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Abstract 
Free patient mobility among autonomous regions has been often considered a useful stimulus for enhancing 
healthcare. However, some jurisdictions may underperform due to the existence of economies of scale and 
spatial spillovers. Where regions assume the costs of providing care to residents, this could challenge the 
sustainability of regional budgets in a decentralised National Health Service (NHS) and put at risk 
universalism and equity of health care. We use a ten years (2001-2010) panel of Italian data on hospital 
discharges to assess the determinants of inter-regional mobility. We estimate a dynamic panel model 
addressing region-pair-specific unobserved heterogeneity and spatial dependence within a gravity framework 
for bilateral flows that includes a rich set of push and pull factors. In addition to significant scale effects and 
spatial spillovers, which are not under the control of regional health authorities, our findings highlight the 
role of local supply factors, such as the hospital beds and technology endowments, and of the specialization 
and performance indicators. 
 
 
 
 
Keywords: regional health systems, hospital admissions, gravity model, nonlinear gravity panel model, 
spatial spillovers 
 
JEL: C23, I18, H75, R23, R50 
 
 
 
 
 
 
Acknowledgments: We thank the Direzione Generale della Programmazione Sanitaria, Ufficio VI, at the 
Italian Ministry of Health, for kindly providing us with the SDO database - Archivio Nazionale Schede di 
Dimissione Ospedaliera (2001-2010). The research leading to these results has received funding from 
Regione Autonoma della Sardegna [CRP25930]. We thank Daniela Moro for valuable assistance in 
preparing the database.  

mailto:emarrocu@unica.it


1 
 

1. Introduction 

In several national health systems, free patient mobility for hospital care has been 

encouraged through specific policies with the ultimate aim to gain quality improvements by 

stimulating competition. This mechanism is expected to work at the regional level especially 

in decentralised systems, in which hospital care is financed through general taxation and local 

governments pay for the treatments received by their residents, independently of the location 

of the healthcare provider. Inter-regional patient mobility may affect the local budgets 

because of financial losses in the case of reimbursements of hospital admissions outside the 

region, and gains from non-residents admissions. In this setting, administrators should aim to 

raise quality, not only to increase citizen satisfaction, but also to restrain outflows of their 

own enrolees and possibly attract patients from other jurisdictions. 

These arguments might not follow, however, where there exist significant asymmetries 

among competing jurisdictions. Regardless of the “effort” made by local policy-makers, some 

jurisdictions might underperform and experience budget unbalances due to the existence of 

economies of scale and spatial spillovers among them. If this is the case, patient mobility 

could make the mechanism through which competition among different locations works very 

complex. From this perspective, the Italian National Health Service (NHS) represents an 

interesting case of study, because it is a regionally decentralised tax-funded system in which 

patients are entitled to choose any preferred provider of hospital care all over the country.  

The NHS is characterised by a high and persistent inter-regional patient mobility (7.5 

percent of total admission in 2010) with the geography of hospital admissions favouring flows 

from southern regions mainly towards central-northern ones: 34.2 percent of total inter-

regional flows move in this direction. The current institutional setting is the result of a series 

of reforms, initiated in 1992, that have introduced universal free patient choice and created 21 

separate and autonomous regional health services (RHSs), formally responsible for healthcare 
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organization in their jurisdictions and care delivery for the residents therein. Devolution in 

healthcare also involved the funding system, through the introduction of a regional tax that 

partially finances the regional healthcare budgets. Nonetheless, RHSs are subject to central 

government planning policy, which defines the essential levels of care and the overall 

expenditure ceilings. Free patient choice implies that hospital admissions taking place outside 

the RHS of enrolment are reimbursed using inter-regional compensation schemes centred on 

Diagnosis Related Groups (DRG)-based tariffs. This has increased the economic incentive for 

the regional policy-makers to use patient mobility for attracting financial resources. 

Decentralisation of the NHS has become fully effective with the constitutional reform 

approved in 2001, which provided Italian regions with a larger autonomy in the organisation 

(e.g., hospital accreditation) of the healthcare services. 

Such configuration of the NHS, common to many European countries such as Italy, Spain, 

Denmark, Germany and Austria (Adolph et al. 2012), can have controversial effects on the 

efficiency and effectiveness of the healthcare services provided at the regional level, as well 

as on universalism and equity at the national level, in countries with relevant regional 

asymmetries. The theoretical literature suggests that free patient choice (under the hypothesis 

of symmetric jurisdictions) should determine lower, even zero, voluntary inter-regional 

mobility in the long run, because competition stimulates quality levelling and equal sharing of 

the market (Brekke et al., 2008, 2010, 2012). However, patient flows across Italian regions 

have not exhibited any tendency to decrease since the abovementioned constitutional reform. 

In fact, central-northern regions are net exporters of hospital treatments, i.e. their hospitals 

admit a larger number of patients coming from the South. Concurrently, the compensation of 

net patient flows has generated additional amounts of financial resources in favour of central-

northern regions, and has exacerbated the North-South gradient in the Italian NHS. 
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The aim of this paper is to enhance the understanding of the phenomenon by providing a 

comprehensive picture of the patterns of inter-regional patient mobility. More specifically, we 

aim to investigate whether and to what extent patient mobility is driven by factors related to 

policies pursued by the regional health authorities rather than by exogenous factors related to 

geography, demography and neighbouring- or national-level policies. These issues are 

addressed by means of an empirical model for inter-regional patient mobility that occurred in 

Italy after the accomplishment of the decentralisation reforms of the nineties. For the purpose 

of our analysis, we use panel data on hospital discharges occurring yearly over the period 

2001-2010 in all public and private licensed hospitals, merged with information on the 

demographic and economic characteristics of Italian regions and on important features of 

hospital care services in each RHS. 

We analyse bilateral Origin-to-Destination (OD) flows between any two regions by means 

of a gravity regression model that includes a rich set of push and pull factors. Compared to 

previous studies, mainly performed on cross-section samples, the longitudinal dimension of 

the data enables us to estimate a nonlinear conditionally correlated random effects (CCRE) 

dynamic model that accounts for region-pair-specific unobservable heterogeneity. Moreover, 

we address the issue of cross-regional dependence arising from the existence of regional 

spillovers by applying recent advances in spatial econometrics (Elhorst, 2014; Vega and 

Elhorst, 2015). Finally, the estimation results are used to illustrate specific what-if scenarios 

relevant to the health authorities for the national and sub-national management of services. 

Our main results suggest that, beside regional population size and income, local supply 

factors such as hospital capacity and technology endowment, clinical specialization and 

performance indicators are important drivers of patient mobility. Moreover, we find that 

geography matters and spatial proximity plays a relevant role in reinforcing inter-regional 

mobility patterns. 
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2. Related Literature 

The theoretical literature has not specifically focused on the analysis of inter-regional 

patient mobility per se, but rather on the effects of patient choice and competition on the 

behaviour of healthcare providers in the context of regulated prices. Spatial competition 

models à la Hotelling have been used to study patient mobility in decentralized settings in 

which patients are eligible to receive free care at the point of use (see, e.g., Montefiori, 2005; 

Brekke et al., 2008, 2010, 2012). These models allow for the simultaneous presence of 

horizontal (either defined in terms of physical location or healthcare specialization) and 

vertical (quality) differentiation among jurisdictions. Ceteris paribus, the higher the quality 

gap between providers, the larger the number of patients who seek care in the higher quality 

region. 

While the transitional dynamics in patient mobility may depend on various assumptions, an 

equilibrium with permanent inter-regional mobility (such as that observed in our data) can be 

explained only assuming asymmetry between regional systems. Levaggi and Menoncin 

(2013), consider a context in which regions exhibit different exogenous efficiency levels  and 

are subject to a “soft budget constraint”.1 They find that inefficient regions have an incentive 

to induce patient flows towards the most efficient regions in exchange for a higher probability 

of being bailed out. Bailing out is accepted by the efficient regions because they receive the 

financial benefits related to incoming patients, whose hospital treatments are reimbursed on 

the basis of a regulated tariff (typically higher than the marginal cost). The overall equilibrium 

is inefficient and characterised by an excess of patient mobility because of imperfect 

coordination among government levels. Brekke et al. (2014) analyse a situation whereby 

regional jurisdictions differ in their ability to provide healthcare. They indicate that permanent 

                                                 
1 The hypothesis of exogenous differences in efficiency levels is consistent with the evidence of the 
heterogeneous performance of Italian local health authorities, which follow the traditional North-South divide 
(e.g. Baldi and Vannoni, 2015). 
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inter-regional mobility, compared to the absence of mobility, might ensure an increase of 

overall welfare, though with asymmetric effects. There is a benefit for all patients living in the 

high-performing regions and those moving there for hospital care, and a loss for patients 

receiving care in the low-performing regions (Brekke et al. 2014). 

The above-mentioned models of bilateral spatial competition have a natural empirical 

counterpart in terms of gravity models, in which patient flows between pairs of RHSs are 

influenced by “mass” indicators at origin and destination and depend negatively on the 

distance between the two “trading” areas. The gravity model has been widely used to analyse 

patient flows among competing hospitals (e.g., Congdon, 2001; Lippi Bruni et al., 2008) and 

physicians (Schuurman et al., 2010). Much of the extant empirical literature on patient 

mobility across jurisdictions, however, has focused on the determinants of net patient flows: 

Levaggi and Zanola (2004) and Cantarero (2006) at the regional level, Shinjo and Aramaki 

(2012) at the level of local healthcare areas. Fabbri and Robone (2010), instead, estimate a 

gravity model for bilateral patient flows occurred in 2001 across 171 Italian Local Health 

Authorities (LHAs), which are accountable for healthcare delivery. They include indicators 

for technology, presence of hospital trusts and factors characterizing the origin-destination 

pair. They also account for geographical patterns by including a set of measures based on 

distances between LHAs and use a spatial filtering technique to purge potential network 

autocorrelation, which typically characterises migration flow data. The analysis reveals the 

existence of important scale effects and that, ceteris paribus, the gradient of patient flows is 

from poorer to richer LHAs. 

We contribute to the current debate on the determinants of patient mobility by analysing 

their evolution after the accomplishment of the decentralisation process of the NHS, by 

estimating a dynamic panel gravity model for bilateral inter-regional flows, which explicitly 

accounts for the existence of spatial spillovers. 
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3. Data and variables  

3.1 Inter-regional patient flows in the Italian NHS 

We use administrative data on hospital discharges occurred yearly over the period 2001-

2010 in all public and private licensed hospitals of the 21 Italian RHSs. Information on 

inpatient care is collected by each hospital at the time of discharge and transmitted to the 

Ministry of Health. Each admission episode is classified using the United States Medicare 

DRG and the actual length of stay is reported. The data at hand contain valuable information 

about hospital type, LHA and region where the admission occurred, as well as patient’s LHA 

and region of residence. 

For the purpose of our analysis, we focus on deliberate mobility for treatments, which, in 

principle, is available in each region. Therefore, we discard non-deferrable mobility which 

can be observed in the case of the accidental presence of an individual in a region different 

from that of residence, or just as the outcome of central planning about the location of some 

highly specialized treatments, such as transplants.2 

The unit of analysis is represented by pairs of regions that exchange patients. For each 

year, we construct a 21x21 OD matrix that describes patient flows by aggregating the number 

of admissions of patients from each possible region of origin (enrolees in region i) in public or 

private licensed hospitals of each possible region of destination (region j). The main diagonal 

of each matrix is set to zero to exclude intra-regional flows. This leaves us with 420 bilateral 

OD patient flows per year. 

                                                 
2 In view of that, we have excluded the admissions classified in three Major Diagnostic Categories (MDC) 
related to “Injuries, Poison and Toxic Effect of Drugs”, “Multiple Significant Trauma” and “Burns” and in all 
the DRG related to transplants. Admissions in the first two MDCs most likely represent unavoidable mobility 
given that the choice to seek care outside the origin region is hardly attributable to a deliberate decision of the 
patient but rather to the occasional presence in another region. The provision of specialised hospital treatments 
for burns and transplants is centrally planned and provided at an inter-regional scale. For a similar reason, we 
have also excluded admissions episodes occurring in two hospitals located in Lazio, “Bambin Gesù”, which 
delivers highly specialised neonatal care and treatments for children with rare diseases, and “Smom”, which 
delivers rehabilitation and neuro-rehabilitation services. 
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Table 1 describes inter-regional flows for all types of admissions (henceforth Total Flows), 

and for specific types classified as Surgery, Medicine and Cancers. Surgery and Medicine 

consist of admissions in any surgical and medical DRGs, respectively; the former, entailing 

higher clinical complexity, are typically reimbursed on the basis of higher tariffs. Cancers 

include all cancer-related admissions, which can be very heterogeneous in terms of clinical 

complexity and resource intensity and are often associated with long-distance travels toward 

high-specialized centres. 

In the period 2001-2010, an average of 832,410 admission episodes per year occurred in a 

region different from that of residence. Inter-regional mobility amounts to approximately 7 

percent of total admissions. Table 1 also describes the geography of hospital admissions. It 

shows that patients tend to move mainly from southern to central-northern regions and that 

approximately 45 percent of total mobility is generated by southern regions. 

In Table 2 we report four mobility indicators computed at region and macro-region level in 

the years 2001 and 2010: the creation rate (percentage ratio between the outflows of a given 

region and the total number of patient flows), the attraction rate (percentage ratio between the 

inflows of a given region and the total number of patient flows), the outflow rate (percentage 

ratio between the outflows of a given region and the total number of admissions of the 

region’s enrolees) and the inflow rate (percentage ratio between the inflows in a given region 

and the total number of the region’s admissions). 

All mobility indicators described in Table 2 exhibit large regional variation, suggesting the 

existence of clear spatial patterns. On average, the creation rate is higher in the central-

northern regions than in the southern ones. Regional disparities, however, are slightly 

decreasing over time, as described by the coefficient of variation (it moves from 0.62 to 0.59). 

In 2010, in fact, the regions that create more inter-regional mobility are those most densely 

populated (i.e., Campania, in the South, Lombardia, in the North and Lazio, in the Centre). 
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With respect to 2001, only Sicilia leaves the group of the four regions that create more 

mobility. The smallest and least populated regions (Valle d’Aosta, Provincia Autonoma di  

Bolzano, Provincia Autonoma di Trento, Friuli Venezia-Giulia, Molise) and Sardegna, most 

likely due to insularity, generate less than 2 percent of total flows, a figure that is very stable 

over time. We find a clear dichotomy between the southern regions (18.2) and the rest of the 

country (81.8) in the attraction rate for 2010. These figures have basically not changed since 

2001. The distribution of the attraction rate is quite dispersed, while the distance between the 

regions with the highest and lowest rates (Lombardia and Valle d’Aosta) is slightly shorter in 

2010. The regions that admit more non-resident patients are Lombardia, Emilia-Romagna and 

Lazio (with attraction rates of 18.7, 14.6 and 9.8 percent, respectively). 

The inflow rate confirms the limited role played by southern RHSs (3.8 in 2010) as 

destinations for patients seeking care outside the home regions when compared to centre-

northern RHSs (9.20). Although to a lesser extent, the reverse is the case when considering 

the outflow rate. We further examine patient flows in each region using the mobility index, 

which measures the ratio between the inflow and the outflow rates. It takes values larger than 

1 when the RHS is a net importer of patients (net exporter of hospital admissions) from other 

RHS, thus being able to offset the outflows with larger inflows. Figure 1, which depicts the 

mobility index in 2001 and 2010, confirms the presence of spatial patterns in patient mobility. 

These are likely due to the influence of demand and supply features of the RHSs at origin and 

destination and seem to reflect the well-known North-South economic divide, as richer and 

better equipped regions effectively attract more patients and resources. 

3.2 Characteristics of regions at origin and destination  

We illustrate the variables that are expected to influence patients’ choice as well as the 

ability of the RHS to restrain outflows and attract inflows of patients, distinguishing between 
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potential push (at origin) and pull (at destination) factors. The reader can find a complete 

description of all variables used in the econometric analysis in Table 3. 

Patient outflows are expected to be directly proportional to the economic mass of the origin 

region. As mass variable we consider Population, which indicates the number of enrolees at 

the RHS and approximates the internal demand for healthcare in each RHS. Bigger regions 

have a higher internal demand of hospital care, which might induce more variety in the range 

of specialised health services provided in the area. Furthermore, higher populated regions may 

exploit economies of scale, leading to cost minimization as well as more and better services. 

For these reasons, highly populated regions should be able to restrain patient outflows better 

than small regions. 

We then consider per capita Gross Domestic Product (GDP), which may account for both 

micro and macro level effects. The former effect is related to the patient ability to travel and 

seek care outside the region of residence (the hypothesis is that richer individuals have a 

wider range of hospitals choice, being less constrained by travel and accommodation costs). 

The macro-level income effect is related to the ability of the RHS to provide efficient and 

high-quality hospital services (poorer regions would experience outflows of patients towards 

richer regions). At destination, both population and per capita GDP are expected to have a 

positive effect on the number of admissions for extra-regional patients. Among the origin 

features, we also include two demographic indicators, population age 0-14 and population 

over 65, that capture the effect of belonging to the frailer population groups on the likelihood 

of seeking care in extra-regional hospitals.  

Other factors that can influence bilateral flows are indicators of hospital supply at the 

regional level. We measure hospital capacity using the number of beds in public hospitals and 

in private licensed hospitals to capture any potential effect of the public-private mix. An 

excess of hospitals beds is typically considered a signal of bad management, which can 
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translate into a waste of resources, as well as worse quality.3 Thus, on one side, we could 

expect that a RHS becomes more inefficient as the number of beds increases, and this should 

explain larger (smaller) patient outflows (inflows). On the other side, a higher hospital 

capacity is likely to lower waiting lists, and this should be perceived by patients as an 

improvement of the regional offer of hospital services leading to smaller (larger) outflows 

(inflows).  

We also consider a technology endowment index (TEI). Following a methodology recently 

proposed by the Italian National Institute of Statistics to measure the infrastructural 

endowment of the RHSs, we apply the “method of penalties by coefficient of variation” to 

build a composite index based on a set of 25 indicators of the number of medical devices 

available each year in each region (for details, see Mazziotta and Pareto, 2015).4 This method 

is based on the assumption of non-substitutability of the single indicators. To compute the 

composite index each indicator is rescaled according to population in each region and then 

standardized. The average of the standardized values of each region is corrected by 

subtracting a quantity proportional to the coefficient of variation. This ensures that regions 

which exhibit a strongly unbalanced technological endowment are penalized; the higher the 

TEI the higher the availability and the comprehensiveness of the technological endowment 

among the single indicators values. Therefore, regions with a high TEI are expected to 

restrain patient outflows and increase the inflows. 

                                                 
3 For this reason, the Italian government is used to set national targets on the bed-population ratio. Because 
targets have changed repeatedly over time, we cannot build an indicator of efficiency based on the distance 
between the observed number of beds and the national target for each of the years considered. 
4 The devices considered are those reported in the yearbooks of the Italian NHS: automated immunochemistry 
analyser, linear accelerator in radiotherapy, immunoassay analyser, anaesthesia machine, ultrasound imaging 
system, haemodialysis delivery system, computerised gamma camera, differential haematology analyser, 
analogue x-ray system, surgical light, monitor, mobile x-ray system, computerized axial tomography (CT), 
magnetic resonance imaging, medical imaging table, continuous ventilator system, digital angiography systems, 
hyperbaric chamber, computerised gamma camera, mammogram, positron emission tomography (PET), 
integrated PET-CT, operating table, and two types of panoramic radiography machines. 
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We also include the case mix index (CMI), the comparative index of performance (CIP) 

and an indicator of concentration of the organizational structure. These indicators are 

computed using all admissions records occurred yearly in the regional hospitals from the 

hospital discharge data and they are meant to describe the distinctive features of each RHS. 

Because inter-regional patient flows are only a small share of total admissions, we can 

reasonably rule out any reverse causality issue.  

The CMI allows us to compare the RHSs on the basis of the financial and physical 

resources allocated to treat all hospital admitted patients. A value greater than 1 indicates a 

mix of cases more resource-intensive than average. Hence, at the regional level, the CMI can 

be viewed as an index for specialization in cases with higher resource intensity. It is worth 

noting that specialization could be either a demand-driven phenomenon, or the result of the 

interplay between RHS strategies and patient needs. On the one hand, we could expect that 

patients are attracted by the RHS that are known for being specialized in highly complex 

cases. On the other hand, such specialization could induce an increase (reduction) in outflows 

(inflows) of patients who are forced to seek the less complex care (e.g., because of long 

waiting lists) in other regions. In this case, the hospital’s decision to privilege cases with 

higher resource intensity might be related to higher profit margins. In this regard, the raw data 

suggest some convergence in the regional CMI for the period 2001-2010: central-northern 

regions exhibit initially higher (and decreasing) CMI and higher inflow rates, while southern 

regions exhibit a lower (and increasing) CMI and lower inflow rates.  

The CIP measures the relative performance of the RHS in managing hospital length of 

stays. A CIP up to value 1 indicates that, assuming equal complexity, hospital stays are 

shorter (or have the same length) than at the national level, thus suggesting higher (or equal) 

efficiency relative to the standard. The conventional interpretation would be that inefficiency 

(higher values of CIP) increases outflows and makes a region less able to attract extra-
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regional patients. An additional reading of the link between CIP and patient mobility could be 

that longer hospital stays (for any given case-mix level) are associated with the subjective 

perception of the patients of a better hospital care quality, in which case the effect would be to 

decrease outflows at the origin and increase inflows at the destination. 

For each region, we also build an indicator of concentration of the organizational structure 

using the Hirschman-Herfindahl index (HHI), where the shares are calculated as the ratio of 

admissions in a given hospital type over total admissions.5 The HHI reflects regional 

differences among organisational strategies about the hospital care network. The effect of 

higher concentration is more easily understood in terms of reduced variety. At origin, a 

reduction of variety on the supply side, by limiting the patient choice set, can negatively affect 

the perceived quality, thus leading to a rise in outflows. Similarly, if the destination region is 

characterised by a greater concentration, inflows are expected to decrease. By contrast, a 

higher variety of providers is expected to restrain outflows and increase inflows.6 Finally, we 

include geographical dummies for the three macro-areas of the country (South, North and 

Centre). As a matter of fact, historically, Italian regions display strong asymmetries in terms 

of geographical size, per-capita income, population and accessibility to transport networks. 

3.3 Region-pairs characteristics 

Within the gravity model framework, one of the most important determinants of bilateral 

flows is geographical distance. Because it acts as a proxy for transportation and information 

costs, it is expected to exert an adverse effect on patient mobility. 
                                                 

5 In Italy, there are eight types of RHS-financed hospital care providers. In 2010, approximately 34% of public 
hospitals are run by LHAs (approximately 24% of total inter-regional flows); 10.2% are autonomous public 
enterprises (13.6% of inter-regional flows); 4.6% are scientific institutes for research, hospitalization and 
healthcare (17% of inter-regional flows) and 2.2% are medical school hospitals (16% of inter-regional flows). 
Private licensed hospitals represent approximately 45% of the total number of providers, and have the same 
share of flows attributed to the LHA public hospitals. Research centres, classified hospitals and LHA-qualified 
institutes account for 0.2, 2.3 and 1.6% of total providers, respectively. 
6 We cannot exclude that some degree of homogeneity in the organisational structure of hospital care may entail 
some advantages, e.g., in terms of higher efficiency due to the exploitation of economies of scale and more 
effective financial planning. However, we do not expect that these effects offset the benefits arising from higher 
variety. 



13 
 

The distance effect might be moderated by other factors. We include in the model a 

measure of past migration flows that occurred between each OD pair in the previous five 

years. This indicator is expected to have a positive impact on patient mobility because past 

migrations can represent a local source of knowledge about medical services for non-resident 

patients. We also include a measure of political similarity to capture factors such as 

institutional collaboration in managing hospital care between regions belonging to the same 

political coalition. Politically closer regions should be more likely to “trade” hospital 

admissions either because of shared information on best practices in other regions or strategic 

cooperation in investing in complementary healthcare services, particularly cross-borders. 

4. Methodology  

The empirical analysis is conducted within a gravity model framework for panel count 

data. We adopt the following exponential functional form for the conditional mean of the 

process: 

E�Yijt|Xt,αij�=αij exp �Xitβo+Xjtβd+Xijtβod + distijγod�   (1) 

where the subscript i refers to the region of Origin, j to the region of Destination and t to time, 

with 𝑡𝑡 = 2001, … , 2010. The observations in each year refer to pairs of OD regions, 

𝑖𝑖𝑖𝑖 = 1, … , 420. 𝐘𝐘ijt is the number of admissions of patients resident in region i who seek 

hospital care in region j at time t. The matrices 𝐗𝐗it and 𝐗𝐗jt include the variables describing the 

most salient features of the regions at origin and destination, respectively. The matrix 𝐗𝐗ijt 

includes the variables that represent the distinctive traits of each region pair. The variable 

𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝ij captures the geographical distance between regions in each OD pair. The term αij is the 

individual pair effect. 

The estimation of model (1) requires addressing the methodological challenges posed by 

the estimation of short panel count data models when cross-section dependence, 
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overdispersion, unobservable heterogeneity and serial correlation are possibly present. For 

consistency of the estimators, estimation of (1) based on the Poisson density requires cross-

section independence and strict exogeneity of the regressors, while serial correlation could be 

allowed for as long as the dynamics is correctly specified by an adequate number of lagged 

terms. In what follows, we explain how we tackle each feature of the data to ensure the use of 

consistent estimators. 

Flow data are typically characterised by cross-section dependence induced by correlation 

in space (Griffith and Jones, 1980; Le Sage and Pace, 2008 and 2009). The latter arises 

because flows of a given origin are influenced by the features of the neighbouring regions. 

Analogously, flows towards a specific destination respond also to features of the nearby 

destinations. The traditional gravity model is underspecified as it relies just on a function of 

the OD distance to clear spatial correlation and insure cross-section independence. In our 

analysis we explicitly account for the existence of spatial spillovers for both methodological 

and substantive economic motives. As emphasised in LeSage and Pace (2009), overlooking 

spatial spillover may result in biased and inconsistent estimators. Moreover, the existence of 

spatial spillovers posits unavoidable challenges to regional policy makers and RHS managers, 

as will be discussed in detail in the results session of the paper. 

Elhorst (2014) and Vega and Elhorst (2015) propose a very flexible approach to deal with 

spatial spillovers, which can be straightforwardly applied also in the case of nonlinear count 

data models.7 Following their Spatial Lag of X (SLX) model approach, we tackle spatial 

dependence by including spatial lags of the explanatory variables, which are computed by 

pre-multiplying a given regressor by the row-standardized matrix of the inverse distance (in 

kilometres) between any two regions. The resulting matrix (𝐖𝐖𝐖𝐖it or 𝐖𝐖𝐖𝐖jt) is the weighted 

                                                 
7 Note that the Poisson or negative binomial estimation procedure has not yet been developed for the Spatial 
Autoregressive model (LeSage and Thomas-Agnan, 2014). Moreover, we do not consider the Spatial Error 
Model specification because it rules out spillover by construction. 
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average of the neighbouring regions values, with weights declining as a function of distance. 

When spatial lags are included, the effect of a given variable becomes more complex: its total 

effect can be decomposed into a direct component, due to changes occurred in a region’s own 

variable, and an indirect or spillover one, caused by changes in the same variable taking place 

in neighbouring regions, at origin or destination. It is worth noting that in the SLX 

specification spillovers are local in nature. Moreover, differently from other widely applied 

spatial specification (such as the spatial autoregressive one) in the SLX model the ratio 

between the direct and the indirect effect is not constrained to be the same across the 

explanatory variables. In our empirical model we account for additional spatial dependence by 

also including regressors observed at the region-pair level. As mentioned in Section 3, besides 

geographical distance, we consider past migration flows and the political similarity indicator. 

With regard to overdispersion, we follow the usual approach with count data models and 

adopt a negative binomial-type 2 (NB) density. Overdispersion is often due to unobservable 

heterogeneity, the treatment of which is intrinsically intertwined with how the individual αij 

terms are actually specified. For inter-regional patient flows, the term αij may be seen as the 

unobservable propensity of the origin i patients to seek care in a given destination j. In the 

case of a single cross-section, controlling for heterogeneity only relies on observed attributes, 

and the estimators may be inconsistent due to unobservable factors. For this reason, by 

exploiting the longitudinal feature of our dataset, we propose a model that allows for 

correlation between unobservable effects and observed regressors. In panel data models, this 

is typically done by using the standard fixed-effect (FE) estimator. However, for counts in 

which overdispersion is addressed using the NB density, a conditional FE estimator does not 

exist, as demonstrated by Allison and Waterman (2002). The unconditional FE estimator, 

consisting in including indicator variables for all region-pairs, is not feasible due to the 

incidental parameter problem (IPP) when T is short and N is large, as is the case for our 
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sample. Besides, in NB models such estimator is problematic because the fixed effects are 

built into the distribution of the gamma heterogeneity, not the mean as in Poisson models, and 

the IPP leads to underestimated standard errors (Hilbe, 2011). The only feasible model is a 

(beta-distributed) random effects model, which assumes independence between the regressors 

and the unobservable effects. This would be a strong assumption in our case, because it would 

imply that the unobservable term αij depends neither on the characteristics of each region nor 

on those of the region pair.  

A way to relax this assumption is to assume that exogenous regressors and the 

unobservable effect are conditionally correlated. This approach, originally developed by 

Mundlak (1978) and Chamberlain (1982) in the context of linear panel models, can be seen as 

a way to combine the fixed and random effects approaches to obtain some of the virtues of 

each. In fact, in the context of our model, it handles correlation between the pair-specific 

unobserved effect,  αij, and the time-varying regressors. More specifically, the resulting 

conditionally correlated random effect (CCRE) model specifies αij as a function of the time-

averages of all time-varying exogenous regressors. 

Therefore, in our gravity model for bilateral flows, the unobservable effects are assumed to 

be correlated with the time-averages of region-pair regressors, 𝐗𝐗�ij = 1 T∑ 𝐗𝐗ijtT
t=1⁄ , as well as 

origin and destination variables, 𝐗𝐗�i and 𝐗𝐗�j, and spatial lags of the same variables. The 

multiplicative form of the individual terms in (1) allows us to account for the correlation 

between individual effects and the regressors by simply augmenting the conditional mean 

with the complete set of their time-averaged counterparts. Hence, the CCRE-NB model can be 

estimated using a standard random effect (RE) estimator. Besides overcoming the strong 

assumption that αij are independent of regressors, this model also allows to estimate the 

coefficients of the time-invariant regressors (e.g. geographical distance), which would be 

removed in a standard FE model by construction. 
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Finally, we address the possible serial correlation issue. To account for this aspect of the 

data, we include year dummies, which are supposed to capture the effect of macro shocks 

common to all the region pairs, and the first lag of the dependent variable, making the model a 

dynamic CCRE-NB specification.8 Having a short panel, we have to account for the effect of 

the initial conditions: we rule out any correlation between them and the individual pair effect 

(αij) by employing the conditional approach proposed in Wooldridge (2005), which rests on 

the Mundlak correction and entails specifying the αij terms as a function, not only of the 𝐗𝐗�ij, 

𝐗𝐗�i and 𝐗𝐗�j but also of the initial period value of the dependent variable.9 The final specification 

of the conditional mean of the inter-regional patient count flows is: 

with  αij=exp �Yij,0δ+X� iλo+X� jλd+X� ijλod+WX� iϕow+WX� jϕdw+εij� 

and where 𝐘𝐘ij,t−1 is the one period lagged dependent variable and 𝐘𝐘ij,0 its initial period value, 

θt is a vector of year dummies and εij is a pure random term, that may be seen as 

unobservable heterogeneity uncorrelated with the regressors. The other terms are the same as 

in (1). 

The specification reported in (2), by simultaneously accounting for the main features of our 

flow count data - overdispersion, unobservable heterogeneity, cross regional and serial 

correlation - and including a comprehensive set of pull and push factors, is expected to 

provide an accurate representation of the conditional mean of our response variable. 

                                                 
8 In preliminary analysis, we investigated the dynamic structure of the model, and we found that no additional 
lags of dependent variable and regressor lags were significant. 
9 Note that when the lagged dependent variable is included, the strict exogeneity assumption no longer holds; in 
this case, it is necessary to resort to sequential exogeneity (Wooldridge, 2010).  

E�Yijt|Xt,αij�=αij exp �Yij,t-1γ+Xitβo+Xjtβd+Xijtβod+distijγod+WXitβow+WXjtβdw+θt�  (2) 
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5. Results 

5.1 Total inter-regional patient flows 

In this section we present estimates of the gravity model for the total inter-regional 

bilateral patient flows occurred in the period 2001-2010, using a quasi-balanced panel of 

observations.10 Table 4 compares results that are obtained by estimating a static RE model, a 

CCRE model that relaxes the assumption of independence between the regressors and the 

unobservable effects, and the dynamic version of the CCRE model, as reported in equation 

(2).  

Before discussing in detail the estimated effects, we compare the models on the basis of the 

Likelihood Ratio (LR) tests, reported at the bottom of the Table. The first one tests the joint 

significance of the coefficients of the time-averages of the regressors and their spatial lags 

included in the CCRE (Debarsy, 2012). The null hypothesis is strongly rejected, meaning that 

the model should include individual fixed effects to better address unobservable 

heterogeneity. For this reason, we are not going into the details of the RE estimation results 

displayed in the first column of Table 4. The LR-test in the last column of the table tests the 

joint significance of the dynamic component (𝒚𝒚𝑖𝑖𝑖𝑖,𝑡𝑡−1 and 𝒚𝒚𝑖𝑖𝑖𝑖,0) coefficients. The rejection of 

the null hypothesis provides strong evidence of correlation between the individual pair terms 

and the time-varying regressors and allows us to conclude that the dynamic CCRE fits the 

data better than the static CCRE.11 It is worth noting that the squared correlation between 

actual and fitted values slightly decreases in the dynamic CCRE model with respect to its 

static counterpart (0.503 vs. 0.583). This is reasonably due to the loss in degrees of freedom 

as explained by Cameron and Trivedi, 2013). The lagged dependent variable has a highly 

                                                 
10 Because of under-reporting, we drop records for the Sardinian patient flows in 2009. 
11 The reported dynamic CCRE specification, which specifies the individual pair terms 𝛼𝛼𝑖𝑖𝑖𝑖 as a function of the 
averages of both time-varying origin and destination characteristics and region-pairs regressors (see (2)) 
outperforms, in terms of the LR-test, the two more parsimonious specifications which only include one set of 
average terms at a time.  
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significant coefficient, confirming the existence of inertia in patient flows. Although for count 

data a positive autocorrelation coefficient implies an explosive dynamics, its magnitude – 

only slightly greater than zero – coupled with the negative coefficient of the initial value term, 

entails a very mild persistence. This result might be an issue for the long-run financial 

sustainability of the current decentralised setting of the Italian NHS. This could be 

particularly the case when relevant geographical and economic factors affecting patients 

mobility are not under the direct control of the regional governments. 

We now turn to the discussion of the estimated effects of the dynamic CCRE, reported in 

the third column of Table 4. Because the explanatory variables are log-transformed, the 

estimated coefficients can be interpreted as direct elasticities or indirect (spillovers) 

elasticities for the spatially lagged terms.12 In terms of significance of the regressors, moving 

from the static to the dynamic version of the CCRE specification leads to the loss of 

explanatory power of population and the direct effect of concentration of the organizational 

structure (HHI). GDP per capita has a positive and significant effect only at destination, 

suggesting that patient flows are attracted by regions that are supposed to offer better and 

more efficient hospital care. A 10 percent increase in GDP per capita increases inflows of 

about 7.6 percent. 

The RHSs supply factors, represented by the number of beds, the TEI, the CMI, the CIP 

and the HHI, are highly significant. A greater capacity of public hospitals discourages 

outflows and increases inflows at destination: the coefficient at destination is particularly 

sizeable when compared to the analogous coefficient at origin. The effect of a 10 percent 

increase in this covariate entails a reduction of 1.1 percent in outflows and an increase in 

inflows of 8.2 percent. In light of this result, the national policies that promote hospital bed 

rationing to enhance the economic efficiency of the NHS have important effects in terms of 

                                                 
12 Being the model dynamic, by interpreting the coefficients as direct and indirect effects implies focusing on 
short-run effects.  
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inter-regional mobility. In this regard, Section 6 will illustrate the simulation of a specific 

policy scenario derived by setting the total number of beds in each RHS at the recommended 

national target.  

The CMI exhibits a positive and significant coefficient at origin, thus specialisation in 

treatments with higher resource intensity is associated with higher outflows. At the same time, 

the negative coefficient at destination indicates that inflows are discouraged. These results are 

expected when the specialization in more resource-intense cases is associated with a reduction 

in the provision of less resource-intense care, in which the RHS could have no strategic 

advantage to specialize. A higher CIP (indicating lower efficiency) negatively affects patient 

flows at both locations. However, this result is not consistent with a unique interpretation: it 

seems to indicate that less efficient RHSs are less attractive, but also more capable to restrict 

outflows. In the latter case, inefficiency in managing length of stay might be associated with a 

perception of better quality in hospital care, which reduces outflows, as argued in section 3. It 

is worth noting that, at least when focusing on total flows, the regional technological 

endowment and the hospital organizational structures do not play any significant role in 

shaping inter-regional patient flows. 

The cross-region dependence arising from local externalities is accounted for by origin and 

destination spatially lagged terms. The coefficients of such variables can be interpreted as 

indirect effects arising as the result of a change in a given variable occurring in the focal 

region’s neighbours. The spatial lag of GDP per capita is significant only at destination, 

where it exhibits a negative coefficient. This could indicate that richer neighbouring RHS, 

expected to provide more efficient and effective health treatments, compete with the focal 

RHS in attracting patients. Relevant spillover effects are related to hospital capacity: outflows 

towards a specific region increase with the number of beds in public hospitals in the 

neighbouring RHSs, whereas they are slightly crowded out by a higher number of beds in 
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private hospitals in the same RHSs. The technology endowment of proximate regions plays a 

relevant role at origin, determining an increase in outflows. Conversely, the spatial lags of the 

CMI and HHI indicators at origin reduce the outflows, meaning that neighbouring RHSs 

offering less diversified and less specialized hospital services are not viewed as attractive 

alternatives. Similarly, the negative effect of the spatially lagged CIP indicator suggests that 

efficient RHSs have an advantage over inefficient neighbouring regions. At destination, we 

find a symmetric (positive and significant) effect for the spatially lagged term of the HHI. 

This indicates that the ability to attract non-resident patients is enhanced from being located 

close to less diversified RHSs. 

Among the determinants at the region-pair level, geographical distance, which is 

fundamental in explaining spatial patterns in patient mobility, exhibits the expected adverse 

on inter-regional flows. On the contrary, political similarity between regions is effective in 

enhancing bilateral patient flows, confirming our hypothesis that politically aligned regions 

are more likely to exploit complementary healthcare services and share information on the 

extra-regional availability of healthcare services. Conversely, past migration flows are not 

associated with any significant effect. 

Finally, the model also includes the South and North dummies. The former, being 

significantly negative at destination, signals the low attractiveness of southern RHSs vis-à-vis 

non-resident patients.  

5.2 Specific inter-regional patient flows 

We now focus on the models estimated for different types of admissions classified as 

Surgery, Medicine and Cancers, using the same dynamic CCRE specification used for the 

total patient flows as in Table 4. Table 5 reports the estimation results. 

Differently from the general model, where the mass variables have a marginal role in 

explaining OD patient flows, population, along with GDP per capita, has significant direct 
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and indirect effects. As the size of the population increases, the number of admissions outside 

the region of residence for Surgery, for which patients are likely to require more complex and 

resource intensive care than patients admitted in medical DRGs, significantly increases. By 

contrast, the ability to attract cancer patients from other regions decreases. These results are in 

line with previous findings provided by Fabbri and Robone (2010), who found that the 

outflows (inflows) elasticity of population is positive (negative) and particularly large for the 

most complex treatments. Turning to GDP per capita, a 10 percent increase makes surgical 

patients outflows decrease by approximately 4 percent, while medicine and cancer patient 

inflows increase by 8.5 and 12.2 percent, respectively. Our analysis additionally shows 

evidence of spillover effects: the proximity of smaller RHSs helps in containing outflows in 

all the three cases considered and in attracting inflow in the Medicine and Cancers model. 

Richer neighbouring regions discourages surgery outflows and all types of inflows. 

The number of beds in public hospitals is particularly important to attract inflows in all 

models. The corresponding elasticity, which is about 0.76 in the Medicine model, increases 

with complexity and it is closer to unit in Cancers model. The capacity of private hospitals 

significantly reduces surgical patients outflows only. Indirect effects of hospital capacity are 

present in all models and highly significant particularly for Cancers, where an increase of 10 

percent in the number of beds of private hospitals in proximate regions leads to more outflows 

(1.4 percent) and lower inflows (-2.7 percent). A corresponding increase in the public 

hospitals leads to a decrease in outflows of 9.7 percent and an increase of inflows of 47 

percent. Differently from total patient flows, the technology indicator plays a central role in 

the Cancers model, where inflows increase of approximately 16 percent for a 10 percent 

higher TEI. A higher TEI in the proximate regions has the effect of increasing surgical 

patients outflows.  
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The positive effect of the CMI at origin and the symmetric negative effect at destination 

discussed when interpreting the general model, are found for Surgery and Medicine, 

respectively. Also the negative spillover effect at origin is confirmed in the same models. 

Additionally, we find that it operates at destination for Medicine, suggesting that a given 

destination can more easily attract extra-regional patients when its surrounding regions are 

relatively specialized in resource-intensive treatments. As a push factor, the CIP is statistically 

significant only in the model for Medicine. As a pull factor, it keeps its significance in all 

models and exhibits the largest effect for Surgery. A 10 percent higher level of this 

inefficiency index for the proximate RHSs increases inflows in the Medicine and Cancers 

models (about 34 and 82, respectively) but has a negative effect on surgical patient inflows. 

Finally, the HHI is a significant push and pull factor for Surgery: as concentration in the 

organisational structure increases, the outflows increase and the inflows decrease. This 

variable also entails relevant negative indirect effects at origin in all models and positive 

indirect effects in the Medicine and Cancers models. For example, cancer patient outflows 

(inflows) decrease (increase) up to 24 (47) percent when the HHI in the proximate regions 

increase of 10 percent, suggesting that regions with less diversified hospital services are not 

viewed as attractive alternative destinations. 

The signs of the geographical dummies confirm the general spatial patterns of the OD 

patient flows discussed in Section 3. Moreover, we find that, for Surgery and to a lesser extent 

for Medicine, the North dummy is negative and significant at destination, suggesting that 

surgical patients inflows are lower in northern regions than in central ones. The distance effect 

is greater for Cancers, probably because of the length of specific treatments that often require 

multiple daily admissions in hospital. Political similarity seems to be relevant for both 

Surgery and Medicine. 
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Overall, our results depict a very complex picture of the patient inter-regional flows in 

Italy by highlighting how the effects of some key variables vary according to the RHS being 

seen as an origin rather than a destination and how such effects are amplified or moderated by 

neighbouring RHSs. 

6.  A post-estimation policy scenario 

Estimation results can be used to evaluate ex ante the effect that either national or regional 

policies, affecting some determinants of bilateral OD flows, might have on inter-regional 

patient mobility. As an example, here we focus on hospital capacity, which has repeatedly 

been the target of bed rationing policies decided by the central government to improve the 

cost-efficiency of the NHS. Namely, we calculate the proportional change and the net change 

in outflows, as well as in inflows, using patient mobility data in 2010 and estimates from the 

general model for total flows. 

Because our gravity equation specifically distinguishes between regional characteristics at 

origin and destination as potential determinants of OD patient flows, we need to consider 

simultaneously the proportionate change in flows generated by changes in a covariate at 

origin and at destination. Therefore, we measure the proportionate change in total outflows 

from origin i as: 13 
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where 𝐘𝐘i = ∑ 𝐲𝐲ij
j=21
j≠i . After some algebra this is equal to: 
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13 For the sake of simplicity, in the following, we omit reporting the time subscript and the unobservable αij. 
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where the parameter at destination βdk multiplies the weighted average of the relative 

variations of the covariate at destination, using as weights the share of outflows to a given 

destination ωij = 𝐲𝐲ij 𝐘𝐘i⁄ . Similarly, one could derive the expression for the proportionate 

change in total inflows at destination j.  

Table 6 displays results from the scenario that would follow if each RHS modifies the total 

number of beds to adjust to the most recent bed-population ratio target recommended by the 

central Government (3.7 beds per 1,000 inhabitants).14 The 2010 data indicate a relevant 

regional variability in the bed-population ratio, with the indicator ranging from 3.5 

(Campania) to 5.4 (Molise). Direct and indirect effects are calculated using the elasticities of 

beds in public hospitals at origin and destination, and those of the corresponding spatial lags 

(last column Table 4). Seventeen out of twenty-one regions should cut beds by a proportion 

included in the range 4.5 – 31.0 percent (see column required adjustment). This would lead to 

an overall reduction of patient mobility of 9 percent (66892 admission episodes) in a year. 

This figure is largely affected by the direct effects of adjustment to the national benchmark in 

each region (both on outflows and inflows), whereas the indirect effects accounts for 

approximately 32.5 percent of the total effect. Looking at the single regions, seven of them 

suffer a loss in terms of net mobility. For example, the southern region of Campania, with an 

increase of 8.5 per cent in negative net mobility (from -55,310 to -59,988 patients). 

Conversely, the central region of Lazio, for example, would experience a consistent increase 

in its positive net mobility (about 83 percent). This exercise could be extended for the 

calculation of the monetary reimbursement associated with patient flows for each region. 

                                                 
14 In our calculation, we do not consider the hospital capacity of the private licensed hospitals because of their 
minor impact on mobility with respect to public hospitals, as indicated by the coefficients reported in Table 4, 
third column. 
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7. Discussion and conclusions  

Free patient mobility might represent a tool for enhancing the effectiveness and efficiency 

of local healthcare services. However, it may also constitute a challenge for local 

governments in decentralised tax-funded healthcare systems, where the local authority, while 

responding to centrally defined standards, is fully responsible for the organisation and the 

purchase of healthcare services. This risk crucially depends on the ultimate nature of the 

patterns of inter-regional patient flows. 

In this study, we have examined the determinants of inter-regional patient mobility in a 

decentralised context using Italy as a case of study. We have estimated a gravity model for 

bilateral OD patient flows using longitudinal data from hospital discharges that occurred over 

the period 2001-2010. We have addressed all the methodological issues entailed by the 

estimation of short panel models for count data featuring simultaneously cross-section 

dependence, overdispersion, unobservable heterogeneity and serial correlation.  

Our main findings from models estimated for total flows, and specifically for Surgery, 

Medicine and Cancers, indicate that RHSs in the richest regions attract more patients, in 

particular for surgical treatments. The regional characteristics that best explain an RHS ability 

to attract non-resident patients are the number of beds and the performance indicator, whereas 

the technological endowment significantly explains Cancers inflows. At origin, surgical 

patient outflows are higher in regions with a larger population and hence a higher internal 

demand and lower in regions with a higher hospital capacity. Surgical patient outflows are 

particularly responsive to the availability of beds in private hospitals and the diversification of 

the organisational structure in the RHS of origin. More importantly, we find that neighbouring 

regions’ supply factors, specialisation and performance indicators generate significant local 

externalities, which largely explain OD patient flows. 
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From a practitioner’s perspective, our empirical model can also be considered a useful 

policy analysis tool, which can be promptly applied to shed light on the potential 

consequences of health policy interventions on patient mobility based on managing specific 

factors. By way of example, we have performed a post-estimation analysis that allows us to 

offer a better interpretation of the hospital capacity effect on patient mobility. We have found 

that the implementation of the national policy on hospital beds rationing would yield a 

reduction in patient choice, as approximated by inter-regional mobility, of about 9 percent, 

with large geographical variation in the distribution of the financial gains and losses 

associated with patient flows.  

Our econometric analysis has also detected a mildly explosive dynamics in inter-regional 

patient mobility over time. This result, coupled with the significant role played by factors not 

directly controlled by regional policy-makers and RHS managers (such as population, GDP 

per capita and spatial spillovers), might induce a polarisation between the group of the richest, 

most populated and best performing regions, which are increasingly capable of attracting 

more patients, and the group of the weakest regions, with growing outflows and severe 

financial and organizational problems.  

These considerations call for a thorough assessment of the long-run sustainability of the 

current decentralised NHS. RHS budget autonomy could not be entirely consistent with free 

patient choice. This opens a more general discussion on whether and to what extent the health 

financing system would require the introduction of appropriate equalising compensation 

schemes aimed at neutralising the financial consequences of mobility and, eventually, at 

guaranteeing universalism and equity in healthcare. 
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Tables 

Table 1. Inter-regional mobility flows by type of admission and by origin and destination macro-areas 

 
 
 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Total Flows 839,719 836,460 832,831 854,333 858,934 859,413 840,259 828,624 794,028 779,498
Share of Total Flows  over total admissions 6.8 6.8 6.8 6.9 7.0 7.0 7.2 7.2 7.2 7.3

Specific inter-regional flows
Surgery 341,141 349,738 354,197 375,845 380,051 390,071 391,777 395,961 381,764 378,821
Medicine 480,715 468,556 459,902 458,969 459,803 452,003 430,735 414,133 412,264 400,677
Cancers 84,223 83,080 82,405 84,086 86,326 85,253 84,341 81,958 81,532 79,524

Geographical distribution of inter-regional flows (percentages)
From Southern originis 44.96 44.05 43.86 43.88 43.82 43.59 43.23 42.96 43.20 43.45
From Central origins 18.23 18.82 18.82 19.13 19.04 19.06 19.40 19.53 19.53 19.73
From Northern origins 36.81 37.13 37.32 36.99 37.14 37.35 37.37 37.51 37.28 36.82
From Southern origins to Southern destinations 11.49 11.59 11.48 11.56 11.69 11.70 11.54 11.08 10.72 10.92
From Southern origins to Central destinations 14.22 13.65 13.77 13.85 14.12 13.85 13.70 14.12 14.43 14.51
From Southern origins to Northern destinations 19.25 18.81 18.61 18.48 18.01 18.04 18.00 17.76 18.04 18.02
From Northern origins to Southern destinations 3.11 3.26 3.32 3.19 3.11 3.13 2.94 2.86 2.46 2.83
From Northern origins to Central destinations 3.90 3.80 3.83 3.82 3.87 3.95 4.08 4.16 4.32 4.27
From Northern origins to Northern destinations 29.80 30.07 30.17 29.98 30.17 30.28 30.34 30.48 30.49 29.73
From Central origins to Southern destinations 4.36 4.96 5.02 5.23 5.32 5.30 5.04 4.69 4.27 4.46
From Central origins to Central destinations 6.52 6.33 6.32 6.39 6.29 6.22 6.36 6.46 6.71 6.63
From Central origins to Northern destinations 7.35 7.53 7.48 7.51 7.43 7.53 8.00 8.37 8.55 8.64

Note: Flows for Surgery, Medicine do not sum up to Total Flows because admissions in long-term and rehabilitation wards and admissions of healthy babies born at the 
hospital are excluded.  Flows for Cancers include admissions in surgical and medical DRGs of patients diagnosed with a tumor.
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Table 2. Patterns of inter-regional patient mobility (percentages) 

 
.

Regions
Creation 

rate
Attraction 

rate
Outflow 

rate
Inflow 

rate
Mobility 

index
Creation 

rate
Attraction 

rate
Outflow 

rate
Inflow 

rate
Mobility 

index

Piemonte 7.66 5.91 8.00 6.29 0.79 6.37 5.43 6.62 5.70 0.86
Valle d'Aosta 0.60 0.22 20.23 8.49 0.42 0.63 0.25 20.43 9.26 0.45
Lombardia 9.27 20.53 3.88 8.20 2.11 8.79 18.74 4.19 8.52 2.04
Provincia Autonoma Bolzano 0.56 0.80 4.83 6.74 1.40 0.52 0.87 4.11 6.76 1.65
Provincia Autonoma Trento 1.71 1.36 14.45 11.82 0.82 1.77 1.18 15.19 10.69 0.70
Veneto 4.89 8.57 4.45 7.54 1.70 6.14 7.87 6.27 7.89 1.26
Friuli Venezia-Giulia 1.79 2.23 6.98 8.53 1.22 1.81 2.64 7.18 10.11 1.41
Liguria 4.66 5.01 10.05 10.72 1.07 4.95 4.78 11.25 10.92 0.97
Emilia-Romagna 5.66 11.78 5.52 10.84 1.96 5.84 14.62 5.83 13.43 2.30
Toscana 4.34 7.85 5.34 9.26 1.73 5.02 8.96 6.49 11.02 1.70
Umbria 2.00 3.43 9.26 14.91 1.61 2.37 3.09 11.70 14.75 1.26
Marche 3.72 3.17 9.96 8.62 0.87 3.74 3.56 10.82 10.36 0.96
Lazio 8.18 10.19 6.35 7.79 1.23 8.61 9.79 6.57 7.42 1.13
Abruzzo 3.84 4.00 9.59 9.95 1.04 5.05 3.36 16.09 11.32 0.70
Molise 1.85 1.78 22.34 21.75 0.97 1.56 2.43 18.33 25.89 1.41
Campania 10.81 3.03 7.41 2.19 0.30 10.27 3.17 6.98 2.26 0.32
Puglia 6.98 4.71 6.07 4.18 0.69 7.48 3.73 6.76 3.48 0.52
Basilicata 3.78 1.44 23.40 10.42 0.45 2.92 1.97 21.04 15.21 0.72
Calabria 7.47 1.68 13.52 3.39 0.25 7.46 1.06 16.24 2.67 0.16
Sicilia 8.37 1.80 6.31 1.42 0.23 6.82 1.90 6.16 1.80 0.29
Sardegna 1.84 0.52 4.28 1.25 0.29 1.88 0.58 4.86 1.56 0.32
South 44.96 18.96 8.08 3.57 0.44 43.5 18.2 8.57 3.78 0.44
Centre 18.23 24.6 6.78 8.95 1.32 19.7 25.4 7.50 9.46 1.26
North 36.81 56.41 5.70 8.48 1.49 36.82 56.39 6.13 9.09 1.48
Centre-North 55.04 81.04 6.02 8.61 1.43 56.55 81.79 6.55 9.20 1.41

min. 0.60 0.22 3.88 1.25 0.23 0.52 0.25 4.11 1.56 0.16

max. 10.81 20.53 23.40 21.75 2.11 10.27 18.74 21.04 25.89 2.30

range 10.21 20.31 19.52 20.50 1.89 9.75 18.49 16.93 24.33 2.14

coefficient of variation 0.62 0.99 0.60 0.55 0.57 0.59 0.98 0.53 0.61 0.58

std. dev. 2.96 4.74 5.77 4.58 0.57 2.82 4.68 5.40 5.51 0.58

mean 4.76 4.76 9.63 8.30 1.01 4.76 4.76 10.15 9.10 1.01

coefficient of variation 0.62 0.99 0.60 0.55 0.57 0.59 0.98 0.53 0.61 0.58

Notes : the creation rate  is the percentage ratio between the outflows of a given region and the total number of patient flows. The attraction rate  is the percentage 
ratio between the inflows of a given region and the total number of patient flows. The outflow rate  is the percentage ratio between the outflows of a given region 
and the total number of admissions of the region's enrolees. The inflow rate  is the percentage ratio between the inflows in a given region and the total number of 
the region's admissions.

2001 2010
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Table 3. Descriptive statistics, variable definitions and data sources (years 2001-2010)  

 
 

Variable mean st. dev. min max Definition Primary source

Total inter-regional flows 1981.9 3936.5 0 39196 hospital admissions of patients from Origin region i in Destination region j Hospital discharge data - Ministry of Health

Surgery inter-regional flows 890.3 1919.0 0 19250 hospital admissions with surgical DRGs of patients from Origin region i in Destination region j Hospital discharge data - Ministry of Health

Medicine inter-regional flows 1056.6 2025.1 0 19485 hospital admissions with medical DRGs of patients from Origin region i in Destination region j Hospital discharge data - Ministry of Health

Cancer inter-regional flows 198.3 467.2 0 4909 hospital cancer-related admissions of patients from Origin region i in Destination region j Hospital discharge data - Ministry of Health

Population 2805617 2374442 119546 9917714 resident population in a region (annual average) ISTAT

GDP per capita 23950 5889 14831 33464 regional per capita GDP (euros), constant values (2005) ISTAT

Population aged 0-14 (%) 13.88 1.69 10.66 18.51 share of the population aged 0-14 years old ISTAT

Population aged over 65 (%) 20.23 2.68 14.28 26.82 share of the population aged 65 years old or over ISTAT

Beds in public hospitals 10260.6 8666.5 453 40771 number of hospital beds in public hospitals in each region NHS statistical yearbook

Beds in private licensed hospitals 2411.6 2670.5 0 9729 number of hospital beds in private licensed hospitals in each region NHS statistical yearbook

Technology endowment index -TEI 99.21 4.43 88.61 123.81 composite index calculated using 25 medical devices available in each region NHS statistical yearbook

Case mix index - CMI 0.997 0.064 0.892 1.119 ratio between the average weight of admissions in a specific region and the average weight of 
admissions in the whole NHS

Own calculations on Hospital discharge data 

Comparative index of performance - CIP 1 0.112 0.821 1.768 ratio between the case-mix standardised average length of stays in each region and the national 
average

Own calculations on Hospital discharge data 

Organisational structure - HHI 0.471 0.196 0.184 1 Hirschman-Herfindahl index for market concentration in each region Own calculations on Hospital discharge data 

South 0.381 0.486 0 1 1 if Abruzzo, Basilicata, Calabria, Campania, Molise, Puglia, Sardegna or Sicilia Own caclulations

North 0.429 0.495 0 1 1 if Liguria, Lombardia, Piemonte, Valle d'Aosta, Emilia-Romagna, Friuli-Venezia Giulia, PA 
Trento, PA Bolzano or Veneto

Own caclulations

Centre 0.190 0.393 0 1 1 if Toscana, Umbria, Marche or Lazio Own caclulations

Past migration flows 3967 6320 8 47318 residential changes of citizens from Origin i to Destination j in the 5 previous years (stock) ISTAT

Political similarity 0.55 0.50 0 1 1 if the regional governments of Origin i and Destination j share the same political orientation Own calculations

Distance 469.0 248.3 54.5 1125.5 distance in Km between the centroids of Origin i  and Destination j Own calculations
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Table 4. Panel models for total inter-regional patient flows in Italy (2001-2010) 

 
 

Dependent Variable y ijt : Patient flows to Destination j  from Origin i

Negative Binomial models RE CCRE Dynamic CCRE
Origin characteristics

Population 0.654 *** 0.463 * 0.368
GDP per capita -0.341 ** -0.172 -0.200
Population aged 0-14 (%) 0.004 0.020 0.007
Population aged over 65 (%) 0.007 -0.002 -0.007
Beds in public hospitals -0.132 ** -0.095 * -0.112 **
Beds in private licensed hospitals -0.013 * -0.008 -0.008
Technology endowment index -TEI 0.188 0.171 0.120
Case mix index - CMI 0.250 0.311 * 0.345 **
Comparative index of performance- CIP -0.179 * -0.252 *** -0.254 ***
Organisational structure - HHI 0.070 ** 0.075 ** 0.024
South -0.631 *** 0.098 0.411
North 0.356 *** -0.276 -0.352
Spatial lags

Population 0.400 1.847 2.278
GDP per capita -3.751 *** -3.308 *** -1.825 **
Beds in public hospitals -0.445 * -0.327 -0.218
Beds in private licensed hospitals -0.038 ** -0.043 ** 0.003
Technology endowment index - TEI 1.861 *** 2.106 *** 1.534 ***
Case mix index - CMI -4.080 *** -3.856 *** -2.760 **
Comparative index of performance CIP -1.052 -0.724 -1.170 **
Organisational structure - HHI -0.696 *** -0.910 *** -0.849 ***

Destination characteristics
Population -0.506 *** -0.077 0.124
GDP per capita 0.450 *** 0.656 *** 0.761 ***
Beds in public hospitals 1.031 *** 1.030 *** 0.823 ***
Beds in private licensed hospitals 0.010 0.007 0.007
Technology endowment index -TEI 0.102 0.008 0.030
Case mix index - CMI -0.920 *** -0.899 *** -0.714 ***
Comparative index of performance- CIP -0.995 *** -1.128 *** -0.654 ***
Organisational structure - HHI -0.003 -0.093 *** -0.015
South -0.287 *** -1.452 *** -0.966 **
North 0.040 -0.392 * -0.270
Spatial lags

Population -0.591 * 2.690 ** 0.882
GDP per capita -0.556 -3.591 *** -2.041 **
Beds in public hospitals 0.333 0.278 0.484 **
Beds in private licensed hospitals -0.104 *** -0.062 *** -0.067 ***
Technology endowment index - TEI -1.135 ** 0.434 -0.300
Case mix index - CMI -0.493 -0.832 0.664
Comparative index of performance CIP 0.353 -0.895 0.355
Organisational structure - HHI 2.298 *** 1.437 *** 1.737 ***

Origin-Destination characteristics
Distance -0.258 *** -0.088 -0.263 ***
Past migration flows 0.194 *** 0.040 0.034
Political similarity 0.007 ** 0.008 ** 0.011 ***

Lagged patient flows (y t-1 ) 0.00005 ***
Initial patient flows (y 0 ) -0.00008 ***

Log Likelihood -21156 -21026 -20818
Squared correlation between actual and fitted flows 0.498 0.583 0.503
LR-test (degrees of freedom 36) 259.39 327.640

(p-value) (0.000) (0.000)

Notes : Number of regional units: 21; total number of region-pairs: 420; total number of observations: 3760
The variables Population, GDP per capita, Beds, TEI, CMI, CIP, Distance and Past migration flows are log-transformed
All models include a constant and time dummies (year 2002 is the reference year)
CCRE models include time averages of the time-varying exogenous covariates
Level of significance: *** 1%, ** 5%, * 10%

direct effects

indirect effects

direct effects

indirect effects
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Table 5. Estimated models for inter-regional patient flows for Cancers, Surgery and Medicine in  
              Italy (2001-2010) 

 
 

Dependent Variable y ijt : Patient flows to Destination j  from Origin i

Negative Binomial Dynamic CCRE model Surgery Medicine Cancers
Origin characteristics

Population 0.798 ** 0.064 0.126
GDP per capita -0.410 * -0.095 -0.586
Population aged 0-14 (%) -0.009 0.018 -0.029
Population aged over 65 (%) -0.007 0.004 0.032 *
Beds in public hospitals -0.057 -0.083 -0.163
Beds in private licensed hospitals -0.025 ** 0.002 -0.014
Technology endowment index -TEI 0.152 0.021 -0.223
Case mix index - CMI 0.626 *** -0.099 0.348
Comparative index of performance- CIP -0.141 -0.178 * -0.228
Organisational structure - HHI 0.109 *** -0.024 0.074
South -0.945 1.777 * 2.484 **
North -0.265 -0.524 * -0.828 ***
Spatial lags

Population 3.799 ** 0.657 9.422 ***
GDP per capita -3.134 *** 0.175 1.558
Beds in public hospitals -0.572 ** 0.381 -0.966 *
Beds in private licensed hospitals -0.009 0.001 0.114 **
Technology endowment index - TEI 2.270 *** 0.492 0.098
Case mix index - CMI -3.324 ** -2.668 ** 3.745
Comparative index of performance CIP -0.961 -1.308 ** -1.171
Organisational structure - HHI -0.794 *** -0.659 ** -2.444 ***

Destination characteristics
Population -0.260 -0.227 -1.280 **
GDP per capita 0.606 *** 0.854 *** 1.218 ***
Beds in public hospitals 0.791 *** 0.765 *** 0.981 ***
Beds in private licensed hospitals 0.008 0.003 -0.023
Technology endowment index -TEI -0.059 0.041 1.589 ***
Case mix index - CMI -0.060 -1.304 *** -0.237
Comparative index of performance- CIP -0.783 *** -0.546 *** -0.667 ***
Organisational structure - HHI -0.095 * -0.012 -0.053
South -0.543 -1.283 *** -1.783 ***
North -0.663 *** -0.320 * 0.926 ***
Spatial lags

Population 0.620 -2.423 * -8.726 **
GDP per capita -2.250 * -2.577 ** -15.857 ***
Beds in public hospitals 0.632 ** 0.007 4.710 ***
Beds in private licensed hospitals -0.030 -0.121 *** -0.275 ***
Technology endowment index - TEI -1.736 ** -0.402 3.302 *
Case mix index - CMI -0.365 2.606 ** -3.001
Comparative index of performance CIP -2.642 *** 3.452 *** 8.166 ***
Organisational structure - HHI 0.234 2.403 *** 4.738 ***

Origin-Destination characteristics
Distance -0.238 *** -0.391 *** -0.767 ***
Past migration flows 0.014 0.043 0.084
Political similarity 0.008 * 0.008 *** -0.009

Lagged patient flows (y t-1 ) 0.00005 *** 0.00005 *** 0.00003 ***
Initial patient flows (y 0 ) -0.0001 *** -0.00006 *** -0.00002 ***

Log Likelihood -18099 -19332 -14257
Squared correlation between actual and fitted flows 0.399 0.581 0.821
LR-test (degrees of freedom 36) 278.49 315.710 292.82

(p-value) (0.000) (0.000) (0.000)

Notes : Number of regional units: 21; total number of region-pairs: 420; total number of observations: 3760
The variables Population, GDP pc, Beds, TEI, CMI, CIP, Distance and Past migration flows are log-transformed

Level of significance: *** 1%, ** 5%, * 10%

All models include a constant and time dummies (year 2002 is the reference year), and time averages of the time-
varying exogenous covariates

direct effects

indirect effects

direct effects

indirect effects
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Table 6. Estimated effects of the implementation of the national target on the bed-population ratio (reference year: 2010)  

 
 
 

Beds per 
1,000 

inhabitants

Required 
adjustment 

(%)
Outflows Inflows

Net 
mobility

Total 
change in 
outflows 

(a)

Total 
change in 

inflows 
(b)

Total 
change in 
outflows 

(c)

Total 
change in 

inflows 
(d)

 Total 
change in 
outflows 

(a+c) 

 Total 
change in 

inflows 
(b+d) 

Net change 
(b+d) - (a+c)  

Net mobility 
at benchmark

% change 
in net 

mobility

Piemonte 4.2 -12.7 49623 42318 -7305 -4481 -3282 -1328 -1380 -5809 -4662 1147 -6158 -15.7
Valle d'Aosta 4.2 -11.0 4914 1952 -2962 -383 -164 -140 -65 -523 -229 295 -2667 -10.0
Lombardia 4.3 -14.5 68533 146076 77543 -7064 -9102 -1950 -4370 -9014 -13472 -4459 73084 -5.7
Provincia Autonoma Bolzano 4.2 -12.4 4017 6804 2787 -352 -688 -118 -205 -471 -893 -422 2365 -15.2
Provincia Autonoma Trento 4.7 -21.1 13778 9213 -4565 -2066 -641 -440 -262 -2506 -902 1604 -2961 -35.1
Veneto 3.9 -6.1 47885 61321 13436 -2078 -5101 -1101 -2299 -3179 -7400 -4221 9215 -31.4
Friuli Venezia-Giulia 4.2 -11.9 14138 20577 6439 -1197 -918 -471 -489 -1667 -1407 260 6699 4.0
Liguria 4.3 -14.5 38595 37297 -1298 -3984 -2261 -1105 -1253 -5088 -3513 1575 277 -121.3
Emilia-Romagna 4.5 -17.1 45545 113980 68435 -5517 -6135 -1371 -3130 -6888 -9266 -2378 66057 -3.5
Toscana 3.9 -4.5 39104 69833 30729 -1243 -3813 -925 -2596 -2167 -6408 -4241 26488 -13.8
Umbria 3.6 3.4 18450 24099 5649 449 -2025 -460 -811 -11 -2836 -2825 2824 -50.0
Marche 4.1 -9.9 29145 27776 -1369 -2041 -1686 -814 -731 -2854 -2417 437 -932 -31.9
Lazio 4.5 -17.4 67078 76341 9263 -8299 -1630 -2240 -1192 -10539 -2822 7717 16980 83.3
Abruzzo 4.0 -8.0 39395 26220 -13175 -2236 -2872 -926 -768 -3162 -3640 -478 -13653 3.6
Molise 5.4 -31.0 12187 18967 6780 -2688 -295 -366 -220 -3055 -515 2539 9319 37.5
Campania 3.5 6.2 80023 24713 -55310 3527 -1915 -1569 -805 1958 -2720 -4678 -59988 8.5
Puglia 3.9 -5.5 58335 29042 -29293 -2263 -954 -1845 -417 -4108 -1371 2737 -26556 -9.3
Basilicata 3.7 0.5 22759 15329 -7430 88 -120 -644 -157 -556 -277 279 -7151 -3.8
Calabria 3.9 -5.2 58166 8247 -49919 -2167 -351 -1823 -95 -3990 -446 3543 -46376 -7.1
Sicilia 3.7 0.0 53139 14843 -38296 -2 -846 -1659 -358 -1661 -1204 457 -37839 -1.2
Sardegna 4.2 -11.3 14689 4550 -10139 -1178 -377 -424 -114 -1602 -492 1111 -9028 -11.0

2010 baseline values Direct effects Indirect effects Total effects

Note : the required adjustment is calculated with respect to the value of 3.7 for the bed-population ratio, which corresponds to the latest recommendations from the central government.
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Figures 

Figure 1. Spatial pattern of inter-regional patient mobility. Mobility index in 2001 and 2010. 
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