by 8.3%. Emissions per capita fall by 4.1%, a relatively modest reduction that

matches the sizes of the optimal taxes, particularly the commuting tax (which raises commuting

costs by 4.4%). While these impacts are based on a representative value of the social damage

from emissions, much more dramatic effects on urban structure emerge when the optimal taxes

are based on a higher damage value lying at the upper end of the recognized range.

Use of three separate taxes rather than a carbon tax allows the paper to carry out second-

best exercises, with the most instructive setting the housing and land taxes at zero, so that the

commuting tax must do all the work in limiting emissions from both residences and commute

trips. In this case, the second-best optimal commuting tax would correspond to a gasoline tax

of $0.84 per gallon, equal to 175% of the current US average tax and $0.13/gallon above the

first-best optimal tax of $0.71/gallon.

Future research could add detail to the model, especially on the commuting side, following
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the lead of Larson et al. (2012). Their model includes traffic congestion that in turn affects

travel speed, along with a realistic relationship between speed and emissions. Under this

relationship, a simple tax per mile of commuting would no longer be optimal, introducing

complications that would be compounded by the computational burden of handling congestion.

Another extension would explore more general forms for consumer preferences, replacing the

convenient Cobb-Douglas form with realistically calibrated CES preferences. Such a change,

however, is unlikely to significantly alter the main lessons of the paper. Finally, following

Larson and Yezer (2014), the emissions generated by nonhousing consumption could be added

to the model.
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Appendix

A1. Planning-problem derivations

The Lagrangean expression for the planning problem is generated by subtracting the RHS

expressions in (8) and (9) from the left-hand sides, multiplying the resulting expressions by

the multipliers λ and µ, and adding (7). The first-order conditions for S, q, G and x are

S : i +
h′(S)

q
[c(q, G) + tx] + h′(S)e + λ

h′(S)

q
− µψh′(S)e − µγ

h′(S)

q
x = 0

(a1)

q : −
h(S)

q2
[c(q, G) + tx] −

h(S)

q

vq

vc
− λ

h(S)

q2
+ µγ

h(S)

q2
x = 0 (a2)

G : −

∫ x

0
2πx

h(S)

q

vG

vc
dx + µ = 0 (a3)

x : iS +
h(S)

q
[c(q, G) + tx] + h(S)e + e + ra + λ

h(S)

q
− µψ[h(S)e+ e]

− µγ
h(S)

q
x = 0. (a4)

Rearranging (a2) yields (10), and (a3) is the same as (16). Solving (a2) for λ and sub-

stituting in (a1) yields (11) after rearrangement, and substituting in (a4) yields (13) after

rearrangement.

A2. Data sources and calibration calculations

Income y is set at the 2011 value of median household income in the US, which is $51,324

(the source is American Community Survey of the US Census Bureau).37 To compute com-

muting cost per mile, t, we follow Bertaud and Brueckner (2005). We use the median hourly

wage of $17.09 (from Bureau of Labor Statistics)38 and value it at 50% (Small (2012)) to

get an hourly time cost of commuting $8.545. Assuming that rush hour traffic moves at 30

miles per hour, the implied time cost of commuting is $0.28/mile. As for the money cost of

commuting, the current Federal allowance is $0.55/mile, which includes an average gasoline
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tax of $0.025/mile ($0.487/gallon divided by the average light-vehicle fuel economy of 20 miles

per gallon). Subtracting this amount yields a net-of-tax money cost of $0.525/mile and an

overall commuting cost per mile of $0.805. Multiplying by 1.25 workers/household, by 250

work days/year and again by 2 to convert to a round-trip basis, annual commuting cost per

mile is $503.125/year.

The computation of agricultural rent ra again follows Bertaud and Brueckner (2005). We

take the average value of farm real estate per acre in 2011, $2300 (the source is United States

Department of Agriculture (2015), Land Values: 2015 Summary,

http://www.usda.gov/nass/PUBS/TODAYRPT/land0815.pdf). To convert this number to an-

nual rent, we use a discount rate of 4% to get a rent per acre of $2, 300/0.04 = $92, yielding a

land rent per square mile of ra = $58, 880.

To derive GHG and local emissions from commuting, we use data from the National Re-

search Council (2010), along with a standard estimate of GHG damage equal to $40/metric

ton CO2, or $0.04 per kg CO2. NRC (2010), Table 3-5 (p. 180), gives 0.552 kg CO2/mile as

GHG emissions from gasoline, and valuing these emissions at $0.04/kg gives GHG damage

per mile of $0.02208. If GHG damage were the only damage, this number (converted to an

annual basis) would correspond to τt. Local damage exists as well, however, and NRC es-

timates this damage as $0.0134/mile. Local damage can be viewed as the product of local

commuting emissions per mile, γl, and social damage per unit of local automobile emissions,

µcom
l , which must satisfy µcom

l γl = $0.0134/mile. However, by choice of units of local pollu-

tion, we can set µcom
l equal to $0.040/kg, the same damage as per unit of GHG emissions, and

then use the previous equation to determine γl, which equals 0.0134/0.04 = 0.335 kg/mile.

Therefore, composite emissions from commuting consist of 0.552 kg CO2/mile of GHG emis-

sions and 0.335 kg/mile of local emissions, for a total of 0.887 kg/mile, with both valued at

$0.04/kg. Converting the 0.887 value to an annualized per mile value by multiplying by 625

(2×500×1.25) yields γ = 554.375/mile, and using µ = $0.04, the annual first-best commuting

tax is τt = $0.04 × 554.375 = $22.175/mile.

Turning to residential emissions, we use the Residential Energy Consumption Survey to

apportion total BTUs of household energy use for space heating and air conditioning (con-
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verted to kwh) across five sources: electricity, natural gas, propane/LPG, and fuel oil and

diesel/kerosene.39 Then, from Carbon Trust,40 we get CO2 generation per kwh of energy for

the five sources: 0.5246 kg CO2e/kwh for electricity, 0.1836 for natural gas, 0.2147 for LPG,

0.2674 for fuel oil, 0.2517 for diesel/kerosene. Multiplying by kwh for each source and summing

gives total residential CO2 generation, and dividing by total residential kwh gives CO2 genera-

tion per kwh of residential energy use. This quantity is 0.1997 kg CO2/kwh, which equals the

ψ value for GHG emissions. Again valuing these emissions at µ = $0.04/kg ($40/metric ton),

and multiplying by e = 1.4016 kwh/sq ft would give the floor space and land taxes for GHG

emissions: τq = τ` = µψe = $0.04/kg × 0.1997 kg/kwh × 1.4016 kwh/sq ft= $0.011/square

foot.

However, the local emissions component of composite residential emissions remains to be

considered. NRC (p. 235) gives $0.016/kwh as the local emissions damage from electricity

generation, while the spreadsheet from Parry et al. (2014)41 gives local damage from the

natural gas used in heating as $0.322/GJ or $0.00116/kwh. We weigh these values by the

adjusted electricity and natural gas proportions in heating and cooling from the RECS (ignoring

the other energy sources), which equal 53.79% and 46.21% respectively. The resulting local

residential emissions damage is then $0.00914/kwh. As in the case of commuting, this damage is

the product of a local ψ, denoted ψl, and a social damage per unit of local residential emissions,

µres
l , whose product must satisfy µres

l ψl = $0.00914. As before, we can choose the units of

local residential emissions so that the social damage µres
l per unit is the same $0.04/kg value

as for GHG emissions. The implied value of ψl is then given by ψl = 0.00914/0.04 = 0.2285

kg/kwh. Adding this value to the ψ value of 0.1997 for GHG emissions gives an overall ψ

equal 0.2285 + 0.1997 = 0.4283 kg CO2/kwh. The overall first-best residential taxes are then

τq = τ` = µψe = $0.04 × 0.4283 kg/kwh × 1.4016 kwh/sq ft= $0.024/sq ft.
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Table 1: 2013 Emissions by Sector
(millions of metric tons CO2 equivalent)

Electricity-generation emissions

are distributed to final user

implied sector volume percentage

Industry 1922.6 30.0%

Transportation 1810.3 27.1%

Residential 1129.1 16.9%

Commercial 1126.7 16.9%

Agriculture 646.4 9.7%

Total 6673.0 100%

Columns do not sum since emissions from
US Territories are excluded. Source is

Environmental Protection Agency (2015, Table ES-7)
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Table 2: City Characteristics

No-tax First best First best Second best Second best Second best Second best
µ = $0.04 µ = $0.22 τt = 0 τq = 0 τ` = 0 τ` = τq = 0

city border x 30.33 28.98 24.26 28.91 28.97 29.30 29.39

emissions per capita 7946.07 7624.12 6464.71 7758.22 7628.25 7623.52 7637.15

central bldg. height h(S) 22.50 23.93 30.63 22.57 23.95 23.87 24.06

central density D 4002.69 4334.88 5980.41 4046.43 4331.31 4321.78 4355.57

central land rent r 13.3 m 14.4 m 20.0 m 13.3 m 14.4 m 14.4 m 14.5 m

central housing price p 8.65 8.86 9.75 8.75 8.84 8.86 8.85

central dwelling size q 1501.03 1474.11 1368.02 1489.47 1476.87 1474.98 1475.38

commuting tax τt 0 22.18 121.96 0 23.73 23.90 26.49
(4.4%) (24.2%) (4.7%) (4.7%) (5.3%)

housing tax τq 0 0.024 0.13 0.085 0 0.032 0
(0.45%) (2.21%) (1.58%) (0.61%)

land tax τ` 0 0.024 0.13 0.053 0.027 0 0
(0.57%) (2.25%) (1.30%) (0.65%)
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Table 3: Sensitivity Analysis

(percentage change in first-best value relative to benchmark first-best value)

y rises L rises to t rises to e rises γ rises
to $76,986 1,250,000 $782.65/mile by 50% by 50%

city border x +41% +4% −26% −1% −1%

emissions per capita +53% −4% −29% +11% +36%

commuting tax τt −2% +54% +5% 0% +50%

housing tax τq −2% +54% +5% +50% 0%

land tax τ` −2% +54% +5% +50% 0%
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Figures

Figure 1: Building height in the first best (dark red/black) and no-tax city
(light blue/gray)

Figure 2: Population density in the first best (dark red/black) and no-tax
city (light blue/gray)
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Figure 3: Land rent in the first best (dark red/black) and no-tax city (light
blue/gray)

Figure 4: Housing price in the first best (dark red/black) and no-tax city
(light blue/gray)
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Figure 5: Dwelling size in the first best (dark red/black) and no-tax city
(light blue/gray)
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Borck, R., Pflüger, M., 2015. Green Cities? Urbanization, trade and the environment.
IZA discussion paper 9104.

Brueckner, J.K., 1987. The structure of urban equilibria: A unified treatment of the Muth-
Mills model. In: Mills, E.S. (Ed.), Handbook of Regional and Urban Economics, Vol. 2,
North Holland, Amsterdam, pp. 821-845.

Brueckner, J.K., 2007. Urban growth boundaries: An effect second-best remedy for un-
priced traffic congestion? Journal of Housing Economics 16, 263-273.

Ching, F.D.K., Shapiro, I., 2014. Green Building Illustrated. John Wiley & Sons, Hoboken,
N.J.

Chong, H., 2012. Building vintage and electricity use: Old homes use less electricity in hot
weather. European Economic Review 56, 906-930.

Costa, D.L., Kahn, M.E., 2011. Electricity consumption and durable housing: Under-
standing cohort effects. American Economic Review 101, 88-92.
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Footnotes

∗We thank Howard Chong for steering us toward the engineering/architecture literature on
residential energy use, and we are grateful to Sofia Franco, Georg Hirte, Tatsuhito Kono,
Will Larson, Kevin Roth, Ken Small, and Tony Yezer for detailed comments and to Ben
Leard and other conference participants for additional comments. Any shortcomings in the
paper, however, are our responsibility.

1In similar fashion, Fullerton and West (2002) show that, in treating automobile emissions, a
carbon tax can be replaced by taxes with other features that acheive the same outcome (i.e.,
a gas tax that depends on fuel type, engine size, and installed pollution control equipment,
or a vehicle tax that depends on mileage).

2See Borck and Pflüger (2015) for a multi-city analysis with global emissions, as well as
Gaigné, Riou and Thisse (2012).

3For additional analysis where adjustment of building heights serves to amerliorate an exter-
nality, see Joshi and Kono (2009). With unpriced traffic congestion, population in a mono-
centric city is insufficiently concentrated, and this paper shows that a second-best remedy is
building-height regulations that impose a minimum near the center and a maximum in the
suburbs.

4Among buildings with a given footprint area, square buildings have the smallest surface area
(see below).

5Taken literally, the model implies that developers should construct buildings with the biggest
possible footprint, limited only by the city’s street grid.

6The term 4/
√
` is absorbed by the multiplicative factor that is part of the chosen h function

in the numerical model, so its value can be set arbitrarily. For the same reason, the capital
price i (see below) is normalized to 1 without loss of generality.

7Energy use from appliances (and lighting) may, of course, show a modest increase with
dwelling size (from larger refridgerators and hot-water heaters or additional televisions), but
omission of this effect is acceptable as an approximation.

8See Fujita (1989) for another use of this approach.
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9The dual version of the planning problem starts by deriving income-compensated demand
functions for c and q conditional on G, denoted by c(p,G, u) and q(p,G, u). In (7)–(9), the
first function is substituted in place of c(q, G) and the second is substituted in place of q.
Then, (7) is set equal to I , which gives the economy’s total endowment of c. Finally, u
is maximized subject to the three modified constraints, with p, G, and x treated as choice
variables along with u. The optimality conditions in (10), (11) and (13) again emerge. See
Pines and Sadka (1986) for another use of this approach.

10While a carbon tax would normally not cover local pollution damage, the taxes computed
below do so. As result, equivalence of the two approaches would require broadening of the
carbon tax to include damages from local pollutants.

11With an average household size of 2.6, the city would then have 1.95 million inhabitants.

12The survey can be found at http://www.eia.gov/consumption/residential/.

13By ignoring the possible irregular shapes of single-family houses, this calculation may lead
to a biased value of e, but the result is acceptable as an approximation.

14See Interagency Working Group on Social Cost of Carbon, United States Government (2015)
(https://www.whitehouse.gov/sites/default/files/omb/inforeg/scc-tsd-final-
july-2015.pdf).

15Comparison of the residential taxes to existing property taxes is carried out below.

16US Department of Transportation data at the following link show miles per gallon for the US
fleet of cars and light trucks of 23 and 17, respectively. With light trucks constituting about
40% of the overall light vehicle fleet (White (2004)), average miles per gallon is around 20.
(http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/
national transportation statistics/html/table 04 23.html)

17See the following webpage from the American Petroleum Institute: http://www.api.org/

oil-and-natural-gas-overview/industry-economics/fuel-taxes/gasoline-tax.

18See the following webpage from US Department of Energy: http://www.afdc.energy.gov/
data/10327.

19Nordhaus (2014), for example, reports estimates using different assumptions that range be-
tween $21 and $104 per metric ton.
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20Under the Cobb-Douglas preferences in (15) (with ν = 0), p(x, y, t, u) ≡ B(y− tx)1/αu−1/α,
where B is a constant.

21In reality, tax revenues might be used to subsidize energy-efficient public transit or building
modifications designed to reduce energy use. Analysis of these options would require a more
detailed model.

22The dependencies of S can be seen in (11), where µψe = τq and the MRS expression is
replaced by the modified p function. The S that satisfies the equation then depends on the
arguments of p and on e and τq (D inherents these dependencies). The r dependencies can
be seen from the LHS of (13). Land rent r is given by the LHS expression in (13) with p
in place of the MRS and the bars removed, so that r depends on the arguments of p along
with e and τq.

23The R condition is written as

R =

∫ x

0
2πx [r̂(·) − ra]dx,

where the arguments of r̂ are suppressed (note that R appears on both sides of this condition).
The condition giving total tax revenue is

T = τt

∫ x

0
2πxD̂(·)xdx + τq

∫ x

0
2πxh(Ŝ(·))dx + τ`

∫ x

0
2πxdx,

where the arguments of Ŝ and D̂ are suppressed. Note that, since T appears in these
arguments, it is present on both sides of this condition.

24The µ condition is

µ = −

∫ x

0
2πxD̂(·)M̂RS(·)dx,

where M̂RS(·) is the function corresponding to vG/vc = −ν/vc, which has the same list

of arguments as D̂. In deriving the G condition, S in the first term of (9) is replaced by

Ŝ(·) and h/q is replaced by D̂(·). Since G does not appear in the arguments of Ŝ and D̂,
the modified (9) thus gives G in terms of the other endogenous variables, whose values are
determined by the previous conditions.

25It should be noted that endogeneity of the taxes would be eliminated if the M̂RS expression
in footnote 24 (and in the original equation (14)) were a constant. This case emerges, for
example, if preferences over c and q in (15) take the Leontief form, making vc a constant,
denoted φ. With vG equal to the constant ν, the MRS is then µ/φ and footnote 24 gives
µ = Lν/φ, yielding exogenous taxes via the tax formulas.
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26It could be argued that ν should be chosen to yield the target value of µ in the no-tax
equilibrium rather than in the first best, given that this equilibrium matches the current
real-world one. However, under the chosen ν, the no-tax equilibrium generates a µ almost
identical to the target value of $0.04/kg, making this choice moot.

27See http://nhts.ornl.gov/.

28This population density is similar to that of Buffalo-Niagara Falls, NY, or Dallas-Fort Worth-
Arlington, TX, according to the 2010 Census [www.census.gov]. In all MSAs with popu-
lation between 1.5 and 2.5 million, the average population density is 540 people, or 208
households, per square mile.

29We solve the model, and then rescale the resulting q values by multiplying by a factor ξ that
makes the average value in the city equal to 2,196 square feet. This average value is given
by 1/N times the integral of q, weighted by population density, over x. Then, the p solution
at each x is divided by ξ, as is the floor space tax. This procedure follows Bertaud and
Brueckner (2005).

30It is interesting to ask whether non-tax interventions could guide the city toward a first-best
outcome. One such intervention is suggested by Joshi and Kono’s (2009) demonstration
that a combination of minimum and maximum height restrictions for buildings can be used
to address land-use distortions generated by traffic congestion. Following their logic and
referring to Figure 4, imposing appropriate minimum height limits (which follow the dark
first-best curve) in the central part of the city and imposing maximum height limits in
the outer part of the city could generate the optimal building-height pattern. However,
since dwelling sizes would remain uncontrolled, these limits would not generate a first-best
outcome.

31To derive this expression, note that property value P is determined by the relationship
P = (p − κP )/θ, with P equaling the discounted value of the flow of rent minus taxes.
Solving yields P = p/(κ + θ), so that the tax liability as a percentage of rent is given by
[κp/(κ+ θ)]/p = κ/(κ + θ).

32See, for example, Song and Zenou (2006).

33For a similar exercise in the context of automobile pollution, see Fullerton and West (2010).

34In another second-best exercise, Borck (2016) studies building-height limits as a different tool
for combating global warming. The intuition is that, by tightening housing supply, lower
building heights may depress housing consumption, thus reducing emissions. However, the
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population-density contour in a city with building-height limits is too flat, compared to a
city with first-best taxation.

35Their result emerges when the population increase is caused by an exogenous increase in
amenities in an open-city context.

36This analysis also applies to the effects of a change in ψ, emissions per unit of residential
energy usage.

37The source is available at https://www.census.gov/prod/2013pubs/acsbr12-02.pdf.

38See http://www.bls.gov/oes/current/oes nat.htm.

39While the raw data are used for this computation, the average figures are shown in line 1 of
Table CE4.1.

40See Carbon Trust, Conversion factors: Energy and carbon conversions, 2011 update
(http://www.carbontrust.com/media/18223/ctl153 conversion factors.pdf).

41The spreadsheet can be found at http://www.imf.org/external/np/fad/environ/data/

data.xlsx.
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