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Nocturnal satellite imagery and the analysis of spatial change 

Rolf Bergs1 

  

1. Introduction 

Night satellite images may offer an interesting tool to generate socio-economically relevant 
data and to analyse the evolution of space, e.g. cities or rural areas, and how spatial units 
interact over time. This paper is just an essay with preliminary ideas for discussion; the 
approach is explorative-methodological rather than one putting an empirical focus on a 
defined research item. Empirics discussed in this paper are just various examples collected 
from tinkering with image analysis and statistics software. 

Henderson et al. (2011) found that there is a significant association between economic 
growth and the changing emission of visible light. Mean correlation coefficients between 
luminosity and GDP (PPP) found by Chen and Nordhaus (2011) are stable at slightly more 
than 0.8 with a minor standard deviation of just 0.009 (estimated from data in: Chen and 
Nordhaus 2011, annex, p.11).  The connection between both variables is energy consumption 
for public utilities, communication, production and settlements that all needs light. The 
advantage of visible light emission (in the wavelength range between 380 - 700 nm) is its one-
dimensional scope of data generated: There is only a range between black, the different grey 
shades and white, while daytime images give one some idea of settlement, commercial, 
green and traffic zones with a high variation of colours of different brightness that are hard 
to translate into meaningful raw data. 

A major purpose of using night satellite images for economic analysis has been the search for 
proxies for production and population density in countries with insufficient and unreliable 
data infrastructure. This essentially applies to less developed countries where weak data 
infrastructure is often part of overall underdeveloped administrative capacities. Hence, there 
was the idea to estimate important social and economic profiles of such countries and 
regions by the luminosity proxy and to improve the decision base for policies and aid. 2 

The fundamental assumption is that there is not only a significant empirical relationship 
between luminosity and income (or labour productivity respectively) and luminosity and 
population, but that error in both, luminosity and socio-economic data, is independent. The 
latter assumption is even more important than the former: 

“…In general, a positive correlation between measured income (national accounts or 
survey means) and nighttime lights could be due to two factors: that they are both 
correlated with true income, or that their measurement errors are strongly correlated 
with each other. However, the latter possibility is implausible because the generating 
process of nighttime lights data is to a very large degree independent of the 

1 PRAC – Bergs & Issa Partnership Co., Bad Soden, Germany: The draft paper was presented at the 16th ERSA Congress, Vienna, 
August 23 - 26, 2016 (earlier draft versions were titled: “Exploring the spatial economy by night”) 
2 The ultimate motivation for this paper stemmed from a brief introductory paper of the National Optical Astronomy 
Observatory (NOAO) GSMT programme. One component of this programme deals with measuring light pollution. The 
advantage of ImageJ as a powerful image analysis software is described (http://www.noao.edu/education/gsmt/lpmeasure). 

                                                           



generating process either of national accounts or of survey means. For example, 
measured income is collected by statisticians interacting with survey respondents, 
while nighttime lights are recorded impersonally by satellites…”  (Pinkovskiy and 
Sala-i-Martin 2014, p. 2).  

Light emission is essentially a by-product of production and consumption (cf. Henderson et 
al. 2011). The brightness of nocturnal light reveals the density of human activities. Error 
variance of luminosity (spread of the difference between measured and real light emission) is 
rather constant around the globe while there is a large variation of error in datasets of official 
social and economic statistics. In many developing countries error in official statistics is 
larger than that of light emission, while in industrialised and newly industrialised countries 
official data are more reliable so that further satellite data on luminosity would not add 
value to statistical information in those countries. That is the reason why night satellite 
analysis is of relevance for developing countries rather than for industrialised ones 
(Henderson et al. 2011, Chen and Nordhaus 2011). However, this differentiation only holds 
for purposes to derive proxies for production or population data.3 In fact, there is also reason 
to use this tool in the observation of (spatial) economic patterns and trends in the more 
industrialised countries. A major advantage is the observation of change in a comparison of 
images. In this case, measurement error (see below) is of less relevance since it is cancelled 
out to a large extent. Evolution of spatial distribution of rural areas, urban agglomerations, 
border areas or other spatial categories are to be mentioned. My hypothesis is that several 
indicators, such as changing border effects, growing peri-urban zones, trends of polycentric 
or monocentric development or the rank size distribution of settlement clusters can be made 
visible and further processed by using night satellite images. Patterns of spatial dependence 
and spatial heterogeneity are thus at the centre of this study. 

Just comparing normal geographical maps is insufficient to shed light on urban and rural 
change. Enriching topographic or political maps with external data (GIS) helps to monitor 
spatial change by variables for which data are available. This is, however, only possible at a 
higher administrative level, such as countries, regions and - to a limited extend - districts. 
Thus, by using official statistics the view on space is truncated. Micro-spatial patterns and 
processes cannot be observed that easily, even though there is a growing literature on using 
micro-spatial raster data for the research on neighbourhood effects viewed from different 
perspectives, such as labour market, education, migration, investment choice and others (e.g. 
Halleck Vega and Elhorst 2014, Zwiers et al. 2014, Coulter et al. 2015, Duranton and 
Overman 2005). The advantage of nocturnal satellite images is the global access at any spatial 
scale without the need to refer to administrative entities and boundaries. The purpose of this 
paper is to explore the information content of the nocturnal satellite images for the analysis 
of patterns and change of the economy at any spatial scale. The tool examined for this 
exploration is ImageJ, an open but powerful image analysis package. 

 

 

3 Even though there is less association between economic output and luminosity in areas of lower light emission density, a 
specific property of large backward areas in the developing world (Nordhaus and Chen 2015, p. 218 f.). 
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2. Spatial heterogeneity, spatial dependence  

The night satellite images may provide an opportunity to explore patterns of spatial 
dependence (e.g. how space is influenced by further contiguous or distant space) and spatial 
heterogeneity (e.g. how attributes of space are distributed, whether there are regular or 
irregular patterns). In econometric modelling with a spatial relation, both features are of 
major relevance to consider, when it comes to efficient estimates. The violation of two Gauss-
Markov assumptions is to be acknowledged, namely the constant variance of variables over 
space and the absence of covariance between observations at different places. Consequently, 
heterogeneity and dependence can be conceived also as stand-alone categories to describe 
and analyse space. Spatial dependence and spatial heterogeneity are both results of 
processes; while heterogeneity is the result of a deterministic process and cause of a further 
continuing process, spatial dependence is rather a stochastic process in which spatial 
variables in one territorial area are influenced from other contiguous or distant areas. In 
practice, spatial dependence and heterogeneity can be conceived as follows: 

Spatial heterogeneity is related to the variation of relationships over space. It is thus a 
property describing the uneven distribution of variables describing space, such as 
population, topography, economic assets etc. If the world were a fully homogenous space, 
there would be no need for transport because every point of space would be identical such as 
in a closed vacuum. Cities side-by-side with rural areas, different levels of population 
density, converging and diverging regions or simply maritime versus continental climate 
areas are indications of spatial heterogeneity. But the concept of spatial heterogeneity also 
comprises a more holistic view on spatial structures, often based on fractal geometry such as 
multi-scalar global patterns that come close to natural laws, like the Zipf law of rank-size 
distribution of cities or the forms of coast lines or topographic reliefs. The concept of “natural 
cities”, their detection by nighttime imagery and the subsequent estimation of their 
characteristic distributions is an example for that (Jiang et al. 2015).  

Spatial dependence in a sample dataset means that observations on a variable k at a location i 
are not independent from observations k at other contiguous or more distant locations j≠i. A 
central attribute of spatial dependence is the covariance of selected random variables over 
space: While spatial heterogeneity represents the first-order moments of space, spatial 
dependence is traditionally conceived as a second-order property.4 Spatial units influence 
each other to a varying extent – primarily depending on distance, markets, politics and social 
fabric. An indicator of spatial dependence is spatial autocorrelation. In spatial econometric 
modelling it is considered either by spatial autoregressive or spatial error models (see 
footnote 6 below). But spatial autocorrelation can be also used as a stand-alone indicator for 
descriptive statistical analysis. This way, the Moran-I coefficient (in analogy to the Pearson-r) 
or the Geary-c coefficient are measures of estimating spatial dependence. (Anselin 2001, Le 
Sage 1999) 

4 Even though, there are arguments that the relationship is contrary, namely that spatial heterogeneity is rather a second-order 
effect, while dependence is the first-order one. Jiang (2015) argues that “…Spatial heterogeneity is a kind of hidden order, which 
appears disordered on the surface, but possesses a deep order beneath. This kind of hidden order can be 
characterized by a power law or a heavy-tailed distribution in general. …”. So if just viewing the visible heterogeneity at the 
surface, then the dependence between spatial items is a higher order effect, but if looking at underlying regular patterns of 
heterogeneity, spatial dependence constitutes a lower (first) order property. 

3 
 

                                                           



 

3. Further literature 

Meanwhile there is growing literature dealing with economic research based on night 
imagery. Henderson et al. (2011), Chen and Nordhaus (2011) and Sutton et al. (2007) 
primarily deal with the examination of light emission as a proxy for missing economic and 
social data (most importantly production output and population). Mellander et al. (2011) 
examine the explanatory power of night imagery specifically for economic activity rather 
than economic growth, population density or urbanization for Sweden. Ghosh et al (2010) 
used the night imagery to develop a method to identify informal economic activity that is not 
recorded in official statistics. Pinkovskiy and Sala-i-Martin (2015) examine whether GDP per 
capita recorded in national accounts or mean income and consumption data from household 
surveys are better proxies for income in linking the evolution of both series to the change of 
night image luminosity. Pinkovskiy (2013) looks at discontinuities of the political economy 
along borders using a regression discontinuity design. Border discontinuities are supposed 
to shed light on the impact of the political economy on economic activity because these 
determinants are produced by government activity. Luminosity per capita and its change 
over time behaves discontinuously upon crossing a border from a poorer (or lower-growing) 
into a richer (or higher-growing) country. According to Pinkovskiy these discontinuities 
seem to form lower bounds for discontinuities in economic activity across borders, which 
suggest a major importance of national-level variables such as institutions and culture 
relative to local-level variables. In another paper, Chen (2015) used DMSP-OLS radiance-
calibrated images from 2006 to examine infant mortality and poverty rates.  

There are several further studies linking night imagery and socio-economic variables – the 
majority on developing countries - but there are only rather few (e.g. Jiang 2015, Jiang et al 
2015; Liu 2014; Zhang et al. 2016) using the night imagery to shed light on spatial 
dependence and spatial heterogeneity, both of major relevance in spatial economics.  

 

4. Images 

The images analysed in this paper are satellite images of the National Oceanic and 
Atmospheric Administration (NOAA). 

Global nighttime lights imagery data are collected by the Defense Meteorological Satellite 
Program Operational Line Scanner (the DMSP-OLS Nighttime Lights Global Composites -
Version 4 1992-2010). Their original purpose has been the detection of moonlit cloud 
coverage. Several DMSP-OLS image categories that are useful for spatial analysis are freely 
accessible on the internet. The night images recorded since 1992 have a spatial resolution of 
30 arc-seconds and are recorded between 75°N and 65°S with non-calibrated light intensity 
in a Digital Number (DN) range between 0 and 63 (6-bit). Light intensity across pixels is 
Pareto-distributed. 
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The DMSP-OLS is capable to record and observe light sources in a range between visible- 
near infrared emissions and strong luminosity, present at night on the Earth's surface, 
including settlements, roads, gas flares, ships and fires.  

The available so-called “products” of imagery since 1992 are coverage, average visible band 
values, stable light and average light normalized. 

In our examples below I mostly used the average digital number of lights multiplied by the 
percent frequency of light detection (avg_lights_x_pct). These images are normalised for 
variations of cloud cover and thus account for the persistence of lights, but one can also test 
images with stable lights, average visible light or the additional calibrated images, that are 
available for selected years only. The 2011 radiance-calibrated image is included for 
comparison purposes. 

 

5. Measurement error 

In a static comparison of images, a large portion of error is cancelled out, since the factor of 
error is relatively stable. However measurement error increases with declining spatial scale 
and the level of measured light emission. Zero luminosity is only affected by error due to 
light below visibility.  

The ordinary DMSP-OLS images do not indicate radiance but only a light intensity within a 
defined DN range between 0 and 63. The observations are thus right-censored. For heavily lit 
areas, such as city centers, the problem of saturation hampers precise measurement.5 
However, the distribution of real luminosity is highly skewed and only around 0.1 percent of 
the observations is topcoded (Henderson et al. 2011, p. 195). 

For the product “stable lights” background noise (moonlight reflection etc.) is removed. 
Background noise of night imagery showing average luminosity can be filtered out by 
setting empirical thresholds based on visible light identified in areas with no source of light 
emission. Due to variation of light emission it is difficult to precisely filter out over-glow. If 
one looks at the distribution of light emission on the satellite images it is intuitively clear, 
that a bright area is not illuminated by light from this area alone but also beamed at from 
neighbouring space and vice versa. As Doll (2008) shows, “…a feature of the data acquisition 
process is that there is a large overlap (some 60%) between pixels. This means that light 
observed in one location has the chance to be recorded in more than one pixel. This can 
contribute to a larger lit-area being detected than is actually the case…” (p.12). In spatial 
regression analyses, average luminosity of a small area depends on light emitted in that area 
and – to some extent - from contiguous areas6. The larger the areas regarded, the less will be 
the spillover impact from over-glow. 

5 Only recently there have been efforts to solve the saturation problem. A set of radiance-calibrated images is available for 
selected years only (cf.: http://www.ngdc.noaa.gov/eog/dmsp/download_radcal.html)  
6 However, spill-overs are also to be considered for larger areas if visible luminosity m is further related to other variables, such 
as population, labour productivity or other predictors X, more formally:  m = ρWm + βX+ε, where W is a weighting matrix 
defining contiguity or distance respectively and ε the error term in a spatial autoregressive model. In an alternative spatial error 
model the specification would be: m= βX+ε, where ε= λWε+v 
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Apart from that it is important to stress the fact that light emission in its association with 
economic variables is also affected by further sources of error. Comparing population 
density across countries by using the luminosity proxy will be misleading in many cases, 
simply because of lower levels in light emission in developing or emerging economies. 
Ghosh et al. 2010 point out that e.g.  

“ … countries such as Japan and Germany are much wealthier relative to their sum of 
lights value; on the other hand, Russia is much poorer relative to its sum of lights 
value. …” (p. 153) 

At micro- or meso-scale specific land use of economic activity may have an influence on light 
emission after dark. Henderson et al. 2011 mention the example of the cities Las Vegas vs. 
Salt Lake City, or the fact that high density multi-storey buildings emit relatively less light 
compared to flat buildings. Hence, even though there is a significant correlation between 
luminosity and production over space, it would be rather misleading to use luminosity as a 
general proxy for missing GDP data, especially for partial analyses with lower numbers of 
observation.  

In addition, different satellites with different technology levels may generate images that are 
not completely comparable over time, just as a sampling variation due to physical factors. 
The available OLS images are not inter-calibrated. Inter-calibration of images is important for 
time series analyses, where systematic breaks through changes of satellites and technology 
distort the data. In this paper I just compare images at two distinct points of time, hence for 
the purpose of simplicity, in this paper the simple use of the raw OLS images is deemed 
justified7.  

 

6. The Software ImageJ 

Standard of spatial analysis of maps and geographic images is ArcGIS, a powerful, costly but 
also rather complex software for geographical analysis, including image analysis. For the 
analysis of night imagery, pure image analysis software is in most cases sufficient. ImageJ is 
a widely used open source image analysis software that had been developed by Wayne 
Rasband at the National Institutes of Health since the end of the 1990s (Schneider et al. 2012). 
Its primary purpose has been to process images in medical and biological sciences where has 
obtained a de facto standard for image analysis. However, ImageJ as a processing and data 
analysis toolbox, written in Java, has a broad range of applications - beyond microscopy and 
medical imaging -  such as astronomy8, environmental analyses9, earth sciences including 
remote sensing10, material sciences11, viticulture12 archaeology13 and others. The software has 

7 Chen and Nordhaus (2011, p.3) have estimated the standard errors of visible light emission on the DMSP-OLS images by 
regressing luminosity on GDP. Mean standard errors of estimates for luminosity between the four different satellites, on the one 
hand, and for one satellite over years, on the other hand, are found in the range between 0.3 and 0.6 with a decreasing trend 
over time for 1°x1° grid cells (Chen and Nordhaus 2011, annex, p. 9). A large inter-calibrated national database can be found on 
http://ngdc.noaa.gov/eog/dmsp/download_national_trend.html. See also: Eldvidge et al. (2014)  and Liu (2014) . 
8 West and Cameron 2006; Damas et al. 2014 
9 E.g. van Woesik et al.; Troscianko and Stevens 2015 
10 E.g. Berra et al., Buntilow 2013 
11 E.g. Ushizima et al 
12 Whalley and Shanmuganathan 2013 
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been permanently further developed. The most powerful feature of ImageJ is its 
international community with innumerable contributions consisting of plugins and macros. 
Several tools originally developed for medical imaging are also useful for remote sensing 
and the analysis of spatial change. 

ImageJ is capable to display, print, edit, analyse, process and save images with 8-bit, 16-bit 
and 32-bit graphic formats. It can read various file formats, such as tiff, bmp, jpg, gif and 
others. The software allows calculating area sizes and performs a large range of statistical 
and mathematical procedures on pixel values and their distribution either globally or in 
defined selections of any shape. With numerous processing functions such as contrast 
manipulation, sharpening, smoothing or filters, it is possible to visualize relevant parts of the 
images. Density histograms and profile plots are examples of statistical diagrams generated. 
Basic parameters of statistical analysis are mean values and spread but it is also possible to 
run more sophisticated analyses starting from image correlation to detecting fractal 
structures. It is easy to import the numeric data in statistical packages like R or Stata in order 
to merge datasets and to run further statistical or econometric procedures. The package is 
therefore also widely used as a remote-sensing software. Distances and angles can be 
measured. Even though the software is not geo-sensitive itself it is possible to calibrate 
geographical images containing geo-reference by figure calibration.14 In the numeric dataset 
of moments the geographic coordinates can be saved and further processed.  

 

7. Spatial analysis with ImageJ 

7.1 Selection 

ImageJ comprises a variety of area selection tools. The simpler ones are point and multi-
point, rectangular, elliptical, polygon, freehand and straight line selections. These are part of 
the core software with button commands or commands from the pulldown menu. However, 
there are several further more complex selection tools provided as plug-ins or macros. 
Powerful plugins are e.g. the application of concentric circles or the radial profile. It is also 
possible to write macros for different individual kinds of selection (see below). 

 

7.2 Partial analysis 

A major advantage of the night satellite images is independence from official data and 
administrative boundaries. It is possible to define the partitioning of a map at the discretion 
of the researcher. The easiest tool of partial analysis is simply to crop the map and to focus 
the analysis on a defined section. Within the defined section it is then possible to select 
further sub-parts. In using the command “restore selection” the selection of an image at t0 
can also be copied to the same image at tn. In comparing results of alternative partitioning it 

13 Verhoeven et al. 2013  
14 Geographic images are usually geo-referenced in a geo-tiff format. Even though ImageJ itself does not process and save the 
geo-referencing information it is possible to calibrate the image with the frame coordinates by the plugin “Figure Calibration”. 
As long as the image is open, any analysis – also of parts cropped to a new image file – can be done. The subsequent numeric 
analysis can be collated to the frame coordinates. 
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is possible to run various (infinite) sensitivity analyses. This can be very interesting for 
analyses of spatial change and spatial dependence such as spatial autocorrelation analyses. 
One possible approach could be to select sub-regions by free-hand (e.g. according to 
administrative boundaries); another approach can be to subdivide a map into raster cells, e.g. 
square kilometers15. This can be easily realized by writing simple ImageJ macros like the 
following one: 

 

x = 0; 
y = 0; 
width = 1.785714286; 
height = 1.785714286; 
spacing = 0; 
numRow = 100; 
numCol = 100; 
 
for(i = 0; i < numRow; i++) 
{ 
 for(j = 0; j < numCol; j++) 
 { 
  xOffset = j * (width + spacing); 
  print(xOffset); 
  yOffset = i * (height + spacing); 
  print(yOffset); 
  makeRectangle(x + xOffset, y + yOffset, width, height); 
  roiManager("Add"); 
  if (roiManager("count") > 10000) 
   { 
   print("Maximum reached: 10000 entries have been created."); 
   exit; 
   } 
 }   
} 
 

Moments of such raster cells (either in total or selected cells) can be further processed and 
subsequently analysed by statistical procedures, either by ImageJ itself or statistics software. 
The smaller the cells the more it is possible to delineate administrative units by raster cells. It 
is then possible to add up different raster cells and compare the selected units over time.  
 
The following example shows a selected raster (1x1 kilometer cells) of the Frankfurt region 
taken from the 1992 image: 
 

  

Further below in this chapter examples of different selection procedures and statistical 
analysis are discussed. 

15 The maps of DMSP-OLS are scaled to one pixel = 0.56 kilometers 
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7.3 Visual inspection 

One, perhaps even the most powerful tool of the maps is simply the image itself. The 
following night satellite image with a medium transparency shows the Korean peninsula. 
The northern and the southern part are immediately visible by a discontinuity of light 
emission exactly along the political border between both. 

  

Satellite image from: DMSP-OLS Nighttime Lights Global Composites (Version 4): Snapshot of the Korean peninsula in 2010 

In many cases, the information provided by the first glimpse at the image already contains 
the main message. Statistical analysis is then only needed to verify or falsify the estimate 
from visual inspection. 

 

7.4 Statistical analysis of images 

Comparative analysis of night images may shed light on spatial change, like urbanization or 
economic integration processes. The former is visible around cities, while the latter notably 
along administrative boundaries like national borders. With a simple image correlation 
analysis it is possible to view the variance of the pixel-by-pixel DN at two or more points of 
time. A high correlation coefficient (Pearson’s r) will indicate either a little or a very balanced 
change, so that all pixels change their intensity with roughly the same rate. If there is a 
stronger urbanization process over time, image correlation will be lower, because there will 
be a certain portion of black pixels becoming grey or white while also many formerly black 
pixels remain black. Then the more the regarded city is zoomed in, the lower the image 
correlation coefficient will be. 
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More insight into patterns of spatial dependence will be provided by the analysis of spatial 
autocorrelation. Visual inspection of the night images reveals that both, areas with high and 
higher luminosity as well as those with zero and low luminosity are clustered and that 
between both types of areas there is smooth transition. It is unusual that pixels with DN=63 
are side-by-side with zero pixels16. This shows that spatial units are not independent from 
neighbour units. However, the level of global spatial dependence of an area or local spatial 
dependence between neighbouring units within an area may change over time. Areas close 
to a city that were formerly rural may have attracted investment into production or housing 
showing a peri-urbanisation process that is indicated by higher luminosity, similar to that of 
the city itself. Rural areas become functional for the metropolitan area of a city, and spatial 
dependence will thus increase. Such a process can be indicated by a comparative analysis of 
spatial autocorrelation using the Moran’s I coefficient.  

𝐼𝐼 =
𝑁𝑁

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖
∙
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖 (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑋𝑋𝑗𝑗 − 𝑋𝑋�)  

 ∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)𝑖𝑖
2  

where N is the number of observations and wij are the elements of the weight matrix. 

In an evolution of functional areas increasing spatial autocorrelation would indicate higher 
integration of urban and former rural areas, especially if the number significant local 
coefficients (Moran’s local I) increase. Declining spatial autocorrelation would indicate the 
opposite. Further below some examples of such analyses are illustrated. 

In the following chapters there is a discussion of some examples ranging from visual 
inspection to further statistical analysis of images, such as spatial autocorrelation. 

 

8. Urban evolution from the macro perspective: Urbanisation and polycentricity vs. 
monocentricity 

8.1 Urbanisation of the Tripolitania region (Libya) 

Urbanisation in more recent times is well visible in countries that have grown rapidly, both 
in terms of their economy as well as well as in terms of population. The following two 
images show the North-West of Libya with the agglomeration of Tripoli in 1992 and 2010. A 
simple tool is just measuring distances of apparently homogenous areas and to compare the 
results over time.17 Measuring the distance of the metropolitan extension between the North 
(Mediterranean Sea) and the South resulted in some 8.9 km in 1992, while in 2010 the lit area 
strongly extended up to the desert with 27.56 km. 

16 This is even unusual for untenantable areas because of the over-glow effect (cf. the images of Tripoli that contain brighter 
pixels that are in fact located in the Mediterranean Sea). 
17 ImageJ provides a tool to set scales (here one pixel=0.56 km) 
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The measurement is, however, imprecise because of over-glow effects. But with ImageJ it is 
possible to identify edges of areas to better distinguish city light emission from its over-glow 
into untenantable areas, such as the Mediterranean Sea, and thus to correct distance 
measurements across lit areas (2010 image: 25.2 kilometers).  

11 
 



 

Tripoli 2010 image: distance across black area between edges is just 25.2 kilometers 

 

8.2 Is there polycentric development? - The Blue Banana 

Another simple tool is filtering in making patterns of images more visible. The following 
images and surface density plots show the Western European core-periphery pattern (Blue 
Banana) based on luminosity intensity and visualised by the 5-ramps filter. The green areas 
show those regions with the highest density of top luminosity (DN=63). These are also the 
major cities and metropolitan regions. The following two images illustrate clearly the map of 
Western Europe. Both compared show an increasing trend of urbanization (areas of high 
luminosity have grown) but no polycentric trend, even though a first glimpse could suggest 
an impression of a significant polycentric trend. The number of clusters with DN > 60 
increased from 387 to just 388; by comparing unit areas with DN=63 there is even a reduction 
from 169 to 155.18  

18 Counting clusters is possible by the “Analyse Particles” command. To run this procedure, the image has first to be 
transformed into a binary image. Then it is possible to set thresholds, e.g.to select only areas with DN>60.  
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„Blue Banana“ 1992 
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“Blue Banana” 2009 

Beyond pure visual inspection it is of course possible to explore such an image also in 
statistical terms, such as image correlation, spatial dependence, e.g. Moran-I, or spatial 
heterogeneity, e.g. the rank-size distribution (see further below).  

 
14 

 



9. City growth and peri-urbanisation – the meso perspective: Examples Frankfurt and Madrid 
1992 versus 2009 

Images contain pixels with different levels of brightness. The DMSP-OLS images are in the 
range between 0 and 63. Brighter parts are more associated with agglomerations (higher 
population density); parts with little light emission usually indicate rural areas with lower 
population density. Areas with zero emission are supposed to be sea, lakes, mountains, 
forests or other untenantable areas. Changing intensity and distribution of light emission 
may indicate spatial change along the continuum between urban, rural and untenantable 
parts. The observation of different and changing levels of light emission could also help to 
overcome the traditional normative dichotomy between the “rural” and the “urban”. 

 

9.1 Frankfurt 

In the following example the region of Frankfurt in 1992 is compared to its shape in 2009. 
The image shows the wider Rhein-Main area with Frankfurt as its core center. It extends 
from Gießen in the North to Darmstadt in the South and from Bad Kreuznach in the West to 
Aschaffenburg in the East. The following descriptive statistics are given by ImageJ: 

Descriptive statistics: 

Image Area Mean StdDev Min Max 
IntDen 

Frankfurt1992.v4b.avg_lights_x_pct.lzw-1.tif 18,832 15.15 16.86 0 63 
285,232 

Frankfurt2009.v4b.avg_lights_x_pct.lzw.tif 18,832 18.63 17.45 0 63 
350,861 

 

The images show exactly the same area at the two points of time (during 17 years). The mean 
pixel DN and the brightness-weighted average of the x and y coordinates of pixels has 
increased, the standard deviation has remained rather stable. It is of course to be 
acknowledged that measured luminosity in the city center is affected by the saturation 
problem of the non-calibrated images. This may also have an influence on descriptive 
statistics and the image correlation. The measured correlation of the non-calibrated images 
is: 

Image correlation 1992 vs. 2009: 

Pearson's r 

0.96 

 

The coefficient is very high indicating either a very little change over that long time period or 
a very balanced one. The standard deviation remained stable, thus most parts of the area 
underwent a trend in the same direction. Economic growth has therefore been a spatially 
balanced process across the area regarded. For comparison, the image correlation of the two 
images of the Tripoli region (see above) is only at 0.77 indicating a major spatial change over 
that period. 
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Concentric circle analysis 

Empirical analysis of urbanization has traditionally based on data from official statistics. A 
core research question has been: How do municipalities develop in terms of population, 
production and labour market? Sufficient data at municipal level and below are rare, 
incomplete and often incomparable across municipalities. Analysis of spatial dependence is 
thus based on data for spatial entities within their administrative boundaries; boundaries 
and space are irregular. Connectivity weights are constructed on common borders, length of 
common borders or distances, but the irregular form of the lines of boundaries make it 
difficult to select a perfect weighting matrix.19 

An alternative would be to view spatial dependencies across raster units, e.g. square 
kilometers (see above the raster selection of Frankfurt) or – for micro-spatial neighbourhood 
analyses – at hectare level, even though over-glow might distort results.  

Usually, cities grow radially, only limited by natural or adminstrative boundaries (like sea, 
mountains, national borders); areas around cities have various functions (land use), and 
those functions may change over time. This had been a finding already by von Thunen in the 
19th century (the von-Thunen-rings). For our purpose it could be thus worth to test spatial 
dependence across such concentric circles. The major advantage is the directly extractable 
database (pixel intensity distribution) that is independent from administrative borders and 
adaptable to more natural paths of city/settlement evolution, i.e. a radial spatial change. The 
selection of the center, the rings, the number of rings and the choice of the radius is at the 
discretion of the researcher; on the one hand such selection may appear arbitrary, but on the 
other hand there is the opportunity of an infinite number of different selection choices, so 
there is the advantage of numerous sensitivity analyses confirming or questioning a prior 
hypothesis or finding. 

Of course such a concentric circle analysis makes only sense if providing a plausible 
justification how to position the circles (e.g. city centre + rest of inner city within one versus 
two circles, separation of outer suburbs and adjacent municipalities, number of circles and 
decision which circles should be unified to one, different sets for sensitivity analyses etc.). 

The following analysis is only a simplified example and its diagnostic value is again limited 
by the saturation issue of the images: 

 

 

 

 

 

19 Apart from that, other non-geographical forms of connectivity also influencing spatial dependence are not sufficiently 
considered (cf. Beck et al 2006). 
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Night Satellite Images: Frankfurt 1992 and 2009: 

 

Frankfurt 1992     Frankfurt 2009 

 

Descriptive statistics of the concentric circle analysis 1992: 

1992 Radius Samples Mean 1992 
1 3.8 33 59.93939 
2 14 113 49.0531 
3 24.2 197 26.8934 
4 34.4 277 21.44404 
5 44.6 361 12.27701 
6 54.8 441 14.53515 
7 65 521 11.94242 

 

Comparison 2009 versus 1992: 

Mean 2009 Difference 
Mean 
diff.% 

60.939 1 102 
52.292 3.239 107 
30.193 3.299 112 
25.043 3.599 117 
16.294 4.017 133 
18.937 4.401 130 
15.084 3.142 126 
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Absolute differences are smallest for the inner circle. This might be explained by the 
saturation of lights with highest luminosity and the smaller number of observations in this 
area. Relative differences are rather balanced, being larger in the outer rings (5,6, and 7), 
showing that some detectable change takes more place in the peri-urban and rural 
contiguous space around Frankfurt.  

The 2nd and 3rd circle represents major parts of the peri-urban belt, while the 5th to 7th circle 
cover mostly rural districts in the contiguous territory. Hence, rural areas have further 
integrated in the peri-urban landscape of Frankfurt and eventually the Rhein-Main area 

There is one important caveat in this interpretation. Even though the Rhein-Main area is 
dominated by its urban center Frankfurt, the region is nevertheless rather characterized by a 
polycentric urban distribution with other major cities such as Wiesbaden, Mainz and 
Darmstadt. Hence, this agglomeration trend is not alone to be attributed to the pull-factor of 
Frankfurt.  

A further Moran’s local I analysis (LISA)20 could shed more light on the changes of the local 
autocorrelation along the rings around the city. However, the results on such a small number 
of observations are not sufficiently reliable21. For an empirical analysis with Moran’s local I 
one would need to increase the number of rings (minimum 30) to identify the geographical 
“breaks” of the coefficients along the rings. A shift of such breaks over time will indicate how 
areas have changed their functional relations. Further below, a comparative LISA analysis 
for the Madrid agglomeration is illustrated; this region has exhibited stronger spatial change 
than the Frankfurt region. 

 

20 A positive Moran’s local I indicates an area with neighbours displaying similar value levels of a variable. A negative 
coefficient represents an outlier. Here the variable values are highly dissimilar between two neighbouring areas. Moran’s local I 
can only be properly interpreted under consideration of its z-score.  
21 Because of the little number of areas there is no meaningful significance test, so that here the Moran I coefficient can be only 
regarded as a descriptive correlation measurement. (Cf. Schulze 1995) 
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9.2 Madrid 

A second example selected is the agglomeration of Madrid. This agglomeration with around 
7 million inhabitants is significantly larger than that of Frankfurt.  

Descriptive statistics suggest a slightly more dynamic growth than that of Frankfurt. Mean 
pixel-DN increased from a similar level of 16.61 to 24.19 (e.g. a change of 45% versus 23% in 
the case of Frankfurt). Image correlation is thus also lower than in the case of Frankfurt. 

 

Descriptive statistics: 

Image Area Mean StdDev Min Max IntDen 

Madrid-F101992.v4b.avg_lights_x_pct.lzw-1.tif 18,832 16.61 19.47 0 63 312,715 

MadridF162009.v4b.avg_lights_x_pct.lzw.tif 18,832 24.19 21.50 0 63 455,588 

 

Difference plot profile 1992 and 2009 (mean difference per pixel column): 

 

Image correlation 1992 vs. 2009: 

Pearson's r 

0.91 

 

 

This is further examined by the radial profile analysis, another ImageJ plugin. The following 
two snapshots show the same section of Madrid agglomeration in 1992 and 2009. By visual 
inspection alone it becomes obvious that there is a considerably higher density of lights in 
2009, revealing a process of urban growth. 
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The slope of the pixel distribution within the radial profile has significantly changed during 
1992-2009 as shown by the following figures.22 

 

 

Madrid 1992:  
Sum of residuals squared: 1547.59839 
Standard deviation: 5.12157 
R2: 0.94784 
OLS: y = 64.87989 - 0.93758x 
  
 
Madrid 2009: 
Sum of residuals squared: 360.71150 
Standard deviation: 2.47260 
R2: 0.98618 
OLS: y = 69.02228 - 0.89700x 
 

 
 
The above comparison of the same areal section shows a stronger trend to a linear 
relationship of radius and pixel density in 2009, while in 1992 the relation was more convex23  

22 Normalised integrated intensity (Y): normalized by the average light intensity per pixel to sense pixel-to-pixel relative 
homogeneity 
23 showing the shape of f(x)<0 and f’(x)>0 

Madrid agglomeration: Radial profile 
1992 (red) and 2009 (black) 
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revealing a decreasing marginal appearance of darker items (rural) along the radius from the 
inner to the outer sections. The 2009 image shows a slightly more balanced distribution of the 
pixel DN along the spectrum between 63 in the center and 0 in the outer areas, confirming 
that the agglomeration in the center has grown; therefore the linear best-fit line is better 
matched than that for the 1992 image. Consequently there was also a slightly weaker 
goodness of fit of the linear regression for 1992 (R2=0.95) compared to that of 2009 
(R2=0.99).24  

In empirically selecting a threshold between urban and rural luminosity (by randomly 
selecting rural and urban zones of a country) it is possible to observe the transition points of 
urbanizing rural zones. E.g. if selecting the threshold for Spain at, let’s say, DN=10, areas in 
the distance of 40 kilometers (67 pixels) around the centre of Madrid were typically rural in 
1992 but have become peri-urban (on average) in 2009. 

When using radiance-calibrated images, the shape, the coefficient and the fit are much 
different, shedding more light on the distribution of lights and range of light intensity in the 
core city. The typical Pareto distribution of light emission at global level then becomes also 
visible for metropolitan areas. 

 

 
Madrid 2011 (radiance-calibrated image): 
 
Sum of residuals squared: 840659.269 
Standard deviation: 119.36692 
R2: 0.62958 
Parameters (OLS): y = a + bx 
 a = 411.71501 
 b = -6.68308 
 

24 For a better fit of convex or concave curves, the numerical list of values plotted along the radius can be used to find a 
polynomial approximation of shape. 

Madrid agglomeration 2011: Radial 
profile (radiance-calibrated image) 
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With increasing distance from the city center, the number of observations (pixels) and the 
spread of pixel-DN increases; mean values are increasingly disturbed by outliers. In analogy 
to Hoyt’s (1941) urban sector theory it is then possible to analyse the radial profile within 
urban segments and to subdivide the circle around the city into “pieces of cake”, for instance 
highlighting development axes of major interest, such as the example below: 

 

 
Madrid 2009: 
 
Sum of residuals squared: 2355.81979 
Standard deviation: 5.97447 
R2: 0.61524 
Parameters (OLS): y = a + bx 
 a = 69.32640 
 b = -0.28864 

 

In this case, we find a completely different shape of the slope with nearly half of the pixels 
top-coded. It is possible to better detect polycentric structures (and their change) along 
different axes of urbanization. While the full circle analysis shows an almost monotonously 
declining curve, the partial analysis includes significant breaks with increasing light 
emission along the radius. A static comparison of such breaks in different selected sectors at 
two or more points of time may shed light on the specific change of spatial axes of 
urbanization and/or polycentric evolution. Such analyses are possibly useful to complement 
other empirical studies on urban spatial change. For that purpose, the selection of sectors, the 
size of the radius and the respective angle need to be well specified. 

 

Spatial autocorrelation: Local Moran-I Analysis 

In a further analysis I looked whether the city and its periphery has become more integrated 
during the 1992-2009 period and tested it with a spatial autocorrelation analysis across 
concentric circles, going beyond that demonstrated for Frankfurt. For the Madrid case, a 

Madrid agglomeration 2009: Radial profile of the 
Madrid North-East axis 
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selection of 35 concentric circles is specified, looking at the global autocorrelation coefficient 
(Moran’s I) and, particularly, at the local coefficients (LISA).25 It was first tested with a 
simple binary weight matrix, i.e. weighting contiguous circles with one and all others with 
zero. However a non-binary distance matrix resulted in more significant coefficients, which 
better illustrate the changes that took place between 1992 and 2009. 

  

Madrid 1992: 35 circles                                       Madrid 2009: 35 circles 

Moran's Ii (Mean)Madrid 1992 (non-binary weight matrix) 
-------------------------------------------------------------- 
           Location |    Ii      sd(Ii)     z    p-value* 
--------------------+----------------------------------------- 
                 13 |  0.002     0.498   0.062   0.475 
                 14 |  0.003     0.498   0.065   0.474 
                 15 |  0.024     0.498   0.108   0.457 
                 16 |  0.056     0.498   0.171   0.432 
                 12 |  0.062     0.498   0.184   0.427 
                 17 |  0.119     0.498   0.299   0.383 
                 11 |  0.157     0.498   0.374   0.354 
                 18 |  0.203     0.498   0.466   0.321 
                 19 |  0.286     0.498   0.634   0.263 
                 10 |  0.334     0.498   0.731   0.232 
                 20 |  0.370     0.498   0.802   0.211 
                 21 |  0.475     0.498   1.014   0.155 
                 22 |  0.546     0.498   1.156   0.124 
                 24 |  0.552     0.498   1.168   0.121 
                 23 |  0.561     0.498   1.186   0.118 
                 25 |  0.563     0.498   1.191   0.117 
                 26 |  0.606     0.498   1.278   0.101 
                 35 |  0.906     0.724   1.293   0.098 
                  9 |  0.644     0.498   1.352   0.088 
                 27 |  0.655     0.498   1.376   0.084 
                 28 |  0.706     0.498   1.478   0.070 
                 29 |  0.764     0.498   1.595   0.055 
                 34 |  0.904     0.574   1.626   0.052 
                 30 |  0.809     0.498   1.685   0.046 
                 31 |  0.854     0.498   1.776   0.038 
                 32 |  0.877     0.498   1.820   0.034 
                 33 |  0.899     0.498   1.865   0.031 
                  8 |  1.082     0.498   2.234   0.013 
                  7 |  1.668     0.498   3.410   0.000 
                  6 |  2.292     0.498   4.665   0.000 
                  1 |  3.526     0.724   4.913   0.000 
                  5 |  2.808     0.498   5.700   0.000 
                  2 |  3.510     0.574   6.166   0.000 
                  4 |  3.233     0.498   6.554   0.000 
                  3 |  3.439     0.498   6.970   0.000 
-------------------------------------------------------------- 
E(Ii) = -0.029 
Moran’s I = 0.986 
*1-tail test; significant coefficients in bold numbers 
 
 
 

25 The selection of size and number of circles is at the discretion of the researcher. In ImageJ the circles have the same radial 
distance. If selecting a small number of circles, there may be not only the problem of a too little number of observations but also 
misspecification, because areas of functional roles are not grouped around a city in constant distances (e.g. the von Thunen or 
Burgess rings). However, when increasing the number of circles it becomes possible to compare different radial sizes of the 
rings, simply by adding up the moments of certain contiguous circles and calculating the mean pixel-DN. Then again it is 
possible to estimate spillovers by spatial autocorrelation. 
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Moran's Ii (Mean): Madrid 2009 (non-binary weight matrix) 
-------------------------------------------------------------- 
           Location |    Ii     sd(Ii)     z    p-value* 
--------------------+----------------------------------------- 
                 16 | -0.002    0.501   0.055   0.478 
                 15 |  0.008    0.501   0.076   0.470 
                 17 |  0.023    0.501   0.104   0.459 
                 14 |  0.024    0.501   0.106   0.458 
                 18 |  0.082    0.501   0.222   0.412 
                 13 |  0.090    0.501   0.238   0.406 
                 19 |  0.154    0.501   0.367   0.357 
                 20 |  0.251    0.501   0.560   0.288 
                 12 |  0.298    0.501   0.654   0.257 
                 21 |  0.397    0.501   0.852   0.197 
                 11 |  0.526    0.501   1.109   0.134 
                 22 |  0.531    0.501   1.118   0.132 
                 23 |  0.622    0.501   1.301   0.097 
                 24 |  0.681    0.501   1.418   0.078 
                 25 |  0.706    0.501   1.468   0.071 
                 26 |  0.714    0.501   1.485   0.069 
                 10 |  0.752    0.501   1.560   0.059 
                 27 |  0.753    0.501   1.562   0.059 
                 28 |  0.840    0.501   1.736   0.041 
                 35 |  1.355    0.729   1.900   0.029 
                  9 |  0.944    0.501   1.944   0.026 
                 29 |  0.964    0.501   1.983   0.024 
                 30 |  1.084    0.501   2.223   0.013 
                 34 |  1.338    0.578   2.368   0.009 
                 31 |  1.177    0.501   2.409   0.008 
                  8 |  1.188    0.501   2.431   0.008 
                 32 |  1.249    0.501   2.552   0.005 
                 33 |  1.304    0.501   2.663   0.004 
                  7 |  1.467    0.501   2.987   0.001 
                  6 |  1.845    0.501   3.743   0.000 
                  1 |  2.843    0.729   3.942   0.000 
                  5 |  2.221    0.501   4.494   0.000 
                  2 |  2.824    0.578   4.939   0.000 
                  4 |  2.563    0.501   5.176   0.000 
                  3 |  2.756    0.501   5.562   0.000 
-------------------------------------------------------------- 
E(Ii) = -0.029 
Moran’s I = 0.988 
*1-tail test; significant coefficients in bold numbers 
 
 

 

  

 

In both years there is a strong and highly significant local autocorrelation for the most inner 
circles and moderately significant ones for most outer circles. The above results show that 
there are more significant26 coefficients in 2009 compared to 1992. In 1992 there were twelve 
circles with significant coefficients, while the number increased to 17 in 2009. As the above 
diagrams show, the level of spatial autocorrelation decreased for the first inner circles, but 
increased for circles 8 and 9 and the outer periphery27. A typical indication of spatial 
integration around the city of Madrid is the increase of the local Moran’s I for circle 9 from 

26 By setting the threshold at p=0.05 
27 The local coefficients are directly related to Moran’s global I via their average. Hence, as global Moran’s I has remained 
constant, the bars in the diagrams above can be somehow interpreted as “communicating pipes”. 
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insignificant 0.644 in 1992 to significant 0.944 in 2009. While in 1992 coefficients for the two 
outer rings were insignificant, they became significant by 2009. Local Moran-I coefficients of 
the middle circles are insignificant. They represent areas close to the average luminosity of 
the selected agglomeration. However, the shift of insignificant coefficients to the right 
indicates a net centrifugal force (the minimum shifted from circle 13 to circle 16). For 2009 
there is an increase of significant coefficients at the margins of the inner third of rings, 
suggesting that areas in that distance to the central city become functionally more integrated, 
also confirmed by the shapes of the radial profile plots above28. Hence, the reduction of the 
number of insignificant coefficients reveals that outer areas of the agglomeration are 
gradually coalescing with the inner ones. 

 

Further tools for the analysis of urban spatial change 

A last simple but interesting tool of ImageJ, discussed here, is the Wand tool. With that 
instrument it is e.g. possible to view changes of the inner city or specific parts of the city by 
capturing the areas with identical pixel intensity – in this case the range of top-coded values 
(DN≥63), assuming that this level represents luminosity of a city centre. By using the 3-3-2 
RGB filter and subsequently using the Wand tool, the boundaries of the inner city (top-
coded) and the wider city are made visible.29 Moments of pixels can be calculated. The 
results show that the city area has grown strongly over the time, especially integrating the 
agglomeration along the Highway E-90 North-East (Torrejón de Ardoz to Guadalajara). 

 

28 Theoretically Moran‘s I could also increase if there is a negative trend of luminosity in all sections, with other words, when 
cities shrink or “ruralise“. A decrease of Moran’s I would happen if there are contrary trends in contiguous sections.  
29 The 3-3-2 RGB filter is capable to show edges, i.e. fault lines, beyond those pixel intensity declines. With ImageJ it is also 
possible to directly identify edges and maxima within their segments (see earlier: the image of Tripoli 2010).  
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Spatial growth of Madrid city 1992 vs. 2009  

Label Area Mean StdDev Mode Min Max 
Madrid-
F101992.v4b.avg_lights_x_pct.lzw.tif 866 62.99885 0.03398 63 62 63 

MadridF162009.v4b.avg_lights_x_pct.lzw.tif 1411 62.99858 0.03764 63 62 63 

 

Within the area of top-coded DN values the real distribution is highly different from that 
measured in the non-calibrated images. The following comparison of density plots between a 
non-calibrated and a radiance-calibrated image gives some idea on that: 

 

Density plots of non-calibrated and radiance-calibrated images compared 

For the calibrated version, local maxima of light emission (here within a tolerance of 10) and 
their segmentation can then more precisely shed light on the distribution of local radiance 
activity. 
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There are further analytic image analysis tools that could be tested for spatial analysis. Worth 
mentioning are fractal box counts, nearest neighbour analysis and others. In the final part of 
this paper I like to highlight a feature that is related to the deeper underlying order of spatial 
heterogeneity, namely the rank-size distribution of cities (or settlements respectively). 

 

10. Spatial heterogeneity and Zipf’s law 

Further to the analysis of spatial dependence and the variation, scanning of night imagery 
can also be applied to analyses of spatial heterogeneity and to detect regular patterns of 
distribution. A well-known quasi-natural law of human settlement is the so-called rank-size 
distribution of cities. Zipf’s law (Zipf 1949)30 says that, at any country level, the largest city is 
x times larger than the city on rank x (measured on a logarithmic scale). Hence, based on 
empirical observations, the rank size distribution of cities is universally: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆) = 𝑙𝑙𝑙𝑙𝑙𝑙  ( 𝑐𝑐) − 𝑞𝑞 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑟𝑟) + 𝑢𝑢 

where S means size of the city, c is a constant, r is the rank and the coefficient  

𝑞𝑞 ≈ 1 

With q=1 the reverse relationship (Pareto distribution) 

𝑟𝑟 = 𝑐𝑐𝑐𝑐−𝑞𝑞 

would be equal, so it is possible to take both, S as well as r as the dependent variable or 
predictor respectively. 

There is a large volume of research on Zipf’s law, but this is overwhelmingly based on official 
data that is highly distorted by administrative boundaries, changes and error in official 
statistics. Such artificial boundaries – especially if they change – lead to major distortions of 
naturally delineated settlements. Thus there are also major deviations of validity of Zipf’s law 

30 Zipf’s law is actually based on observations of Felix Auerbach in 1913 about patterns of population distribution. There are 
others before Zipf,  such as Alfred Lotka or Frank Benford who have found similar relationships in other areas of life where 
observations are pareto-distributed. 
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across countries and during time. Many observers thus have questioned the validity of Zipf’s 
law.   

Jiang et al. (2015) have used night satellite imagery to test Zipf’s law globally. Luminosity is 
thus used as a proxy for settlements. The important advantage is that, with the data of light 
emission, there are neither administrative data restrictions nor do we need to acknowledge 
administrative boundaries. There is worldwide access to this variable. Furthermore it is 
possible to delineate functional settlements that make up “natural cities”. A crucial point in 
this connection is the property of the Pareto-distribution, namely that there are many more 
small items than big ones and that the distribution of observations below and above the 
mean is rather skewed so that the mean, as an expected value of a sample, becomes 
meaningless.31 However, the mean can be used to identify thresholds. It is possible to view 
the distribution of pixel intensity (DN) of a country or region and to find the mean DN. In 
subdividing the two parts (below and above the mean) into heads and tails and repeating 
this procedure for the observations for the respective head sections, the distribution becomes 
more and more linear, so that the procedure converges to a 50:50 distribution of observations 
below and above the mean. Settlements identified in this linear distribution are considered 
natural cities. Filtering-out pixel-DN being lower than their respective mean will then lead to 
a reduction of settlements that qualify as cities. Interestingly, the pattern of distribution of 
natural cities is significantly in line with Zipf’s law, and this not only at country level but also 
at global and continental level.  (Jiang 2015). 

I tested this approach for Germany 2009 (within the area of 47.5° to 55.5° latitude and 6.5° to 
14.5° longitude) with ImageJ 

Round Pixels Mean DN Obs. Above mean Obs. Below mean 
1 (total) 689,984 11.55 32.3 67.7 
2 (head) 222,869 27.76 41.6 58.4 

 

First a Zipf regression on the total 689,984 pixels with DN>0 was executed. The estimation of 
q was done with the Gabaix-Ibragimov-estimator32 for the Zipf regression to reduce the bias in 
the standard OLS. Therefore rank is regressed on size instead size on rank. As we see, by 
viewing the total number of observations, the estimate for q differs strongly from the 
expected -1: 

31 For distributions with big tails (such as Pareto-, log-normal- or Levy- distributions) the central limit theorem does not hold. 
32 This coefficient is obtained by reducing the rank by ½ and then using the standard OLS approach, i.e. ln (r-1/2)= c-q ln(S). The 
standard error of the Pareto exponent differs from the OLS standard error. It is asymptotically (2/n)1/2q  (cf. Gabaix and 
Ibragimov 2007). 
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Following Jiang’s approach to select a “natural” delineation of settlements any pixels lower 
than the threshold of DN 28 were filtered out. This generated the following map by ImageJ: 

 

The subsequent Zipf regression led to the following result, which is significantly closer to the 
expected -1, with a nearly perfect goodness of fit: 
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With a regression coefficient of -1.04, Zipf’s law can be confirmed for the selected area. 

Using the tool of night imagery it could be interesting to undertake further research on the 
behavior of the rank-size distribution of settlements among numerous different sizes and 
forms of selection of areas - within a country or for transnational regions, and to analyse the 
variation of Zipf coefficients among different shapes and sizes of areas selected.  

 

11. Conclusion 

The DMSP-OLS images and adequate image analysis software such as ImageJ (in some cases 
to be complemented by further statistics software) provide a useful perspective for the 
analysis of spatial change. Since there is a stable and significant correlation between social 
and economic variables (population density, GDP PPP) and luminosity, such image analyses 
contain important information on spatial economic development. For micro-spatial 
comparisons, especially of urban areas, more precise results can be expected from using 
radiance-calibrated images. Analysis of night imagery is certainly not adequate to replace the 
statistical analysis of regional data, but it is a good tool to confirm and illustrate patterns of 
spatial heterogeneity and spatial dependence over time.  

Further to that, the approach requires modest technical effort at no cost. 
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