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ABSTRACT 

Nonlinear estimation of the gravity model with Poisson/negative binomial methods has 

become popular to model international trade flows, because it permits a better accounting for 

zero flows and extreme values in the distribution tail. Nevertheless, as trade flows are not 

independent from each other due to spatial autocorrelation, these methods may lead to biased 

parameter estimates. To overcome this problem, eigenvector spatial filtering variants of the 

Poisson/negative binomial specification have been proposed in the literature of gravity 

modelling of trade. However, no specific treatment has been developed for cases in which 

many zero flows are present. This paper contributes to the literature in two ways. First, by 

employing a stepwise selection criterion for spatial filters that is based on robust (sandwich) 

p-values and does not require likelihood-based indicators. In this respect, we develop an ad 

hoc backward stepwise function in R. Second, using this function, we select a reduced set of 

spatial filters that properly accounts for importer-side and exporter-side specific spatial 

effects, both at the count and the logit processes of zero-inflated methods. Applying this 

estimation strategy to a cross-section of bilateral trade flows between a set of worldwide 

countries for the year 2000, we find that our specification outperforms the benchmark models 

in terms of model fitting, both considering the AIC and in predicting zero (and small) flows. 

JEL codes: C14, C21, F10 

Keywords: bilateral trade; unconstrained gravity model; eigenvector spatial filtering; zero 

flows; backward stepwise; zero-inflation. 
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1. Introduction 

 

A traditional gravity model describing trade in its simple form (Linnemann 1966; Tinbergen 

1962) asserts that the volume of trade between a country pair is proportional to the product of 

their gross domestic products and inversely related to a measure of distance separating them, 

where distance is broadly defined as a function of several variables that can be viewed as 

trade resistance factors. The log-linear specification of the gravity model along with ordinary 

least squares (OLS) estimation has been widely used in the empirical literature (Egger 2002; 

Frankel and Rose 2002; Rose 2000), mostly because of its good empirical performance and, 

in later years, for the strong theoretical foundations provided in papers such as Anderson 

(1979) and Anderson and van Wincoop (2003). However, most recent contributions stress that 

null trade flows are to be specifically taken into account. Helpman et al. (2008) prove that 

disregarding countries that do not trade with each other generates biased estimates. Moreover, 

Santos Silva and Tenreyro (2006) show that log-linearization of the gravity model leads to 

inconsistent estimates in the presence of heteroscedasticity in trade levels. They propose a 

Poisson-type specification of the gravity model along with the Poisson pseudo-maximum 

likelihood (PPML) estimator, somehow similarly to the Poisson approach initially proposed 

by Flowerdew and Aitkin (1982). Santos Silva and Tenreyro (2006; 2011) also provide 

simulation evidence that the PPML estimator is well behaved, even when the conditional 

variance is far from being proportional to the conditional mean. Several empirical studies of 

trade have applied the PPML estimator (see Burger et al. 2009; Linders et al. 2008; Martin 

and Pham 2015; Martínez-Zarzoso 2013). Alternatively, in order to correct for overdispersion, 

a negative binomial (NB) regression model, which belongs to the family of Poisson models, 

and allows for the dispersion parameter to differ from 1, is employed. A wider discussion 

regarding the choice between Poisson and NB estimators (for the pseudo-ML case in 

particular), can be found, for example, in Bosquet and Boulhol (2014) and Head and Mayer 

(2015). 

The zero-inflated specification (Greene 1994; Lambert 1992; Long 1997) applied to NB 

models (ZINB) permits a better estimate in the presence of a large number of zero flows, 

because it considers the existence of two groups within the population: one having strictly 

zero counts, and another having a non-zero probability of having a trade flow greater than 

zero. 
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Burger et al. (2009) stress that some variables may be more important in determining the 

profitability of bilateral trade (decision to trade) rather than the potential volume of bilateral 

trade. However, so far, which variables determine the decision to trade is not so clear. 

Today, a well-known feature of trade flows is that they are not independent of each other 

(Griffith 2007; LeSage and Pace 2008), and that possible sources of spatial autocorrelation 

(SAC) among countries should be taken into account (Behrens et al. 2012; Sellner et al. 

2013). With this paper, we aim to better analyse the dynamic of the decision to trade 

(extensive margin) and the volume of trade (intensive margin), and, in particular, what the 

contribution of SAC is in both of these processes. We focus on an eigenvector spatial filtering 

(ESF) approach (Griffith 2003), within a ZINB framework, using two sets of origin and 

destination spatial filters (Fischer and Griffith 2008; Griffith 2007), one accounting for SAC 

in the logit part, and the other accounting for SAC in the count part. In this regard, we devise 

an ad hoc function that applies a backward stepwise algorithm aiming to properly identify the 

significant spatial filters. Our proposed algorithm has the advantage that, at each step, it drops 

the eigenvector with the largest p-value, regardless of whether it is in the count or in the logit 

part. We compare the results of this estimation with two methodologically nested 

benchmarks, namely a ZINB and a NB with origin and destination spatial filters (the former 

employing spatial filters only in the count part). We conduct a comparison in terms of both 

estimated coefficients and goodness of fit (Akaike information Criteria, AIC and prediction of 

zero and small flows). We find that our specification outperforms the comparison models, in 

terms of both AIC and prediction of small trade flows. An alternative analysis based on a ZIP 

specification is provided. 

This paper is structured as follows. Section 2 presents a review of the gravity of trade, from 

the traditional models to recent developments. In Section 3 we define our proposed model and 

the stepwise algorithm we adopted. Section 4 presents the empirical application, together with 

results. Section 5 concludes the paper. 

 

2. The Gravity Model of Trade: Recent Developments 

 

The scientific community recently experienced a renewed interest in both the theoretical and 

empirical aspects of the gravity model of trade. In particular, the aforementioned theoretical 

developments on multilateral resistance terms generated the need for consistent estimation 

approaches that would fit such advancements. The vastly increased computational power 



 

4 

 

available for econometric analysis played an additional role, allowing more complex and data-

intensive (i.e., nonlinear and panel) estimation efforts. 

Several studies, starting with, for example, the popular paper by Santos Silva and Tenreyro 

(2006), have pushed the envelope in the field, and a number of researchers are actively 

pursuing further methodological advances pertaining to, in particular, the estimation of the 

gravity model of trade. Egger and Tarlea (2015) propose a multi-way clustering approach to 

consistently estimate regression coefficients pertaining to preferential trade agreements. Egger 

and Staub (2016) compare the suitability of various estimation approaches under an 

international economics general equilibrium perspective. Baltagi and Egger (2016) develop a 

quantile regression structural estimation solution for the gravity model. 

Within the aforementioned econometric developments, a niche of its own is emerging 

pertaining to the incorporation of spatial dependence and heterogeneity or network 

autocorrelation (i.e., the correlation of flow data based on their network’s topological 

characteristics) in gravity models (Patuelli and Arbia 2016), trade being a frequent 

application. While the relevance of spatial autocorrelation originally was suggested for trade 

models in Anderson and van Wincoop (2004), and much earlier within spatial interaction 

modelling (Curry 1972; Curry et al. 1975; Sheppard et al. 1976), this issue attracted 

significant attention only in recent years. Studies by Behrens et al. (2012), Fischer and 

Griffith (2008), and LeSage and Pace (2008) provide, from different perspectives (economic 

theory, spatial econometrics, spatial statistics), the necessary stepping stones for analysing 

SAC aspects in flow data. We can roughly divide the available literature into three main 

streams: 

 

 Linear spatial econometric models (Baltagi et al. 2007; Behrens et al. 2012; Fischer and 

Griffith 2008; Koch and LeSage 2015; LeSage and Pace 2008): these models apply 

and adapt traditional (linear) spatial econometric techniques to the count data case. 

 Spatial generalized linear models (GLMs) (Lambert et al. 2010; Sellner et al. 2013): 

these models extend the previous approaches by allowing for estimation based on 

Poisson-type models, therefore accommodating the concerns expressed in Santos Silva 

and Tenreyro (2006). 

 Non-parametric (ESF) models (Chun 2008; Fischer and Griffith 2008; Krisztin and 

Fischer 2015; Patuelli et al. 2016; Scherngell and Lata 2013): these models take a non-

parametric approach, by employing ESF within Poisson-type models. 
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This paper is concerned with this latest class of models. ESF (Griffith 2003) (described in 

more detail in Section 3.2) is a spatial statistics technique based on the decomposition of 

spatial weights matrices. The available studies employing this technique demonstrate how 

spatial filters can be used successfully at the intercept level as ‘interceptors’ of (i.e., proxies 

for) unobserved spatial heterogeneity. This paper aims to further investigate the use of ESF, 

by allowing for separate spatial filter sets in zero-inflated models.  

 

3. A Methodological Approach 

 

The proposed approach is described in this section. 

 

3.1 Zero-Inflated Gravity Models of Trade 

In recent years, an increasing recognition is that the level of trade between countries 

frequently is zero. Small countries may not have trade relations with all possible trading 

partners, or statistical offices may not report trade flows below a certain threshold. Moreover, 

the issue of zero flows is more pronounced when analysing sector-disaggregated trade flows. 

Zero-inflated gravity models provide one way to model an excess of zero flows. Martin and 

Pham (2015) and Burger et al. (2009) propose the zero-inflated extension of the Poisson 

gravity model for situations where the data-generating process (DGP) results in too many 

zeros. The model may be viewed as a "two-part" extension, in which the distribution of the 

outcome variable is approximated by mixing two component distributions. The zero-inflation 

part of the model consists of a qualitative-dependent model to determine the probability of 

whether a particular origin-destination trade flow is zero or positive. The second part contains 

the standard Poisson (or NB) gravity model to estimate the relationship between trade flows 

and explanatory variables for each trade flow that has a non-zero probability (Leung and Yu 

1996). Among others, Xiong and Beghin (2012) and Philippidis et al. (2013) apply zero-

inflated count models for the analysis of international trade. 

Estimating the parameters of the NB gravity model (with or without zero-inflation) by 

standard non-spatial methods only is justified statistically if we believed that trade flows are 

independent observations. However, such an assumption generally is not valid because flows 

fundamentally are spatial in nature. Several recent papers  propose modelling the spatial 

heterogeneity in the residuals by means of different econometric techniques. Among those 

works, many focus on the issue of multilateral trade resistances (MTR), which can be 

considered as a main source of spatial heterogeneity (Baier and Bergstrand 2009; Behrens et 
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al. 2012). One way to relax this independence assumption is by incorporating spatial 

dependence in the Poisson gravity model by means of spatial autoregressive techniques 

(Lambert et al. 2010; Sellner et al. 2013). Another is ESF (Griffith 2003). It is considered here 

because it allows for greater flexibility in modelling, and can be applied seamlessly to any 

estimation framework. In their recent work, Patuelli et al. (2016) apply spatial filters with NB 

as a way to filter out spatial heterogeneity due to MTRs. However, residual heterogeneity 

could be present both for the logit and the count process, whereas the previously mentioned 

works only account for SAC in the count process. Krisztin and Fischer (2015) have very 

recently applied network-autocorrelation SFs to a trade model, by including, among others, 

zero-inflated specifications. In particular, their approach implies using a network 

autocorrelation spatial filter in the count part of the model. This work follows a similar 

approach used by Krisztin and Fischer, but we introduce an ad hoc backward stepwise 

procedure to properly select the filters. Moreover, we perform diagnostics in order to: i) 

compare our model with other benchmarks, and ii) evaluate the fitting of our specification in 

predicting zero (and small) trade flows.  

 

3.2 Spatial Filters 

ESF originally was developed for area-based data by Griffith (2003), and later extended to 

flow data (Chun 2008; Chun and Griffith 2011; Fischer and Griffith 2008; Griffith 2009). One 

traditional advantage, when including eigenvectors as additional origin- and destination-

specific regressors, is that the model can be estimated within standard regression frameworks, 

such as OLS or Poisson regression, which are common in the literature about spatial 

interaction. The parameters of the standard regressor variables are unrelated to the remaining 

residual term, and standard estimation yields consistent parameter estimates as a result. We 

refer to this estimation method as SF estimation of origin-destination models. 

 The workhorse for the SF decomposition is a transformation procedure based upon 

eigenvector extraction from the matrix 

 

 (I – 11T/n) W (I – 11T/n) (1) 

 

where W is a generic n x n spatial weights matrix, I is an n x n identity matrix, and 1 is an n x 

1 vector containing 1s. The spatial weights matrix W defines the relationships of proximity 

between the n georeferenced units (e.g., points, regions, and countries). The transformed 

matrix appears in the numerator of the Moran I coefficient (MC). 
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The eigenvectors of Equation (1) represent distinct map pattern descriptions of SAC 

underlying georeferenced variables (Griffith 2003). Moreover, the first extracted eigenvector, 

say e1, is the one showing the highest positive MC (Cliff and Ord 1972; 1981) that can be 

achieved by any spatial recombination induced by W. The subsequently extracted 

eigenvectors maximize MC while being orthogonal to and uncorrelated with the previously 

extracted eigenvectors. Finally, the last extracted eigenvector maximizes negative MC. 

Having extracted the eigenvectors of Equation (1), a spatial filter is constructed as a linear 

combination of a judiciously selected subset of these n eigenvectors. In detail, for our 

empirical application, we select a first subset of eigenvectors (which we call the ‘candidate 

eigenvectors’) by means of the following threshold: MC(ei)/MC(e1) > 0.25. This threshold 

yields a spatial filter whose variance attributable to SAC is at least roughly 5% (Griffith 

2003).1 Subsequently, a stepwise regression model may be employed to further reduce the 

first subset (whose eigenvectors have not yet been related to given data) to just the subset of 

eigenvectors that are statistically significant as regressors in the model to be evaluated. The 

linear combination of the resulting group of eigenvectors is what we call our ‘spatial filter’. 

This estimation technique has been applied in various fields, including labour markets 

(Patuelli 2007), innovation (Grimpe and Patuelli 2011), economic growth (Crespo Cuaresma 

and Feldkircher 2013), and ecology (Monestiez et al. 2006). 

Because trade data do not represent points in space, but flows between points, the 

eigenvectors are linked to the flow data by means of Kronecker products: the product EK  1, 

where EK is the n x k matrix of candidate eigenvectors, may be linked to the origin-specific 

information (for example, GDP per exporting countries), while the product 1  EK may be 

linked to destination-specific information [again, for example, the gross domestic product 

(GDP) of importing countries] (Fischer and Griffith 2008). As a result, two sets of origin- and 

destination-specific variables are used (Patuelli et al. 2016), which aim to capture the SAC 

patterns commonly accounted for by the indicator variables of a doubly-constrained gravity 

model (Griffith 2009), therefore avoiding omitted variable bias (see also Griffith and Chun 

2016). 

The new challenge here is that we want to account for SAC in both the logit and in the 

count parts of zero-inflated models, so we use two sets of filters at the logit level, and two sets 

                                                 
1  In this regard, Chun et al. (2016) formulate an estimation equation, based on residual SAC, to predict the ideal 

size of the candidate set, and demonstrate that the optimal size of the set of candidate eigenvectors is 

positively related to the amount of spatial autocorrelation to account for. 
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of filters at the count level. This choice allows us to account for potentially different omitted 

variables related to the intensive and extensive margins of trade. Moreover, the selection of 

different eigenvectors in the two parts (i.e., exclusion restrictions) may help obtain 

identification as well, consistent with Papadopoulos and Santos Silva (2012). 

 

3.3 A Backward Stepwise Algorithm  

A stepwise procedure is an algorithm used to choose variables in a regression model, first 

proposed by Efroymson (1960). It usually takes the form of a sequence of F- or t-tests, but 

other criteria are possible, such as (adjusted) R-squared, AIC, Bayesian information criterion 

(BIC), or simply based on p-values.  

Forward selection involves starting with no variables in a model, testing the addition of 

each variable, adding the variable (if any) that improves the model the most, and repeating 

this process until no more (significant) improvement is possible. Backward elimination 

involves starting with all candidate variables, sequentially testing the deletion of each of them, 

deleting the variable (if any) whose deletion improves the model fit the most, and repeating 

this process until no further improvements are possible. Backward elimination procedures are 

implemented in many routines. Chun and Griffith (2013) list R code for stepwise selection in 

GLMs based on SAC minimization. In the mpath package (Wang et al. 2015), the be.zeroinfl 

function performs a backward elimination (and forward selection) based on maximum 

likelihood criteria, and can be applied to zero-inflated models. 

Here, we are interested in using a stepwise algorithm to define the proper set of 

eigenvectors to include in a regression model in order to account for SAC.  

Our algorithm (see Appendix A.1) is inspired by the be.zeroinfl function, but has at least 

two advantages vis-à-vis it. First, at each step of our algorithm, we compute robust standard 

errors and we select the variable to be removed based on the related p-values. Second, our 

algorithm is constructed in order to be able to drop the variables with the largest p-values, 

regardless of whether they belong to the count or the logit part. We also structured the 

function so that a minimum model (minmodel) can be defined. In other words, we let the 

algorithm drop only the eigenvectors, because we consider included standard explanatory 

variables to have substantive meaning. 

 

https://en.wikipedia.org/wiki/F-test
https://en.wikipedia.org/wiki/T-test
https://en.wikipedia.org/wiki/R-square
https://en.wikipedia.org/wiki/Bayesian_information_criterion
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4. An Empirical Application 

 

The data for trade analysed in this paper are from the World Trade Database, compiled on the 

basis of COMTRADE data by Feenstra et al. (2005). GDP and per capita GDP data are from 

the World Bank’s WDI database. Distance, language, colonial history, landlocked countries, 

and land area data are from the CEPII institute. Whether pairs of countries take part in a 

common regional integration agreement (FTA) was determined on the basis of OECD data 

about major regional integration agreements.2 An indicator variable measures whether a pair 

of countries has (membership in) at least one common FTA. Data about island status have 

been kindly provided by Hildegunn Kyvik-Nordas (from Jansen and Nordås 2004). Internal 

flows are excluded from our analyses because they typically deserve special treatment in trade 

models (see, e.g., LeSage and Fischer 2016). Their treatment within our modelling framework 

is left for future research. 

 

4.1 The Model Specification 

For estimation, we follow a standard specification of the gravity equation of bilateral trade, 

and we employ some variables commonly used in the literature (see, e.g., Frankel 1997; 

Raballand 2003). We use the following standard specification of the gravity equation, which 

we estimated by means of a ZINB (and ZIP as a sensitivity analysis): 
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where Tr represents trade flows, gdp represents the GDP (in logs), gdpcap represents per 

capita GDP (in logs), Island is an indicator variable that equals 1 if a country is an island, 

Area is the land area of a country (in logs), and landl equals 1 for landlocked countries. The 

other variables are country-pair indicators, identifying whether a pair of countries share a 

currency (comcur), a common border (contig), a common history (hist), or engage in free 

                                                 
2  See http://www.oecd.org/dataoecd/39/37/1923431.pdf. 
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trade agreements (fta), and dist is a measure of the geographical distance between them (in 

logs). 

 

4.2 Estimation Results 

We estimate Equation (2) and select spatial filters as a ZINB, using a cross-section of 64 

countries (4,032 country pairs) for the year 2000 (ZINB ESF, Table 1). We estimate the same 

model using two benchmarks that methodologically can be considered as special cases of our 

proposed model: a ZINB using spatial filters only in the count part (ZINB ESFc), and an NB 

with spatial filters (NB ESF). 

Looking to the count part (second step) of the ZINB ESF, distance has a negative 

significant effect, the country-pair indicator variables all present positive and significant 

coefficients, and country mass variables a positive one, as expected: GDP positively affects 

trade flows, at both the exporter and importer country side. The area size as well as the GDP 

per capita of the exporter country negatively affect trade, while the values for importing 

countries have smaller positive coefficients. When comparing the findings of Model (1) with 

the ones of the benchmarks, the coefficients do not change much, with some exceptions for 

Model (3), most likely because of compensation for the lack of the zero-inflation part. In 

general, coefficients that are significant in the ZINB ESF also are significant in our 

benchmark models.  

Considering the logit part (first step), the probability of a country pair to be involved in 

trade negatively depends on distance, positively depends on the importer and exporter country 

areas, but, surprisingly, considering Model (1), negatively depends on GDP. Moreover, the 

coefficients resulting from the alternative zero-inflated specification [Model (2), which does 

not include spatial filters in the logit part] often differ from the ones for Model (1), suggesting 

that the inclusion of the spatial filters has a relevant role. These results highlight the need to 

better analyse the determinants of trade decisions. 

Based on the AIC and the log-likelihood values, our model specification outperforms the 

benchmarks. In terms of AIC, the ZINB ESF has the lowest value (47,026), meaning it 

performs better than the benchmarks (47,566 for the ZINB ESFc, and 48,414 for the NB 

ESF). The same holds for the log-likelihood (–2.32 * 104 compared to –2.37 * 104 and –2.42 

* 104, respectively). 

Appendix A.2 summarizes Poisson estimation results. Results appearing in Table A.1 

confirm that, similarly to the NB case, the zero-inflated Poisson (ZIP) ESF outperforms the 

two benchmark models (ZIP and Poisson ESF) in terms of both AIC and likelihood. 
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Table 1. Estimation coefficients for: (1) ZINB ESF; (2) ZINB ESFc; (3) NB ESF 

 (1)  (2)  (3)  

 ZINB ESF ZINB ESFc NB ESF 

First Step    

Distance   –1.18***   0.23** – 

Common language   –1.34**   0.50** – 

Contiguity     1.85*   0.14 – 

Common history   –2.28* –1.54 – 

Free trade agreements   –0.86 –1.43*** – 

Area importer     2.77*** –0.05 – 

Area exporter     0.23**   0.36*** – 

GDP per cap. importer   –0.69*** –0.53*** – 

GDP per cap. exporter     0.97***   0.45*** – 

GDP importer   –5.25*** –0.14 – 

GDP exporter   –2.82*** –1.26*** – 

Island importer   17.04*** –0.99 – 

Island exporter   –1.97 –2.01*** – 

Landlocked importer   39.70***   0.12 – 

Landlocked exporter     3.00*** –1.37*** – 

Constant 126.48*** 27.53*** – 

Eigenvectors (exp) 11 – – 

Eigenvectors (imp) 24 – – 

Second Step    

Distance   –0.84***   –0.83***   –0.71*** 

Common language     0.46***     0.44***     0.42*** 

Contiguity     0.54***     0.54***     0.66*** 

Common history     0.77***     0.76***     0.83*** 

Free trade agreements     0.48***     0.48***     0.77*** 

Area importer   –0.20***   –0.20***   –0.23*** 

Area exporter     0.07***     0.08***   –0.03 

GDP per cap. importer   –0.24***   –0.26***   –0.14*** 

GDP per cap. exporter     0.16***     0.19***   –0.10*** 

GDP importer     1.06***     1.06***     1.00*** 

GDP exporter     0.63***     0.62***     0.81*** 

Island importer     0.43***     0.36***     0.34*** 

Island exporter   –0.70***   –0.75***   –0.02 

Landlocked importer   –0.21**   –0.28***   –0.27*** 

Landlocked exporter     0.32***     0.24**     0.37*** 

Constant –28.71*** –28.65*** –30.06*** 

Eigenvectors (exp) 11 9   8 

Eigenvectors (imp)   8 9 12 

Theta 0.86 0.92 0.59 

AIC 47,026 47,566 48,414 

Log-likelihood –2.32e+04 –2.37e+04 –2.42e+04 

McFadden’s pseudo-R2 0.1312 0.1196 0.1022 

Observations 4032 4032 4032 

Residual dof 3945 3981 3995 

***, **, * denote statistical significance at the 1, 5, 10 per cent level. 
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We also can analyse the robustness of our model in terms of fitting small trade flows. We 

compare the observed frequencies of small flows with their estimated counterparts (fitted 

values rounded to integers) obtained for all the models. Because one advantage of our model 

specification is that it should better predict small flows, we expect it to outperform the two 

benchmark models in this regard, especially if small flows are spatially autocorrelated. 

Results reported in Table 2 confirm this expectation. The ZINB ESF predicts 440 out of 484 

zero flows, whereas the NB ESF predicts only 281 zero flows. The ZINB ESFc, using only 

count-level spatial filters, predicts 480 zero flows, but it is less efficient in predicting other 

small flows, compared to the ZINB ESF. Appendix A.2, Table A.2 reports similar results for 

predictions of small flows using Poisson-based models. Despite ZIP models adequately 

predicting zero flows, both they and the standard Poisson model lack efficiency in predicting 

small flows. In this respect, NB models appear to outperform Poisson models. 

 

Table 2. Counts of observed versus predicted values 

Trade flow 0 1 2 3 4 5 6 7 8 9 

Observed 484 136 112 76 64 39 42 49 35 29 

ZINB ESF 440   88   75 66 59 54 50 46 43 40 

ZINB ESFc 480   79   68 61 55 50 47 43 41 38 

NB ESF 281 156 117 95 82 72 64 58 53 49 

 

The spatial part of the model, with the ZINB ESF we select in the logit part, comprises 11 

exporter-side and 24 importer-side eigenvectors. In the count part, the number of significant 

eigenvectors is 11 for the exporter countries and 8 for the importer countries. 

A Moran test can be conducted on each of the four spatial filters, which are obtained as the 

linear combinations of the selected eigenvectors multiplied by their respective estimated 

coefficients. The one including the largest number of significant eigenvectors (24) appears to 

be the one with the lowest MC (0.036). The sets of eigenvectors with the highest MC values 

are the count part ones (MC = 0.160, with 8 eigenvectors, and MC = 0.298, with 11 

eigenvectors, for importer- and exporter-side, respectively). The relationship between the 

number of eigenvectors selected and the strength of the proxied SAC appears to require 

further investigation, in order to better interpret the modelled patterns and educate 

expectations about the number of degrees of freedom to be used for the computation of spatial 

filters. 
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A further dimension to be investigated is the differentiated use of the eigenvectors in the 

construction of the spatial filters, at the importer/exporter and logit/count levels, which can 

provide hints regarding the extent of omitted explanatory variables and their overlap across 

contexts. A comparison of importer and exporter spatial filters (Table 3) implies that more 

common eigenvectors are present in the logit part of the model. This finding suggests that 

(omitted) trade determinants are more differentiated, in terms of emissiveness and 

attractiveness, on the intensive margin. When looking at differences between the logit and 

count parts of the model, the same number of common eigenvectors can be found for the 

exporter and importer sides, showing that a moderate amount of omitted information is 

relevant for both extensive and intensive margins. More generally, only one eigenvector (e9) 

is common to all four spatial filters, while out of the top three eigenvectors (e1–e3), only e1 

(the one implying the spatial pattern with the highest level of SAC) appears in more than one 

spatial filter. These final findings lead us to believe that (omitted) trade patterns are mostly 

idiosyncratic or tied to specific areas, rather than linked to larger geographical 

agglomerations. 

 

5. Conclusions 

 

Eigenvector spatial filtering (ESF) variants of nonlinear gravity models of trade (such as 

Poisson or NB specifications) have been proposed in the literature, because trade flows are 

not independent and contain spatial autocorrelation (SAC). Using a zero-inflated negative 

binomial (ZINB) approach, this paper contributes to the existing literature in two ways. First, 

we present a zero-inflated stepwise selection procedure for constructing spatial filters based 

on robust p-values. Second, we identify spatial filters that properly account for importer- and 

exporter-side specific unexplained spatial patterns, in both the logit and count parts. Results 

applied to a cross-section of bilateral trade flows between a set of worldwide countries 

showed that our specification outperforms the benchmark models (ZINB ESFc and NB ESF) 

in terms of model fitting, both considering AIC and log-likelihood values, and in predicting 

zero (and small) flows. 

Future research should compare this model with further ZINB specifications that account 

for SAC differently, and evaluate the contribution of the logit and the count parts of the model 

in terms of explained variance based on different DGPs. Attention should be devoted to a 

specific treatment of internal flows as well. Moreover, a similar analysis, taking care of 
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appropriate changes, should be applied to a panel data setting to evaluate, for example, 

possible trade-offs between the spatial filters and individual (dyadic) fixed effects. 

 

Table 3. Common and unique eigenvectors 

 Comparison Eigenvectors Comparison Eigenvectors 

E
x
p
o
rt

er
 v

s 
Im

p
o
rt

er
 Exporter/importer, 

logit (common) 

e4, e5, e8–e10, 

e12, e14, e17, 

e23 

Exporter/importer, 

count (common) 

e1, e9, e20 

Exporter, logit 

(unique) 

e1, e11 Exporter, count 

(unique) 

e3, e4, e10, e11, 

e15, e17, e19, 

e23 

Importer, logit 

(unique) 

e2, e7, e13, e16, 

e18–e20, e22, 

e24–e30 

Importer, count 

(unique) 

e5, e7, e14, e22, 

e25 

L
o
g
it

 v
s 

co
u
n
t Logit/count, exporter 

(common) 

e1, e4, e9–e11, 

e17, e23 

Logit/count, importer 

(common) 

e5, e7, e9, e14, e20, 

e22, e25 

Logit, exporter 

(unique) 

e5, e8, e12, e14 Logit, importer 

(unique) 

e2, e4, e8, e10, e12, 

e13, e16–e19, 

e23, e24, e26–

e30 

Count, exporter 

(unique) 

e3, e15, e19, e20 Count, importer 

(unique) 

e1 
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Appendix A.1. The be.zeroinfl.filt.robust Function 

 

Usage 

be.zeroinfl.filt.rob = function(object, data, dist = 

("poisson", "negbin", "geometric"), alpha = 0.05, trace = 

FALSE, subset.zero, subset.count, minmod.zero, minmod.count). 
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Details 

Conduct a backward stepwise variable elimination for zero inflated count regression with the 

zeroinfl function, providing a possibility to define a minimum model and using sandwich 

robust standard errors. 

  

Value 

An object of zeroinfl class with all variables having p-values less than the significance 

level alpha. 

 

Arguments 

object: an object from function zeroinfl 

data: an argument controlling formula processing via model.frame 

dist: one of the distributions in the zeroinfl function 

alpha: the significance level for variable elimination 

trace: logical value, if TRUE, generates printed detailed calculation results 

subset.zero: a list of the variable names to be subset in the zero component 

subset.count: a list of the variable names to be subset in the count component 

minmod.zero: a list of the variable names not to be subset in the zero component 

minmod.count: a list of the variable names not to be subset in the count component 

 

Note: The sum of all the variables defined in the previous four inputs must be exactly equal to 

the list of explanatory variables contained in object. 

 

Appendix A.2. Poisson-Based Estimation Results 

 

Table A.1. Estimated coefficients for: (1) ZIP ESF; (2) ZIP ESFc; (3) Poisson ESF  

 (1)  (2)  (3)  

 ZIP ESF ZIP ESFc Poisson ESF 

First Step    

Distance     0.76***   0.36*** – 

Common language   –0.35   0.28 – 

Contiguity     0.56   0.15 – 

Common history   –0.56 –1.42* – 

Free trade agreements   –0.87** –1.43*** – 

Area importer     0.07   0.05 – 

Area exporter     0.30***   0.28*** – 



 

19 

 

 (1)  (2)  (3)  

 ZIP ESF ZIP ESFc Poisson ESF 

GDP per cap. importer   –0.28*** –0.28*** – 

GDP per cap. exporter     0.22**   0.32*** – 

GDP importer   –0.53*** –0.45*** – 

GDP exporter   –1.16*** –1.16*** – 

Island importer   –0.31 –1.17*** – 

Island exporter   –1.20** –1.73*** – 

Landlocked importer     3.31*** –0.14 – 

Landlocked exporter   –0.85*** –1.06*** – 

Constant 126.48*** 31.01*** – 

Eigenvectors (exp) 13 – – 

Eigenvectors (imp) 17 – – 

Second Step    

Distance   –0.54***   –0.54***   –0.42*** 

Common language     0.13     0.13     0.23** 

Contiguity     0.57***     0.57***     0.61*** 

Common history     0.17*     0.17*     0.21** 

Free trade agreements     0.58***     0.58***     0.80*** 

Area importer   –0.19***   –0.19***   –0.21*** 

Area exporter     0.02     0.02     0.01 

GDP per cap. importer   –0.18***   –0.18***   –0.06 

GDP per cap. exporter     0.04     0.04   –0.05 

GDP importer     0.95***     0.95***     0.91*** 

GDP exporter     0.72***     0.72***     0.71*** 

Island importer   –0.08   –0.08     0.29 

Island exporter   –0.58***   –0.58***   –0.34*** 

Landlocked importer   –0.01   –0.01   –0.24 

Landlocked exporter     0.13     0.13     0.20 

Constant –29.48*** –29.48*** –29.10*** 

Eigenvectors (exp)  7 7 11 

Eigenvectors (imp)  9 9 22 

AIC 1,851,472 1,851,887 2,249,365 

Log-likelihood –8.98e+05 –9.26 e+05 –1.12e+06 

McFadden’s pseudo-R2 0.9186 0.9186 0.8881 

Observations 4032 4032 4032 

Residual dof 3954 3983 3983 

***, **, * denote statistical significance at the 1, 5, 10 per cent level. 

 

Table A.2. Counts of observed versus predicted values. A Poisson models comparison. 

Trade flow 0 1 2 3 4 5 6 7 8 9 

Observed 484 136 112 76 64 39 42 49 35 29 

ZIP ESF 484     3     5   7   8   9 10 10 11 11 

ZIP ESFc 484     2     4   6   8   9   9 10 11 11 

Poisson ESF     2     4     8 10 13 15 16 18 18 19 

 


