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Abstract

“Learning-by-doing” is usually identified as a process whereby performance increases with

experience in production. The paper investigates different patterns of “learning by doing”,

studying learning curves at product level. Cost-quantity relationships differ a lot across prod-

ucts belonging to sectors with different “technological intensities”. Moreover, such differential

patterns are affected by firm spending on research and capital investments. Finally, our evi-

dence suggests that “learning”, or performance improvement over time is not a by-product of

the mere repetition of the same production activities, as sometimes reported in previous stud-

ies, but rather it seems to be shaped by deliberate firm learning efforts and by the interactions

among firms themselves.
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1 Introduction

Theoretical and empirical studies in economics consider “learning-by-doing” as a process in which an

increase in experience in a particular type of production (‘doing’) yields an improvement in efficiency

(‘learning’). Typically the postulated relation is a power law, linking some performance indicator (eg.

unit costs, unit prices, productivity) with an experience indicator (eg. cumulated production). The

evidence, which we shall review below is quite robust. However the simplified version of “learning by

doing”, henceforth LBD, presents significant drawbacks. As discussed by Scott-Kemmis and Bell (2010),

first, it is often considered that learning is a costless activity and an automatic by-product of continued

production activities. Second, it is generally assumed that all organizations have the same capacity to

learn and there are no differences in absorptive capacities that might lead to differences in the intensity

of learning across different organizations. Third, the literature often assumes that, with time, the process

linking experience to efficiency operates automatically without any purposeful activity by the firms (Scott-

Kemmis and Bell, 2010).

In this work we investigate the existence, shape and slope of learning curves in a developing country,

namely India, at the product level, conditioning on firms’ and sectoral characteristics. In particular, we

shall analyze first how the slope of the learning curves are affected by R&D and fixed investment activities,

and second, by the timing of entry of the firm in any one production activity, and hence, indirectly by

the positioning of the firm along the life cycle of a product, the possible knowledge spillovers it gains

from older incumbents. Needless to say, the understanding of the determinants of the very existence

and slope of learning curves is not only important in its own right as a part of the microeconomics of

innovation, but bear far reaching implications for the very analysis of the determinants of growth - in

general and especially with respect to emerging economies. For example, would one find widespread and

relatively uniform learning curves, that would give support to the view whereby knowledge is simply the

“unintentional side effect of the production of a conventional good” (Romer, 1990) and, dynamically, the

notion that the “the larger the rate of production, the greater the learning experience” (Rosen, 1972).

Indeed a wide ensemble of growth models are build in such notion: among others, Rosen (1972); Lucas

(1998); Romer (1986); Stokey (1988); Young (1993) and De Liso et al. (2001).

Conversely, were one to find a great inter product/inter-technological/inter-firm diversity in learning

rates one would be forced to bring more “Schumpeterian” and “evolutionary” elements into the explanation,

related to both the specificities of the different technologies and the characteristics and strategies of

different firms and it would also carry different policy implications. More generally, such evidence should

urge to a finer consideration of the complementarity between production-related learning on the one

hand, along with other drivers of knowledge accumulation, on the other. So, as Romer (1990) in a

self-critical mood puts it, considering the importance of determinants of knowledge accumulation other

than sheer “learning-by-producing”, “if the fundamental policy problem is that we have too many lawyers

and MBAs and not enough engineers, a subsidy to fixed capital accumulation is a weak, and possibly

counterproductive, policy response” (p.S94).

The paper proceeds as follows. In the next section, we provide a critical review of previous studies

on LBD. Section 3 describes the data and variables used in the paper. In section 4, we look at the

cost-quantity relationships across products as revealed by learning curves and learning rates. Section 5

presents the observed heterogeneity in the cost-quantity relationships among different products, while

section 6 attempts to relate it to different firm-specific characteristics. Section 7 deals with the effect of

market experience in mode of entry of firms. Section 8 concludes.
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2 Studies on LBD and its applications

The concept of “learning-by-doing” was first put forward in the 1930s and 1940s, thanks to studies of

aircraft and ship production. The notion of learning formally entered economics with the empirical

observation of the learning curve, a notion originally born in the engineering discipline when T. P.

Wright, the director of engineering of the Curtiss-Wright Corporation, was apparently inspired by the

mass production of airplanes as well as its declining unit cost when he began to plot out “the effect

of quantity production on cost” (Wright, 1936). The resulting graphs reported a decreasing convex

curve with cost or its components on the vertical axis and the sequence number of the airplanes on the

horizontal axis, that is a log-linear relation between labour required per unit and the cumulative volume

of production.

Wright suggested a continuing reduction of unit costs by 20% with each doubling of output volume. In

most other studies that followed, the basic power law relation between costs and quantity appeared to fit

the data quite well in a wide range of industries including, but not limited to, shipbuilding, machine tools,

specialty chemicals, and semiconductors (Dutton and Thomas, 1984; McDonald and Schrattenholzer,

2001; Argote and Epple, 1990).

The mathematical relation has been broadly corroborated by studies carried out by the Stanford

Research Institute and the Rand Corporation, including Arrow and Arrow (1950), Arrow (1951) and

later Alchian (1963). Table 1 provides a summary of a few of the works on LBD. However, most of

these studies provide limited information about the causes of improved performance. One interpretation

focuses upon, we would say nowadays, some form of collective improvements in production activities, even

holding the capital equipment unchanged. Lundberg (1961) called the “Horndal effect” the observation

that at the Horndal steel works plant in Sweden with no new investment for a period of 15 years, still

productivity (output per man hour) rose on the average close to 2 percent per annum. Therefore, he

suggests, the increasing performance should be imputed to learning from experience. As known, that

cumulative production-productivity relation has been a source of inspiration also for the seminal “learning

by doing” theoretical contribution by Arrow (1962).

However, other studies, as in the discussion in Thompson (2001), report that systematic observed

cost-quantity relationships are often linked with other factors beyond learning by experience. He reviews

the evidence on the sources of productivity growth in the Liberty ship program, discussed earlier by

Rapping (1965), providing evidence that the capital stock was not unchanged during the production

period when performance improvements were observed.

In fact, a first major issue still far from settled in the literature is the interaction between improvements

in the production methods directly associated with production activities, on the one hand and other forms

of “learning” such as explicit search, often ‘offline’ of new products and processes. As we shall see in the

following, the latter might even imply apparent ‘de-learning’ in production efficiency, where in fact they

yield products characterized by higher quality and performances. Second, but relatedly, crucial issues

concerns the robustness of the linearity of the log-log curve itself (as pointed out long ago by Carr (1946))

and the inter-product differences in the slope of such curves (Middleton, 1945). In the following we shall

address both issues.
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Table 1: Major reviews, empirical and theoretical studies on learning curves and LBD

Wright (1936) - Synthesizes earlier USAF and supplier company improvement curve
studies.

Rigdon (1944) - Labour productivity trends in the WW II US airframe industry.
Searle (1945) - Labour and time requirements trends in WW II US shipbuilding

industry.
Middleton (1945) - Report of plant level observations of WW II airframe productivity

performance.
Carr (1946) - Critical review of airframe learning applications.
Mensforth (1947) - Review of productivity trends and other developments, mainly in

the airframe industry.
Stanley (1949) - Empirical study of time to achieve peak output rates in the USA

and UK WW II airframe industries.
Arrow and Arrow
(1950)

- Productivity trends in WW II US airframe industry.

Arrow (1951) - Labour productivity trends in WW II US airframe industry.
Asher (1956) - Improvement trends in the WW II and post-war US airframe in-

dustry.
Zieke (1962) - Review of progress curves in WW II and post-war US aircraft in-

dustry.
Alchian (1963) - Labour productivity trends in WW II US airframe industry.
Brewer (1965) - Labour productivity and cost trends in WW II and post-war US

airframe industry.
Rapping (1965) - Improvement trends in WW II US shipbuilding industry.
Young (1966) - Critical review of airframe learning curve applications.
Colasuonno (1967) - Review of progress curves largely in WW II and post-war US aircraft

industry.
Brockman and Dick-
ens (1967)

- Labour productivity trends in post-war US airframe production.

Hartley (1969) - Discussion of the use of the learning curve in UK aircraft production.
Orsini (1970) - Review of progress curves largely in the WW II and post-war US

aircraft industry.
Dosi (1984) - Models cost and pricing procedures under conditions of technical

change.
Lieberman (1984) - Documents variations in the slope of learning curve linked to differ-

ences in R&D & capital intensity.
Gruber (1992) - Learning curve in semiconductor chips; heterogeneity of learning

across products (chip types).
Irwin and Klenow
(1994)

- Learning-by-doing spillovers within the semiconductor industry.

Jovanovic and
Nyarko (1994)

- Develops one-agent Bayesian model of LBD and technology choice.

Argote (1996) - Reviews organizational learning & forgetting and evidence about
whether learning transfers across organizations.

Hatch and Mowery
(1998)

- Analyzes the relationship between process innovation and learning
by doing in the semiconductor industry.

McDonald and
Schrattenholzer
(2001)

- Estimates learning rates for energy conversion technologies.

Jovanovic and
Rousseau (2002)

- Empirical learning curves for three general-purpose technologies:
Computers, electricity, and the internal combustion engines.

Lapré and Tsikriktsis
(2006)

- Explore whether customer dissatisfaction follows a learning-curve
pattern looking at trends in customer complaints against 10 largest
airlines.

Schoots et al. (2008) - Learning curves using cost data for hydrogen production process;
No cost reduction is found.

Grubler (2010) - Cost trends in specific reactors in time; finds that reactor construc-
tion costs increase in time.
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3 Data and Variables

The paper employs firm-level data from the Prowess database, provided by the CMIE (Centre For Mon-

itoring Indian Economy Pvt. Ltd.). Prowess reports information from the financial accounts of Indian

companies. Annual Reports of companies are the most important source of this database. The data are

collected by the CMIE from company balance sheets and cover both publicly listed and unlisted firms

from a wide cross-section of manufacturing, services, utilities, and financial industries. About one-third

of the firms in Prowess are publicly listed firms.1 The data used for the current study includes only firms

in manufacturing sector and span from 1988 to 2012.

Total firm sales are broken down by the revenues generated by each product sold, in accordance with

the requirements of the 1956 Companies Act according to which the firms in their annual reports have to

disclose product-level information on production and sales. The product classification structure is detailed

in Appendix A.1. The product-level information is available for 90 percent of the manufacturing firms,

that collectively account for more than 90 percent of Prowess’ manufacturing output and exports. Firms

are required to report not just the names of the products, but also product-level details about production,

sales quantity, sales value and unit prices. The coverage of product-level information - especially for sales

- is extremely good: summing up sales at the product level yield more than 90 percent of total sales

reported through firm blance sheet. Prowess is therefore particularly well suited to investigate how firms

adjust their product lines over time. Table 2 reports some summary statistics covering different years to

provide evidence of the representativeness of Prowess over time.

Table 2: Summary statistics for product-reporting firms

1991 1996 2001 2006 2011

2 Firms 1875 3712 5281 6264 3492

3 Number of Products 1268 1758 1952 2114 1841

4 Product-Reporting Firms 1769 3560 4983 5640 3289

5 Share of single product firms 47.65 54.66 57.27 52.32 42.99

6 Share of multi-product firms 52.35 45.34 42.73 47.68 57.01

7 Share of sales of product reporting firms 0.89 0.91 0.90 0.92 0.93

8 Share of exports of product reporting firms 0.86 0.88 0.90 0.90 0.92

3.1 Variables

In the literature on learning curve, three variables can be employed to measure experience: 1) cumulative

volume 2) calendar time and 3) maximum volume, however, the most used is cumulative production vol-

ume (Yelle, 1979; Argote et al., 2000). The idea behind using cumulative volume is that, the repetition in

production allows organization to gain experience. Levin (2000) and Field and Sinha (2005) employ the

calendar time elapsed since the start of operation and state that the time for reflection is more important

for learning, so that the calendar time captures the notion of “learning by thinking”. Mishina (1999)

proposed a third “experience” variable, i.e, the maximum output produced to date or maximum proven

capacity to date. When a plant is scaling up production, the production system faces significant chal-

lenges and unprecedented difficulties. Factory personnel need to figure out how to solve such challenges

1Appendix A provides additional information on the database.
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during scale-up. In this respect, Mishina’s experience variable captures the notion of “learning by new

experiences” or “learning by stretching” (Mishina, 1999; Lapré and Van Wassenhove, 2001).

In the present study, we measure experience as the cumulated (physical) quantity of a given product

manufactured by the firm. The performance variable that we will mostly employ is the unit price of the

product. It is to be noted that production costs per product for multi product firms are not available and

probably unknown with precision to the firms themselves. In fact, several previous empirical studies have

used price data to construct experience curves (Boston Consulting Group, 1970; Abell and Hammond,

1979; Ayres and Martinas, 1992; Neij, 1997; Gruber, 1992, 1998; Irwin and Klenow, 1994; Chung, 2001;

Wene, 2007).2 And, indeed there is a good matching between unit cost dynamics and unit prices whenever

the latter are fixed according to mark-up pricing procedure (Dosi, 1984). Consider the following equation

where price is a multiplicative markup over marginal (or better, average) cost (for a similar pricing

structure, see, among others, Amiti et al. 2014).

Pijt = Cijt(1 +MUijt), (1)

where the three terms are, respectively, the unit price (Pijt), the unit production cost (Cijt) and the

markup (MUijt) of firm i, for product j at time t. In this work we are not interested in the estimation

of the markup per se, however, to the extent that equation (1) offers an accurate approximation of the

pricing behavior of firms, that provides support to our choice of price as a performance measure. We can

test the validity of our conjecture for the case of single-product firms.3 In the setting of the equation (1),

a large share of variation of the change in price explained by changes in cost, that is, the R2 of the log

transformed linear model, would provide evidence of the validity of the assumption entailed by equation

(1), and in turn, of our choice for the performance measure. Table 11 in appendix B shows the results

from a fixed effects regression of equation (1). The R squared value of 86.9% supports our hypothesis,

hence in the rest of the paper we will be using data from all firms, including multiple products ones, and

price as a proxy for cost of production. Finally, monetary variables are deflated with 3 digit industry

output deflators.

4 Learning curves and learning rates: Product level analysis

Let us start by investigating the cost-quantity4 relationships at the product level by plotting “learning

curves”, i.e, the relation between cumulative quantities and prices (or cost) of products. Usually, the

learning curve is expressed in the form of a power law5:

P = a ∗Q−β (2)

2There are many other related fields, such as energy economics, where it is common to use price as a proxy for cost
in the learning-by-doing literature, see for example, Berry (2009); Coulomb and Neuhoff (2006); Junginger et al. (2005);
Kobos et al. (2006).

3For multiple-products firms, on the output side, one finds a sale price for each product sold, but on the input side,
only the cost for the purchase of inputs. It is only for single product firms that it is possible to directly relate the cost of
production to the price of the output sold.

4Throughout the paper we use the expression cost-quantity instead of price-quantity, since we use price as a proxy to
measure cost. Comments and interpretations in the paper rest on the assumption that cost-price margins of products remain
roughly constant over time. The hypothesis is tested in section 3.

5Among others, Dutton and Thomas (1984); McDonald and Schrattenholzer (2001) and Argote and Epple (1990) use
this formulation.
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where P is the price of the product, a the normalization constant (which can be understood as the initial

costs), β is a the scaling factor and Q the quantity produced. Taking the logs, one of course gets a straight

line. Here we focus on estimation of the learning parameters using power and also other 3 functional forms,

generally suggested by previous studies, which include, linear, exponential and logarithmic functions.6

The equations are reported in Table 3.

Table 3: Equations representing Linear, Exponential, Logarithmic and Power functions

Function Type Equation

Linear P = a− βQ

Logarithmic P = a− β logQ

Exponential P = (a)e−βQ

Power P = (a)Q−β

We start by investigating the “aggregate” cost-quantity relationship, that is, we pool together obser-

vations from all firms producing a given product. We exploit the panel structure of the data, and we look

at the price of a given product and its cumulative output. We proceed to perform a panel fixed effects

regression with the four different functional forms and we check which functional form provides the best

representation of the cost-cumulated quantity relationship. The equations in Table 3 are rewritten below

(except for linear, other equations are log-transformed), including controls for size and time effects.

Linear Form:

pijt = aij − βj qijt + γj sit + dt + ǫijt (3)

Logarithmic form:

pijt = aij − β log(qijt) + γj sit + dt + ǫijt (4)

Exponential Form:

log(pijt) = log(aij)− β qijt + γj sit + dt + ǫijt (5)

Power Form:

log(pijt) = log(aij)− β log(qijt) + γj sit + dt + ǫijt (6)

where pijt is the price of product j produced by firm i at time t, qijt is the cumulated quantity of

product j produced by firm i at time t, sit is gross fixed assets of the firm, as proxy for the size of the

firm, dt represents time dummies, aij the intercept and ǫijt is the error term.

To investigate which of the functional forms described before fits the learning pattern best, as stan-

dard in the literature (see, among others, Heathcote et al. 2000), we compare the goodness-of-fit using

Rsquared as a fit criterion. In line with previous literature, we find that the goodness-of-fit of the

power and exponential functions is higher than the linear functions. Similar findings have been reported

by Anderson and Schooler (1991) and Wixted and Ebbesen (1997). The average value of Rsquared is

around 0.9 for power and exponential functions, while for linear and log functions, it is around 0.7. In

what follows, we will be using the parameters of the power law estimation, but also using the exponential

parameter our general results do not change.

6Koh and Magee (2006, 2008) claim that an exponential function of time predicts the performance of several different
technologies. According to Goddard (1982) costs follow a power law in production rate rather than cumulative production.
Multivariate forms involving combinations of production rate, cumulative production, or time have been examined by
Sinclair et al. (2000) and Nordhaus (2014).
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Table 4 reports the learning rates estimated using the power law function. First, note that the

learning coefficient vary a lot among products. Second, we observe that for quite a few products, the

learning coefficient is positive, and thus, hints at an upward sloping cost-quantity curve. Figure 1 plots

Table 4: Learning coefficients using Power function

Product name Power Coeff. Std error

Mineral Water -0.551*** (0.050)
Detergent Soaps -0.217*** (0.055)
Writing & Printing Paper -0.235*** (0.043)
Passenger Cars -0.062*** (0.016)
Portable Electronic Typewriters -0.249*** (0.067)
Automotive Diesel Engines -0.169*** (0.062)
Pollution Control Equipment -0.071** (0.032)
Cranes -0.264*** (0.059)
Road Construction & Maintenance Machines -0.251*** (0.057)
Washing Machines -0.170*** (0.025)
Refrigerators -0.150*** (0.020)
Air Coolers -0.044** (0.021)
Wiring Accessories -0.205*** (0.043)
Electrical Porcelains And Insulators 0.714*** (0.139)
Tyre Pressure Gauges 0.257*** (0.056)
Can Making Machinery/Industrial machinery 0.619*** (0.123)
Coke Oven 0.403*** (0.084)
Sprocket Wheels 0.219** (0.044)
Food Processing Machines 0.549*** (0.200)
Metal Cutting Incl. Grinding Machines 0.738** (0.264)
Oil Purifiers 0.218*** (0.083)
Perfumery Compounds Aromatic Spices & Herbal Etc. 0.262*** (0.081)
Stainless Steel Forging,Flanges & Allied Pipe Fitt 0.011*** (0.004)
Radio Sets,Tape Rec.,Combination Sets & Rec.Player 0.165*** (0.016)
Hand watches& manufactured components-watches 0.799*** (0.196)

the canonical cost-quantity curves obtained by pooling together the observations of firms producing the

same product, for some products displaying a downward sloping cost-quantity curve. Dots with different

symbols represent different products. Each dot with the same symbol represents a pair of (log) cumulated

quantity and (log of) price for a given firm in a given year. This evidence in well in line with several other

studies that detect a cost-quantity relationship that is accounted for by a power-law and that applies to

a wide variety of technologies (Dutton and Thomas, 1984; McDonald and Schrattenholzer, 2001; Argote

and Epple, 1990). Figure 2 provides a graphical account of the “positive” learning rates, that is, a positive

relationship between unit price (or cost) and experience.

The analyses so far have shown that, in most of the cases, the cost-quantity relationship displays a

non-linear nature and that such relationship could differ across products. Some products might require

larger time than others for cost reduction, even within the same firms. In the following section we look

at the heterogeneity in learning patterns across products and firms, classifying them on the basis of the

different technological intensities, as captured by the Pavitt taxonomy. (Pavitt, 1984).
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Figure 1: The relation between cost and quantity (on log scales) together with power law fit for selected
products; the ‘canonical’ downward sloping learning curve
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Figure 2: The relation between cost and quantity (on log scales) together with power law fit for selected
products; the upward sloping learning curve

5 Heterogeneity in cost-quantity relationships

In this section, let us try to investigate the differences in cost-quantity relationships, or, to put it in other

words, the heterogeneity in the learning rates, and we further try to associate such differential learning
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rates to different sectors, based on which sectors the products belong to. Moreover we shall address

the presence of both downward and upward sloping cost-quantity curves. At a first look, an increasing

relation in cost-quantity curves for some products would indicate the absence of learning. However, our

suggested interpretation is that increasing cost-quantity relationships could also be pointing to learning,

although of a different kind than the one usually identified in the ‘learning-by-doing’ literature.

There could be various product-specific characteristics which might lead to such differential learning

patterns. Here, we are interested to investigate the technological characteristics of the product. Our

hypothesis is that the products which show a positive relationship between cost and experience undergo

systematic quality upgrading over time, hence the observed positive cost-quantity relationship. Resorting

to the Pavitt taxonomy, let us investigate if the products displaying a positive cost-quantity relation

belong to more research intense sectors.

Pavitt’s Taxonomy distinguishes between sectors and technologies according to sources of technolog-

ical knowledge, requirements of the users, and appropriability regimes (Pavitt, 1984). It identifies four

categories:

(1) Supplier-Dominated sectors includes most traditional activities such as textiles, clothing and

agriculture which rely on sources of innovation external to the firm.

(2) Scale-Intensive sectors, characterized by scale-biased technical advances and covering both basic

materials and consumer durables, e.g. automobiles. Sources of innovation are both internal and external

to the firm.

(3) Specialized Suppliers are smaller, more specialized firms, e.g. industrial machinery instruments,

used in most other industrial sectors.

(4) Science-based sectors, rely on both in-house R&D and on university research; they include indus-

tries such as pharmaceuticals and electronics.

Figure 3 show the violin plots of the distributions of learning rates across different Pavitt categories.

The violin plot is a combination of box plot and kernel density distributions. The median of the product

level learning rate for each sector is marked by the central bar and the box indicates the interquartile

range as in standard box plots. Notice that the distribution of learning rates in the science based category

and specialized suppliers (S-B and S-S in the figure) is shifted upwards, implying that there are more

cases of positively shaped cost-quantity curve.

Non-parametric analysis: Fligner Policello statistics

The difference between the learning parameters across Pavitt sectors is further tested using Fligner-

Policello location test (Fligner and Policello, 1981). The null hypothesis for the test is H0 : θX = θY ,

where θX and θY are the population medians of the two Pavitt sectors in each pair.7 The test assumes

that the distribution in each class is symmetric around the class median, but it does not require that

the two class distributions have the same form or that the class variances be equal.8 Table 5 reports the

pairwise Fligner-Policello statistics of the distributions of learning rates across different Pavitt categories.

A positive and significant F-P statistics suggests that the distribution of learning rates of the second

sector in each pair (for instance, scale intensive sector in the first row) statistically dominates the other.

In all the cases we observe that the “learning” rates in specialized suppliers and science based sectors

statistically dominate the supplier dominated and scale intensive sectors: That is, there is a higher

7The first column of table 5 gives different pairs of Pavitt sectors.
8Refer Hollander et al. (1999) and Juneau (2007) for details.
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Figure 3: Distribution of learning rates across different Pavitt categories at firm level

probability to observe a positively shaped learning curve, i.e, an apparent “anti-learning”.

Table 5: Heterogeneity of learning rates across different Pavitt sectors: Two Sample Fligner-Policello
Robust Rank Order Test

Sector Obs. Average placement Index of variability F-P statistic Two-tailed p-value

Supplier-dominated 20885 2.0e+04 2.4e+12 10.163 0.000

Scale-Intensive 37123 9.9e+03 1.4e+12

Supplier-dominated 20885 5.5e+03 1.2e+11 28.413 0.000

Specialized suppliers 9101 8.3e+03 3.7e+11

Supplier-dominated 20885 4.2e+03 6.2e+10 37.234 0.000

Science-based 6497 7.3e+03 2.4e+11

Scale Intensive 37123 5.3e+03 2.0e+11 24.168 0.000

Specialized Suppliers 9101 1.5e+04 1.2e+12

Scale Intensive 37123 4.2e+03 1.0e+11 37.289 0.000

Science-based 6497 1.3e+04 7.8e+11

Specialized suppliers 9101 3.7e+03 3.2e+10 14.673 0.000

Science-based 6497 3.9e+03 4.4e+10

Interestingly, we also find that for multi-product firms, in 90 percent of the cases, all products produced

by the firm display similar cost-quantity trend. This is circumstantial evidence of the influence of the

nature of underlying technologies which the firms masters and a sign of its ‘learning’ coefficient. Given the

11



existence of such inter-sectoral differences, we next investigate the presence of firm-specific characteristics

associated with such learning patterns.

6 Cost-quantity relationships and firm characteristics: Product

vs Process innovation

The main sector of activity of the firms deeply influence the propensity to undertake R&D and the

balance between products and process innovation. But, still inter firm variability remains high. Thus,

here we investigate the relation between firms’ R&D and investment spending to the observed learning

patterns at the firm-product level.

We perform an ordinary least squares regression to investigate the relationship between the observed

learning parameters and innovative activities, separately for each Pavitt sectors. The proxies we consider

for innovative activities are cumulated R&D intensity (cumulated R&D over cumulated sales) for product

innovation and cumulated investment intensity (cumulated investment over cumulated sales) for process

innovation.

The estimated model is the following cross-sectional regression:

LPij = α+ β1 R&Di + β2 Invi + controlsi (7)

where LPij is the estimated learning parameter for product j produced by firm i, Invi is investment

intensity of firm i and R&Di is the R&D intensity of firm i. In equation 7, RHS variables are at firm

level, since we observe the R&D and investment spending at firm level and not disaggregated at the

product level. The LHS variable, i.e, the learning parameter is computed at the firm-product level, as

in equation 6. Combining these in the same equation is not a major concern because, as recalled before,

products produced by the same firm tend to display similar cost-quantity relation.

Table 6 shows the regression results for all four Pavitt sectors, namely, Supplier Dominated (S-D),

Scale Intensive (S-I), Specialized Suppliers (S-S) and Science Based (S-B). The first column (I) shows the

results from the regression of equation 7 without any controls. The second column (II) shows the results

from the regression while controlling for size, third column (III) also includes year dummies. Standard

errors are in brackets. We calculate cluster-robust standard error that permit general heteroskedasticity

and within-cluster error correlation.

The first row shows the coefficient values for R&D. In all the sectors, the coefficients are positive and

significant suggesting that, even within the same Pavitt sector, higher spending on R&D is associated

with higher values of the learning parameter, that is, higher probabilities to observe a positively shaped

“learning curve”. The higher spending on R&D in turn suggests an underlying quality upgrade of the

product in time, i.e, product innovation.

Concerning the relation between learning parameter and investment intensity, as seen in the second

row, in three out of four Pavitt sectors, the coefficient is significant and negative, as one would expect on

the grounds of capital embodied process innovation. This suggests that higher spending on investment is

associated to a higher probability to observe the traditional learning curve. These results corroborates, in

fact the suggestion that process learning, or conversely that apparent ‘anti-learning’ plausibly associated

with product upgrades are not a costless and automatic process, or a mere joint output of production

activity, but they involves conscious firm intervention.
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Table 6: Learning rates of products and innovative characteristics of firms in different Pavitt sectors

Supplier Scale

dominated intensive

I II III I II III

R&D 0.003*** 0.002* 0.002* R&D 0.002*** 0.003*** 0.003***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Investment -0.002*** -0.004*** -0.005*** Investment -0.003* -0.002 -0.002

(0.000) (0.000) (0.000) (0.002) (0.002) (0.002)

Size No 0.006*** 0.006*** Size No -0.003*** -0.003***

(0.001) (0.001) (0.000)

Year Dummy No No Yes Year Dummy No No Yes

Observations 3383 3383 3383 Observations 4676 4676 4676

R2 0.008 0.015 0.021 R2 0.006 0.008 0.008

Specialized Science

suppliers based

I II III I II III

R&D 0.003** 0.004*** 0.005*** R&D 0.003** 0.004*** 0.003*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Investment -0.003* -0.002 -0.001 Investment 0.007*** 0.008*** 0.008***

(0.000) (0.002) (0.001) (0.001) (0.002) (0.002)

Size No -0.003* -0.002* Size No -0.002 -0.002

(0.001) (0.001) (0.002) (0.002)

Year Dummy No No Yes Year Dummy No No Yes

Observations 2289 2289 2289 Observations 2613 2613 2613

R2 0.003 0.005 0.005 R2 0.032 0.032 0.036

7 Firm entry and learning in the market

Recall that the foregoing analysis regard product-level learning curves, generally involving unbalanced

panels of diverse firms. The results therefore summarize information about entry, the initial prices of

which firm enter in any one product category - possibly with a distinct product quality, and the learning

process thereafter. In terms of industrial dynamics, entry of course involves a challenge to the market

predictions of the incumbents, while thereafter learning as such represents a barrier to entry as it establish

a cost differential between incumbents and would be entrants over the same product quality.

In Dosi (1984), one sketch out a model of industrial evolution inspired by semiconductors, but as such

applicable to a wide range of industries, both on the frontier and in the catching up phase - characterized

by the co-existence of product innovation and product-specific learning-by-doing. The latter continuously

induces advantages to incumbents, but that can be always overcome by introduction of new/improved

products in the same family, but with improved functionalities. The prediction of the model is a persistent

process of entry, jointly with subsequent learning by doing, and possibly with the new/improved product.

Of course, on the grounds of our data we have no way of accessing the techno-economic features of each

product, but a story of persistent late entry cum higher entry prices is consistent with such conjecture.

This is what we find indeed in the Indian case. At a finer level of resolution, one would expect on the
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grounds of a capability-based theory of the firm (Dosi et al., 2000; Teece and Pisano, 1994) that late

entrants which however have learned in related products know also how to produce “better products” at

lower costs from the start.

Table 7 shows summary statistics on firm entry price with respect to the average price of the in-

cumbents, or in other words, the market price. Market price is defined as the weighted average price

of the product at the market level (incumbents) where the weights are the physical quantities of sales

of the product.9 Column 1 shows the different product tenure, i.e, the number of years the incumbents

are producing one product.10 Column 2 shows the percentages of firm-product combinations, where the

firm-product entry occurs at a higher price than the market average. Column 3 shows the number of

firm-product combinations, where the firm-product entry price is lower than the market price. Column 4

shows the total observations in each product tenure class. Column 5 shows the log difference of price of

the entrant and market price. We observe in table 7 that with increasing product tenure, i.e, the higher

the number of years the incumbents are producing a product, the higher the difference between entrant

and market price.

Table 7: Descriptive evidence of firm entry in a given product

Product Higher Price Lower Price Observations Log-difference
Tenure (%) (%) of price (Avg)

0-5 53.92 46.08 102 0.211
5-10 45.95 54.05 407 0.604
10-15 44.44 55.56 504 0.833
15-20 41.87 58.13 492 0.880

Note: Values in brackets are percentages

Let us estimate the model:

(Pij/P̄j) = αj + β1 Tenurej + β2 Product sales shareij + β2 FirmSizei + yearij + sectori + eij (8)

where Pij is price of product j of firm i, P̄j is the weighted average price of the product at the

market level as defined before, Tenurej is the (log) number of years the product has been produced by

incumbent firms and is our proxy for market experience or knowledge stock at the market level. We

control for product sales share, i.e, the share of sales of the product in total sales of firm in the year of

entry. We also control for size of the firm and we include year and sector11 effects. Since we are looking

at firm entry, a one-time event, we pool the entry events in different years together and hence there is

no time dimension in our analysis, in this respect the year dummies allow to control for temporal effect.

Therefore, we perform a cross sectional analysis and employ an ordinary least squares regression with

product fixed effects. We calculate cluster-robust standard error that permit general heteroskedasticity

and within-cluster error correlation.

The results are reported in Table 8 and overall, they suggest that the higher the “age” of the product

family, the higher is the ratio of entrant to market price. Conversely, the size of the “product entrant”

has a negative effect on the price-ratio.

9The average price is computed excluding the new entrant.
10In order to precisely measure the tenure of the product, we drop the products that were present in the first year of our

sample. For those products indeed, we have no information about the actual year of introduction. Note however that in a
robustness check in which we include all observations, results remain the same.

11Here, the sector is defined as the main sector of economic activity of the firm, at 2 digit National Industry Classification.
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Table 8: Relation between “market experience” and firm entry pricing

I II III IV

Tenure 0.001** 0.001* 0.002*** 0.001**
(0.000) (0.000) (0.000) (0.000)

Product Sales Share No 0.001 No 0.001
(0.001) (0.001)

Firm Size No No -0.003** -0.003**
(0.001) (0.001)

N 1867 1561 1794 1501
R2 0.392 0.484 0.395 0.488
Adjusted R2 0.072 0.163 0.062 0.154

Standard errors in parentheses

*p < 0.10, **p < 0.05, ***p < 0.01

8 Conclusions

Persistent technological and organizational learning is most likely the fundamental driver of economic

dynamics since the Industrial Revolution and underlines all episodes of catching-up ever since (for a

recent discussion, see Cimoli et al. 2009). Learning takes various forms which the economics of innovation

has investigated in detail (a critical survey is in Dosi and Nelson 2010).

One of such ways, statistically identified even earlier than the return of economists to study “inside

the blackbox” of technological change, is learning-by-doing, that is some relation between experience

by making, usually proxied by cumulative production and increasing production efficiencies/falling cost

and prices. The evidence is quite robust, mostly collected so far on industries in developed economies.

But does it properly apply also to developing ones? And what explains the inter-sectoral/inter-product

differences in the apparent learning patterns, if any?

In this work, on Indian manufacturing, we do corroborate in a good deal of cases the power law

relation cost/prices vs cumulated produced quantities. At the same time, we find, first, a wide variation

in learning coefficients which still demands satisfactory explanations. Second, relatedly, some relations

appear to be positive, that is, an apparent “anti-learning”. Such patterns, however are consistent with

some circumstantial evidence according to which learning tends to relate more to product than process

innovation. Third, product innovation also explains why late entry in the same product family occurs

notwithstanding learning curves, which as such represent entry barriers in favour of incumbents.
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A Few details on the data used

As we mentioned in Section 3, the data is taken from Prowess database, provided by the CMIE (Centre

For Monitoring Indian Economy Pvt. Ltd.). Prowess is a database of active business entities for which

information related to their financial performance is available. By “active” business entities, CMIE means

those business entities that are not mere registrations without any activity. By “business entities” CMIE

implies that it is not restricted to only registered companies. Prowess do not cover the universe of active

business entities, even though it is the largest and most comprehensive database on the financial perfor-

mance of Indian business entities. The companies covered account for around 70 percent of industrial

output, 75 percent of corporate taxes, and more than 95 percent of excise taxes collected by the Govern-

ment of India. Earlier studies, such as Topalova and Khandelwal (2011); Balakrishnan et al. (2000) and

Krishna and Mitra (1998) have used the same database, at firm level, to study the impact of reforms on

productivity growth of firms. Few studies which used the same firm-product level data include Goldberg

et al. (2010a) to study the relationship between declines in trade costs, the imports of intermediate inputs

and domestic firm product scope; and Goldberg et al. (2010b) focusing in the characteristics of multi

product firms and the link between product rationalization and trade reforms in India.

Below, we present some description on the product data used for the study. Table 2 gives summary

statistics of product-reporting firms. In the following parts, we describe on the product classification and

provide some examples of product hierarchy.

A.1 On the product classification

All companies in the Prowess database are mapped to a product or a service in CMIE’s standardized

products and services classification. This mapping reflects the company’s main economic activity during

a year12. Out of these, 90 percent of firms report products they produce. Among the firms that report

products produced, in 99 percent of the cases, the sum of sales of products account for more than 95

percent of firm sales.

The product and services classification developed by CMIE is based on the Indian Trade Classification

(ITC) which, in turn is based on the Harmonized Commodity Description and Coding System, commonly

known as the HS. The ITC system covers only commodities and no services or utilities. CMIE has added

these for its classification system. CMIE’s standardised products and services classification is a tree-

like organisation of all products and services. The structure can be picturised as a set of groups of

products/services at the broadest level. For example, chemicals or base metals are broad groups. Each

such group consists of sub-groups of products/services. A sub-group can again consist of sub-sub-groups

and, so on. Finally, all groups, sub-groups, sub-sub-sub groups, etc. consist of individual products or

services. The groups and sub-groups are a way of organizing products/services into logical collections.

There are a total of 2411 products linked to 293 five-digit NIC industries across the 22 manufacturing

sectors (two-digit NIC codes). As a comparison, the U.S. manufacturing data used by Bernard et al.

(2010), contain approximately 1,500 products, defined as five-digit Standard Industrial Classification

(SIC) codes, across 455 four-digit SIC industries. Thus, our definition of a product is slightly more

detailed than Bernard et al. (2010).

Examples of products with its hierarchical structure within 2 sectors, namely, manufacture of bever-

12A company is classified under a particular industry if more than half of its sales originates from the particular industry
or industry group. The industry group could be any product or a product group in the CMIE products and services
classification structure.
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ages and manufacture of leather and leather products are listed in table 9. The table 9 reports one four

digit industry within the beverages sector: Manufacture of malt liquors, beer and other alcohol. The

products include malt spirit distilled, soda/carbonated water, beer, sparkling wine, potable alcohol etc.

Similar to other classifications, the degree of detail varies across industries and sectors. As we see in

table 9, within the manufacture of leather and leather products, there are two different four digit sectors

listed, along with the products within each sector.

Table 9: Examples of Industries, Sectors and Products

NIC Product Code Description

11 Manufacture of beverages

1103 Manufacture of malt liquors, beer and other alcohol

050703010000 Malt spirit distilled

051401040000 Soda/Carbonated water

051403000000 Beer

051404010000

P
ro

d
u
ct

s Sparkling wine

051406000000 Potable alcohol

051406010000 Indian made foreign liquor

051406010200 Heritage liquor

051406010300 Scotch & whiskey

15 Manufacture of leather and leather products

1512 Manufacture of consumer goods of leather and substitutes of leather

070202040000 Shopping bags/ carry bags

070202060000 Leather hand bag

070202070000 Wallets and leather purses

070203000000

P
ro

d
u
ct

s Leather garments and accessories

070203010000 Leather jackets

070203020000 Leather gloves

070203040000 Leather belts

070203050000 Industrial leather hand gloves/apron

1520 Manufacture of leather footwear

070601000000 Full leather shoes

070602000000 Canvas shoes

070603000000 Full shoes or boots

070604000000

P
ro

d
u
ct

s Slippers

070605000000 Plastic footwear

070606000000 Footcare products

070607000000 Shoe uppers

070608000000 Shoe soles/heels

Source: Prowess database

We remove from the sample products defined only at 2 digit, as they identify broad categories of

products which might display a high degree of variability. We also remove the products produced in the
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first year of the database since we do not have information on which year the firm started producing the

product. Table 10 gives the share of products at different levels of disaggregation. From the table you

can see that removing the fist 2 digits of disaggregation would remove only 3.32 percent of total sales

reported.

Table 10: Share of products and firms producing products at various levels of disaggregation

2 digit 4 digit 6 digit 8 digit Total

Share of products 6.68 60.70 31.40 0.03 100

Share in total sales 3.32 75.66 21.00 0.003 100

B Relation between price and unit production cost

Here, we present the results from a fixed effect regression of equation 1. Column 1 reports the results

from a fixed effects regression of price on unit cost.

Table 11: Relation between cost of production and price of product

(1)
Unit cost 0.4305***

(0.0045)

Time Dummies Yes

Observations 19669
R2 within 0.364
R2 between 0.899
R2 overall 0.869
Number of firms 2581

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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