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Abstract: In probability sampling, variance estimation of an estimated mean or total requires
developing a mathematical expression that depends on the design used to extract a sample. These
formulae can be difficult to build and sometimes involve computation of joint inclusion probabilities of
selection, which can be hard to obtain. For some sampling designs it is not possible to obtain an
unbiased estimator of the variance.  These designs include the selection of one element or one large
primary sampling unit within some strata, or systematic selection of units or primary sampling units
within strata. The problem of variance estimation may also arise from an analytical perspective, while
estimating means or totals in unplanned domains, it is possible to arrive at only one unit or cluster within
some strata. In this article, we propose a linear regression variance estimator which is very simple to
compute and gives a solution to the aforementioned problems. Some examples using different designs
are given.
Keywords: Linear regression, variance estimation, expansion factor, unplanned domains, collapsed
strata.
JEL Classification: C80, C83.

Resumen: En el muestreo probabilístico, para la estimación de varianza de una media se requieren 
fórmulas que dependen del diseño empleado para la extracción de la muestra. Estas fórmulas pueden ser 
difíciles de construir y, en ocasiones, involucran el cálculo de las probabilidades de selección conjuntas, 
el cual puede complicarse mucho. Para algunos diseños muestrales no es posible obtener un estimador 
insesgado de la varianza. Estos diseños incluyen la selección de un elemento o un conglomerado grande 
dentro de algunos estratos o el uso del muestreo sistemático de unidades o conglomerados dentro de 
estratos. El problema de estimación de varianza también puede surgir desde un punto de vista analítico 
al estimar medias o totales en dominios no planeados, ya que se puede terminar con una unidad o 
conglomerado dentro de algunos estratos. En este artículo se propone un estimador de varianza usando 
regresión lineal el cual es fácil de calcular y proporciona una solución a las situaciones arriba 
mencionadas. Se proporcionan algunos ejemplos empleando diferentes diseños.
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1. Introduction 

 

Variance estimation is of primary importance to inference in survey sampling. Once an 

estimator of a mean or a total of a finite population is computed, it is important to measure 

the quality of this estimator, which can be achieved by variance estimation. Actually, large 

probability samples can be subjected to different methods, such as stratification, clustering 

and probability proportional to some measure of size, to select the sample units (see for 

example the design of the National Survey of Victimization and Perception of Public Safety, 

ENVIPE 2014). In these designs, variance may be quite difficult to estimate due to clustering 

and/or probability proportional to size. In unplanned domains in particular, variance 

estimation can be difficult to compute, or the variance estimators do not exist. This is the 

case when only one unit or primary sampling unit in some strata or clusters is available (see 

Breidt et al., 2014, and the references cited therein for problems of variance estimation with 

one unit in stratification). Most of the extant literature in this field pertains to variance 

estimation that is specific to a type of survey design or a particular context. It is not practical 

to cite them all, but one can have a good idea of the type of situations with respect to variance 

estimation in Wolter (1985), chapter 11 of Särndal et al. (1992), and the Methodological Note 

of the ENVIPE 2014. 

 

In practice, some variance estimators are really difficult to compute and require extensive 

knowledge of the survey design and the ability to handle the data using specialized software. 

To overcome these limitations, we propose a variance estimator of the Horvitz-Thompson 

estimator of the mean or total (Horvitz & Thompson, 1952). As it is easy to compute, this 

estimator is applicable to a wide variety of complex designs, with the exception of self-

weighted designs, as explained in the final part of Section 3.2. An important feature of the 

proposed variance estimator is that it only requires the values of the variable of interest and 

the expansion factors at the element level (see Section 2.1). It can be implemented using 
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software that can compute least squares estimates from simple linear regression, or it can 

even be calculated using a spreadsheet with basic functions, such as variance and covariance. 

 

The article is organized as follows. In Section 2, we introduce the notation and give a brief 

summary of the key points related to estimation under the so-called design-based approach. 

Section 3 begins with some linear regression results that are used to construct the proposed 

variance estimator. Next, we build a decomposition of the Horvitz-Thompson estimators of 

the total and the mean, which is necessary to derive the variance estimator using linear 

regression with the expansion factor as the independent variable. In Section 4, we apply the 

proposed method to three different sets of data and designs, namely a stratified sample 

design, an example of two-stage cluster design with unequal sizes, and an application to data 

from the ENVIPE 2014. 

 

 

2. Some estimation methods employed in survey sampling 

 

2.1 Notation 

Let U denote a finite population of N elements labeled k = 1, … , N, 1 < N. It is customary 

to represent the finite population by its label k as: U={1,2,…,k,…,N}. The variable under 

study will be represented by y, while yk will denote the value of y for the k-th population 

element, k ϵ U. In this case, the yk are real numbers. It is important to note that some survey 

designs may include several stages or levels of aggregation of the elements in the population. 

For example, in a household survey, it is common to collect information on the individuals 

within the household, as well as that related to the household as a whole. In this case, it is 

necessary to distinguish the information at an individual (element) level from that at the 

household level.  
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The sample will be denoted by s, a subset of U of size 1 < n < N and will be represented by 

a column vector N

Nk IIII }1,0{),...,,...,( 1  . In this case, Ik is a sample membership 

indicator distributed as a Bernoulli random variable (see Chapter 2 of Särndal et al., 1992), 

and it is equal to 1 if the kth element is in the sample and 0 otherwise. It is worth mentioning 

that this indicator variable is the random element in finite population sampling and ky  has a 

numerical value. Thus, the density function induced by the design is discrete. This approach 

is also known in pertinent literature as design-based sampling. 

The sample covariance between two sets of observations will be used in this article and it is 

computed using the following expression (Eq. 1), where subscript s refers to sample 

information: 
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Equation (1) can also be written as: 
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From the above expression, it is straightforward to obtain: 
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This expression will be used in the development of the variance estimator using linear 

regression. 

Another quantity that will be utilized frequently in this work is the estimator of the coefficient 

of variation, defined as: 
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Recall that the Pearson correlation coefficient, also known as correlation coefficient, is 

computed as: 
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and 0ˆ ,ˆ yx  . 

Note that the covariance exists and is zero if all x and/or y  are equal, so 0ˆ x  and/or 0ˆ y

, but the correlation in (5) is not defined if one of both variances are zero. 

 

2.2 Estimation under the design-based approach 

The objective is to estimate a function t that depends on the yk, ),...,,...,( 1 Nk yyytt  . For 

example, a total is written as  


N

k kU yy
1

. Since we are interested in estimating a total 

using the design-based approach, it is customary to use the Horvitz-Thompson estimator 

(Horvitz & Thompson, 1952). This estimator provides the following expression for a total: 

,0 with ,ˆ k
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probability. The expansion factor is the inverse of the probability of selection i  and will be 

denoted by 
i
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1 , with 0i and },,1{ ni  . Särndal et al. (1992) show that expansion 

factors satisfy  
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In practice, expansion factors are not just the inverse of the probabilities of selection, but 

rather also include nonresponse adjustments and calibrations to known totals of 
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subpopulations, and thus continue to satisfy Equation (6). The estimation method proposed 

in this article can be applied to any set of expansion factors as long as they satisfy Equation 

(6) and are not equal. Although iF  is represented with capital letter, it is not a random variable 

once a sample is drawn. We utilize this notation in order to maintain alignment with its use 

in some methodological notes, such as those issued by INEGI. 

For variance computation and estimation under the design-based approach, it is also 

necessary to determine the second-order inclusion probabilities, )1(  lkkl IIP . 

The variance of a Horvitz-Thompson estimator is, provided that 0k  and 0l , 

 
U lklkklU lklkU yyyyIIcyv ˆˆ)(ˆˆ),()ˆ(  .      (7) 

In this expression, 
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In these expressions, ),(ˆ and ),( lklk IIcIIc denote the population and estimated covariances, 

respectively, between the sample indicator variables. In Chapter 2 of Särndal et al.’s (1992) 

book, it is shown that Equation (8) is an unbiased estimator of (7) and one can find the 

expressions for ),(ˆ and ),( lklk IIcIIc . Expressions (7) and (8) must be specifically 

determined for a particular design to obtain an explicit formula. It is important to mention 

that it is not always possible to build a closed formula for a variance estimator using Eq. (8), 

because the second-order inclusion probabilities are sometimes difficult to compute. Some 

designs, such as systematic sampling with equal first-order inclusion probabilities of 

selection have some 0kl , in which case Eq. (8) is not defined. In this case, alternative 

variance estimators must be used (see Wolter, 1985). 
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Estimation in finite populations can also be made under a different approach, known in the 

literature as model-based design. Under this approach, it is assumed that the finite population 

is drawn from an infinite population (superpopulation), as discussed by Valliant et al. (2000). 

 

 

3. Proposed variance estimator based on linear regression 

 

The proposed variance estimator requires knowledge of factor expansions and the variable 

of interest at element level. Once the required data is obtained from a survey, the point 

estimator of a total or mean is the usual Horvitz-Thompson estimator (Horvitz & Thompson, 

1952). Some authors, including Särndal et al. (1992), refer to it as expansion estimator. Recall 

that the Horvitz-Thompson estimator of the total is computed as: 
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and the estimator of the mean is calculated using: 
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3.1 Linear regression results 

We will use results from linear regression. Hence, consider a variable },,1{ , niyi   which 

is a realization from a random variable Y , whose first and second moments are finite. Now 

consider the following model: 

iii Fy   10 .     (11) 

In this equation, iF , },,1{ ni  corresponds to the expansion factor and i is the i-th error 

term. The expansion factors will be considered fixed, so that all analyses performed will be 
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conditioned on them. This is not unrealistic assumption because, in practice, once the 

expansion factors are computed, they are not subsequently modified. 

The assumptions for model given by Eq. (11) are, as discussed by Dutta (1982) and Ott 

(1984): (i) the random error term i  has zero expectation; (ii) ni  ,,,,1  are independent 

of each other; (iii) the covariance between i  and iF  is zero; (iv) the variance 2

  is constant 

for all settings of F ; (v) and  , for a given setting of the independent variable F , is normally 

distributed with mean 0 and variance 2

 . 

In regression analysis (see for example Dutta, 1982), simple linear regression model 

estimators are given by: 
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Similarly, the covariance between the intercept and the slope is expressed as: 
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The variances for the slope and intercept are given by: 
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In Eq. (16) to (18), 
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and the predicted value is given by 

ii Fy 10
ˆˆˆ   .                                                (20) 

 

 

3.2 A decomposition of the Horvitz-Thompson estimator 

Let us return for a moment to the sample covariance. If we use expression (3) with iy and iF

, we obtain 

  yFnyFnyF s

n

i ii ˆ,cov
1

 
.     (21) 

The left-hand side of Equation (21) is equal to (9) and corresponds to the Horvitz-Thompson 

estimator of the total, 

 yFnyFny sHT ,covˆˆ  .              (22) 

By dividing both sides of (21) by Fn we obtain: 
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where the left-hand side is equal to (10), thus  

 
F

yF
yy s

HT

,cov
ˆˆ                       (24) 

is the Horvitz-Thompson estimator of the mean. 

Equation (24) can also be expressed as: 

      ycvFcvyFyy sHT ,1ˆˆ              (25) 

The main results of these expressions are summarized below. 

Proposition 1. Let  ii Fy , , },,1{ ni   be an array containing the variable of interest y , 

from which the Horvitz-Thompson estimator of the mean is built and iF  the expansion factor 

associated to element i in a sample of size n . Compute ŷ , F ,  Fcv ,  ycv ,  yFs ,cov  

and  yFs , . The Horvitz-Thompson estimator of the mean can be expressed as 

 
F

yF
yy s

HT

,cov
ˆˆ   or       ycvFcvyFyy sHT ,1ˆˆ  . The estimator of the total is 

obtained by multiplying these equations by  

n

i iF
1

. 

Proof of Equation (25) is given in Annex 2. 

Equations (22) to (24) are important because they exhibit a decomposition of the Horvitz-

Thompson estimators of a total and mean. The estimator of a total can be expressed as a sum 

of a product of equal-weighted averages from F and y  and an effect of a linear association 

between these two variables via the covariance. The estimator of the mean is therefore the 

sum of the sample mean and an effect of linear association between the interest variable and 

the expansion factor divided by the mean of the expansion factors. Note that expression given 

in Eq. (25) enables us to assess the effect of the expansion factor, the variable of interest y
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and a measure of linear dependence between them. To the best of the author’s knowledge, 

the decompositions expressed in (22) to (25) have not been previously published. Equation 

(24) can be seen as an additive decomposition of the Horvitz-Thompson estimator into the 

sample mean and the effect of the expansion factors.  

Since we are interested in variance estimation of the mean, we will restrict our focus on 

expression (24). Thus, the total is computed by multiplying the estimator of the mean by 

 

n

i iF
1

. It is important to point out that the proposed variance estimator is not defined when 

the expansion factors iF have the same value. This is the case, for example, in stratified 

sampling with proportional allocation and in general in the so-called self-weighted samples. 

This type of sampling occurs in sampling designs with equal sampling fractions in strata or 

clusters. 

 

3.3  Proposed variance estimator using linear regression 

In this section, we present the main results obtained in this work, namely two expressions for 

the variance estimators using simple linear regression with the expansion factor as the 

independent variable. 

In the first step, an expression for the Horvitz-Thompson estimator is developed in terms of 

the regression coefficients and the expansion factors. 

From Eq. (12) and (13) we have: 

  2

1 ˆˆ,cov Fs yF                (26) 

and  

Fy 10
ˆˆˆ   .                       (27) 

From Equation (24) we obtain: 
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In the next step, the covariance from Eq. (26) is substituted into (28) and ŷ  from Eq. (27) 

into the left-hand side of (28): 

F
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From this equation and using expression (4), we obtain: 

  FcvFyHT

2

10 1ˆˆˆ   .         (29) 

It is important to mention that Equation (29) is an identity, and it is not an approximation 

because it yields the same value as the Horvitz-Thompson estimator of the mean, 
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1ˆ . Consequently, 
HTŷ  computed using the last formula and 

HTŷ  calculated 

using Eq. (29) produce estimators of equal value. Equation (29) relates the Horvitz-

Thompson estimator of the mean to the coefficients of a simple linear regression model and 

the expansion factors. This result is summarized below. 

Proposition 2. Let  ii Fy , , },,1{ ni   be an array containing the variable of interest y , 

utilized in building the Horvitz-Thompson estimator of the mean and iF  the expansion factor 

associated with element i  in a sample of size n . Compute  Fcv  and fit the model 

iii Fy   10  to  ii Fy , , where 0̂ and 1̂  are obtained from the outcome of the 

regression. The Horvitz-Thompson estimator of the mean is thus given by 

  FcvFyHT

2

10 1ˆˆˆ   . 

Finally, if we apply the variance used in the theory of linear regression to Eq. (29), 

conditioned on the expansion factors iF , },,1{ ni   and the expressions provided in Section 

3.1, we obtain: 
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     FcvvFyv HTLS

2

0  ˆˆ|ˆˆ  .            (30) 

Proof of Equation (30) is given in Annex 2. 

This result shows that the proposed variance estimator is affected by the variation between 

values of the dependent variable through 0̂  (recall from Equation (13) that Fy 10
ˆˆ  


) 

and a measure of relative variation expansion factors determined from the means of the 

coefficient of variation. 

This is the main result of the present work and is summarized below. 

 

Proposition 3. Let  ii Fy , , },,1{ ni   be an array containing the variable of interest y , 

from which the Horvitz-Thompson estimator of the mean is built and iF  denote the 

expansion factor associated with element i  in a sample of size n . Compute  Fcv  and fit 

the model iii Fy   10  to  ii Fy , , where  0
ˆˆ v  is obtained through regression analysis. 

Then, the variance estimator for the Horvitz-Thompson estimator of the mean is given by 

     FcvvFyv HTLS

2

0  ˆˆ|ˆˆ  . 

Another expression for  Fyv HTLS |ˆˆ , which is useful for analyzing the effects on the variance 

from its different components, is given by: 

       FcvFy
n

Fyv s

y

HTLS

22

2

1 ,-1
2

ˆ
|ˆˆ 


 


.         (31) 

Proof of Equation (31) is given in Annex 2. 

Note that the variance estimator of Equation (31) can be obtained without computing the 

regression estimators and the corresponding standard errors. 
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4. Examples 

 

4.1 Example 1: Consider the population of building heights given in Table 5.4, pages 119-

121, from Scheaffer et al. (1987). This population contains heights of 355 buildings 

(expressed in feet) located in 10 US cities. Some information about this population is shown 

in Table 1 below. 

Table 1. Building heights in feet 

 

Source: own construction based on pages 119-121 from Scheaffer et al. (1987). 

The tabulated information pertains to tall buildings in the selected cities, as can be seen from 

column “Maximum”, and by comparing their heights with the average for each stratum. 

Variances within strata have non-similar values, ranging from 3,764.4 in Philadelphia to 

44,247.9 in Chicago. This variability affects some variance estimator types, including those 

obtained using simple random sampling within strata. Thus, if simple random sampling 

within each stratum is used, due to some large values in some cities, it is highly probable that 

the estimator will have a poor coverage. 

In this example, the original data pertaining to building heights will be used to simulate a 

variable in the population correlated with it and from which a sample will be drawn. The 

values were generated by simulations using part of a method developed by Padilla (2015). 

Stratum (h)
Total of 

buildings

Relative 

size

Height 

(feet)
Minimum Maximum Variance

Coefficient 

of variation

City Nh Wh=Nh/N Average yh

Atlanta 18 0.051 454.5 374 723               14,635.0   27%

Chicago 43 0.121 620.7 460 1,454           44,247.9   34%

Dallas 38 0.107 484.2 327 939               19,922.4   29%

Detroit 26 0.073 415.3 325 720               8,132.7     22%

Houston 53 0.149 512.8 328 1,002           29,300.6   33%

Los Angeles 23 0.065 491.1 347 858               22,998.1   31%

New York 66 0.186 644.4 505 1,472           41,313.8   32%

Philadelphia 28 0.079 418.2 340 548               3,764.4     15%

Pittsburgh 22 0.062 467.2 330 841               20,014.8   30%

San Francisco 38 0.107 489.5 355 853               11,113.3   22%

Total 355 523.0
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Specifically, if iu  and iv  are realizations from two distribution functions with finite first two 

moments, then iii bvua   (where b  is a constant) is also a realization of the sum of the two 

distributions, provided that the second moment is finite for both distributions. By applying 

this method, it is possible to control the correlation between ia  and iu  to some extent, given 

the realizations from iu  and iv (for more details, see Padilla, 2015).  

Since we are aware of the presence of high values within strata, a new stratum will be built, 

to which the 10% tallest buildings from each city will be allocated. This corresponds to 40 

buildings, resulting in 315 buildings located in the 10 analyzed cities. The new simulated 

variable was generated using 315 random numbers from a continuous uniform distribution 

with lower and upper values, 325 and 850, respectively. As a result, iu  and iv  had the same 

uniform distribution and 2.0b . The new variable for the new stratum corresponding to the 

40 tallest buildings was also generated by drawing 40 random numbers from a continuous 

uniform distribution with 491 and 1472 as the lower and upper values, respectively. As in 

the previous case, iu  and iv  had the same uniform distribution and 2.0b . 

Table 2. Building heights (expressed in feet) within a new stratum 

New simulated variable, correlation of 0.5 with original building heights 

 

Source: own construction based on pages 119-121 from Scheaffer et al. (1987). 

 

Stratum (h)
Total of 

buildings

Relative 

size

New variable 

Height (feet)
Minimum Maximum Variance

Coefficient 

of variation

City Nh Wh=Nh/N Average yh

Atlanta 16 0.045 600.2 448 919               20,706.7                 24%

Chicago 38 0.107 731.4 462 937               27,150.8                 23%

Dallas 34 0.096 665.4 417 931               24,339.7                 23%

Detroit 23 0.065 673.8 421 928               25,399.3                 24%

Houston 47 0.132 685.5 420 987               25,403.8                 23%

Los Angeles 20 0.056 698.3 454 901               21,118.7                 21%

New York 59 0.166 716.8 467 964               20,498.6                 20%

Philadelphia 25 0.070 733.6 447 905               17,401.6                 18%

Pittsburgh 19 0.054 663.8 409 914               23,212.6                 23%

San Francisco 34 0.096 651.7 411 939               20,674.6                 22%

Tallest buildings 40 0.113 1,133.4               641 1,581           83,712.5                 26%

Total 355 739.3 49,713.1                 
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Since this table contains information pertaining to the new variable, it is not possible to 

compare the averages or variances; however, the coefficients of variation are comparable. In 

Table 1, this quantity varies from 15% to 34%, while in Table 2 this range is reduced to 18% 

and 26%. In fact, only the coefficient of variation corresponding to the new stratum “The 

tallest buildings” has the highest value, 26%, while the remaining quantities cluster around 

23%.  

 

Table 3. Sample size, almost proportional allocation 

 

Source: own construction based on pages 119-121 from Scheaffer et al. (1987). 

 

The sample was allocated proportionally to the relative sizes hW , hh nWn  , and its size was 

rounded up to the nearest integer. For this reason, in Table 3, the expression “almost 

proportional allocation” was used.  

 

 

 

 

 

Stratum (h)
Total of 

buildings

Relative 

size
Sample size

Expansion 

factor

City Nh Wh=Nh/N nh Fhi

Atlanta 16 0.045 3 5.333

Chicago 38 0.107 7 5.429

Dallas 34 0.096 6 5.667

Detroit 23 0.065 4 5.750

Houston 47 0.132 8 5.875

Los Angeles 20 0.056 4 5.000

New York 59 0.166 10 5.900

Philadelphia 25 0.070 5 5.000

Pittsburgh 19 0.054 4 4.750

San Francisco 34 0.096 6 5.667

Highest buildings 40 0.113 7 5.714

Total 355 64
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Table 4. Main results from the estimation of the new variable “height” 

 

Expression (31) yields the following values for each term: 

782.712
2

ˆ
2


n

y
,    0.994,-1 2 Fys and   004.11 2  Fcv . 

The product of the three components is 711.3, as shown in Table 4 for  Fyv HTLS |ˆˆ . 

We will compare the estimated variance  Fyv HTLS |ˆˆ  with two population variances 

corresponding to simple random sampling without replacement, srswor, and stratified 

random sampling, strs. While this is not a fair comparison, because  Fyv HTLS |ˆˆ  is affected 

by random error, it will serve as a suitable measure of the estimator’s adequacy. 

Table 5. Computation of population variance under stratified random sampling 

 

Source: own construction based on pages 119-121 from Scheaffer et al. (1987). 

Quantity Value

average yhi 710.17

average Fhi 5.55

σ(F) 0.36

cv(F) 6.4%

vLS(β0) 172,736.9    

sdLS(β0) 415.6

711.3

26.7

3.8%

  Fyv HTLS |ˆˆ

 Fysd HTLS |ˆ

 HTycv ˆ

City Nh Wh nh Fh fh S2
h Vsrswor W2

h vsrswor

Atlanta 16 0.045 3 5.333 0.188 20,706.7      5,608.1        11.4                

Chicago 38 0.107 7 5.429 0.184 27,150.8      3,164.2        36.3                

Dallas 34 0.096 6 5.667 0.176 24,339.7      3,340.7        30.6                

Detroit 23 0.065 4 5.750 0.174 25,399.3      5,245.5        22.0                

Houston 47 0.132 8 5.875 0.170 25,403.8      2,635.0        46.2                

Los Angeles 20 0.056 4 5.000 0.200 21,118.7      4,223.7        13.4                

New York 59 0.166 10 5.900 0.169 20,498.6      1,702.4        47.0                

Philadelphia 25 0.070 5 5.000 0.200 17,401.6      2,784.3        13.8                

Pittsburgh 19 0.054 4 4.750 0.211 23,212.6      4,581.4        13.1                

San Francisco 34 0.096 6 5.667 0.176 20,674.6      2,837.7        26.0                

Tallest buildings 40 0.113 7 5.714 0.175 83,712.5      9,866.1        125.3             

Total 355 1 64 5.462 0.183 49,713.1      634.6            385.1             
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In Table 5, the quantities required for computing the population variance under stratified 

random sampling are given. The values under column Vsrswor correspond to population 

variance values within strata obtained through simple random sampling without replacement, 

    hhhhh nSNnyv 21ˆ  , where    1
1

22   h

N

i hhih nyyS
h

. The symbol hhh Nnf   

denotes the sampling fraction. The value 6.634  corresponding to the last row labelled 

“Total” is the population value of the variance under srswor,     nSNnyv HT

21ˆ  . In this 

expression,    1
1

22  
nyyS

N

i i . The last column contains values  hh yvW ˆ
2 , which are 

part of the equation for the population variance of stratified random sampling without 

replacement for the Horvitz-Thompson estimator of the mean, 

    1.385ˆˆ
1

2  

H

h hhHTstrs yvWyv .   

 

 

Table 6. Comparison of variance estimator under regression with srswor and strs 

 

 

Table 6 provides the comparison of the variance estimator using linear regression to simple 

random sampling and stratified sampling. The quantities pertain to the ratio of the variance 

estimator using regression to the corresponding population variance minus one. From the 

tabulated data, it is evident that the proposed variance estimator is similar to simple random 

sampling. While it is not as efficient as stratified sampling, this was expected because, setting 

aside the variance under equal allocation, stratified sampling is more efficient than simple 

random sampling. 

srswor strs

variance 1.12 1.85

standard 

deviation
1.06 1.36
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Estimation with a single element in sample in one stratum. 

Now suppose that, in the last population, we have only one element in the sample in the first 

stratum of Table 5 corresponding to Atlanta, while other data remain unchanged. The revised 

quantities in Table 5 are given in Table 7. 

 

Table 7. Computation of population variance under stratified random sampling 

 

Source: own construction based on pages 119-121 from Scheaffer et al. (1987). 

 

With this new data, the expansion factor in Atlanta is now 16, the total sample size is 62, the 

estimator of the mean is 708.33. In addition, the coefficient of variation of the expansion 

factors is 23.8% and the variance estimator under regression is 765.93; thus, the standard 

error is 27.68. This last quantity can be compared with   7.26|ˆ Fysd HTLS  from Table 4. 

The difference of one unit between these two standard errors is insignificant considering the 

fact that the problem of estimating the variance with a unit in one stratum is not trivial, as 

discussed by Wolter (1985), Cochran (1986), Breidt et al. (2014) and Padilla (2016). In this 

case, the estimator of the design-based variance estimator,  HTstrs yv ˆˆ , does not exist, because 

the variance within the stratum pertaining to Atlanta,    1ˆ
1

22   h

n

h hhih nyys
h

 cannot be 

computed with only one observation, 1hn .  

City Nh Wh nh Fh fh S2
h Vsrswor W2

h vsrswor

Atlanta 16 0.045 1 16.000 0.063 20,706.7      19,412.5      39.4                

Chicago 38 0.107 7 5.429 0.184 27,150.8      3,164.2        36.3                

Dallas 34 0.096 6 5.667 0.176 24,339.7      3,340.7        30.6                

Detroit 23 0.065 4 5.750 0.174 25,399.3      5,245.5        22.0                

Houston 47 0.132 8 5.875 0.170 25,403.8      2,635.0        46.2                

Los Angeles 20 0.056 4 5.000 0.200 21,118.7      4,223.7        13.4                

Nueva York 59 0.166 10 5.900 0.169 20,498.6      1,702.4        47.0                

Philadelphia 25 0.070 5 5.000 0.200 17,401.6      2,784.3        13.8                

Pittsburgh 19 0.054 4 4.750 0.211 23,212.6      4,581.4        13.1                

San Francisco 34 0.096 6 5.667 0.176 20,674.6      2,837.7        26.0                

Tallest buildings 40 0.113 7 5.714 0.175 83,712.5      9,866.1        125.3             

Total 355 1 62 5.726 0.175 49,713.1      661.8            413.2             
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4.2 Example 2: Consider the data and results related to the sample in Example 9.1, given in 

Table 9.1, pages 236 and 237 from Scheaffer et al. (1987). This is an example of estimation 

from a sample obtained by a two-stage clustered design. The first stage corresponds to 10 

factories, while the second relates to the machines within each factory, using a sampling 

fraction of 20%. Both samples were extracted by simple random sampling without 

replacement. There are 90 factories across the United States, with varying numbers of 

machines, resulting in clusters of unequal sizes. The objective is to estimate the average idle 

time (in hours) due to machine malfunction. This was achieved by visual inspection of the 

repairs log for each machine included in the sample. Some information about this population 

is shown in Table A.2 in Annex 1. This table contains almost all the information given in 

Example 9.1, Scheaffer et al. (1987). Moreover, in the sample of 10 factories, the number of 

machines within factories varies from 40 to 65. Labels iB  and ib  refer to the number of 

machines in a particular factory and sample, respectively. Average iy corresponds to the 

machine idle time due to malfunction and repairs in the i-th factory and 2

is is the sample 

variance between the machine idle times in the i-th factory. The last column of Table A.2 

contains the coefficient of variation for y  within each factory. The values this quantity takes 

vary considerably across factories, ranging from 45% to 101%. All values from the sample 

used in Example 9.1 given by Scheaffer et al. (1987) are displayed in Table A.1 column (a) 

in Annex 1. The column labelled “factory” also corresponds to this example. Columns (b) 

and (c) in Table A.1 contain values generated by simulations using part of a method 

developed by Padilla (2015). The method is based on the original y and F  series, to which 

a series of random numbers from a specified distribution multiplied by a constant is added. 

The random numbers presented in column (b) are derived from a normal distribution with 

zero mean and SD = 2. In column (c), a student t distribution with eight degrees of freedom 

was used. 

In Table 8, the variance estimations under regression,  Fyv HTLS |ˆˆ , are presented, based on 

two-stage unequal cluster sampling using simple random sampling in both stages for cases 

(a), (b) and (c), labelled  yvD ˆˆ . Recall that case (a) corresponds to Example 9.1, Scheaffer et 
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al. (1987). While we reproduce the result of the variance estimation reported in Example 9.1, 

  037.0ˆˆ yvD , we do not include the expression for this variance. Those interested in 

computation of this variance should refer to Scheaffer et al. (1987). Closer inspection of data 

presented in Table 8 reveals that the variance regression estimator is greater than the variance 

under two-stage cluster sampling. Note that, in case (a), the correlation between variable y

and the expansion factors is almost zero, which implies a poor fit of the regression model and 

a large value of the standard error of 0̂ . 

Table 8. Main results, comparison of variance estimator under regression with the variance 

from two-stage unequal cluster sampling 

 

Source: own construction based on pages 236-237 from Scheaffer et al. (1987). 

 

In cases (b) and (c), the variance estimator under regression is about one third of  yvD ˆˆ . More 

specifically, the correlation between variable y  and the expansion factors is 0.1 and -0.22, 

respectively, which implies a better fit of the regression model than was achieved in case (a), 

as well as a smaller value of the standard errors of 0̂ . This can be confirmed via expressions 

(17), (19) and (A7) in Annex 2, where the variance of the residuals, part of the estimated 

variance of 0̂ , decreases when  Fys ,  increases and/or 
2

ˆ y  decreases. This behavior can 

be seen through the components of the variance estimator under regression, given by 

Equation (31). The value of each component is shown in Table 9, where it can be seen that 

for cases (b) and (c) the values of 
2

ˆ y  are about 1/3 of the corresponding 
2

ˆ y  obtained in case 

Quantity (a) (b) (c)

0.313 0.179 0.154

0.098 0.032 0.024

0.193 0.312 0.296

0.037 0.097 0.088

0.023 0.100 -0.219

162% 57% 52%

264% 33% 27%

  Fys ,

 Fyv HTLS ˆˆ

  Fysd HTLS ˆ

  yv D
ˆˆ

  ysd D
ˆ

DLS sdsd

DLS vv ˆˆ
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(a). This is the main contributor to the improvement in variance estimation compared to the 

values of  yvD ˆˆ . 

Table 9. Components of the variance estimator under regression 

 

 

 

Estimation with a single primary sampling unit. 

Now suppose that, in case (a), the sample from Factory 1 contains only one value that 

corresponds to Machine 5, i.e., 115 y  (see table A1 in Annex 1), with the remaining data 

unchanged. While the number of factories (clusters) remains the same, as Factory 1 has only 

one observation in the sample, the total sample size reduces to 95. In this scenario, the 

estimator of the mean exists, but the design-based variance estimator,  yvD ˆˆ , does not 

because the variance within factories cannot be computed for Factory 1 with only one 

observation. Nonetheless, the proposed variance estimator under regression can be computed 

using Equation (31), as shown below:  

11.0
2

ˆ
2


n

y
,    0.999,-1 2 Fys and   001.11 2  Fcv , so   11.0|ˆˆ Fyv HTLS . 

This value can be compared to the corresponding entry in Table 9 under (a), 

  098.0|ˆˆ Fyv HTLS . The ratio of the variance estimators is just 12.1098.011.0  . The 

increase in variance, due to loss of information, is not a matter of concern. In these situations, 

the proposed variance estimator under regression is an option to variance estimation without 

Quantity (a) (b) (c)

0.098 0.032 0.025

0.999 0.990 0.952

1.001 1.001 1.001

0.098 0.032 0.024 Fyv HTLS ˆˆ

   Fcv 21

   Fys ,1 2

  2ˆ
2 ny
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using difficult to apply methods, as discussed by Wolter (1985), Cochran (1986) and Breidt 

et al. (2016). The Horvitz-Thompson estimators of the mean for case (a) with 104n and 

95n  are 598.4  and 581.4 , respectively. 

4.3 Example 3: We use data from the National Survey of Victimization and Perception of 

Public Safety (ENVIPE in Spanish) 2014, which is administered by the National Institute of 

Statistics and Geography (INEGI in Spanish). This is an annual survey conducted in the 32 

states of México that includes both urban and rural households and applies to persons aged 

18 and older. It aims to elucidate respondents’ perceptions of public safety and institutional 

performance in relation to security. It also includes items on a variety of topics related to 

crime-affected households. It is important to note that the survey design is complex, since it 

includes stratification, clustering and the use of probability proportional to a measure of size 

to select the units in sample. Moreover, the inverse of the first-order probabilities of selection 

have been adjusted by non-response and are calibrated to known totals. This is comprised in 

the expansion factors released in public data from ENVIPE.  

The sample data used in this example corresponds to the state of Aguascalientes. Its data set 

contains 1,858 entries. We are interested in estimating the proportion of households affected 

by crime in Aguascalientes and computing a variance estimator, along with the 90% 

confidence interval. This same estimation is computed for the rural area of Aguascalientes. 

 

4.3.1 Estimating the proportion of households affected by crime in Aguascalientes 

The sample corresponding to Aguascalientes contains 1,858 entries, the sum of the expansion 

factors is 325,126 households, 126,325
1858

1
 i iF , and 343,94

1
 

n

i iiFy . The sample mean 

of the expansion factors is 174.9 and the coefficient of variation is 14%. As the Horvitz-

Thompson estimator of the mean is 0.29, it indicates that nearly 30% of households in 

Aguascalientes have been affected by crime.  
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The regression estimator yields   0753.0ˆˆ 0 v  and the square root of the variance 

estimator using linear regression is   0106.0|ˆˆ Fyv HTLS . Based on this information, 90% 

confidence level for the mean estimator is  308.0,273.0 . 

 

4.3.2 Estimating the proportion of rural households affected by crime in Aguascalientes 

The sample corresponding to the rural part of Aguascalientes contains 351 entries, and the 

sum of the expansion factors is 59,049 households, 049,59
351

1
 i iF , and 455,9

1
 

n

i iiFy

. The sample mean of the expansion factors is 168.7 and the coefficient of variation is 8.5%. 

The Horvitz-Thompson estimator of the mean is 0.16, indicating that 16% of the rural 

households have been affected by crime. The regression estimator yields   2302.0ˆˆ 0 v  

and the square root of the variance estimator using linear regression is 

  0195.0|ˆˆ Fyv HTLS . This information yields 90% confidence level for the mean 

estimator of  192.0,128.0 . 

It is important to mention that the computations for estimating the variance using linear 

regression in the examples discussed above were performed in a spreadsheet using the 

regression analysis tool and by extracting the value of the estimate of the standard error of 

the intercept. The confidence intervals in the last two examples were calculated under the 

assumption of normality of the Horvitz-Thompson estimator. In this case, the estimator is a 

proportion. However, due to the sample size, the low values of the coefficients of variation 

and the fact that the estimated proportions are far from zero—see the relative values of 

 Fyv HTLS |ˆˆ compared to the mean estimators—the assumption of normality seems 

reasonable. 
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5. Conclusions 

An estimator for the variance of the Horvitz-Thompson estimator of the mean using simple 

linear regression with the expansion factor as an independent variable was proposed. The 

examples presented in this article confirm that the variance computation is straightforward 

and only requires least squares estimation, which is available in commercial and free software 

and, as we mentioned, in a spreadsheet. From an analytical point of view, we also derived an 

expression for decomposing the proposed variance estimator into the element variance of the 

variable of interest, the correlation between this variable and the expansion factors, and the 

coefficient of variation of the expansion factors. The proposed variance estimator is not 

intended to substitute the traditional design-based variance estimators when they can be 

calculated. In cases when some strata contain only one element or cluster, which can arise in 

domain estimation, or when the variance is estimated with a sample extracted using 

probability proportional to some measure of size, the proposed variance estimator is a viable 

option. We did not conduct analysis to validate the adequacy of the regression model because 

this model was built to reproduce the Horvitz-Thompson estimator of the mean or total. 

Certainly, this is a topic for future research, together with the inclusion of different 

explanatory variables. 
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Annex 1 

Table A1. Data used in Example 2 

Factory and column (a) are sourced from Scheaffer et al. (1987); columns (b) and (c) are 

generated by the author as explained in Example 2. 

 

 

 

(a) (b) (c) (a) (b) (c)

Machine Factory y i y i y i Machine Factory y i y i y i

1 1 5.0 6.4 3.6 53 6 12.0 6.7 5.9

2 1 7.0 5.2 4.5 54 6 11.0 5.2 7.0

3 1 9.0 8.3 7.1 55 6 3.0 3.6 3.7

4 1 0.0 4.9 4.0 56 6 4.0 5.9 3.0

5 1 11.0 3.4 6.2 57 6 2.0 3.7 2.8

6 1 2.0 2.4 4.4 58 6 0.0 7.7 3.2

7 1 8.0 3.0 5.6 59 6 0.0 2.6 2.9

8 1 4.0 3.3 4.7 60 6 1.0 2.6 3.7

9 1 3.0 3.4 4.1 61 6 4.0 8.0 3.6

10 1 5.0 1.9 5.4 62 6 3.0 2.0 3.2

11 2 4.0 5.3 4.5 63 6 2.0 2.7 3.3

12 2 3.0 4.1 3.1 64 6 4.0 5.8 4.7

13 2 7.0 2.0 3.8 65 7 3.0 5.2 6.3

14 2 2.0 4.3 4.3 66 7 7.0 6.8 4.5

15 2 11.0 8.7 5.9 67 7 6.0 1.8 2.7

16 2 0.0 6.7 2.7 68 7 7.0 6.7 3.5

17 2 1.0 3.1 2.1 69 7 8.0 5.9 5.0

18 2 9.0 4.6 6.0 70 7 4.0 3.7 3.3

19 2 4.0 0.0 3.8 71 7 3.0 5.8 3.5

20 2 3.0 4.5 8.4 72 7 2.0 3.6 4.7

21 2 2.0 5.2 4.1 73 8 3.0 3.5 4.9

22 2 1.0 2.2 0.0 74 8 6.0 8.5 4.2

23 2 5.0 5.4 4.5 75 8 4.0 4.0 5.4

24 3 5.0 2.5 4.9 76 8 3.0 2.8 6.6

25 3 6.0 3.4 4.6 77 8 2.0 2.8 6.2

26 3 4.0 6.0 6.0 78 8 2.0 4.9 3.7

27 3 11.0 6.3 7.7 79 8 8.0 6.0 6.5

28 3 12.0 1.8 7.0 80 8 4.0 3.4 4.3

29 3 0.0 5.0 4.0 81 8 0.0 3.3 5.6

30 3 1.0 3.0 2.7 82 8 4.0 4.6 4.7

31 3 8.0 6.1 2.5 83 8 5.0 5.1 3.9

32 3 4.0 4.3 4.8 84 8 6.0 5.2 4.6

33 4 6.0 3.0 6.4 85 8 3.0 5.3 3.6

34 4 4.0 2.2 7.0 86 9 6.0 3.5 6.1

35 4 0.0 6.8 3.4 87 9 4.0 3.0 3.8

36 4 1.0 4.7 8.1 88 9 7.0 3.7 4.3

37 4 0.0 4.2 4.9 89 9 3.0 2.6 3.7

38 4 9.0 4.7 5.9 90 9 9.0 3.6 7.2

39 4 8.0 4.9 7.9 91 9 1.0 4.6 2.8

40 4 4.0 3.1 7.4 92 9 4.0 4.6 6.2

41 4 6.0 4.8 6.0 93 9 5.0 5.4 4.3

42 4 10.0 5.7 6.1 94 10 6.0 6.4 3.4

43 5 11.0 7.3 4.4 95 10 7.0 10.0 5.6

44 5 4.0 1.9 1.8 96 10 5.0 4.7 3.6

45 5 3.0 3.1 5.1 97 10 10.0 6.3 6.8

46 5 1.0 5.0 2.9 98 10 11.0 6.2 6.7

47 5 0.0 4.6 3.1 99 10 2.0 3.2 4.3

48 5 2.0 3.7 2.6 100 10 1.0 3.0 3.0

49 5 8.0 9.3 5.8 101 10 4.0 6.0 4.9

50 5 6.0 4.1 6.4 102 10 0.0 7.2 2.1

51 5 5.0 4.4 1.5 103 10 5.0 4.6 3.5

52 5 3.0 6.3 2.9 104 10 4.0 3.2 3.9
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Example 2: Selected information about factories 

 

 

 

 

Factory B i b i average y i si
2

cv(y)

1 50 10 5.40              11.38            62%

2 65 13 4.00              10.67            82%

3 45 9 5.67              16.75            72%

4 48 10 4.80              13.29            76%

5 52 10 4.30              11.12            78%

6 58 12 3.83              14.88            101%

7 42 8 5.00              5.14              45%

8 66 13 3.85              4.31              54%

9 40 8 4.88              6.13              51%

10 56 11 5.00              11.80            69%

522 104

Factory B i b i average y i si
2

cv(y)

1 50 10 4.22              3.95              47%

2 65 13 4.32              4.83              51%

3 45 9 4.27              2.86              40%

4 48 10 4.42              1.81              30%

5 52 10 4.98              4.67              43%

6 58 12 4.70              4.49              45%

7 42 8 4.93              3.09              36%

8 66 13 4.58              2.47              34%

9 40 8 3.90              0.86              24%

10 56 11 5.52              4.30              38%

522 104

Factory B i b i average y i si
2

cv(y)

1 50 10 4.97              1.21              22%

2 65 13 4.10              4.11              49%

3 45 9 4.92              3.22              36%

4 48 10 6.31              2.06              23%

5 52 10 3.65              2.86              46%

6 58 12 3.92              1.73              33%

7 42 8 4.17              1.34              28%

8 66 13 4.94              1.09              21%

9 40 8 4.81              2.32              32%

10 56 11 4.35              2.23              34%

522 104

Table A.2 Original data table 9.1, page 236, Scheaffer et al. (1987)

Table A.3 Simulated y i  as explained in example 2, using N(0,2) .

Table A.4 Simulated y i  as explained in example 2, using st(8) .
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Annex 2 

 

Proof of Equation (25):       ycvFcvyFyy sHT ,1ˆˆ  . 

From Equation (5), we have     Fyss FyFy  ,,cov  . Substitution of this expression in 

Equation (24), 
 
F

yF
yy s

HT

,cov
ˆˆ  , yields

 

F

Fy
yy

Fys

HT

 ,
ˆˆ  . This expression can 

be written as: 
 











Fy

Fy
yy

Fys

HT
ˆ

,
1ˆˆ 


. 

Using  
F

Fcv F
 and  

y
ycv

y

ˆ

̂
  in the last expression for HTŷ  we obtain the result. 

 

Proof of Equation (30):      FcvvFyv HTLS

2

0  ˆˆ|ˆˆ   

From Equation (16) and (18), we have: 

   110
ˆˆ,ˆcov  vF                                                                                (A1) 

      1

22

0
ˆ1ˆ  vFcvFv                                                                       (A2) 

After applying the variance on Equation (29),   FcvFyHT

2

10 1ˆˆˆ    and using (A1), 

we obtain: 

             FcvvFvFcvvFyv HTLS

2

11

222

0 1Fˆ2 ˆ1F ˆ|ˆ    

           1

22

1

222

0
ˆ12 ˆ1F ˆ                    vFcvFvFcvv   

         211ˆ ˆ                   222

10  FcvFcvFvv   

         11ˆ ˆ                   222

10  FcvFcvFvv                         (A3) 
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We substitute    
  FcvF

v
v

22

0
1

1

ˆ
ˆ





  from equation (A2) into (A3), resulting in: 

           
  FcvF

FcvFcvFv
vFyv HTLS 22

222

0

0

1

11ˆ
 ˆ|ˆ







  

    11 ˆ                   2

0  Fcvv   

   Fcvv 2

0  ˆ                    . 

 

Proof of Equation (31):        FcvFy
n

Fyv s

y

HTLS

22

2

1 ,-1
2

ˆ
|ˆˆ 


 


. 

We will use the expression for the variance between elements given by: 
 

n

yy
n

i i

y

 


 1

2
ˆ

̂

. From this equation, it is straightforward to obtain: 

  2222

1

2
ˆˆˆ ˆ ynynny yy

n

i i  
                                                          (A4) 

Recall from Equation (17) that  
 










n

i i

n

i i

FFn

F
v

1

2

1

2

2

0 ˆˆˆ  . If we substitute (A4) into this 

expression, using F instead of y , this yields: 

   
2

222

0

ˆˆˆ
F

F

n

Fn

n
v




  

  

  Fcv
n

2
2

1
ˆ

                                                                                          (A5) 

Now, Eq. (19), 
 

2

ˆ
ˆ 1

2

2





 

n

yy
n

i ii

 , provides the estimator of the residuals. Using Equation 

(20), ii Fy 10
ˆˆˆ   , we have: 
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2

ˆˆ
ˆ 1

2

102





 

n

Fy
n

i ii 
  . 

Substituting Equation (13), Fy 10
ˆˆ  


, into the last expression results in: 

 
2

ˆˆ
ˆ 1

2

112





 

n

FFyy
n

i ii 
 



 

      
2

ˆ2ˆ
      1 1 11

22

1

2





    

n

FFyyFFyy
n

i

n

i

n

i iiii




 

  Fy
n

n
Fy ,covˆ2ˆˆ

2
      1

22

1

2  


 .                                                 (A6) 

From Equation (12), 
 

21

,cov
ˆ

F

s Fy


  ; thus, 

 
21

ˆ,
ˆ

F

Fys Fy




   and by substituting it in (A6) 

we obtain: 

    2222
ˆ,2,ˆ

2
      yssy FyFy

n

n
 


  

   22
ˆ,21

2
      ys Fy

n

n



                                                                     (A7) 

Now, we replace expression (A7) in (A5) and obtain the final result: 

       FcvFy
n

v s

y 22

2

0 1,21
2

ˆ
ˆˆ 


 


 . 


