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Abstract

This paper proposes a new method for empirically validate simulation models that gen-

erate artificial time series data comparable with real-world data. The approach is based

on comparing structures of vector autoregression models which are estimated from both

artificial and real-world data by means of causal search algorithms. This relatively simple

procedure is able to tackle both the problem of confronting theoretical simulation models

with the data and the problem of comparing different models in terms of their empirical

reliability. Moreover the paper provides an application of the validation procedure to the

Dosi et al. (2015) macro-model.
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Although demonstrative simulation models are useful,

not least at performing “what if” exercises of exploration of different models,

policy analysis requires validated, descriptive simulation models.

Marks (2013)

1 Introduction

Economics, as any scientific discipline intended to inform policy, has inevitably addressed ques-

tions related to identification and measurement of causes and effects. This paper, by identifying

and comparing causal structures, proposes a method which improves the empirical reliability

of policy-oriented simulation models.

The foundation of the Econometric Society in 1930 paved the way of a rigorous and formal

approach to the analysis of causality, which, as Heckman (2000) points out, constituted the

major contribution of econometrics.1 In the post World War II period causal claims were

introduced in macroeconomics by means of aggregate, mechanic and dynamic models in which

the ex-ante use of economic theory was pivotal. Under this approach the causal process used to

be partitioned in a deterministic component and a random component. The former was meant

to reflect the causal relations dictated by economic theory. The condition for it to be considered

“valid” was to have the random component satisfying the standard Gauss-Markov statistical

properties. Such a methodology goes under the name of Cowles Commission or Simultaneous

Equations Model (SEM) approach. The most prominent proposers were Haavelmo (1944) and

Koopmans (1950).

This approach has been strongly criticized by Lucas (1976) and Sims (1980) on theoreti-

cal and methodological grounds respectively: the former insisted on the fact that individuals

endowed with rational expectations would have anticipated the policy interventions supported

by SEMs and their behaviour would have brought to opposite results with respect to the ones

predicted by SEMs; the latter instead stressed the fact that in the Cowles Commission ap-

proach the distinction between endogenous and exogenous variable was stated ad-hoc, in order

to ensure system identifiability.

Taking as starting points the Lucas (1976) and Sims (1980) critiques, Kydland and Prescott

1As Hoover (2004) has shown, however, causal language has not always been explicit in economics and in the
sciences in general. In the first half of the twentieth century, under the influence of Karl Pearson, Ernst Mach
and Bertrand Russell, many research scientists endeavoured to eschew causal concepts in order to privilege talk
of functional and statistical dependencies (Illari et al., 2011). Causal talk revived in the second half of the last
century (Hoover, 2004). See also Granger (1980)
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(1982) paved the way toward a new class of models, becoming the founding fathers of the

stream of literature that goes under the name of Real Business Cycle (RBC) theory and which

then evolved in what today is known as the Dynamic Stochastic General Equilibrium (DSGE)

approach. These types of models are nowadays the most widely used to draw and to evaluate

policy claims because they bear the advantage of simultaneously addressing two critical issues

about causal structures. On the one hand, under the acceptance of the rational expectation

hypothesis, the structure modelled by the RBC/DSGE approach remains invariant under pol-

icy intervention because it takes into account the forward-looking behaviour of the economic

agents. On the other hand, the theoretical structure has an empirical counterpart in which the

distinction between endogenous and exogenous variables is eschewed. The empirical counter-

part is represented by a Structural Vector Autoregressive (SVAR) model.2 But the RBC/DSGE

approach is not exempt from problematic issues: structural stability is grounded on individual

behaviour, but assuming a representative agent which neglects or even denies any form of inter-

action. Moreover, the identification of the empirical structure in the SVAR model is typically

achieved by imposing restrictions derived from the theoretical model, which are therefore not

subjected to any severe test. (See Fagiolo and Roventini (2012) for a detailed criticism on

similar issues).

An alternative approach to the problem of representing macroeconomic causal structures, in

which it is possible to run reliable policy experiments, is to build a class of models which better

reflect the existing economic mechanisms, including the microeconomic interactions. This is the

aim of the Agent-Based Model (ABM) approach, also known as the Agent-Based Computational

Economics (ACE) approach, in which the macroeconomic structure is analysed as an emerging

property from the interaction between heterogeneous and bounded rational economic actors.

This modelling strategy has been applied to economic theory only during the last three decades,

but it rapidly gained a significant success and in the very last years has begun to be perceived

as a new valuable paradigm, able to provide a viable alternative to the DSGE framework.3

ABM is a useful and flexible tool for performing rich policy experiments and for evaluating

their implications; among the main advantages of the ABM strategy, stands the possibility

of analysing endogenously generated booms and busts and also to study the reaction of the

2See, however, Canova and Sala (2009) and Fukac and Pagan (2006) for cautionary notes about the existence
of the empirical counterpart of a DSGE model.

3The fast success of ABM might be due both to the huge improvements in computational power and recently,
to their ability of explaining and revealing intriguing aspects of the world financial and economic crisis; DSGE
models instead, has proven to be of few help when facing the crisis. See Trichet (2010) for clarification on this
last point.
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economy to different stimuli, also applied in periods of distress and not only around a fictitious

locally stable steady state of the economy.

But ABMs pose a serious methodological problem because of their unclear relationship

with the empirical evidence. This paper aims to address this issue. The difficulties of the ABM

approach, which represent the counterpart of its flexibility, are perceived both in the model-

data confrontation and in the comparison of different models investigating the same piece of

evidence. The quality of ABMs has been up to now evaluated according to the ex-post ability

in reproducing a number of stylized facts even if other validation procedures are available (see

Fagiolo et al., 2007). We argue that such an evaluation strategy is not rigorous enough. Indeed

the reproduction, no matter how robust, of a set of statistical properties of the data by a model

is a quite weak form of validation, since, in general, given a set of statistical dependencies

there are possibly many causal structures which may have generated them. Thus models which

incorporate different causal structures, on which diverse and even opposite practical policy

suggestions can be grounded, may well replicate the same empirical facts.4

The present work proposes a procedure to validate a simulation model which proceeds by

first estimating both the causal structure incorporated in the model (using the data artificially

generated by the model) and the causal structure underlying the real-world data. Secondly, it

compares the two inferred causal structures. In this manner the proposed procedure offers a

solution to both the issue of confronting an ABM to empirical data and the issue of confronting

different simulation models. Indeed causal structures inferred from different simulation data,

generated by different models can be compared in the same way. A good matching between

the causal structure incorporated in the ABM and the causal structure underlying the real-

world data provides a more rigorous empirical support to the policy statements drawn from the

ABM, if compared with the support coming from mere replication of statistical evidence. Other

validation procedures have been recently proposed based on information criteria by Lamperti

(2015) and Barde (2015); other researchers such as Grazzini (2012), Lux (2012), Recchioni et al.

(2015), Gilli and Winker (2003) have focused on estimation, or on the analysis of the emergent

properties stemming from ABMs (see Grazzini and Richiardi, 2015); there has also been interest

for parameter space exploration (see Salle and Yildizoglu, 2014). The flourishing of all these

complementary approaches devoted to the solution of such interrelated issues can be seen an

indicator of their relevance and a signal of the vitality of the agent-based community.

The paper is organised as follows. Section 2 reviews the different strands of literature on

4At the root of this underdetermination problem is the fact that statistical relationships are in general
symmetric, while this is not necessarily the case for causal relationships.
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which our method is built upon; the validation algorithm is presented extensively in Section 3;

Section 4 provides a first application of the method to the “Schumpeter meeting Keynes”model

proposed by Dosi et al. (2015). Section 5 concludes.

2 Background literature

DSGE models are confronted to the data in two ways. The first and traditional approach

is through calibration, in which the parameters of the model are chosen from pre-existing

microeconomic studies or in order to replicate the statistical properties of aggregate variables

(Kydland and Prescott, 1996). The second approach is through the estimation of a VAR model

built to represent the empirical counterpart of the DSGE model. Having estimated a VAR, one

can identify a SVAR and confront its impulse response functions with the responses to policy

shocks derived from the DSGE model. Alternatively, as proposed by Ireland (2004), one can

augment the DSGE model with the VAR residuals and estimate a hybrid model via maximum

likelihood (for a criticism see Juselius, 2011).

Calibration and replication of statistical properties of data is practised in the ACE com-

munity as well. To our knowledge, however, the models by Bianchi et al. (2007) and Bianchi

et al. (2008) are the unique medium-scale agent-based macro-models in which parameters are

estimated ex-ante and calibrated ex-post in order to replicate statistical properties of observed

data.5

Although calibration and replication of statistical properties of data make some step in

taking the model to the data, we claim that this is not enough for the reliability of the policy

implications derived from the model, since two models with alternative policy implications may

well be both calibrated in order to replicate certain statistical properties of observed data.

Reliability can be improved only through a validation exercise designed to provide evidence

that the modelled data generating mechanism is an adequate representation of the real-data

generating mechanism.

We are aware that the economic system has the characteristics of a complex system in

which somehow stable macroscopic aggregate properties emerge from intricate connections at

the microscopic level. But we further believe that representing into a unique model every single

micro-mechanism at work in a complex economy and showing its good match with data at

different levels of aggregation is a very difficult task. A reduction in the complexity of the

5There are, however, several small-scale ACE financial models which are instead calibrated or estimated such
as the ones by Alfarano et al. (2005, 2006, 2007).
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issue may be necessary, and hence in what follows we will analyse only the relations between

macro variables.6 Our strategy is indeed to focus only on representing causal structures among

aggregate variables of the ABM and test whether they significantly differ from the causal

structures that can be found in the real world from observed aggregate variables, without

further considerations of the micro properties. In other words, we compare a macro-reduced

version of the modelled generated mechanism with a macro-reduced version of the real-data

generating mechanism.7

Our procedure will separately identify the causal structures of the two different data generat-

ing processes at their aggregate level, and then will compare the results of the estimations: if the

causal structures are similar, then the model is a good characterization of the causal structure

of the real-world data generating process and we will consider it as “valid”. The identification

method is the same for both processes: we will estimate a SVAR model using both observed

and simulated aggregate data. This model, being a model with well known properties, provides

us enough power and flexibility to compare the explanatory performances of ABM with that of

real-world data. But a crucial feature in the SVAR estimation is the identification procedure,

which we describe in the next subsections.

2.1 SVAR identification: an open issue

Starting from a multiple time series dataset composed of K variables collected for T periods

we can denote by Yt = (Y1t, . . . , YKt)
′ the values of these variables at a particular time t. A

simple, but useful way of representing the data generating process, is to model the value of each

variable Ykt as a linear combination of the previous values of all the variables as well as their

contemporaneous values:

Yt = BYt + Γ1Yt−1 + · · ·+ ΓpYt−p + εt (1)

where the diagonal elements of the matrix B are set equal to zero by definition and where εt

represents a vector of error terms which we will assume to be mutually statistically independent.

Therefore the covariance matrix Σε = E [εtε
′

t] is diagonal. The SVAR form of this model can

6Cfr. Haldane (2012).
7Possible developments of the same method may allow to compare a micro-macro version of the modelled

generated mechanism with the real-data generating mechanism, using observations at different levels of aggre-
gation.
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also be written as

Γ0Yt = Γ1Yt−1 + · · ·+ ΓpYt−p + εt (2)

where Γ0 = I − B. The problem with equations (1) and (2) is that they cannot be directly

estimated without biases, being the contemporaneous variables endogenous. What is typically

done in the literature is to estimate the reduced form VAR model:

Yt= Γ
−1
0 Γ1Yt−1 + · · ·+ Γ

−1
0 ΓpYt−p + Γ

−1
0 εt

= A1Yt−1 + · · ·+ApYt−p + ut.
(3)

where ut = Γ
−1
0 εt is a zero-mean white noise process with a covariance matrix Σu = E [utu

′

t]

that in general is not diagonal.

The problem is that, even if the parameters contained into Ai, for i = 1, . . . , p can be

estimated from equation (3) without incurring in any particular issue, their knowledge is not

sufficient for the recovery of the structural parameter contained in B and in Γi, for i = 1, . . . , p

of equation (1), making impossible the inference of any causal and/or policy claim. To do such

claims we need to recover the matrix Γ0 that contains the contemporaneous causal effects. But

the problem is that any invertible unit-diagonal matrix might be compatible with the coefficients

estimated from the VAR in equation (3).

The problem of finding the appropriate Γ0 (and hence also finding the matrices Γ1, . . . ,Γp)

is called the identification problem and it is usually performed by imposing restrictions on the Γ0

matrix using a Cholesky factorization of the estimated covariance matrixΣu. But this approach

should only be employed when the recursive ordering implied by the identification scheme is

firmly supported by theoretical consideration. A class of alternative identification procedures

derives from the seminal papers by Bernanke (1986) and Blanchard (1989) and imposes zero

restrictions which are based on economic considerations about contemporaneous interactions.

An alternative identification strategy descends from Shapiro and Watson (1988) and Blanchard

and Quah (1989) by assuming that certain economic shocks (e.g. supply shocks) have long-run

effects on some variables but do not influence in the long-run the level of other variables, while

other shocks (e.g. demand shocks) have only short-run effects on all the variables. Unfortunately

these identification strategies are grounded on some level of theoretical apriorism which does

not completely solves the critique put forward by Sims (1980).

A relatively recent approach for solving the identification issue of a SVAR model in a more

agnostic and data-driven fashion, allowing to avoid as much as possible subjective choices and
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theory driven considerations, has been put forward by Swanson and Granger (1997), Bessler

and Lee (2002), Demiralp and Hoover (2003), Moneta (2008) and Moneta et al. (2011) and is

based on graphical causal models (see Pearl, 2000; Spirtes et al., 2000).

2.2 Graphical causal models and SVAR identification

A Causal Graph G is a model that consists of a set V of vertices (nodes) and a set E of edges

(links) and might be written concisely as G = 〈V , E〉. It is aimed at representing and analysing

specific features of the data-generating process underlying the set of observed variables. The

vertices of such a graph correspond to random variables and the edges denote causal relation-

ships among them. In what follows we focus on the simple case of Directed Acyclic Graphs

(DAG) in which all the edges are directed and causal loops are not allowed.

The identification procedure based on graphical causal models consists of three steps: (i)

estimating the reduced form VAR of equation (3), (ii) applying a search algorithm to the

estimated residuals ut to obtain the matrix Γ0 (cfr. equation 2) and (iii) recovering the other

matrices Γi (i = 1, . . . , p) of the SVAR model.

The critical part of the procedure is the second step, in which an algorithm is applied in

order to uncover the causal dependencies among the residuals ut. The literature on causal

search models has developed a plethora of algorithms which differ among each other for the

assumptions on which they are based and the computational properties. Assumptions typically

concern the form of the causal structure (e.g. cyclic or acyclic), the presence or exclusion of

latent variables (i.e. causally not sufficient or causal sufficient structures), rules of inference

(more on that below), and, finally, statistical properties of the residuals (e.g. normality or

linearity) which allow the application of specific tests of conditional independence.

The algorithm presented in Appendix A is the PC algorithm originally developed by Spirtes

et al. (2000). In this algorithm causal loops are not allowed. Indeed it is assumed that the

causal generating mechanism can be modelled by a DAG. In the SVAR framework this amounts

to exclude feedbacks in the contemporaneous causal structure, while feedbacks over time are

of course conceivable (e.g. Xt causes Yt+1 which in turn causes Xt+2). The PC algorithm also

assumes causal sufficiency, i.e. there is no unmeasured variable which simultaneously affect

two or more observed variables. Rules of inference are conditions which permit deriving causal

relationships starting from tests of conditional independence. The PC, and similar algorithms
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of the same class, hinge on two rules of inference (see Spirtes et al., 2000):

Condition 1. (Causal Markov Condition) Any variable in the causal graph G is conditionally

independent of its graphical nondescendants (i.e. non-effects) — except its graphical parents —

given its graphical parents (i.e. direct causes).

Condition 2. (Faithfulness Condition) Let G be a causal graph and P be a probability

distribution associated with the vertices of G. Then every conditional independence relation

true in P is entailed by the Causal Markov Condition applied to G.

The PC algorithm, as many other of the class of constraint-based search algorithms, needs

as input knowledge of the conditional independence relationships among the variables. There

are many possibilities of testing conditional independence which in principle are all compatible

with the PC algorithm. If the probability distribution underlying the data is Gaussian, zero

partial correlation implies conditional independence. Then a typical procedure is to test for

Gaussianity and in case this is not rejected, one can test for zero partial correlations. In many

statistical packages the default option is to test zero partial correlation through the Fisher-

z-transformation, as proposed by (Spirtes et al., 2000). An alternative option, suited for the

SVAR framework, is to test zero partial correlations among the VAR residuals through a Wald

test that exploits the asymptotic normality of the covariance matrix of the maximum-likelihood

estimated VAR residuals (for details see Moneta, 2008). If Gaussianity is rejected or one is not

willing to make distributional assumptions, one way to proceed is to rely on nonparametric tests

of conditional independence, which, however, present the well-known problem of dimensionality

(cfr. Chlass and Moneta, 2010).

The PC algorithms follows this scheme:

i. Create a complete graph on the variables (X1, . . . , Xk);

ii. Apply tests for conditional independence in order to prune unnecessary edges;

iii. Apply tests for conditional independence in order to direct remaining edges.

There are other algorithms in the literature that, following a similar scheme, allows for

feedback loops or the possibility of latent variables (e.g. the CCD or FCI algorithm; cfr. Spirtes

et al., 2000).

Usually, the output of the causal search is in general not a unique graph G, but a set of

Markov equivalent graphs which represent all the possible data generating processes consistent
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with the underlying probability P . Hence the information obtained from this approach is

generally not sufficient to provide full identification of the SVAR model requiring again a certain

level of a priori theoretical knowledge. Moreover, if the distribution of the residuals is non-

Gaussian, it is necessary to apply tests of conditional independence which are different from tests

of zero partial correlation. However, Moneta et al. (2013) have shown that if the VAR residuals

are non-Gaussian, one can exploit higher-order statistics of the data and apply Independent

Component Analysis (ICA) (see Comon, 1994; Hyvarinen et al., 2001) in order to fully identify

the SVAR model.

2.3 Independent component analysis and SVAR identification

Let us recall the fact that VAR disturbances ut and structural shocks εt are connected via

ut = Γ
−1
0 εt. (4)

In this framework the VAR residuals are interpreted as generated by a linear combination

of non-Gaussian and independent structural shocks via the mixing matrix Γ
−1
0 . Independent

Component Analysis applied to equation (4) allows the estimation of the mixing matrix Γ
−1
0 and

the independent components εt by finding linear combinations of ut whose mutual statistical

dependence is, according to some given measure, minimized. Some points should be noticed: (i)

while the assumptions of mutual independence of the structural shocks is usually not necessary

in a SVAR framework (orthogonality is usually sufficient), such an assumption is necessary

to apply ICA; (ii) ICA does not require any specific distribution of the residuals ut but only

requires that they are non-Gaussian (with the possibility of at maximum one Gaussian element);

(iii) the ICA-based approach for causal search does not require the faithfulness condition; (iv)

in non-Gaussian settings while conditional independence implies zero partial correlation, the

converse does not hold in general.

The application of ICA to the estimated VAR residuals allows identifying the rows of the

matrix Γ0, but not their order, sign and scale (for details see Hyvarinen et al., 2001). In order

to obtain the correct matrix Γ0, that is the matrix incorporating the contemporaneous causal

structure and such that Γ0 = I−B in equation (1), we further assume that the VAR residuals

can be represented as a Linear Non-Gaussian Acyclic Model (LiNGAM) so that the contem-

poraneous causal structure can be represented as a DAG. On the basis of this assumption, it

is possible to apply the causal search algorithm presented in Appendix B (VAR-LiNGAM),
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which draws on the original contributions of Shimizu et al. (2006) and Hyvarinen et al. (2010)

(for an application to economics see Moneta et al., 2013). The basic idea by which the VAR-

LiNGAM algorithm solves the order indeterminacy is that if the underlying causal structure

is acyclic, there must be only one row-permutation of the ICA-estimated rows of Γ0 such that

all the entries of the main diagonal are different from zero. Hence, the algorithm applies a

search procedure to find such a permutation (for details see Appendix B, step C). The scaling

indeterminacy is solved by normalizing the elements of the ICA-estimated matrix and rightly

row-permuted Γ0, such that the main diagonal is one (and the main diagonal of B is zero, as

dictated by equation (1).

In the literature there are alternative ICA-based search algorithms, which relax the assump-

tion of acyclicity and causal sufficiency: see for example the algorithms proposed by Lacerda

et al. (2008) and Hoyer et al. (2008), which respectively allow for feedback loops and for latent

variables. However, since this is a first application of this type of framework to validation of

simulated model, we decided to keep the analysis as simple as possible so that in future works

we might relax assumptions, and understand which are the most critical for validation concerns.

3 The validation method

In this section we describe our validation procedure which is composed of five different steps

as shown in figure (1). In the first step we apply some simple transformations that allow the

empirical and the artificial data to be directly comparable; in the second step we analyse the

emergent properties of the series produced by the simulated model; in the third step we estimate

the reduced-form VAR model; in the fourth step we identify the structural form of the model

by means of some causal search algorithm; in the last step we compare the two estimated causal

structures according to some distance measure.

3.1 Dataset uniformity

Our method starts by selecting, in the model under validation inquiry, K variables of interest

(v1, . . . , vK). We then collect a dataset that corresponds to the actual realization of these

variables in the real world (we call this dataset RW-data) as well as a dataset for the realizations

of M Monte Carlo simulations of the agent-based model (we call this one AB-data). We thus

obtain two preliminary datasets VRW and VAB which might be of different dimensions. In

11



Dataset Uniformity

Analysis of ABM Properties

VAR Estimation

SVAR Identification

Validation Assessment

Figure 1: The five steps of the validation method.

general we will have











dim(VRW ) = 1×K × TRW

dim(VAB) = M ×K × TAB

meaning that for the real world we observe only 1 realization of the the K variables of interest

for a period of length TRW while for the simulated data (for which we can possibly have an

infinity of observations) we will have M Monte Carlo realizations, of the same K variables, for

a period of length TAB; it often holds true that TAB >> TRW , so that the two datasets are not

perfectly matchable.

The large availability of realizations in the simulated data is in fact an advantage and not

an issue, since this allows a pairwise comparison of each run of the Monte Carlo simulation with

the unique empirical realization. But the presence of different lengths in the time series might

generate issues in two directions: (i) using the whole length of the AB-data time series creates

the risk of capturing the effects present in the transient period, which does not represent the

true dynamic entailed by the model, but is only due to the choice of the initial conditions, (ii)

lag selection might be affected due to unobserved persistence in some of the modelled variables.

Therefore we remove an initial subset of length TAB−TRW from each of the M artificial datasets

12



(as shown in figure 2) in order to force each pair of datasets to have the same dimensions:

dim(VRW ) = dim(VAB(i)) = 1×K × TRW for i = 1, . . . ,M.

1 TAB − TRW TAB

1 TRW

Figure 2: Time window selection. The first periods of the AB-data are canceled with the
objective of homogenising the series.

Moreover the order of magnitude of RW-data and AB-data are typically different; this is not

perceived by the ABM community as an issue, being the concern of a large number of ABMs

the replication of stylized facts (distributions, variations, statistical properties but not levels).

But in our approach this might create comparability issue. We will see that in our application

it is sufficient to take a logarithmic transformation in order to smooth out this scaling issue,

and we speculate that in many applications any monotonic transformation might be applied.

3.2 Analysis of ABM properties

Some considerations about two underlying assumptions are needed. For the model to be a

good proxy of the data generating process, we require that it is in a statistical equilibrium

state in which the properties of the analysed series are constant. In particular we require that

the series, or a transformation of them (e.g. first differences), have distributional properties

that are time-independent; secondly we require that the series are ergodic, meaning that the

observed time series are a random sample of a multivariate stochastic process.

In a context where the series have been generated by a simulation model, which provides

M Monte Carlo realizations, these two assumptions can be tested directly (see Grazzini, 2012).

Indeed if we consider all the M time series realizations of a variable of interest k we will collect a

matrix with dimensionsM×T containing all the generated data Y m
k,t, as represented in figure (3).

We call here ensembles the column vectors of such a matrix; therefore each ensemble contains

the M observations Y
(·)
k,t in which the time dimension is fixed. We instead define samples all the

row vectors of the same matrix, each of which contains the T observations Y m
k,(·) in which the
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Monte Carlo dimension is fixed. Let’s denote by Ft(Yk) the empirical cumulative distribution

function of an ensemble and by Fm(Yk) the empirical cumulative distribution function of a

sample. Testing for statistical equilibrium and for ergodicity reduces to test (via Kolmogorov-

Smirnov test) for the following conditions:

Fi(Yk) = Fj(Yk), for i, j = 1, . . . , T i 6= j (5)

Fi(Yk) = Fj(Yk), for i = 1, . . . , T j = 1, . . . ,M (6)

Therefore we perform two tests as represented in figure (3): we recursively run tests of pairwise

equality of distributions and we present the percentage of non-rejection of such tests. Rejecting

the test would imply that the distribution under investigation are different from each other.

Our two assumptions will result to be supported by the data if we obtain high percentages of

non-rejection.

Y k =

y1,1 y1,2 . . . y1,T

y2,1 . . . . . . y2,T

...
...

...
...

yM,1 yM,2 . . . yM,T
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
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Figure 3: The elements of comparison when testing for statistical equilibrium (left) and for
ergodicity (right).

3.3 VAR estimation

Following the Box and Jenkins (1970) methodology, the first task when any time series model

has to be estimated, is the lag selection: in our case this means choosing the two values pRW

and piAB, for i = 1, . . . ,M according to some information criterion like the BIC the HQC or

the AIC. Two cases might anyway emerge from the data:

1. pRW − piAB = 0 which means that our estimations based on the artificial dataset and on

the real-world dataset are perfectly comparable;

2. pRW −piAB 6= 0 which means that one of the two dataset presents at least one effect which
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is not present in the other; we keep this fact into account when computing the similarity

measure.

Once the lag selection has been performed, our procedure estimates the VAR as explicited

in equation (3) via OLS and also in his VECM form, via maximum likelihood estimation (see

Lutkepohl, 1993) using the Johansen and Juselius (1990) procedure.

3.4 SVAR identification

In this step we extract the vectors of residuals (u1, . . . , uK) from the estimation of the VAR

and analyse their statistical properties and their distributions. We test for normality applying

the Shapiro-Wilk and the Jarque-Bera statistics. Then according to the outcome of the tests,

we select the appropriate causal search algorithm to be adopted for the identification strategy.

Two algorithms, the PC (to be adopted for the Gaussian case) and the VAR-LiNGAM (for

the non-Gaussian case) are presented extensively in the appendices A and B. At the end of the

identification procedure, we have estimated our structural matrices Γ
RW
i for i = 0, . . . , pRW

and Γ
AB,m
i , for i = 0, . . . , pAB and for m = 1, . . . ,M .

3.5 Validation assessment

The last step consists in the comparison of the causal effects entailed by the SVARRW and

the SVARAB models. This will tell us how many of the real-world estimated causal effects are

captured also by the agent-based model under validation inquiry.

In order to compare the causal effects we will use the similarity measure Ω, which we

construct, as already anticipated, starting from the estimates of the SVAR.

Let’s denote γRW
i,jk the (j, k) element of ΓRW

i for i = 0, . . . , pRW and γAB
i,jk the (j, k) element

of ΓAB,m
i for i = 0, . . . , pAB and for m = 1, . . . ,M . We define pmax = max {pRW , pAB} and

then we set











Γ
RW
i = 0 for pRW < i ≤ pmax if pRW < pmax = pAB

Γ
AB
i = 0 for pAB < i ≤ pmax if pAB < pmax = pRW

This allows us to penalize the value obtained by the similarity measure for the fact that the

causal effects are completely mismatched after a certain lag. Then we build the indicator
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function:

ωi,jk =











1 if sign(γRW
i,jk ) = sign(γAB

i,jk)

0 if sign(γRW
i,jk ) 6= sign(γAB

i,jk)
(7)

where i = 0, . . . , pmax is the index for the ith-order matrix containing the causal effects, while j

and k are the row and column indexes of these matrices. The similarity measure is then defined

as

Ω =

(

∑pmax

i=1

∑K

j=1

∑K

k=1 ωi,jk

)

K2pmax

. (8)

Our similarity measure is bounded between [0, 1] allowing us to have an easily interpretable

index that represents the ability of the agent-based model to recover, at the aggregate macro-

level, the same causal relationsips estimated in the RW-data.

4 Application to the “Schumpeter Meeting Keynes” model

The idea of building a simulation macroeconomic laboratory performing policy exercises dates

back to Lucas (1976) and Kydland and Prescott (1982) but one problem of this approach has

always been the external validity. Our methodology can be interpreted as a test for external

validity for any simulation model and it might be of particular interest for researchers engaged

in practical policy matters and policy makers who should take decisions according to models

which must be reliable and valid. We already argued that a policy reliable model is one that

is able not only to replicate a list of stylized facts, but also to represent the real-world causal

structure as much accurately as possible. We want to test here the validity of the agent-based

laboratory by Dosi et al. (2015), a model that builds upon a series of previous papers (see Dosi

et al., 2013, 2010) and that has attracted great attention in the recent literature.

The Dosi et al. (2015) model aims at investigating the implications of demand and supply

public policies in a model that “bridges Keynesian theories of demand-generation and Schum-

peterian theories of technology-fuelled economic growth”. The model by itself is able to reproduce

a long list of stylized facts and in particular is able to reproduce a cross correlation table close

to the one usually computed with the US observed data.
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4.1 The dataset

Since the model under validation inquiry is dedicated to the analysis of the real side of an

economic system and to the analysis of fiscal and monetary policies, the K = 6 variables of

major interest that we will consider in our system of equation are: aggregate consumption (C),

gross private investments (I), unemployment rate (U), gross domestic product (Y ), current

price index (P ) and effective federal funds rate (R). The RW-data refer to the United States

and are collected from the Federal Reserve Economic Database (FRED); we decided to cover

the period from January 1959 to April 2014 with a quarterly frequency, implying a time series

length T = 222; this is a typical selection when analysing US business cycle. All the variables

are plotted in figure 4.
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Figure 4: Left columns: time series of RW-data. Right columns: time series of a typical
AB-data.

To fulfil the dataset uniformity requirement for the AB-data, we collect the last T time ob-

servations, getting rid of possible transients and we consider M = 100 Monte Carlo simulations;
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each of them will be pairwise compared to the unique realization of the RW-data. Finally we

take logs of the C, I, Y, P variables and we uniform U and R by expressing them in percentage

terms.8

We then check whether the assumptions we require for estimation of our AB model are too

stringent or they are supported by the data; we perform the statistical equilibrium and the

ergodicity tests as described in the section 3.2 and in figure (3); this kind of test is in line also

with the analysis proposed by Grazzini (2012).

Equilibrium Ergodicity
C 0.9538 0.9479
I 0.9634 0.9564
U 0.9608 0.9396
Y 0.9532 0.9513
P 0.9560 0.9055
R 0.9609 0.9716

Table 1: Percentages of non-rejection of statistical equilibrium and ergodicity.

Table (1) presents the percentage of non-rejection of the Kolmogorov-Smirnov test of each

pairwise comparison, for each stationarised series. The results come from T×(T−1)
2

= 24310 and

T ×M = 22100 pairwise comparisons for the statistical equilibrium and for the ergodicity tests

respectively. For all the series we have values higher than 90% and this allows us to conclude

that the assumptions about the model having reached a statistical equilibrium and producing

ergodic series are reasonable.

4.2 Estimation and validation results

The augmented Dickey-Fuller test does not reject the null hypotheses of unit root in all the

real-world time series. For AB-data, the evidence for ubiquity of unit root is weaker since for

I, U and R we can reject at the 5% level the presence of unit root (see table 2). This does not

create any difficulty to our causal search procedure and it is only a stylized fact not replicated

by the model.

We then estimate the model as a vector error correction model (VECM) with cointegrating

relationships, without taking first difference of any variable, using the Johansen and Juselius

(1990) procedure, which is based on a maximum-likelihood estimation with normal errors, but is

robust also to non-Gaussian disturbances. For sake of completeness we also check the robustness

8Three Monte Carlo simulations, m = {55, 61, 89}, are excluded from the original dataset because in (at
least) one period of the model, investment goes to 0, implying we cannot take logarithm.
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(a) RW-data

Variable ADF p-value for levels ADF p-value for 1st-differences Critical level

C 0.99 0.02 0.05
I 0.89 0.01 0.05
U 0.06 0.01 0.05
Y 0.99 0.01 0.05
p 0.92 0.19 0.05
r 0.22 0.01 0.05

(b) AB-data

Variable ADF p-value for levels ADF p-value for 1st-differences Critical level

C 0.43 0.01 0.05
I 0.01 0.01 0.05
U 0.01 0.01 0.05
Y 0.19 0.01 0.05
p 0.63 0.01 0.05
r 0.01 0.01 0.05

Table 2: Augmented Dickey-Fuller Test.

of the results by estimating the VAR in level via OLS. We select the number of lags according to

the Bayes-Schwarz Information Criterion (BIC) and the number of cointegrating relationships

following the Johansen procedure. For the real-world dataset the suggestion is that of using 3

lags and 2 cointegrating relationships while in the artificial datasets (typically) we should use

3 lags and 3 cointegrating relationships. This implies that we do not have any comparability

issue for what concerns the number of lags. With respect to the cointegrating relations, it is

again a stylized fact not matched by the model which does not create any estimation issue,

since we are interested in structural form of the model and cointegration is only a reduced form

property.

The empirical distributions of the VAR residuals (uC,t, . . . , uR,t) are represented in figure (5)

both for RW-data and for a typical Monte Carlo realization of the AB-data simulation; moreover

table (3) collects the results of the Shapiro-Wilk and the Jarque-Bera tests for normality; for all

the variables, the residuals from the real-world data and all but one residual (the unemployment)

from the artificial data, the tests rejects the null hypothesis of normality.

We conclude that the residuals ut are non-Gaussian and this result leads us toward the

identification of the SVAR via the LiNGAM algorithm.9

After having completed the estimation, we compute the similarity measure as defined in

9The VAR-LiNGAM algorithm is consistent even if one variable is normally distributed and therefore even
the unemployment residuals quasi-Gaussianity does not add complications to our identification and structural
estimation procedure.
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Figure 5: Left columns: RW-data VECM residuals distribution (green) and normal distri-
bution (blue). Right columns: typical AB-data VECM residuals distribution (green) and
normal distribution (blue).

equation (8). The results suggest that when we estimate the system using a OLS-VAR strategy

the Schumpeter meeting Keynes model is able to reproduce, on a Monte Carlo average, the

78.92% of the causal relations entailed in the real-world dataset (the similarity drops to 64.9%

after accounting only for bootstrapped significant parameters); on the other side, if in the first

step we estimate a VECM by means of maximum likelihood, the similarity measure marks

73.85% (raising to 79.89% when considering only bootstrapped significant parameters). The

results are reported also in table (4), containing not only the means but also standard deviations

across Monte Carlo. Being the dispersion index quite low, we can conclude that neither very

negative nor very positive outliers are present. Therefore a large fraction of simulations entail

the same bulk of causal relations.
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(a) RW-data

Shapiro-Wilk Test Shapiro-Wilk p-value Jarque-Bera Test Jarque-Bera p-value
C 0.95 0.00 271.48 0.00
I 0.96 0.00 54.96 0.00
U 0.98 0.02 12.16 0.00
Y 0.97 0.00 61.16 0.00
P 0.88 0.00 1710.58 0.00
R 0.89 0.00 698.46 0.00

(b) AB-data

Shapiro-Wilk Test Shapiro-Wilk p-value Jarque-Bera Test Jarque-Bera p-value
C 0.99 0.03 6.01 0.05
I 0.97 0.00 29.64 0.00
U 0.99 0.08 3.23 0.20
Y 0.98 0.02 4.72 0.09
P 0.98 0.00 10.98 0.00
R 0.99 0.05 7.30 0.03

Table 3: Normality test on the VECM residuals.

Estimation Method µ σ
VAR-OLS (all parameters) 0.7892 0.0517
VECM-ML (all parameters) 0.7385 0.0628
VAR-OLS (significant parameters) 0.6490 0.1030
VECM-ML (significant parameters) 0.7989 0.0689

Table 4: Mean and standard deviation of the similarity measure.

5 Conclusions

In this paper we have presented a new method for validating policy-oriented Agent-Based

macroeconomic models able to generate artificial time series comparable with the aggregate

time series computed by statistical offices, central banks and institutional organizations. The

approach is based on comparing Structural Vector Autoregressive models which are estimated

from both artificial and real-world data by means of causal search algorithms. In the paper we

also have presented a first application of our method to the Dosi et al. (2015) model. We have

calculated that by using the simulated data and according to the proposed similarity measure,

the model is able to resemble between 65% and 80% of the causal relations entailed by a SVAR

estimated on real-world data. We guess that this is a positive result for the Schumpeter meeting

Keynes model but in order to reinforce this claim, we should need to compare this results with

those coming from other models. In our opinion, this paper sets a new benchmark on which

members of the agent-based community might build upon. Convinced about the fact that the

validation issue cannot be settled out in an ultimate manner, other approaches for model validity

can emerge and might bring complementary evidence to ours. Indeed a possible strategy, for

researchers willing to bring their agent-based models to the audience of policymakers, is that

of applying a plurality of methods.
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Appendix A - PC Algorithm

A. Connect everything

Form the complete undirected graph G on the vertex set (u1t, . . . , uKt) so that each vertex is connected to

any other vertex by an undirected edge.

B. Cut some edges

n = 0

REPEAT :

REPEAT :

select an ordered pair of variables uht and uit that are adjacent in G such that the number

of variables adjacent to uht is equal or greater than n+ 1. Select a set S of n variables

adjacent to uht suchthat uit /∈ S. If uht ⊥ uit|S delete edge uht − uit from G.

UNTIL all ordered pairs of adjacent variables uht and uit such that the number of variables

adjacent to uht is equal or greater than n+ 1 and all sets S of n variables adjacent to uht

such that uit /∈ S have been checked to see if uht ⊥ uit|S;

n = n+ 1;

UNTIL for each ordered pair of adjacent variables uht, uit, the number of adjacent variables to uht is less

than n+ 1.

C. Build colliders

For each triple of vertices uht, uit, ujt such that the pair uht, uit and the pair uit, ujt are each adjacent in G

but the pair uht, ujt is not adjacent in G, orient uht − uit − ujt as uht → uit ← ujt if and only if uit does

not belong to any set of variables S such that uht ⊥ ujt|S.

D. Direct some other edges

REPEAT :

if uat → ubt, ubt and uct are adjacent, uat and uct are not adjacent and ubt belongs to every set

S such that uat ⊥ uct|S, then orient ubt − uct as ubt → uct; if there is a directed path from

uat to ubt and an edge between uat and ubt, then orient uat − ubt as uat → ubt;

UNTIL no more edges can be oriented.
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Appendix B - VAR-LiNGAM Algorithm

A. Estimate the reduced form VAR model of equation (3) obtaining estimates Âi of the matrices Ai, ∀ i =

1, . . . ,p. Denote by Û the K × T matrix of the corresponding estimated VAR error terms, that is each

column of Û is ût ≡ (û1t, . . . , ûKt)
′, ∀ t = 1, . . . , T . Check whether the uit (for all rows i) indeed are

non-Gaussian, and proceed only if this is so.

B. Use FastICA or any other suitable ICA algorithm (Hyvarinen et al., 2001) to obtain a decomposition

Û = PE where P is K ×K and E is K × T , such that the rows of E are the estimated independent

components of Û. Then validate non-Gaussianity and (at least approximate) statistical independence

of the components before proceeding.

C. Let ˜̃
Γ0 = P−1. Find Γ̃0, the row-permutated version of ˜̃Γ0 which minimizes

∑

i
1

|Γ̃0,ii|
with respect to

the permutation. Note that this is a linear matching problem which can be easily solved even for high

K (Shimizu et al., 2006).

D. Divide each row of Γ̃0 by its diagonal element, to obtain a matrix Γ̂0 with all ones on the diagonal.

E. Let B̃ = I− Γ̂0.

F. Find the permutation matrix Z which makes ZB̃ZT as close as possible to lower triangular. This

can be formalized as minimizing the sum of squares of the permuted upper-triangular elements, and

minimized using a heuristic procedure (Shimizu et al., 2006). Set the upper-triangular elements to zero,

and permute back to obtain B̂ which now contains the acyclic contemporaneous structure. (Note that

it is useful to check that ZB̃ZT indeed is close to strictly lower-triangular).

G. B̂ now contains K(K − 1)/2 non-zero elements, some of which may be very small (and statistically

insignificant). For improved interpretation and visualization, it may be desired to prune out (set to

zero) small elements at this stage, for instance using a bootstrap approach (Shimizu et al., 2006).

H. Finally, calculate estimates of Γi, ∀ i = 1, . . . ,p for lagged effects using Γi = (I− B̂)Âi.
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