
Walukiewicz, Stanislaw

Conference Paper

The Virtual Production Line as a model for the innovative
global economy

56th Congress of the European Regional Science Association: "Cities & Regions: Smart,
Sustainable, Inclusive?", 23-26 August 2016, Vienna, Austria

Provided in Cooperation with:
European Regional Science Association (ERSA)

Suggested Citation: Walukiewicz, Stanislaw (2016) : The Virtual Production Line as a model for the
innovative global economy, 56th Congress of the European Regional Science Association: "Cities &
Regions: Smart, Sustainable, Inclusive?", 23-26 August 2016, Vienna, Austria, European Regional
Science Association (ERSA), Louvain-la-Neuve

This Version is available at:
https://hdl.handle.net/10419/174649

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/174649
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

1

The Virtual Production Line as a model for

the innovative global economy

Stanisław Walukiewicz

Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

phone: +48 22 3810 129, mobile: +48 793 802 334, fax: +48 22 3810 105

Stanislaw.Walukiewicz@ibspan.waw.pl

Abstract

By an example of the Linux system, I introduce a concept of the Virtual Production Line

(VPL) as an extension of an assembly line, brought in by Henry Ford a hundred years ago,

and demonstrate its usefulness in an analysis of open source software development, in

particular, and in the global innovative economy, in general. The line is virtual, since it does

not exist physically and developers may be located in different parts of the world, exchanging

information via Internet. They join their efforts in fixing certain bug(s) or extending some

parts of the codebase. So, there exists the one to one correspondence between the Linux

project and its VPL. Then, motivation and governance in the Linux project can be studied as

formal and informal relations (social capital) among developers working on a given VPL. The

paper proposes the VPL as a new model for an analysis and evaluation of creative labor done

by Linux developers on the corresponding VPL, and generalizes its findings to the case of any

creative activity.

It is useful to divide a work (labor) into routine and creative and define a creative work as a

here and now negation of a routine one In the innovative global economy, I claim people will

mostly do creative labor working under projects on corresponding Virtual Production Lines.

Then, the success of a given project depends on social capital of the experts working on its

VPL. Social capital, in turn, can be modeled and measured as cognitive and emotive

proximities among these experts. The paper provides new measures for cognitive and emotive

proximity and suggests generalizations of its theoretical findings. The main conclusion says

that the Linux system can be considered as an example of a completely new way of

organization and evaluation of creative labor in the innovative global economy. I call it the

Linux world.

mailto:Stanislaw.Walukiewicz@ibspan.waw.pl

2

ACM Categories: K.6.1. Project and People Management; K.6.3. Software Management

Keywords: Innovative global economy, open source software, Linux system, human and

social capital, cognitive and emotive proximities, project management, open innovation.

1. Introduction

The main aim of this paper is to demonstrate how the Linux system is changing our approach

to innovation, research and to a market economy, in general. The Linux system, in short

Linux, is a (very big) computer program, a result of an open source style work of thousands of

developers-volunteers for more than two decades, widely used by commercial companies,

government organizations and individual users. The Linux Foundation publishes regularly

White Paper (http://www.linuxfoundation.org) under the same precise title Linux Kernel

Development. How Fast it is Going, Who is Doing It, What They are Doing, and Who is

Sponsoring It, further called the Report, where it presents development of the main parts of

Linux. According to the February 2015 Report, the updated versions of the kernel had almost

20 million lines, and if we print 100 lines per page, then it takes almost 200 books, having

1,000 pages each. From the very beginning of Linux, two research questions: (1) why do

individuals participate in the Linux projects fixing bugs or extending the codebase, and (2)

how their work is organized and managed, are considered in numerous papers and books,

reviewed in the paper. The paper investigates these two questions from a new theoretical

perspective, based on an idea of the Virtual Production Line (Walukiewicz, 2006).

It is useful to divide a work (labor) into routine and creative, and define a creative

work as a here and now negation of a routine one; for instance, using computers and the

Internet was creative in the scientific community (here) some 25 years ago (then), but it is a

routine activity in 2016 (now). Scientists who do not use computers and the Internet are

exceptions that prove the previous sentence here (scientific community) and now (2016). A

work of a blue collar on an assembly line is a commonly used example of a routine labor. This

paper demonstrates that each bug fixing or a codebase extension can be considered as an

example of a successful or not creative activity, done by at least two developers on a

corresponding Virtual Production Line (VPL), discussed in Section 3, where among others,

we study similarities and differences between the VPL and its classical counterpart. The line

is virtual, since it does not exist physically and developers may be located in different parts of

the world. They join efforts in fixing certain bugs or extending some parts of a codebase, and

exchange information via Internet. So, there exists the one to one correspondence between a

Linux project and its VPL. Then, motivation and governance in a Linux project can be studied

as formal and/or informal relations among developers working on the corresponding VPL. In

other words, this paper proposes the VPL as a new model for an analysis and evaluation of

creative labor done by Linux developers on the VPL, and generalizes these findings to the

case of any creative activity in the innovative global economy.

http://www.linuxfoundation.org/

3

In the next section, we draw from the relevant literature on open source software to

formulate our main assumption saying that Linux developers do not receive any tangible

(financial) gratification for their contributions. Their gratifications are mostly of intangible

character, discussed in Section 4, which can be measured by a utility of cognitive and emotive

proximities between them. Today, many Linux developers work in software companies like

Red Hat, IBM or Microsoft, as the Reports indicate, but we need this assumption for

methodological reasons to present the idea of the Virtual Production Line in Section 3. Our

main result is presented in Section 5, where we show that the Linux system can be considered

as a constantly growing tree of Virtual Production Lines. Generalizing this result in Section 6,

we lift up our main assumption to demonstrate usefulness of our model in an analysis of any

creative activity in a market economy here and now. Among others, we show that Linux can

be considered as an example of a completely new way of organization and evaluation of

creative labor, what in fact is a new way of life. I call it the Linux world.

2. The Linux System and the Main Assumption

For a long time, the open source software was called a “free software” and the word “free”

has traditionally led commercial software vendors to think “no revenue,” and customers of

those firms to think “no support” (see Bretthauer, 2001 for the history of the “open source

software” term). Thus for a long time, the most in the commercial world saw free software as

irrelevant, and free-software developers as idealistic and naïve. Similarly, many free-software

advocates have seemed commercial software companies as interested only in short-term

profits at the expense of the long-term interests of users and the software development

community as a whole. Today these two communities are interlinked closely; open source

software has a growing impact on a market economy and on software industry, in particular,

and vice versa. The year 2001 should be considered as a turning point in relations between

these two communities when Dell Computer, IBM and Oracle have all announced allegiance

to Linux products and have offered support services to their customers who operate in a Linux

environment (Anonymous, 2001 a, b and c; Gallivan, 2001). The growing success of systems

like Android, Apache or Mozilla, to mention a few, demonstrates the potential importance of

the open source software to businesses, as both users and for-profit producers of software

(Andres, 2002; Curtis et al., 1998; Hansen & Kautz, 2004; Joshi et al., 2007; Sawyer et al.,

2008; Williams, 2010). The Linux operating system, developed under the open source model,

is a firm base for such a success.

The beginning of the Linux operating system is commonly associated with Linus

Torlvalds, who in 1991, then a Finish student of computer science, wrote his first version of

the UNIX kernel in the C language. He worked in a bazaar style often distributing early

versions of the kernel and widely using solutions of his predecessors. He was one of the most

intensive users of the Internet at that time. Raymond in his famous essay The Cathedral and

the Bazaar called him “a damn fine hacker” (Raymond, 2012, p. 8). In common opinion he is

considered as a founder of the GNU/Linux system that in short is called Linux (system). The

source of the word “Linux” is unclear: while some software developers see it as a

4

combination of “Linus” and “UNIX,” the others see it as a recursive acronym of “Linux Is

Not UNIX.” And in fact it is not, since UNIX has now a historical value, only, while the

Linux is a world class computer system with a very bright perspective. For instance, Hecker,

1999 describes eight business models for incorporating open source software into a strategy of

a software company and Munga et al., 2009 present Red Hat and IBM case studies as

examples of successful companies (see also Koenig, 2004; Lee & Mendelson, 2008; Lee,

2006; Ghobadi & Mathiassen, 2015 for more general applications).

I think the origin of this success is in the observation, called further the Raymond’s

claim, which at the first glance seems to be counterintuitive, but the Linux system proves it:

The developer who uses only his or hers own brain in a closed project is going to fall behind

the developer who knows how to create an open evolutionary context in which bug-spotting

and improvements get done by hundreds of people (Raymond, 2012, p. 20 and 21).

Creating “an open evolutionary context” is a way of organizing of creative work for

“hundreds of people” where social capital plays a key role (Walukiewicz, 2008). Obviously,

these people use ICT technology, so in fact we have an application of the idea of the Virtual

Production Line to be discussed in the next section.

To present that idea we will assume that these “hundreds of people” work without any

financial (monetary, tangible) gratification. In fact, their gratification is of intangible

character, to be discussed in Section 4, which is much more complex than a simple monetary

wages paid workers for their routine labor on an assembly line. So with our main assumption,

we are back to the time of a very beginning of open source software, when “hundreds of

people” worked for free contributing to the development of the Linux system. As said

nowadays, open source software has a big impact on a market economy as a whole, therefore

in Section 6 we lift up this assumption and consider the Virtual Production Line as a model

for analysis and evaluation of creative labor in a market economy.

3. The idea of the VPL

First, we present systems approach to an analysis of an assembly line, a predecessor of the

Virtual Production Line, and next describe the VPL in the same way. The idea of an assembly

line was presented by Frederick Winslow Taylor (1856-1915) in his book Principles of

Scientific Management and Henry Ford (1863-1947) was the first who applied it in motor

industry in 1913.

3.1. The Classical Production Line

Before the Ford invention, cars were manufactured in so-called production circles, where a

few highly skilled craftsmen produced a car from beginning to end using raw materials and

5

parts. The division of labor in the production circle was flexible and craftsmen could easily

substitute for one another. The number of highly skilled craftsmen in a community only

limited the productivity of this method.

Henry Ford was the first, who put the following observation into practice. If we

partition, i.e. divide without overlapping, a complex car manufacturing process into a fixed

number of simple operations (jobs) done by blue-collar workers on a line (conveyor belt) as

shown in Figure 1, then its productivity will increase and the problem of a limited number of

highly skilled craftsmen should be solved. Since then, the idea of the assembly line was

subsequently applied in many production and service processes. If we have many

production/service lines manned by people or robots, we will combine them for the purpose of

our analysis into one production/service line called the Classical Production Line (CPL)

pictured in Figure 1.

Figure 1. Classical Production Line (CPL)

Let us assume that a worker, say the second one in Figure 1, has increased his skills

(human capital) and now can do the assigned operation in half the previous time. Does this

have any impact on the organization/productivity of the production process concerned?

Assuming that he is not a bottleneck, the answer is no. His extra skills may be used in the

design and implementation of another production process on another CPL, but not on the one

at hand, since its organization is fixed. Thus, we have shown that the CPL does not allow any

self-organization and, roughly speaking, workers are there to work, not to think. So, we can

define the CPL as a partition of a complex production/service process into a fixed number of

simple operations described to the smallest detail. Such a partition is fixed over time and does

not allow any self-organization.

Figure 2 illustrates this definition. The production process, represented by a (full)

circle, is partitioned into n operations (jobs) J1, J2,…, Jn. Since the organization of the CPL is

rigid, the number of operations is constant over the relevant production process. Although it

may be a bit of an exaggeration, we can say that highly skilled craftsmen are not needed in the

automotive industry where organization is a priority. Because of excellent organization,

manual workers can produce sophisticated cars.

Parts

Raw materials

Goods

Services

6

J1

J2

Jn

Figure 2. The rigid organization of the CPL

Ford combined moving assembly lines with mass routine labor to make building cars

much cheaper and quicker – thus turning the automobile from a rich man’s toy into transport

for masses. He was the first to demonstrate in practice the importance of constant

improvement in organization and technology. He introduced the eight-hour workday, for

which he paid five dollars, two times more than his competitors did. He would pay $1,000 in

cash to an ordinary worker for a relatively small innovation. The results of his policy were

breathtaking: his company produced 189,000 cars in 1914 and more than two million in 1923

– a ten-fold increase in nine years! His innovative management cut the time needed to

produce a car from 750 to 93 minutes (Womack et al., 1990, p. 28). In common opinion,

Henry Ford is considered as a father of the assembly line, one of the greatest achievements in

management science and economics, what has completely changed our life. In Walukiewicz ,

2015 Chapter 1, I call it the first big jump in productivity.

3.2. The Virtual Production Line

Now, we turn back to software production under the open source software model with our

assumption that developers do not get any tangible (monetary) gratification for their

contributions to the Linux system. Any successful or not attempt to fix bug(s) or extend some

part(s) of the codebase is a creative work because it is new (original), done for the first time

here (by a team of developers) and now (presently). For obvious reasons, we consider

“serious” (large) attempts, further called the (Linux) projects. The lions part of the Linux

projects discussed in the literature is successful, while unsuccessful attempts form usually a

base for successful projects. So, under the Linux project a team of developers tries to solve a

corresponding creative problem connected with fixing bugs or extending the codebase.

A remark on the number of people in a project team working on the VPL is needed.

We follow Ghobadi and Mathiassen, 2015, who in their study of knowledge sharing divide an

open source team into four groups of managers, developers, testers and user representatives,

called further experts. So team of experts working on the given VPL is divided into four

7

abovementioned groups, and this, as usual, is a division, not a partition of labor, since, for

instance, a manager is typically working also as a developer or tester.

The idea of a Virtual Production Line is pictured in Figure 3 where a number of experts

with their laptops are connected via Internet in their attempt to solve a given creative problem

under the Linux project. Since there is no material representation of the VPL (experts may be

located in different parts of the world), we denote it in Figure 3 using a dashed line in contrast

to Figure 1.

Figure 3. A Concept of the Virtual Production Line (VPL)

On the VPL, experts combine their human capital, mostly their tacit knowledge

(competences, experiences, talents, etc.) with codified knowledge, contained in existing

software, data bases, libraries, so forth, in their attempt to solve a problem which, at the

beginning, may not be well defined and usually is described in a fussy way, but which, due to

their efforts, called jointly self-organization, gets usually more and more clear-cut and

distinctive (see Figure 4). In other words, experts on VPL do not only work manually (punch

the keys), but – first of all – think.

Figure 4. The VPL as a flexible division of labor and self-organization

8

In Figure 4, we see that at the beginning of the creative process, the problem is not well

defined – we mark it with a dashed line along the perimeter. Tasks often overlap each other

and their limits are not well delineated – we denote it with a waved line. After self-

organization the problem is usually much better defined (it is almost a circle), the overlapping

of tasks are substantially smaller and their limits are almost straight lines. If the problem is

initially divided into n tasks T1, T2, …, Tn, then after self-organization, it is divided into k

tasks, T1, T2, …, Tk, where k can be equal, bigger or smaller than n. We conclude that the VPL

allows a flexible division of labor while the CPL is based on a rigid (stiff) partition of labor

(see Figure 2) where production or servicing process is well defined to the smallest detail. It is

a circle, where the jobs J1, J2, …, Jn do not overlap each other, and the limits between them

are straight lines as Figure 2 shows. I definitely do not claim that any problem, once defined

on a relevant VPL will be solved. I am far from that. I only say that a team on the VPL works

in its attempt to solve a given creative problem. Figure 4 shows that, in general, after self-

organization we do not have a full circle, what corresponds to a solved problem. In

Walukiewicz, 2010, I describe the proof of the famous Fermat’s Last Theorem as the VPL.

Definitely, there were neither computers nor the Internet at that time, but mathematical

journals and ordinary letters substituted them very well. Saying it differently, I present the

solution of the world’s greatest mathematical problem as a chain of self-organizations of the

VPL corresponding to that problem. This fascinating story is described in full details by

Singh, 1998.

So finally, we define the Virtual Production Line (VPL) as a division of a creative

process into more or less precisely described tasks combined with modern ICT. The division

into tasks, as well as its number, may be changed throughout the process by actions of experts

involved in it. Such a modification is called a self-organization of the VPL.

Three remarks are necessary at this point:

First, on the VPL in contrast to the CPL, we have a division, not a partition of labor

(compare Figures 4 with 2). This means that some tasks on the VPL can overlap each other as

shown in Figure 4. Such overlapping can be interpreted as a consideration of a given task

from different perspectives or from a different science disciplines point of view. It is a natural,

basic approach used in any rational analysis. So, it is very natural that tasks on the VPL

overlap each other in contrast to the fact that jobs on the CPL are disjoint, form a partition,

not a division of a given process as shown in Figure 2.

Second, on the CPL operations or jobs are executed linearly in a fixed, well prescribed

order: The second operation is executed only after the first one has been finished. The third

job is executed only after the second one has been finished, and so on. Thus, any CPL runs

linearly. On the VPL the situation is much more complex because, in general, neither the

tasks are executed in a given, already prescribed (planned) order, nor they are executed

sequentially. Obviously some task may be executed at the same time (in parallel) and after a

self-organization the previous order of tasks may be completely changed, for instance turn

upside down. Moreover, we cannot guarantee that a given task will be finished (with its

success) because the VPL is an attempt to solve a given creative problem, and the considered

9

task, in particular. So, any success in such an attempt cannot be granted. Thus in general, the

VPL runs nonlinearly. In the next subsection, we show that this nonlinearity forms the

essence of self-organization.

Third, on a CPL we have a linear assignment of workers to operations, which means

that each worker is assigned to one operation (task) only and each operation is executed by

exactly one worker. A mathematician would say at this point that there is one to one

correspondence between workers and operations. It can be pictured as a partition a given

production process (full circle in Figure 2) into a fixed already prescribed number of

operations. The problem of the optimal (the best possible) assignment of workers to

operations is one of the most important questions in operations research and management

science. On the VPL, the situation is much more complex as a given expert may participate in

many tasks executed in different time, but also may participate in tasks executed at the same

time, say the same day, in parallel. Moreover, if we take a day as a natural time unite, then is

quite possible that a given expert works at the same time (day) on different Virtual Production

Lines corresponding to problems connected with fixing different bugs or an extension of

different parts of the codebase. So, the VPL is a very flexible model for organization of

creative labor.

3.3. Self-Organization

Software development is a collaborative process where success depends on effective

knowledge sharing (Walz et al., 1993), and this is particularly true in the case of open source

software (Cockburn, 2006; Corvera Charaf et al., 2012; Ghobadi and Mathiassen, 2015; Kautz

et al., 2007). In contrast to the Classical Production Line, the Virtual Production Line is not a

partition (a specific division) of labor alone, but a combination of labor division and self-

organization with modern ICT. In this subsection we will discuss these three components in

detail and their role in knowledge sharing.

We begin with a simple example pointing out the difference between the VPL and

CPL as its classical counterpart. To be more specific, consider a group of banking clerks

working with credit applications. If everything in their work is described to the smallest detail

by the banking procedures, then they are working on the Classical Production Line. If they

may modify their credit decisions depending on, for instance, the number of applications

received, the sums asked, etc., then they are working on the Virtual Production Line.

Obviously, they both use computers and ICT networks in their work here and now. Since a

partition of labor is a special case of a labor division into tasks, then the self-organization

alone makes the difference between that CPL and VPL. Thus self-organization is a key

component of any VPL.

It follows from our considerations that routine labor is done on the CPL, while

creative one, connected with an attempt to solve a given creative problem, on the VPL. Then

the following question naturally arises, are people alone able to solve creative problems? We

10

know that some animals (dogs, monkeys, etc.) can be trained to solve simple creative

problems (to find a way home, count, and so forth). So, creative problems can be solved not

only by man. But, I claim that a human being only can reformulate a given creative problem,

which often is a way to solve it. In fact, a reformulation of a given creative problem is

equivalent to the self-organization of the VPL corresponding to it.

When we have a creative problem here and now, then we usually organize a project

team, consisting of at least two experts to solve it. Obviously, nowadays the experts divide

somehow the labor (project, work) between them and use computers and ICT networks in

their work. So they build (form) the corresponding VPL to solve the creative problem at hand.

Solving it experts can change the division of the problem into tasks, as well as the number of

tasks and the way the tasks are executed (for instance, sequentially or in parallel), which is the

essence of a self-organization of the VPL. Since a self-organization (reformulation) is the

main component of any VPL and only man is able to reformulate creative problems, then we

conclude that only men work on a VPL. So, in contrast to the CPL, the VPL without men

working on it does not exist.

Now, we would like to point out the importance of ICT in more general context. This

is true insofar as we realize that social capital became a subject of serious studies only in the

90’s, when we began to be able to send information electronically in any form (data, picture,

voice, movie) to virtually every corner of the world at almost zero cost. I call it the second big

jump in productivity (Walukiewicz, 2015 Chapter 1).

In general, we may define the VPL is an instrument (a virtual conveyor belt) that

experts use to combine codified knowledge with their tacit knowledge to produce

improvements in products, services, technology and management, and in that way contribute

to the world’s stock of knowledge, both codified and tacit (see Figure 3). On the VPL experts

combine their efforts and use their human capital (knowledge, experience, talent, etc.) in their

attempt to solve a given creative problem. Since we consider both the Classical Production

Line and the Virtual Production Line as methods of analysis of socio-economic reality, then

we write their names with capital letters.

4. Proximity

The efficiency of the Linux project depends on formal and/or informal relations (social

capital) between experts working on the corresponding VPL. The pair of experts, named A

and B, is a departure point in our study of social capital of the Linux project (team) working

on the given VPL because when studying the social capital of a given group of experts we

have to consider all possible pairs within that group. Studying formal and/or relations between

experts A and B for obvious reasons we restrict ourselves to relations that are directly

connected with the VPL and call them jointly proximity. Proximity literally means nearness

(near friends), closeness (close neighbours), contiguity (contiguous countries) and propinquity

(propinquity of individuals). The concept of proximity was introduced and developed by the

11

French proximity school (Rallet & Torre, 1999; Tore & Gilly, 2000; Tore & Rallet, 2005) and

further studied by Menzel, 2006. It can be shown (Walukiewicz, 2008 and 2015 Chapter 14)

that similarly to four capitals (financial, physical, human and social) we have four

proximities: technological, emotive, spatial and organizational. The first two are most

important in study a collaboration of experts A and B and we consider them in turn.

Technological proximity (TP) between experts A and B describes differences and

similarities in the shared knowledge, both codified and tacit, technological distance between

them in used methods, terminology, approaches, etc. Therefore technological proximity is

also called cognitive proximity. Similarly to the case of human and social capital, we would

like know, and if possible measure, how much technological proximity between experts A and

B contribute to their success on open source market, in general, and on the VPL, in particular.

To do so, we introduce the utility (measure) of technological proximity which value changes

continuously between zero and one, i.e. 0 u(TP,A,B) 1, as a function of the technological

distance between experts A and B, denoted as d(TP,A,B). In Figure. 5, the horizontal axis is

the technological distance between A and B, while the vertical one is the utility of

technological proximity. Then, we suggest the function f of d(TP,A,B) to be like the Gauss

curve shown in Figure 5.

Figure 5. Utility of technological proximity as a function of technological distance

Without loss of generality, we may assume that 0 d(TP,A,B) 1, where 1 is the largest

possible technological distance between experts on the VPL or the Linux project. If experts A

and B know the same about that project, then the technological distance between them is zero

12

(d(TP,A,B) =0), and such a collaboration do not contribute to their success. Therefore in

Figure 5, the utility of their collaboration is zero (u(d(TP,A,B) = 0) = 0). If one of experts

knows everything about that project and the other knows nothing, then the technological

distance between them is maximal possible, that is d(TP,A,B) = 1, and the utility of their

collaboration is, again, zero (u(d(TP,A,B) = 1) = 0). From Figure 5, one can read that the

maximal utility of technological proximity is for the technological distance equal one half.

The curve f which looks in Figure 5 is, in general case, unknown. Therefore, at the end

of this subsection we describe one of possible ways of its approximation by the MRSN

trapezium. We suggest approximating the curve f in Figure 5 in such a way that the surface

below it equals the surface of the MRSN trapezium with its height equal one. Then, in

mathematical terms, we have

.

We observe that to define the MRSN trapezium in Figure 5 we have to define its four vertices,

that is to define four technological distances dM, dR, dS. and dN between experts as potential

candidates to form a pair (A,B) that can be done, for instance, by an appropriately designed

questionnaire.

Emotive proximity (EP) is related to personal relations like trust, emotions, common

personal experiences, etc. between two particular experts as individuals. Emotive proximity

forms a social environment surrounding any collaboration. It can be measured by the utility of

emotive proximity introduced in the way similar to that of the technological proximity

(Walukiewicz, 2008 and 2015 Chapter 14).

5. The Main Result

If the Linux project is successful, then its result is called the patch. Each patch should be

presented as a logically justified change that can be reviewed for code quality and correctness,

and additionally, each patch should, when applied, yield a kernel which still builds and works

properly. So, each patch is the Virtual Production Line with a least two experts (a developer

and a reviewer/coordinator) where usually self-organization (see Subsection 3.3) is applied

many times. All such VPLs are logically connected because they form the Linux system

which looks like a tree. Obviously, there are no limits on the development of that system.

Therefore our main result states that the Linux system is an infinite set (tree) of Virtual

Production Lines.

In other words, the Linux system is one of possible ways of organizing creative labor

(work) or research activity (of experts). Our main result states that it is impossible to imagine

a day when all, absolutely all computer codes are fine and nothing can be improved or

extended. Therefore, our tree of Virtual Production Lines is constantly growing. So, the VPL,

in general, and self-organization, in particular offer a new way of studying knowledge sharing

13

and synergy (Cockburn, 2006; Corvera Charaf et al., 2012; Ghobadi and Mathiassen, 2015;

Kautz et al., 2007; Walz et al., 1993).

In the traditional close software business model, a given company provides all (or

almost all) of the value to customers, and realizes revenues and profits in return through

traditional license fees. In the open source business model, much of the value is not provided

by the company as such, but by the outside experts (developers) who are attracted to work ‘for

free,’ without tangible payment. As said in Section 2, nowadays many Linux developers work

(for money) at software companies like Red Hat or Microsoft, but for methodological reasons

we have assumed that all Linux developers work for free. These ‘outside’ developers may be

motivated by the prospect of working with software that solves important problems for them,

the opportunity to increase their own personal knowledge or the ego satisfaction of enhancing

their reputation among their peers. The necessary condition for such cooperation is that the

company treats its ‘outside’ developers fairly and provides them with the freedom and the

other intangible payments that they do want (and demand). For instance, they should know

the terms and conditions under which the company’s open source products can be used,

modified and redistributed. So, the relation between the ‘outside’ developers and the company

are mostly informal, based on trust as an element of emotive proximity studied in previous

section.

6. Generalizations and conclusion

By common understanding a typical research, as an example of creative work, is done in

(splendid) isolation lasting months or years with its final result to be evaluated in public on

the research market (Walukiewicz, 2012, 2014 and 2015 Chapter 15). So, developers of the

open source software have created a completely new Linux market where results of their work

are evaluated. This way we have arrived at an important conclusion that the Linux market is

the Linux world. This conclusion is similar to a claim that we all are living in a (free) market

economy or, in fact, our life is a free market since everything has its own (economic) value

defined in appropriate market. In this paper, we have demonstrated why the Linux world not

only didn’t fly apart in confusion and conflicts, but seemed to go from strength to strength at a

speed barely imaginable to developers of the closed source software. In Section 2 we have

shown the Linux world is a part of the (free) market economy. We argue that it is a fast

growing part.

Open innovation can be considered as a natural extension of open source software.

The open innovation paradigm is often contrasted to the traditional or “proprietary” model

where internal R&D activities lead to products or services that are developed and distributed

by the firm. (Chandler, 1990) In Conant, 2002 this model was summed as “picking a man of

genius, giving him money, and leaving him alone.” Obviously, getting the ideas from the

“man of genius” was only half the challenge, the other half was to exploit those innovations.

Here open source software, and Linux provide a variety of examples (Cockburn, 2006;

Corvera Charaf et al., 2012; Ghobadi and Mathiassen, 2015; Kautz et al., 2007; Shah, 2006).

14

As a final note, the Linux market (world) can be considered as a laboratory in the

social sciences and in economics in particular – a fascinating laboratory where real people,

with all their merits and faults, invest their real time and efforts, but where time between the

result publication and its (market) evaluation is shorter than that time of the world economy.

We will use this laboratory in forthcoming papers.

References

Andres, H.P. (2002) A comparison of face-to-face and virtual software development teams. Team Performance

Management, 8, 39-48.

Anonymous (2001a) Dell and Oracle sign Linux server development pact. New York Times, February 1.

Anonymous (2001b) Tech firms crowed Linux conference. New York Times, February 1.

Anonymous (2001c) IBM says Linux is ready for prime-time. New York Times, February 4.

Bretthauer, D. (2001) Open source software: A history. UConn Libraries Published Works. Paper 7.

Chandler, A.D. (1990) Scale and Scope. Cambridge, MA, Belknap.

Cockburn, A. (2006) Agile Software Development: The Cooperative Game (Agile Software Development

Series), Boston, Addison-Wesley Professional.

Conant, J. (2002) Tuxedo Park. New York, Simon & Schuster.

Corvera Charaf, M., Rosenkranz, C. & Holten, R. (2012) The emergence of shared understanding: applying

functional pragmatics to study the requirements development process. Information Systems Journal, 23, 115-

135.

Curtis, B., Krasner, H. & Iscoe, N. (1988) A field study of the software design process for large systems.

Communications to the ACM, 31, 1268-1287.

Gallivan, M.J. (2001) Striking a balance between trust and control in a virtual organization: a content analysis of

open source software case studies. Information Systems Journal, 11, 277-304.

Ghobadi, S. & Mathiassen, L. (2015) Perceived barriers to effective knowledge sharing in agile software teams.

Information Systems Journal, doi:10.1111/isj.12053.

Hansen, B.H. & Kautz, K. (2004) Knowledge Mapping: A Technique for Identifying Knowledge Flows in

Software Organizations, Berlin, Springer.

Hecker, F. (1999) Setting up shop: the business of open source software. IEEE Software, 16, 45-51.

Joshi, K.D., Sarker, S. & Sarker, S. (2007) Knowledge transfer within information systems development teams:

examining the role of knowledge source attributes. Decision Support Systems, 43, 322-335.

Koenig, J. (2004) Open Source Business Strategies. Riseforth Inc.

Kautz, K., Madsen, S. & Nobjerg, J. (2007) Persistent problems and practices in information systems

development. Information Systems Journal, 17, 217-239.

Lee, D. & Mendelson, H. (2008) Divide and conquer: competing with free technology under network effects.

Production and Operations Management, 17, 12-28.

15

Lee, J.A. (2006) Government policy toward open source software: the puzzles of neutrality and competition.

Knowledge, Technology & Policy, 18, 113-141.

Menzel, M.-P. (2006) Dynamic proximities. Towards a concept of changing relations,” presented at the 5
th

Proximity Congress, Bordeaux.

Munga, N., Fogwill, T. & Williams, Q. (2009) Adoption of open source software in business models: a Red Hat

and IBM case study. SAICSIT’09 Proceedings of the 2009 Annual Conference of the South African Institute of

Computer Scientists and Information Technologists, 112-121, ACM, New York.

Rallet, A. & Torre, A. (1999) Is geographical proximity necessary in the innovation networks in the era of global

economy?, GeoJournal 49, 373-380.

Raymond, E.S. (2012) The Cathedral and the Bazaar. Retrieved 18 April.

Sawyer, S., Guinan, P.J. & Coopider, J. (2008) Social interventions of information systems development teams:

a performance perspective. Information Systems Journal, 20, 81-107.

Shah, S.K. (2006) Motivation, governance, and viability of hybrid forms in open source software development.

Management Science, 52, 1000-1014.

Singh, S. (1998) FERMAT’S ENIGMA. The Epic Quest to Solve the World’s Greatest Mathematical Problem,

New York, 1st Anchor Book.

Taylor, F.W. (1911) The Principles of Scientific Management. Harper & Brothers, New York.

Torre, A. & Gilly J.P. (2000) On the Analytical Dimension of Proximity Dynamics, Regional Studies 34, 169-

180.

Torre, A. & Rallet, A. (2005) Proximity and Location, Regional Studies 39 47-59.

Walukiewicz, S. (2006) Systems analysis of social capital at the firm level. Working Paper WP-1-2006, Systems

Research Institute, Polish Academy of Science, Warsaw.

Walukiewicz, S. (2008) The dimensionality of capital and proximity. Proceedings of ERSA 2008 Conference,

Liverpool, August 27-31.

Walukiewicz, S. (2010) Kapitał ludzki (in Polish: Human Capital), Systems Research Institute, Polish Academy

of Science, Warsaw.

Walukiewicz, S. (2012) Kapitał społeczny (in Polish: Social Capital), Systems Research Institute, Polish

Academy of Science, Warsaw.

Walukiewicz, S. (2014) The market triple, CEJOR, 22, 713-727.

Walukiewicz, S. (2015) Two-Dimensional Economics. A manuscript, Systems Research Institute, Polish

Academy of Science, Warsaw.

Walz, D.B., Elam, J.J. & Curtis, B. (1993) Inside a software design team: knowledge acquisition, sharing, and

integration. Communications of ACM, 46, 63-77.

White Paper (2015) “Linux Kernel Development. How Fast it is Going, Who is Doing It, What They are Doing,

and Who is Sponsoring It,” (http://www.linuxfoundation.org).

Williams, C. (2010) Client-vendor knowledge transfer in IS offshore outsourcing: insights from a survey of

Indian software engineers. Information Systems Journal, 21, 335-356.

Womack, J.P., Jones, D.T. & Roos, D. (1990) The Machine That Changed the World, Rawson Associates.

http://www.linuxfoundation.org/

16

