ECONSTOR

A Service of 2Bய

Working Paper
 Price transmission in food and non-food product markets: Evidence from Mexico

Working Papers, No. 2016-18

Provided in Cooperation with:

Bank of Mexico, Mexico City

Suggested Citation: Guerrero, Santiago; Juárez, Miriam; Sámano, Daniel; Kochen, Federico; Puigvert, Jonathan (2016) : Price transmission in food and non-food product markets: Evidence from Mexico, Working Papers, No. 2016-18, Banco de México, Ciudad de México

This Version is available at:
https://hdl.handle.net/10419/174448

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^0]
Banco de México
 Documentos de Investigación

Banco de México

Working Papers
N° 2016-18

Price Transmission in Food and Non-Food Product Markets: Evidence from Mexico

Santiago Guerrero
Dirección Nacional de Medio
Ambiente, Uruguay
Federico Kochen
New York University

Miriam Juárez

Banco de México

Daniel Sámano
Banco de México

Jonathan Puigvert

Banco de México

October 2016

La serie de Documentos de Investigación del Banco de México divulga resultados preliminares de trabajos de investigación económica realizados en el Banco de México con la finalidad de propiciar el intercambio y debate de ideas. El contenido de los Documentos de Investigación, así como las conclusiones que de ellos se derivan, son responsabilidad exclusiva de los autores y no reflejan necesariamente las del Banco de México.

The Working Papers series of Banco de México disseminates preliminary results of economic research conducted at Banco de México in order to promote the exchange and debate of ideas. The views and conclusions presented in the Working Papers are exclusively the responsibility of the authors and do not necessarily reflect those of Banco de México.

Documento de Investigación 2016-18

Working Paper

2016-18

Price Transmission in Food and Non-Food Product Markets: Evidence from Mexico*

Santiago Guerrero ${ }^{\dagger}$
Dirección Nacional de Medio
Ambiente, Uruguay

Federico Kochen**
New York University

Miriam Juárez ${ }^{\ddagger}$
Banco de México

Daniel Sámano ${ }^{\text {§ }}$
Banco de México

Jonathan Puigvert ${ }^{ \pm}$
Banco de México

Abstract

We document the existence of asymmetric price transmission in Mexico for a wide variety of food and non-food products, in terms of magnitude and speed, for two segments of the supply chain: i) Producer (producer-wholesale) and ii) Consumer (wholesale-retail). We find that asymmetric price transmission is a common behavior in many of the good markets that we studied. However, there are important differences across stages of the supply chain: in the Producer segment, the analyzed food products exhibit larger asymmetries compared to non-food products, while we observe the opposite in the Consumer segment. The existence of these asymmetries may have important welfare effects on poor households, since they allocate a higher proportion of their expenditure for the acquisition of goods that present positive price asymmetries.

Keywords: Price transmission, Positive price asymmetries, Food merchandises, Manufactured goods JEL Classification: D43, L13, L11, C25

Resumen: Este trabajo documenta la existencia de transmisión asimétrica de precios en México para una amplia variedad de productos alimenticios y no alimenticios, en términos de magnitud y velocidad, en dos segmentos de la cadena productiva: i) Productor (productor-mayorista) y ii) Consumidor (mayorista-minorista). Encontramos que la transmisión asimétrica de precios es un comportamiento común en muchos de los mercados de bienes estudiados. No obstante, existen diferencias importantes entre etapas de la cadena de suministro: en el segmento Productor, los bienes alimenticios analizados muestran asimetrías más grandes respecto a los productos no alimenticios, mientras que observamos lo contrario en el segmento Consumidor. La existencia de estas asimetrías podría tener efectos importantes sobre el bienestar de los hogares más pobres, ya que éstos destinan una proporción mayor de su gasto al consumo de bienes que presentan asimetrías positivas de precios.
Palabras Clave: Transmisión de precios, Asimetrías positivas de precios, Mercancías alimenticias, Productos manufacturados

[^1]
1. Introduction

Many authors have researched price transmission dynamics in developed countries (see Peltzman, 2000; and Meyer \& S. von Cramon-Taubadel, 2004 for a survey of the literature). A common finding in this literature is that most products exhibit positive asymmetric price transmission: consumer prices react more rapidly and with a greater magnitude with wholesale prices increases than with price decreases. The existence of asymmetric price transmission may have welfare implications: positive asymmetries yield, over time, higher consumer prices than if those asymmetries did not exist. Moreover, positive asymmetries can have different effects across income levels. For example, welfare effects on the poor may be higher if products with positive asymmetries represent a larger share in their food expenditure compared to high-income households.

The goal of this research consists on documenting the existence of asymmetries in price transmission in Mexico. To our knowledge, this is the first paper to assess the existence of this price behavior in a developing country for a broad number of consumer goods, and particularly for manufacturing goods. The analysis is performed at two stages of the supply chain: i) Producer segment (Producer-Wholesale) and ii) Consumer segment (WholesaleRetail). We mainly use data from the Consumer Price Index (CPI) and the Producer Price Index (PPI). ${ }^{1}$ Even though the aim was to include as many goods as possible, we had to exclude an important number of goods for different reasons. In total, for the Producer segment we analyzed 152 industries, which represent 31.7% of the PPI, while for the Producer-Consumer segment our universe consisted of 122 goods, which represent 28.6% of the $\mathrm{CPI}{ }^{2}$

[^2]Many authors have put forward possible causes of asymmetric price transmission. Vavra and Goodwin (2005) classify them in four groups: i) sticky prices, ii) inventory management strategies, iii) government intervention, and iv) non-competitive markets. However, the most common hypothesis cited by the literature is non-competitive markets (Meyer and von Cramon-Taubadel, 2004) and it refers to the fact that in an oligopolistic market, firms tend to transmit swiftly increases in input prices to final prices as form to signal other participants that they want to maintain a collusive agreement. In contrast, when input prices fall, firms do not decrease their prices accordingly in order to avoid a price war.

Many national competition authorities (NCAs) from around the world have actively been using the existence of asymmetries in price transmission as a tool to identify markets with possible competition problems, especially in food and energy products. For example, in 2010 Lithuania's NCA used asymmetric price transmission in dairy products as a tool to identify markets with possible competition problems (OECD, 2013). Similarly, the Swedish NCA used asymmetries in price transmission as an indicator to detect possible markets with competition problems. In 2012, the UK's NCA (Office of Fair Trading) used asymmetries in price transmission as a tool to explore possible competition problems in petrol markets in 2012 (OFT, 2012).

In spite the fact that markets in developing countries are generally described as noncompetitive and without robust competition legislation (Singh, 2014), few studies have attempted to estimate asymmetric price transmission for these countries. Most of these studies focus on the relationship between international commodity prices and domestic retail prices and, typically, only consider the Consumer segment. For example, Diaz et al. (2007) analyze price transmission dynamics of international prices to domestic powdered milk in Chile. They find that domestic powdered milk prices are highly influenced by international milk prices and that there is asymmetry in the speed of transmission, price increments reflect on consumer prices much faster than price decreases. Dutoit et al. (2010) analyze asymmetric price transmission in rice and corn markets across many Latin American countries and find that, in general, domestic prices are highly integrated with international prices and that asymmetric price transmission exists only in rice markets of Nicaragua and Brazil. Hosseini
and Moghaddasi (2011) study asymmetric price transmission along the supply chain in the fish market of Iran and documents the existence of positive asymmetries. Similarly, Alam et al. (2010) find evidence of positive asymmetric price transmission in the consumer rice market of Bangladesh.

The methodological approach used to estimate price transmission in the literature still broadly use the pre-cointegration methods first proposed by the pioneer work of Houck (1977) to identify and measure asymmetries in price transmission. However, some recent papers have proposed new techniques, such as cointegrations methods and Error Correction Models with Thresholds (ECMT) that incorporate nonlinearities into the analysis (Vavra and Goodwin, 2005).

In a seminal paper closely related to the work developed here, Peltzman (2000) uses the Distributed Lag (DL) model, originally proposed by Houck (1977), to analyze and quantify the asymmetric price transmission in 77 consumer and 165 producer items in three stages of the supply chain for the United States: (i) Producer-Wholesale, (ii) Wholesale-Retailer, (iii) retailer-final consumer. Peltzman (2000) found positive asymmetries for a large number of studied items. He also suggested that adjustment costs seem to be the main cause of these asymmetries. Similar to Peltzman's findings, we find large and persistent price asymmetries in the majority of the items we analyzed in the Mexican good markets.

Peltzman's methodology proved very useful to analyze an ample range of markets and it became well accepted in literature, promoting numerous papers to use and extend his methodology. For example, Archarya et al. (2011) and Deltas (2008) proposed modifications and extensions to Peltzman's methodology to study a broader set of issues, such as asymmetries originated from seasonality in the fruit, meat and gasoline markets. More recently, many papers have used threshold models to incorporate transactions costs as a leading factor of spatial market integration and non-linearities in the error correction process (Tong, 1983; Barrett, 1996; Fackler and Goodwin, 2001; and Stephens et al., 2012). These models assume that transaction costs create a range in which input price variations do not trigger adjustments in output prices unless input price changes exceed a given threshold. In
practice, the estimation of threshold models requires large price time series with a balanced sample of price increases, price decreases and observations with no change.

Despite its importance in terms of consumer welfare, there are no studies of asymmetric price transmission across different stages of the supply chain in Mexico. To the best of our knowledge, most of the price dynamic studies focus on characterizing the price setting process at the consumer segment of the supply chain (Gagnon, 2009; Ysusi, 2010; Cortés, Murillo and Ramos-Francia, 2012; Kochen, 2015). Only Sidaui et al. (2009) focus on the pass-through between producer and consumer prices, but at an aggregate level and do not study the existence of asymmetric pass-through. ${ }^{3}$

In contrast to previous literature, to our knowledge, this is the first extensive analysis in price asymmetries for a developing country. Consistent with the results of Peltzman (2000) for the United States, positive asymmetries in price transmission for good markets is a wide spread behavior across the Mexican good markets we studied. Of the 152 industries analyzed in the Producer segment, 80 presented statistically significant positive price asymmetries (which represent 16.7% of the PPI). In the Consumer segment 77 of the 122 consumer goods (which represent 21.1% of the CPI) present positive and statistically significant asymmetries. Additionally, we find some differences between the estimated asymmetries of food and nonfood products. In the producer segment, food products exhibit larger asymmetries than nonfood products. In contrast, in the consumer segment, non-food products exhibit larger asymmetries than food products. We found that a sizable number of food products -such as meat, bread and beverages- present positive asymmetries. ${ }^{4}$

We also document that items with positive asymmetries represent nearly half of the food expenditure of the lowest income quintile in Mexico, which suggests that adverse welfare effects are more harmful for these households.

[^3]We organize the paper as follows. Section 2 describes the data sources and the construction of the time series used for the estimation of price transmission. Section 3 shows the empirical specification and the testing procedures used in the estimation of asymmetries. Section 4 describes the results of the estimations at an aggregated level and performs an in-depth analysis for food items. Finally, Section 5 concludes.

2. Data

We analyze price transmission in the Producer and Consumer segments using the Producer and Consumer Price Indices published by the National Institute of Statistics and Geography (INEGI, by its acronym in Spanish). The datasets comprise monthly price index series for 567 PPI items and 283 CPI goods. With these datasets, we construct numerous time series of input and output prices for two stages of the supply chain. For the Producer segment, we employ PPI data to analyze price transmission between input prices to wholesale prices of final goods. For the consumer segment, we use both the PPI and CPI data to examine price transmission from wholesale to consumer prices.

We used monthly price indices from January 1996 to December 2013. We chose this sample for two reasons. First, in early 1994, the government phased out price and trade controls on many agricultural products and staples such as corn, beans, wheat, tortilla and milk. In addition, the government gradually ruled out or reoriented supports for commercialization and liberalized trade. Second, we wanted to avoid possible biases in our results caused by the Tequila crisis, which had an important effect on the inflation of many domestic products. Nonetheless, we still perform time series tests on our data to determine their statistical properties. ${ }^{5}$

2.1 The Producer Segment

We analyze price transmission along the first stage of the supply chain of manufactured goods. It is also important to point out that the PPI data only reflect domestic prices; hence,

[^4]we excluded all imported inputs and merchandise from our analysis. We exclude both raw products and services from the analysis and focus only on manufactured goods, since no information about production costs is available.

Our main source of information on costs is the 2009 Economic Census, which contains detailed information about production costs of manufactured products. While there is some data of production costs of raw materials and services in the census, the information on the main inputs of these kind of products (which are mainly labor, services and energy representing between 60 and 80% of the production costs on these goods) does not have enough detail. In contrast, on manufactured goods, in which raw materials and other manufactured goods represent over 60% of the production costs, the information is very detailed.

Figure 1 depicts this segment of the supply chain. The producer (manufacturer) transforms raw materials and other inputs into manufactured or consumption goods. We assume that the producer buys raw material at a wholesale price and sells their manufactured goods at a wholesale price as well. Thus, since we employ wholesale prices at both ends of this stage of the supply chain, we use monthly prices from the PPI to represent both raw materials bought by the producer and the manufactured goods produced and sold to retailers.

Figure 1. Stages of the Supply Chains Analyzed in the Producer-Wholesale Segment

The producer purchases inputs at wholesale prices, transforms them and sells the final product to a retailer.

In general, according to the 2009 Economic Census, producers use multiple raw and processed goods in the production of manufactured products. We construct input price series that combine prices of multiple raw and manufactured goods employed in the fabrication of the items included in the analysis. As weights for these input price indices, we use cost shares of raw materials and manufactured goods obtained from the Input-Output tables published in the 2009 Economic Census for 193 manufacturing national industries (6-digit North American Industrial Classification System, NAICS). ${ }^{6}$ We excluded imported inputs since, as previously mentioned, PPI data only reflect prices of domestic products and the focus of this paper is price transmission between domestic prices.

On the other hand, since national industries often produce more than one good, we also build output price series combining all the manufactured goods produced by a national industry. However, in subsection 4.1.1, we present results at the item level for food products, since positive asymmetries in these markets may have important welfare implications.

We followed several steps to construct input and output price series at the national industry level. First, we selected those industries for which 50% of the input materials employed in the manufacturing process are of national origin. ${ }^{7}$ Hence, we focused on 164 of 193 industries. Second, we employed Laspeyres indices to combine price series of the different inputs (or outputs) employed (or produced) by each national industry. As mentioned above, we used cost shares as weights for input price series. We included all inputs (raw materials and manufactured products) with cost shares higher than 5% in each industry. For output price series, we used the 2012 National Production shares published by INEGI as weights for output price series. ${ }^{8}$ In total, we include in the analysis 423 PPI items inputs across the 164 national industries analyzed in this paper that represent 35.3 percent of the PPI.

[^5]The price series presented some gaps of missing information, due to discontinued or recently introduced products. We filled these gaps using the variation of the next immediate industry aggregation level available (up to the three-digit NAICS series). We employed this procedure to complete missing data for 13 of the 567 PPI series.

As shown in section 3, the model employed to identify and quantify asymmetries in price transmission needs a reasonable amount of price decreases and increases in the sample. Thus, we excluded from the analysis those industries for which price increments or decrements on the input prices represent less than 5% of the sample. Fortunately, none of the industries included in the Producer segment fell in this category. We apply the same restriction to the series analyzed in the Wholesale-Consumer segment as well.

In table 1 we present an example of how we construct input and output series for two national industries: i) Industrial baking, and ii) Livestock, slaughtering and processing. For the case of Industrial baking, which produces Sliced bread and Packaged muffins and cakes, Sliced bread represents the lion's share of national production according to the National Production PPI weights published by INEGI (which are 0.12% and 0.03% for Sliced bread and Packaged muffins and cakes, respectively). Once we normalize the weights of both outputs, Sliced bread has a weight in the output price series of 82.5%. Similarly, according to the Economic Census, Wheat flour represents, by far, the main input by expenditure for this national industry (34.9%), with a normalized weight of 42.8%, since we excluded all items whose expenditure shares represent less than 5%. The input and output series of the Livestock, slaughtering and processing, national industry are constructed in a similar fashion.

Finally, since the method we use to estimate price transmission requires stationary time series, we performed Augmented Dicky-Fuller (ADF) unit-root tests for both input and output series and discarded those industries for which we could not reject the null hypothesis of a unit-root presence in either its input or output price. ${ }^{9}$ Although some papers have shown

[^6]that the headline inflation in Mexico do not have a unit root since the implementation of Inflation Targeting in 2001 (Chiquiar et al. 2010), the dynamics of aggregate price series do not necessarily reflect the behavior of individual price series. Thus, we performed unit root test for all price series employed in the analysis.

We decided to focus on stationary series for two reasons. First, there is no consensus on how to test asymmetric price transmission on non-stationary time series (see for example, von Cramon-Taubadel and Loy, 1999; von Cramon-Taubadel and Fahlbusch, 1994; Capps and Sherwell, 2007; Frost and Bowden, 1999; and Borenstein et al., 1997). Second, some authors argue that usual characteristics of price series (such as structural changes) could generate important biases in the tests for asymmetries in price transmission (see Gauthier \& Zapata, 2001).

Table 2 shows the 164 national industries included in the analysis and the reasons of their exclusion. We grouped these national industries in 20 categories: 10 manufactured non-food subsectors (corresponding to three-digit NAICS) and 10 processed food industry groups (corresponding to four-digit NAICS). In total, we excluded 12 industries from the analysis: Rice milling and wheat milling because the input and output price series were the same, 10 industry classes (from five different subsectors of economic activity) because we could not reject the unit root hypothesis for their price series.

The final set included 152 activity classes (116 non-food and 36 food) that represent around 31.7% of the PPI. Many of the non-food products are concentrated in one industry group (Primary and Fabricated Metal and Nonmetallic Mineral Product Manufacturing with 30 of the 152 national industries analyzed in this paper); while food products are concentrated in three main industry groups: (i) Grain and seed milling, fats and oils, (ii) Beverage and tobacco manufacturing, and (iii) Other food manufacturing.

Table 3 shows the behavior of input and output prices for the national industries analyzed in this paper. There are common patterns in both groups, in terms of dynamics of input and wholesale price series. Input prices (wholesale) present more frequent price increases (fluctuating between 54% and 72% of the observations) than price decrements (ranging
between 28% and 46% of the observations), while the percentage of months in which the index does not change with respect to the previous month is low (fluctuating between 0% and 10% of the observations). In average, each input price series is a composite Laspeyres index of eight PPI items; this is the main reason behind the low percentage of months in which we observe no change in these price series.

Wholesale (retail) prices have more recurrent price increments (between 38% and 78% of the sample) than decrements (between 5% and 34%). However, no-change observations of wholesale prices (between 0% and 48% of the sample) are significantly higher than for input prices. This also may be due to the fact that, in contrast to input prices, output prices, are on average composed of only two PPI items.

2.2 The Consumer Segment

In this section, we analyze price transmission dynamics between the wholesale and the retail segments of the supply chain. Figure 2 illustrates this segment of the supply chain. First, the retailer purchases the final good at a wholesale price, and then sells the same item to a consumer at a retail (consumer) price. For this analysis, we use price series from the PPI and CPI to represent wholesale and consumer prices, respectively. We perform the analysis at the item (product) level, which are the analogous of the Entry Level Items of the United States CPI. From the universe of 283 items in the Mexican CPI, we exclude all services and government controlled goods. ${ }^{10}$ The reason for their exclusion is that the quotes used to calculate the PPI and CPI are the same, which implies a total correspondence PPI-CPI. The quotes of these products only differ by the tax when applicable because the producer of these goods usually also commercializes them. ${ }^{11}$

[^7]Figure 2. Stages of the Supply Chains Analyzed in the Wholesale-Consumer Segment

Given that there is no transformation of goods in this stage of the supply chain, ideally we should compare the wholesale price of one item with the retail price of exactly the same product. Since in many cases CPI items represent two or more items of the PPI, we combine many items of the PPI in order to get wholesale price series comparable to the consumer price series employed as retail prices. Thus, we match each CPI item to one or more PPI items to obtain its wholesale price. When a CPI item is matched with more than one PPI good, we calculated a Laspeyres index to create the wholesale price. We used the share of PPI items in private consumption reported in the 2012 Private Consumption Tables published by the INEGI as weights for the construction of the wholesale price series. We excluded those goods for which the information employed to calculate the PPI and CPI is the same in both indexes (i.e. the same price quotes are employed in both indexes). ${ }^{12}$ However, not all CPI items could be matched to a PPI item, since many of them did not have an exact match. We had to exclude 53 items from the CPI that did not have an exact match in the PPI.

An example of the construction of wholesale prices is given in Table 4 for two items, Other fruits and Fresh milk and pasteurized milk. In both cases, two or more PPI items were

[^8]employed in the construction of these wholesale price series. In the case of Fresh milk and Pasteurized milk, we used Pasteurized milk and Unpasteurized milk PPI items, where the first one represents 1.15% of the PPI weight in total private consumption. Once we normalize the weight, it represents 82.4% of Fresh milk and Pasteurized milk. A similar process was followed for Other fruits, where Mango has a larger share. To fill gaps in the series, we followed the same methodology employed in the Producer segment. We used the variation of the next available level of aggregation to impute it as the variation of the product with missing values. ${ }^{13}$

As in the Producer-Wholesale segment, we used PPI items to represent wholesale prices and, thus, we have some input prices with small price variation, especially in contrast with CPI prices, which on average have 74.2 establishments as a source of price quotes. ${ }^{14}$ Accordingly, we excluded from the analysis items in which price increments or decrements in input prices represented less than 5\%, for the same reasons described in the Producer segment. In the Consumer segment. Since we matched many goods with only one PPI item, this problem is more prevalent than in the Producer segment. Finally, we also performed unit-root tests for wholesale and consumer prices.

Table 5 summarizes all the goods left out from the analysis in the consumer segment. For the sake of the analysis, price series are grouped in 18 expenditure categories: 8 manufactured non-food merchandises and 10 processed and raw food items. From the original universe of 223 goods, we left out of the analysis 53 items because they did not have a corresponding item in the PPI, 3 because PPI price series of these items were the same as their corresponding CPI price series, and 19 more due to insufficient price variation. Finally, we excluded 26 items because we could not reject the unit root hypothesis. Overall, after eliminating items with low variation or unit roots, we ended up with 122 series. The 70 food items stand for 15

[^9]percent of the CPI, while the 52 non-food manufactured products represent 13.6 percent of the CPI.

Table 6 shows some statistics of price dynamics in this segment. In general, for both wholesale and retail, as well as across expenditure categories, price increases are more common than decreases. In addition, retailer price indices change more frequently than wholesale prices, except for raw food products, where wholesale prices indices present frequent variations. Compared to the statistics reported in Table 3, the difference between the output and the input frequency of price increases is larger in this segment of the supply chain. Finally, non-food retail prices show more frequent price increments than food items.

3. Empirical Analysis

We estimated the following Error Correction Model (Hendry and Richard, 1983; Hendry et al., 1984):

$$
\begin{gather*}
\Delta P_{i t}=\beta \Delta P_{i t-1}+\sum_{k=0}^{K} \delta_{k} \Delta I_{i t-k}+\sum_{k=0}^{K} \gamma_{k} D_{i t-k}^{+} \Delta I_{i t-k}+\alpha\left(\Delta P_{i t-1}-\Delta I_{i t-1}\right)+ \\
\sum_{n=0}^{N} \boldsymbol{\varphi}_{n} \boldsymbol{Z}_{i t-n}+u_{i t} \tag{1}
\end{gather*}
$$

where $\Delta P_{i t}$ and $\Delta I_{i t}$ are the first difference of the logarithm of the output price and input price of good/industry i, respectively, $D_{i t}^{+}$is a dummy variable that takes the value of 1 whenever $\Delta I_{i t}>0$ and zero otherwise; an autoregressive term ($\Delta P_{i t-1}$) was included to control for persistence in price changes. The $\boldsymbol{Z}_{i t}$ vector corresponds to different control variables, detailed below. In addition, the error correction term $\left(P_{i t-1}-I_{i t-1}\right)$ was included to control for the long-term relationship between output and input prices. ${ }^{15}$ The estimation is performed for each good in the case of the consumer segment and each industry in the case of the Producer segment.

[^10]The number of lags (K) for the input price changes was selected using the Akaike Information Criterion (AIC). ${ }^{16}$ Given the great variance in the frequency of price changes between the items included in our sample (section 3), we used three general specifications with different lag length in which we classified every input-output pair according to the optimal lag selection of the AIC: (i) a three-lag model, (ii) a nine-lag specification and (iii) a fifteen-lag model.

One common issue in the estimation of asymmetric price transmission is collinearity between the regressors that capture positive and negative price changes. In our data, this problem originates from the low number of observations with price decreases. Collinearity may create inference problems (e.g. high standard errors and problems in the stability of estimated parameters) and may promote an over-rejection of the symmetry hypothesis (Gauthier and Zapata, 2001). To deal with this issue, as mentioned above, we dropped all the items in which price decreases represent less than 5% of the sample. ${ }^{17}$

The control variables included in the Consumer segment are different from the ones employed in the Producer segment. In the Producer segment, we include the change in the Domestic Industrial Production Index published by INEGI, the US ISM Manufacturing Composite Diffusion Index (as published by the Federal Reserve Bank of St. Louis). Finally, we also add the percentage change in hourly earnings and oil prices. ${ }^{18}$

On the other hand, for the Consumer segment, we used changes in the Index of Domestic Private Consumption of Goods published by INEGI, and the US CPI less food and energy (published by the Bureau of Labor Statistics). As in the Producer segment, we included the

[^11]percentage change in hourly earnings and oil prices. ${ }^{19}$ Likewise, we used changes in the Mexican peso and the US dollar exchange rate to control for variations in the exchange rate in both segments of the supply chain.

For all control variables we started with an initial specification of 5 lags per variable. However, there were not significant gains in the Akaike information criteria (AIC) and, in most cases, lags beyond the contemporaneous variable were non-significant at the 10% confidence level, except for the exchange rate, which resulted significant up to three lags for a broad set of items. Given the reduction of degrees of freedom from including many lags, we decided to use only the contemporaneous effect for all control variables, except for the exchange rate, which included three lags in our final specification. ${ }^{20}$ Finally, since Mexico transited to an inflation-targeting regime in 2001, we included a dummy variable that takes a value of one after 2001, to control for this regime shift in both Producer and Consumer segments.

3.1 Estimation of Asymmetric Price Transmission

From the model presented in equation (1) we are interested in estimating the cumulative output price response of an input price change. The cumulative output price response is of interest because it measures the total effect of an input price change on the output price. The positive pass-through after k months is given by the cumulative output price changes between period t and period $t+k$ that results from an input price increase of 1 percent is given by:

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{\partial \Delta P_{t+j}}{\partial I_{t} \mid D_{t}^{+}=1} \tag{2}
\end{equation*}
$$

[^12]Similarly, the negative pass-through after k months is the cumulative response to an input price decrease of 1 percent:

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{\partial \Delta P_{t+j}}{\partial I_{t} \mid D_{t}^{+}=0} \tag{3}
\end{equation*}
$$

The asymmetric price transmission after k months is given as the difference between the cumulative transmission of input price increases and input price decreases:

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{\partial \Delta P_{t+j}}{\partial I_{t} \mid D_{t}^{+}=1}-\sum_{j=0}^{k} \frac{\partial \Delta P_{t+j}}{\partial I_{t} \mid D_{t}^{+}=0} \tag{4}
\end{equation*}
$$

From our specification, we analytically derive the cumulative price pass-through (positive and negative) and the cumulative asymmetry and then we estimate them as non-linear functions of the model parameters. For example, the positive pass-through after k months is the sum of the coefficients $\left(\delta_{i}+\gamma_{i}\right)$ each multiplied by different terms formed by the autoregressive and error correction coefficients β and α. Similarly, the negative cumulative pass-through is equal to the sum of coefficient δ_{i} multiplied by the same terms as in the positive pass-through. Hence, the cumulative asymmetry after k months is the sum of coefficients γ_{i} each 1 multiplied by these terms formed by the coefficients β and $\alpha .^{21}$

4. Results

4.1. Producer-Wholesale Segment in the Supply Chain

Table 7 summarizes the estimations of asymmetric pass-through for 152 industries grouped in 20 categories according to the economic subsector (three-digit and four-digit of the NAICS). ${ }^{22}$

The coefficients are interpreted as the difference, in percentage points, between the output price change after t months derived from a 1% input price increase with respect to the output

[^13]price change resulted from a 1% input price decrease. We found significant and persistent positive asymmetries across a wide spectrum of goods. In contrast, negative asymmetries were scarce and non-significant across most groups. In terms of importance, industries in the non-food sector that exhibit positive asymmetries represent around 10.6% of domestic production; while in the food sector they represent 6.1% of all production.

On average, positive asymmetries tend to be higher in the food sector than in the non-food sector. About 51% of the national industries in the manufactured food sector show positive asymmetries up to the sixth month mark. In contrast, only 49.2% percent of the non-food industries included presented positive price asymmetries. The most relevant groups in the food sector in terms of the magnitude of their positive asymmetries after 6 months are: (i) Animal slaughtering and processing (1\%); (ii) Sugar and confectionery product manufacturing (0.65%), and (iii) Grain and seed milling and fats and oils (0.6%). In the nonfood sector, the groups with higher positive asymmetries are: (i) Chemical manufacturing, (ii) Machinery manufacturing and (iii) Primary metal and non-metallic mineral manufacturing, all of them with an asymmetry of around 0.4%. The asymmetries in food and non-food sectors reach their largest magnitude in the fourth month and decrease afterwards. ${ }^{23}$

Table 8 shows price transmission in terms of speed. We calculated the speed of price transmission relative to the 6 months accumulated pass-through. Notice that, for some goods, the peak of the accumulated pass-through is reached earlier (numbers are greater than one). This is because the accumulated positive or negative pass-through in earlier months is greater in absolute terms to the accumulated pass-through at the 6-month mark. According to the speed results, the food sector, once again, shows larger asymmetries in the speed of price

[^14]adjustments in this segment of the supply chain: input price increments transmit quicker to final prices than input price decreases.

4.1.1. Results by Item for Food Products in the Producer-Wholesale Segment

Compared to the non-food sector, the food sector presents more pervasive and persistent asymmetries in the Producer segment; hence, we conduct a more detailed analysis of these products. In order to do this, first we match each industrial activity to a specific item belonging to the PPI. We disaggregated the 35 food industry classes for which we conducted the analysis at the Producer-Wholesale segment by their producer price indexes that conform them. To represent the output price of a given PPI product, we reweight the items belonging to the industry class to give 20% more weight to that specific product. ${ }^{24}$ Since we do not have input information at the product-level, we keep the same input price series at the national industry-level.

For illustrative purposes, Table 9 shows some of the main results of this analysis. We report the highest accumulated asymmetries after three months when we found at least one of them was statistically significant and positive (marked by dark grey if the result corresponds only for the Producer segment and a diagonal pattern if we used this result also in the Consumer segment for the discussion in section 4.3). If none of those asymmetries were positive and statistically significant, we report the accumulated asymmetry after three months (not shaded). Asymmetries are mostly concentrated in products belonging to three categories: Cereals and related products; Livestock, slaughtering and processing, and Beverages. In these categories, practically all of the products included here present a certain degree of positive asymmetry in price transmission at some point. For example, in the Grain and seed milling and fats and oils manufacturing category, only Corn flour does not show positive asymmetry. Likewise, Beef carcasses, Pork carcasses, Poultry carcasses, Beef meat and Poultry meat do not present positive asymmetries in the Livestock, slaughtering and processing category. In

[^15]the Beverage industry, all non-alcoholic beverages exhibit significant and persistent positive asymmetries. In contrast, most items in the Fruit and vegetable preserving and Dairy products manufacturing industry classes show no statistically significant positive asymmetries.

Some of the most important products in the food consumption basket of Mexican households such as bread, soft drinks, meats, powder milk and instant coffee present positive and statistically significant asymmetries. As shown in section 4.3, positive asymmetries in these items may have important welfare effects on households the bottom income quintile.

4.2. Wholesale-Retailer Segment in Supply Chain

Table 10 summarizes the estimated asymmetries for 122 items (goods) analyzed in the Wholesale-Retail segment grouped in 18 expenditure categories (8 non-food and 10 food). As in the Producer-Wholesale segment, we also found significant evidence of persistent positive asymmetries across many items in the sample; in fact, even more than in the Producer-Wholesale segment. Negative asymmetries are non-significant in most cases, and when they are, they are only significant for one period. The weight on the CPI of non-food products that report positive asymmetries is 10.8%, while for the food sector their share represent 10.3% of the CPI .

Likewise, in the case in the Producer segment, we observe different patterns between food and non-food sectors for the Consumer segment. Positive asymmetries in the food sector are smaller than in the non-food sector, mainly driven by the relatively low asymmetries in Fresh fruits and Fresh vegetables. However, food group categories such as Other foods (1.5\% at the 6 -month mark); Sugar, coffee and soft drinks (close to 1%) and Bakery products (0.8%) show some of the largest positive asymmetries.

The highest and most significant asymmetries in the non-food sector were (i) Housekeeping supplies (0.85%); (ii) Footwear and accessories (0.8%); and (iii) Personal care supplies (0.78%). Note also that the magnitude of these asymmetries increases over time and is more
persistent than in the Producer segment; in the non-food sector positive asymmetries reach their maximum value at 6 months, whereas in the food sector they reach it at 5 months. ${ }^{25}$

Table 11 shows the speed of positive and negative price transmission. In the non-food sector, asymmetries tend to increase homogeneously across groups and at a relatively constant speed. For many of them, asymmetries tend to keep growing or stay at a constant level. On the other hand, processed and raw food products show quite heterogeneous speed patterns and, in many cases, asymmetries tend to fade over time. Relative to the findings reported for the Producer segment, in the Consumer segment we observe smaller asymmetries in the speed of transmission between positive and negative price shocks.

4.2.1. Results by Item for Food Products in the Wholesale-Retailer Segment

In this section, we report the disaggregated estimates used to construct aggregate results reported in Table 10. For illustrative purposes, in table 12 we only show asymmetries that were positive and statistically significant after 1,2 or 3 months (marked by dark grey). When there was no positive and statistically significant asymmetries, we report the three-month estimated asymmetry in pass-through and leave the item unshaded. Once again, we focus on the food sector due to the importance its weight in the CPI and since many of their products are included in the consumption basket of low-income households. ${ }^{26}$ In total, 32 items exhibit positive and statistically significant asymmetries in at least one period, which represent more than 40% of the analyzed items. Asymmetries in those items are also, in general, persistent: they are positive and statistically significant for more than one period.

Fresh fruits and vegetables present the lowest (positive) asymmetry levels, with the notable exception of Lemons, Beans and Grapes. In contrast, Sugar, coffee and soft drinks present persistent and high levels of positive asymmetries. Meats and animal products, such as Beef

[^16]meat, Pork and Poultry also present significant and positive asymmetries, which together represent almost 4% of the CPI. Other animal products such as Fish and Other seafood, however, do not present positive asymmetries.

Moreover, there are nine items analyzed in the Producer segment with positive asymmetries in which the PPI and CPI prices were the same or that had no match in the PPI (marked with a diagonal pattern in Table 9). If we include the asymmetries estimated for those products, then 41 food items presented positive asymmetries: 32 from the Consumer segment (marked in dark gray in Table 12) and 9 from the Producer segment (marked with a diagonal pattern in Table 9). Together, these products represent 11.7% of the Mexican CPI.

4.3. A Brief Discussion of the Importance of Price Asymmetries

In the long-run, positive asymmetries may generate higher price levels. When this price behavior is present in food markets the main consumption items of the poorest households, they can have important negative welfare effects. The main cause of this is that poor Mexican households have a hard time substituting food products. As shown in Juarez (2015), population in lower income quintiles show a less diversified diet. The consumption of cereals, vegetables and poultry provide more than 60% of their required daily calorie intake. Moreover, population in the bottom income quintile have higher price nutrient elasticities for cereals and vegetables than those in the top income quintiles. This implies that price increments translate in drastic reductions in nutrient intake (Juárez, 2015).

This goes hand in hand with the low price elasticities of demand estimated in food products for low-income Mexican households in comparison to higher income households. ${ }^{27}$ Thus, price increments in this kind of products translate in daily reductions in food consumption, aggravating under nutrition conditions, with long-term effects in their productivity and poverty.

Figure 3 illustrates the markedly regressive effects of positive price asymmetries, especially in food items. Urban bottom quintile households spend on average nearly 20% of their total

[^17]expenditure on goods that present positive price asymmetries. In contrast, households in the top income quintile allocate less than 10% of their expenditure in this kind of items.

Food expenditure is the main driver behind this pattern: while the bottom income quintile spends 16% of their total expenditure on food products with positive asymmetries, households in the top income quintile only allocate 5.3%, which represents less than a third of their expenditure on food products. For non-food items, the expenditure on merchandises with positive price asymmetries is similar across income quintiles, and even slightly progressive. However, non-food products with positive asymmetries are goods of daily consumption in Mexican households, like toothpaste, detergent, etc.

It is important to mention that we were not able to study an important number of products, so welfare effects may be higher than what we propose here. For future research, given the relevance of positive price asymmetries for welfare, it is important to investigate their origin. Following the economic literature, the study of market imperfections, such as poor competition and adjustment costs, could provide some guidelines to reduce these asymmetries and improve welfare, especially for the poorest sectors of population. In particular, the implementation of a more effective competition policy and the implementation of policies that reduce adjustment costs (i.e. improvement in the coordination between market participants, better infrastructure, etc.) may help to reduce these asymmetries.

In line with this, the elimination of positive price asymmetries can have considerable effects in poverty. In an exercise published in the Bank of Mexico's Quarterly Report April-June 2015 the complete elimination of positive price asymmetries in the 41 food products mentioned in section 4.2.1 had an estimated effect of a 11 per cent reduction in food poverty (1.7 million people). ${ }^{28}$

[^18]Figure 3. Share of Urban Households' Expenditure for the Analyzed CPI Products ${ }^{1 /}$
(Percentage of household's total expenditure, average 2006-2014)

1/Estimation of the expenditure share of items with positive asymmetries could be higher since other products excluded from the analysis could also show such price dynamics. In this sense, the referred estimation represents a lower bound of the quantification of the effect.
Source: Own estimations using data from ENIGH 2006, 2008, 2010, 2012 and 2014. Expenditure shares of goods with positive asymmetries correspond to 41 food and 26 non-food merchandise found with positive and statistically significant asymmetries in the Consumer-Retail segment.

5. Conclusions

This study provides empirical evidence of the existence of asymmetries in price transmission in Mexican markets. We perform a general characterization of asymmetries in price transmission in terms of its magnitude and speed for a wide range of industries and markets across two stages of the supply chain: Producer and Consumer segments.

The analysis presented in this article shows that for the Producer segment 80 of the 152 studied national industries exhibit positive asymmetries in price transmission, which represents 16.7% of domestic production $(10.6 \%$ in the non-food sector and 6.1% in the food sector). In this segment of the supply chain, positive asymmetries tend to be higher in magnitude and speed for food industries than for non-food industries. Industrial groups like Livestock, slaughtering and processing; Sugar and confectionery product manufacturing; Grain and oilseed milling; Chemical manufacturing; Machinery manufacturing and Primary metal and non-metallic show the highest magnitudes.

For the Consumer segment, 77 of the 122 analyzed good markets exhibit positive asymmetries in price transmission, which represents 21.1% of the CPI (10.8% in non-food products and 10.3% in food products). In this segment, the non-food products tend to present the greatest asymmetries with homogenous and constant speed across groups like Housekeeping supplies, Footwear and accessories, and Personal care supplies. In the food products groups, Fresh fruits and Fresh vegetables drive the low-asymmetry outcome. Other products such as Sugar and coffee, Soft drinks, Beef, Pork and Poultry exhibit significant and positive asymmetries.

Of special interest for the analysis are the markets with persistent positive asymmetries in both segments of the supply chain such as Sugar, coffee and soft drinks, and Bakery products and tortilla manufacturing.

In terms of their weight in the Mexican CPI, the empirical evidence of this study suggests that positive asymmetries in price transmission is a common practice across the analyzed good markets. Hence, the presence of high and persistent positive asymmetries may
contribute to both higher levels of inflation and poverty. However, we could not analyze a significant number of items, so we cannot generalize our results to the whole of the CPI. This remains an important subject of future research.

From a policy perspective, the reduction and eventual elimination of such asymmetries may have a significant impact on the welfare of poor households. Mostly because the consumption of low-income households is highly concentrated on food products characterized by positive asymmetries.

Finally, a future research agenda in this area should include the study of factors originating price asymmetries, including those previously identified in the economic literature: adjustment costs (asymmetries in inventory management, menu costs, etc.) and competition problems. In particular, if lack of competition were a leading factor in the generation of positive asymmetries in price transmission, the identification of positive price asymmetries would be of special interest from a policy perspective of developing countries.

References

Acharya, R. Henry W. Kinnucan, and Steven B. Caudill (2011). "Asymmetric farm-retail price transmission and market power: a new test," Applied Economics, Vol. 43, issue 30, pages 4759-4768.

Alam, M. J., I. A. Begum, J. Buysse, A.M. McKenzie, E. J. Wailes and G. Van Huylenbroeck (2010). "Testing Asymmetric Price Transmission in the Vertical Supply Chain in Deregulated Rice Markets in Bangladesh," 2010 Annual Meeting of the Agricultural and Applied Economics Association, July 25-27, 2010, Denver, Colorado.

Attanasio, O., V. Di Maro, V. Lechene, and D. Phillips (2013). "Welfare consequences of food prices increases: Evidence from rural Mexico," Journal of Development Economics, 104: 136-151.

Banco de México (2015). "Price Dynamics, Welfare and Poverty", Quarterly Report AprilJune 2015. Pp. 55-58.

Barrett, C.B. (1996), Markets analysis methods: Are our enriched tool kits well suited to enlivened markets? American Journal of Agricultural Economics. 78, 825-829.

Boetel, B. and Liu, D. (2008). "Incorporating Structural Changes in Agricultural and Food Price Analysis: An Application to the U.S. Beef and Pork Sectors," Working Papers 44076, University of Minnesota, The Food Industry Center.

Borenstein, S., Cameron, A.C. and R. Gilbert, (1997). "Do Gasoline Prices Respond Asymmetrically to Crude Oil Price Changes?" Quarterly Journal of Economics, 112: 305339.

Capistrán, C., C. Constandse and M. Ramos-Francia (2009). "Using Seasonal Models to Forecast Short-Run Inflation in Mexico". Banco de México Working Paper 2009-05.

Chiquiar, D., A. E. Noriega and M. Ramos-Francia. (2010). "A Time Series Approach to Test a Change in Inflation Persistence: The Mexican Experience," Applied Economics, Vol. 42, pp. 3067-3075.

Capps, O. and Sherwell, P. (2007), "Alternative approaches in detecting asymmetry in farmretail price transmission of fluid milk". Agribusiness, 23: 313-331.

Cortés, J., J. A. Murillo and M. Ramos-Francia (2012) "Evidencia de los Micro Datos del INPC Respecto al Proceso de Formación de Precios", mimeo Banco de México.

Deltas, George, 2008. "Retail Gasoline Price Dynamics and Local Market Power," Journal of Industrial Economics, vol. 56 (3), pages 613-628, 09.

Díaz N., O. Melo and F. Mondrego (2007). "Dinámica de transmisión de precios y cambios estructurales en el sector lácteo chileno", Economía Agraria, Vol. 11.

Dutoit L., K. Hernández and C. Urrutia (2010). "Transmisión de Precios en los Mercados del Maíz y Arroz en América Latina", (Price Transmission in Latin American Maize and Rice Markets). Serie CEPAL: Desarrollo Productivo.

Fackler, P. and B. Chapter 17 in Handbook of Agricultural Economics, 2001, vol. 1, Part 2, pp 971-1024.

Frost, D. and R. Bowden (1999). "An Asymmetry Generator for Error-Correction Mechanisms, with Application to Bank Mortgage-Rate Dynamics", Journal of Business \& Economic Statistics, Vol. 17(2), pp. 253-263.

Gagnon, E. (2009). "Price Setting during Low and High Inflation: Evidence from Mexico," The Quarterly Journal of Economics, 124(3), 1221-1263.

Gauthier, W.M. and Zapata, H. (2001). "Testing Symmetry in Price Transmission Models", Louisiana State University, Department of Agricultural Economics \& Agribusiness, Working Paper.

Goodwin, B. K. and N. Piggott, (2001). "Spatial Market Integration in the Presence of Threshold Effects," American Journal of Agricultural Economics, 83: 302-17.

Hendry D. and J. F. Richard. (1983). "The Econometric Analysis of Economic Time Series". International Statistical Review / Revue Internationale de Statistique. Vol. 51, No. 2 (Aug., 1983), pp. 111-148.

Hendry, D.F., A.R. Pagan, and J.D. Sargan (1984). "Dynamic specification". In: Griliches, Z. and M.D. Intriligator (Eds.) (1984). Handbook of Econometrics, Volume 2-3, Chapter 18. Amsterdam: North-Holland. Reprinted in Hendry, D.F. (1993), Econometrics: Alchemy or Science? Oxford: Blackwell Publishers, and Oxford University Press, 2000.

Hosseini Pour M.R., and R. Moghaddasi (2011). "Asymmetric Price Transmission and Threshold Behavior in Iranian Fish Market," International conference On Applied Economics - ICOAE 2011. 253-263.

Houck, J. P. (1977). "An Approach to Specifying and Estimating Non-Reversible Functions," American Journal of Agricultural Economics. 59: 570-72.

INEGI (2013a). Documento Metodológico del INPP. Cambio de base Junio 2012=100. Manual, p. 20.

INEGI (2013b). Documento Metodológico del INPC. Documento Metodológico. Manual, p. 35.

International Monetary Fund, IMF (2015). World Outlook.
Juárez, M. (2015). "The Impact of Food Price Shocks on Consumption and Nutritional Patterns of Urban Mexican Households." Banco de México Working Paper 2015-08.

Kochen, F. (2015). "Price-Setting in Mexico and the Real Effects of Monetary Shocks." Mimeo, Banco de México and ITAM.

Maddala, G.S. and I.-M. Kim (1998). Unit Roots, Cointegration and Structural Change. Oxford University Press, Oxford.

Meyer, J. and S. von Cramon-Taubadel, (2004). "Asymmetric Price Transmission: A Survey," Journal of Agricultural Economics 55: 581-611.

OECD, Directorate for Financial and Enterprise Affairs Competition Committee, (2013), "Round Table on Competition Issues in Food Chain Industry -Note by the European Union", OECD document DAF/COMP/WD(2013)105.

Office of Fair Trading (2012), Call for information on the UK petrol and diesel fuels sector, available in http://webarchive.nationalarchives.gov.uk/20140402142426/http://www.oft.gov.uk/OFTwo rk/markets-work/othermarketswork/road-fuel-CFI/.

Peltzman, S. (2000). "Prices Rise Faster than They Fall, " Journal of Political Economy 108: 466-502.

Ravallion, M. (1986). "Testing market integration." American Journal of Agricultural Economics 68: 102-09.

Sidaoui, J., Capistrán, C., Chiquiar, D., and Ramos-Francia, M. (2009). "A Note on the Predictive Content of PPI over CPI Inflation: The Case of Mexico," Banco de México Working Paper 2009-14.

Stephens E.C., Mabaya E., Von Cramon-Taubadel S. and Barrett C.B. (2012). "Spatial Price Adjustment with and without Trade", Oxford Bulletin of Economics and Statistics.

Fabiani, S. and Druant, Martine and Hernando, Ignacio and Kwapil, Claudia and Landau, Bettina and Loupias, Claire and Martins, Fernando and Matha, Thomas and Sabbatini, Roberto and Stahl, Harald and Stokman, Ad (2006). What Firms' Surveys Tell Us about Price-Setting Behavior in the Euro Area. Published in: International Journal of Central Banking, Vol. Volume, No. Number 3 (14. September 2006): pp. 3-47.

Singh, A. (2013). "Competition, Competition Policy, Competitiveness, Globalization and Development," MPRA Paper 53027, University Library of Munich, Germany, revised 13 Jan 2014.

Tong, H. (1983). Threshold Models in Non-Linear Time Series Analysis, New York, Springer Verlag.

Vavra, P. and B. K. Goodwin (2005), "Analysis of Price Transmission along the Food Chain", OECD Food, Agriculture and Fisheries Papers, No. 3, OECD Publishing.
v. Cramon-Taubadel, S. and Fahlbusch, S. (1994). "Identifying asymmetric price transmission with error correction models," Poster Session EAAE European Seminar in Reading.
v. Cramon-Taubadel, S. and Loy, J.-P. (1999). "The Identification of Asymmetric Price Transmission Processes with Integrated Time Series," Jahrbücher für Nationalökonomie und Statistik 218(1+2):85-106.

Ysusi, Carla (2010). "Comportamiento de los Precios al Consumidor en México bajo un Esquema de Objetivos de Inacción: Un Enfoque Usando Microdatos," Banco de México, working paper 2010-09.

Zachmann, G. and C. von Hirschhausen. (2007). "First Evidence of Asymmetric Cost Passthrough of EU Emissions Allowances: Examining Wholesale Electricity Prices in Germany," Discussion Papers of DIW Berlin 708, DIW Berlin, German Institute for Economic Research.

Table 1. Examples of Weights Employed in the Construction of Input and Output Price Series in the Producer-Wholesale Segment

National industry (6-digit NAICS)		PPI item	Weight in the national production PPI index $(\%)^{I I}$	Normalized weight employed in the construction of output price series (\%)	Share in the total expenditures in raw materials per industry $(\%)^{2 /}$	Normalized weight employed in the construction of input price series (\%)
Livestock, slaughtering and processing	Output	Beef carcasses	0.03	18.56	-	-
		Pork carcasses	0.02	13.73	-	-
		Poultry carcasses	0.12	67.71	-	-
	Input	Beef cattle	-	-	9.46	9.65
		Swine	-	-	8.31	8.48
		Poultry	-	-	80.28	81.87
		Total	0.17	100.00	98.06	100.00
Industrial baking	Output	Packaged muffins and cakes	0.03	17.54	-	-
		Sliced bread	0.12	82.46	-	-
	Input	Egg	-	-	5.72	7.02
		Wheat flour	-	-	34.92	42.83
		Vegetable oils and fat	-	-	16.82	20.63
		Sugar	-	-	9.82	12.05
		Powder milk	-	-	7.63	9.36
		Other organic chemicals	-	-	6.62	8.12
		Total	0.15	100.00	81.52	100.00

Source: Own estimations.
 total national. 2/ Share in the total raw material expenditure reported by each national industry in the 2009 Economic Census.

Table 2. Analyzed Industries at the Producer-Wholesale Segment, (six-digit NAICS)

Raw food and processed food products					
Subsector (3- digits NAICS)	PPI Items	Weight in the PPI (\%)		PPI Items	Weight in the PPI (\%)
1 Grain and seed milling, and fats and oils manufacturing		2.066	5 Dairy products manufacturing		1.753
1 Corn flour manufacturing	148 Cornmeal	1.373	23 Fluid milk manufacturing	110 Pasteurized milk	0.941
2 Edible vegetable fats and oil manufacturing	156 Edible vegetable oils, 157 Shortening, 158 Margarine	0.232	24 ${ }_{4}$ Dairy products and lactic ferments manufacturing	111 Asadero and oaxaca cheese, 112 Fresh cheese, 113 Chihuahua or manchego cheese, 114 American cheese, 115 Other cheeses, 116 Milk cream, 117 Butter, 122 Yogurt	0.389
3 Rice milling	138 Wheat flour	0.207	25 Dry, condensed and evaporated milk manufacturing	118 Dry milk, 119 Evaporated milk, 120 Infant formula, 121 Condensed milk	0.245
4 Breakfast cereals manufacturing	173 Cornflakes	0.096	26 Ice cream and popsicle manufacturing	180 Ice cream	0.178
5 Starch and other starch products manufacturing	176 Starches	0.094	60 ther food manufacturing		0.911
6 Flour milling	172 Rice	0.035	27 Snack food manufacturing 28 Manufacturing of flavoring concentrates, powders, syrup and essences for beverages	181 Snacks, chips and the like	0.301
7 Malt manufacturing	187 Malta	0.029		178 Concentrates for soft drinks	0.243
2 Livestock, poultry and other edible animals slaughtering and packaging		1.905	29 Seasoning and dressing manufacturing	134 Salt, 135 Mayonnaise, 137 Other dressings, 136 Other seasonings	0.098
8 Livestock, poultry and other edible animals meat cutting and packaging	100 Beef meat, 101 Poultry, 102 Pork meat	1.436	30 Coffee processing (cleaning, pulp removal, and drying)	150 Golden coffee	0.087
9 Livestock, poultry and other edible animals meat sausages and other preserves preparation	103 Ham, 104 Sausages, 105 Smoked, dried and spiced meat, 106 Bacon, 107 Chorizo, 108 Meatloaf 109 Other cold meats	0.263	31 Instant coffee manufacturing	152 Instant coffee	0.083
10 Livestock, poultry and other edible animals slaughtering	093 Beef carcasses, 094 Pig carcasses, 095 Poultry carcasses	0.171	32 Roasted and milled coffee manufacturing	151 Roasted coffee	0.049
11 Lard and other edible animal fats manufacturing	096 Lard, 097 Pork Skin, 098 Entrails, 099 Other animal carcasses	0.035	33 Other food manufacturing	167 Packaged honey bee	0.049
3 Beverage and tobacco Industry		1.870	7 Sugar, chocolate and confectionery products manufacturing		0.368
12 Soft drinks and other nonalcoholic beverages manufacturing	189 Bottled soft drinks	1.005	34 Cane sugar manufacturing	153 Sugar	0.339
13 Brew manufacturing	188 Beer	0.494	35 Chocale and related products manufacturing	165 Chocolate tablet, 166 Chocolate powder	0.029
14 Cigarette manufacturing	192 Cigarettes	0.105	8 Animal food manufacturing		0.281
15 Water purifying and bottling	190 Bottled water	0.084	36 Animal food manufacturing	159 Food for birds, 160 Fodder for pigs, 161 Fodder for cattle, 162 Food for other cattles, 163 Pet food	0.281
16 Manufacturing of distilled beverages from agave	182 Tequila	0.078	9 Fruits, vegetables, stews and prepared meals freezing		0.210
17 Manufacturing of alcoholic beverages from grapes	184 Brandy, 185 Table wine	0.053	37 Fruits and vegetables dehydration	124 Dehydrated fruits and vegetables	0.210
18 Manufacturing of rum and other distilled beverages from cane	183 Rum	0.050	10 Seafood preparation and packaging		0.078
4 Bakery products and tortilla manufaturing		1.214	38 Seafood preparation and packaging	169 Canned sardine, 170 Canned tuna, 171	0.078
19 Corn tortilla manufacturing and nixtamal milling	149 Tortilla corn	0.670		Other packaged fish and seafood	
20 Traditional baking	140 Sweet bread in bulk, 141 White bread in bulk	0.311			
21 Industrial baking	142 Packaged white bread, 143 Packaged sweet bread and cakes	0.150			
22 Cookie, cracker, and pasta manufacturing	144 Pasta for soup, 145 Crackers, 146 Biscuits, 147 Wheat tortillas	0.083			
Non-food merchandise					
1 Machinery manufacturing		0.474	2 Miscellaneous manufacturing		0.443
1 Air conditioning and heating equipment manufacturing	456 Air conditioning units	0.156	9 Manufacturing of writing, painting and drawing goods, and office supplies manufacturing	500 Pens and pencils, 501 Other school and office supplies	0.192
2 Industrial and commercial refrigeration equipment manufacturing	455 Industrial fridges	0.123	10 Manufacturing of nonelectronic medical, dental and laboratory equipment	497 Medical equipment and devices	0.148
3 Farming machinery and equipment manufacturing	437 Agricultural tractors, 438 Other agricultural machines	0.081	11 Candles manufacturing	502 Candles and votive candles	0.036
4 Machinary and equipment for food ans beverages	440 Machinery and equipment for food and beverages	0.033	12 Other manufacturing industries	505 Other Manufacturing	0.031
5 Lifting and handling machinery and equipment manufacturing	444 Derricks, 445 Elevators and freight lifts	0.031	13 Medical disposable material manufacturing	206 Healing material	0.019
6 Other general purpose machinery	449 Other non-electrical machinery and	0.027	14 Toys manufacturing	377 Plastic toys	0.017
7 Welding and soldering equipment manufacturing 8 Construction machinery and equipment manufacturing	413 Solders, 457 Welding guns and electric ovens 441 Machinery for construction and minning industries	0.014 0.009			

Table 2. Analyzed Industries at the Producer-Wholesale Segment (cont.)

Table 2. Analyzed Industries at the Producer-Wholesale Segment (cont.)

Source: INEGI, own estimations.
\square Studied Price series $\quad \mathscr{\|}$ Price series with unit root \quad Price series with no variance \square Price series with total correspondence

Table 3. Descriptive Statistics for Price Changes, Producer-Wholesale Segment

Industry category	Industries in the sample	Weight in the INPP (\%)	Mean frequency of price changes (as \% of all months in sample)					
			Wholesale			Inputs		
			Increments	Decrements	No change	Increments	Decrements	No change
	Manufactured non-food products, three digit NAICS, subsector							
Chemical manufacturing ${ }^{1 /}$	14	2.399	56.2	28.3	15.6	65.1	34.9	0.0
Electronic devices, computers and electrical products manufacturing ${ }^{\text {2/ }}$	12	3.306	51.5	32.4	16.1	65.4	33.4	1.2
Machinery manufacturing ${ }^{3 /}$	8	0.474	49.1	34.5	16.4	62.5	37.5	0.0
Miscellaneous manufacturing ${ }^{4 /}$	6	0.443	54.0	26.7	19.3	66.7	33.3	0.0
Motor vehicles ${ }^{5 /}$	10	6.495	50.5	33.1	16.4	65.0	35.0	0.0
Paper manufacturing and printing ${ }^{6 /}$	7	1.463	52.3	16.1	31.6	71.7	27.9	0.4
Petroleum, coproducts and plastic manufacturing ${ }^{7 /}$	12	1.711	49.9	25.5	24.6	63.8	33.8	2.4
Primary and fabricated metal and nonmetallic mineral product manufacturing ${ }^{8 /}$	30	4.076	52.9	25.9	21.2	65.4	34.6	0.1
Textille mills, apparel and leather ${ }^{9 /}$	11	0.952	49.3	25.1	25.7	67.4	32.3	0.3
Wood and furniture products manufacturing ${ }^{10 /}$	6	0.631	53.4	27.6	19.0	60.9	30.7	8.4
Total non-food products	116	21.950	51.9	27.5	20.6	65.4	33.3	1.3
	Processed food products, four digit NAICS, industry group							
Bakery products and tortilla manufacturing	4	1.214	75.4	11.6	13.0	62.2	37.8	0.0
Beverage and tobacco manufacturing	7	1.870	55.2	17.0	27.9	66.0	33.7	0.2
Diary products and lactic ferments manufacturing	4	1.082	49.8	5.3	44.9	62.9	36.9	0.2
Fruits, vegetables, stews and prepared meals preserving	1	0.210	78.2	20.1	1.7	57.7	42.3	0.0
Grain and seed milling, and fats and oils manufacturing	5	1.824	38.0	15.5	46.5	56.2	33.5	10.4
Livestock slaughtering and processing	4	1.905	68.1	31.6	0.3	59.6	40.4	0.0
Otherfood manufacturing	7	0.911	38.9	13.1	48.1	54.2	45.7	0.1
Seafood preparation and packaging	1	0.078	67.8	32.2	0.0	54.8	45.2	0.0
Sugar, chocolate and confectionery products manufacturing	2	0.368	56.9	34.3	8.8	63.0	32.2	4.8
Animal food manufacturing	1	0.281	65.3	29.7	5.0	72.0	28.0	0.0
Total processed food products	36	9.742	59.4	21.0	19.6	60.9	37.6	1.6

Source: Own estimations.

 321) and furniture related product manufacturing (NAIC 337).

Table 4. Examples of Weight Employed in the Construction of Wholesale Prices Employed in the Wholesale-Consumer Segment

CPI item	PPI item	Weight in the PPI private consumption index (\%) ${ }^{I L}$	Normalized weight employed in the construction of wholesale price series (\%)
Other fruits	Strawberry	0.01	5.49
	Mango	0.13	56.58
	Other fruits	0.09	37.93
	Total	0.23	100
Fresh and pasteurized milk	Pasteurized milk	1.15	82.4
	Unpasteurized milk	0.25	17.6
	Total	1.4	100

Source: Own estimations.
Notes: 1/ Weights reported by INEGI for the construction of the PPI, domestic demand price index. These weights represent the approximate participation of each PPI item consumed by private residents in Mexico.

Table 5. Analyzed Products at the Wholesale-Consumer Segment

Source: INEGI, own estimations.
\square Studied Price series $\$$ Price series with no correspondence PPI-CPI \quad Price series with no variance $\not \mathscr{O}$ Price series with unit root
\square Price series with total correspondence PPI-CPI

Table 6. Descriptive Statistics for Price Changes, Wholesale-Retail Segment

Group	Items in sample	Weight in the CPI (\%)	Mean frequency of price changes (as \% of all months)					
			Consumer			Wholesale		
			Increments	Decrements	No change	Increments	Decrements	No change
	Manunfactured non-food products							
Apparel	3	0.638	80.89	18.97	0.14	52.72	31.10	16.18
Educational and recreative goods and supplies	6	0.770	84.59	14.64	0.77	66.25	17.15	16.60
Footwear and accesories	2	0.898	82.85	16.95	0.21	45.82	14.02	40.17
Furniture and domestic appliences	9	1.017	62.67	37.28	0.05	40.73	30.13	29.15
Housekeeping supplies	12	1.979	73.74	26.22	0.03	45.68	20.89	33.44
Medicalcare commodities	4	0.439	84.94	15.06	0.00	68.62	17.47	13.91
Motor vehicle parts and equipment	5	4.370	83.18	16.82	0.00	55.48	30.79	13.72
Personal care supplies	11	3.461	72.84	27.16	0.00	43.51	17.80	38.68
Total non-food products	52	13.571	78.21	21.64	0.15	52.35	22.42	25.23
	Processed and raw food products							
Alcoholic beverages and tobacco	4	0.828	73.54	26.36	0.10	47.49	21.55	30.96
Bakery products, tortilla and cereals	6	0.703	72.32	27.68	0.00	44.70	18.55	36.75
Eggs, diary and related products	9	2.771	73.59	26.31	0.09	46.07	12.78	41.14
Fresh fruits	13	1.242	53.11	46.89	0.00	55.29	44.16	0.55
Fresh meats and other animal products	6	4.157	65.90	34.10	0.00	60.74	39.26	0.00
Fresh vegetables	13	2.144	54.04	45.96	0.00	53.36	46.64	0.00
Otherfoods	4	0.406	70.61	29.39	0.00	53.97	27.51	18.51
Processed fruits and vegetables	6	0.466	71.20	28.80	0.00	59.14	30.13	10.74
Processed meat and animal products	4	0.422	69.77	30.23	0.00	47.49	20.71	31.80
Sugar, coffee and soft drinks	5	1.868	74.81	25.10	0.08	51.55	21.67	26.78
Total processed food and raw products	70	15.007	67.89	32.08	0.03	51.98	28.30	19.72

[^19]Table 7. Asymmetric Pass-Through in the Producer-Wholesale Segment

Industry Category	Industries by group	Industries with positive asymmetries		Cumulative response						
		Number	Weight in the PPI (\%)	Omonths	1 month	2 months	3 months	4 months	5 months	6 months
	Manufactured non-food products, three digit NAICS, subsector									
Chemical manufacturing ${ }^{1 /}$	14	8	1.524	0.138 *	0.276 ***	0.264 ***	$0.421^{* * *}$	$0.417^{* * *}$	0.419 ***	$0.397^{* * *}$
Electronic devices, computers and electrical products manufacturing ${ }^{2 /}$	12	6	0.818	0.128 *	0.231 **	0.178 *	0.129	0.220 **	0.207 *	0.167
Machinery manufacturing ${ }^{3 /}$	8	4	0.206	0.149 *	$0.304^{* * *}$	0.355 ***	$0.434^{* * *}$	0.412 ***	0.398 ***	$0.385^{* * *}$
Miscellaneous manufacturing ${ }^{4 /}$	6	3	0.067	0.115	0.168	0.162	0.276 **	0.365 **	0.369 **	$0.387^{* *}$
Motor vehicles ${ }^{5 /}$	10	5	3.859	0.061	0.284 ***	0.241 ***	0.372 ***	0.486 ***	0.457 ***	0.432 ***
Paper manufacturing and printing ${ }^{6 /}$	7	3	0.869	0.306 *	0.161	0.363	0.546 **	0.485 *	0.358	0.246
Petroleum and coal products and plastic manufacturing ${ }^{7 /}$	12	5	0.213	0.117 *	0.163 *	0.189 *	0.306 ***	0.264 **	0.258 **	0.230 **
Primary and fabricated metal and nonmetallic mineral product manufacting ${ }^{8 /}$	30	16	2.250	0.222 ***	$0.314^{* * *}$	0.308 ***	0.320 ***	$0.304^{* * *}$	0.259 ***	0.241 ***
Textille mills, apparel and leather ${ }^{9 /}$	11	5	0.588	$0.266^{* *}$	0.085	0.217	0.370 *	0.284	0.227	0.196
Wood and furniture products manufacturing ${ }^{10 /}$	6	2	0.203	-0.159	0.018	0.103	0.194	0.223	0.147	0.132
Total non-food products	116	57	10.599	$0.156^{* * *}$	0.228 ***	0.251 ***	0.333 ***	0.336 ***	0.302 ***	0.275 ***
	Processed and raw food products, four digit NAICS, industry group									
Bakery products and tortilla manufacturing	4	3	1.064	0.174	0.286 **	0.293 *	0.462 **	0.388 *	0.442 ***	0.297
Beverage and tobacco manufacturing	7	5	1.271	0.013	-0.165 **	-0.041	0.098	0.228 **	0.225 **	0.250 **
Dairy products and lactic ferments manufacturing	4	3	0.776	$0.239^{* *}$	0.398 ***	0.400 **	0.212	0.292	0.142	0.106
Fruits, vegetables, stews and prepared meals preserving	1	0	0.000	-0.001	0.078	0.094	0.076	0.074	0.074	0.073
Grain and seed milling, and fats and oils manufacturing	5	2	0.329	0.074	0.392 **	0.608 ***	0.620 ***	0.631 ***	0.670 ***	$0.587^{* * *}$
Livestock slaughtering and processing	4	3	1.734	0.316	0.425	0.866 **	1.028 ***	$1.037^{* * *}$	1.008 ***	$0.970^{* * *}$
Other food manufacturing	7	3	0.181	0.052	0.146 ***	0.132 **	0.198 ***	0.223 ***	$0.237^{* * *}$	$0.245^{* * *}$
Seafood preparation and packaging	1	1	0.078	0.228 ***	0.238 **	0.221 **	0.109	0.111	0.237 *	0.274 **
Sugar, chocolate and confectionery products manufacturing	2	2	0.368	$0.477^{* * *}$	0.557 ***	0.565 **	0.642 **	0.661 **	0.658 **	0.648 **
Animal food manufacturing	1	1	0.281	0.968 *	1.325 **	1.744 ***	2.303 ***	2.222 ***	$1.984^{* * *}$	$1.730^{* * *}$
Total processed food and Raw products	36	23	6.081	$0.164^{* * *}$	0.250 ***	$0.364^{* * *}$	$0.438{ }^{* * *}$	$0.470^{* * *}$	0.460 ***	$0.424^{* * *}$

Source: Own estimations.

 (NAICS 316); 10/ Wood product manufacturing (NAICS 321) and furniture related product manufacturing (NAIC 337).
Robust standard errors were used to obtain statistical significance. $*^{* *}, * *, *$ indicate statistical significance at 1,5 , and 10 percent levels.

Table 8. Speed of Price Transmission in the Producer-Wholesale Segment

Industry category	Positive pass-through							Negative pass-through						
	0 months	1 month	2 months	3 months	4 months	5 months	6 months	Omonths	1 month	2 months	3 months	4 months	5 months	6 months
	Manufactured non-food products, three-digit NAICS, subsector													
Chemical manufacturing ${ }^{1 /}$	0.47	0.64	0.81	0.97	0.98	0.99	1.00	0.40	0.93	0.80	1.08	1.05	1.06	1.00
Electronic devices, computers and electrical products manufacturing ${ }^{\text {/2 }}$	0.43	0.84	0.82	0.91	0.98	0.99	1.00	0.42	0.61	0.93	0.98	0.98	0.98	1.00
Machinery manufacturing ${ }^{3 /}$	0.27	0.58	0.72	0.88	0.89	0.96	1.00	0.21	0.28	0.90	1.06	1.15	1.08	1.00
Miscellaneous manufacturing ${ }^{4 /}$	-0.04	0.23	0.39	0.84	0.92	0.98	1.00	0.51	0.75	0.61	0.23	0.56	0.79	1.00
Motor vehicles ${ }^{5 /}$	0.21	0.79	0.71	0.92	0.89	0.98	1.00	0.36	0.17	0.75	0.79	0.91	0.96	1.00
Paper manufacturing and printing ${ }^{6 /}$	0.47	0.61	0.80	0.92	0.94	0.93	1.00	1.17	1.19	0.61	1.02	1.13	1.09	1.00
Petroleum and coal products and plastic manufacturing ${ }^{7 /}$	0.55	0.96	0.89	0.99	0.97	1.00	1.00	0.14	0.74	0.79	1.01	0.99	1.01	1.00
Primary and fabricated metal and nonmetallic mineral product manufacting ${ }^{8 /}$	0.61	0.93	0.90	0.92	0.94	0.97	1.00	0.46	0.62	0.71	0.94	0.97	0.98	1.00
Textille mills, apparel and leather ${ }^{9 /}$	0.57	0.74	0.88	0.96	0.98	0.99	1.00	0.48	0.50	-0.07	0.40	0.63	0.82	1.00
Wood and furniture products manufacturing ${ }^{10 /}$	0.40	0.69	0.88	0.92	0.92	0.93	1.00	0.75	1.48	0.96	1.02	0.77	0.88	1.00
Total non-food products	0.50	0.71	0.80	0.93	0.95	0.98	1.00	0.44	0.68	0.76	0.99	0.98	0.99	1.00
Processed and raw food products, four-digit NAICS, industry group														
Bakery products and tortilla manufacturing	0.55	0.69	0.77	0.92	0.93	1.02	1.00	0.38	0.10	0.01	-0.18	0.26	0.34	1.00
Beverage and tobacco manufacturing	0.34	0.67	0.76	0.90	0.93	0.97	1.00	-0.12	-0.18	0.13	1.05	1.01	1.05	1.00
Dairy products and lactic ferments manufacturing	0.61	0.79	1.15	1.20	1.21	1.02	1.00	0.28	0.25	0.57	0.89	0.92	1.01	1.00
Fruits, vegetables, stews and prepared meals preserving	-0.07	0.53	0.75	0.82	0.88	0.94	1.00	-0.14	-0.13	0.08	0.54	0.71	0.86	1.00
Grain and seed milling, and fats and oils manufacturing	0.30	0.96	1.07	0.94	0.98	0.99	1.00	-0.30	0.33	0.92	0.92	1.03	1.01	1.00
Livestock slaughtering and processing	0.42	0.58	0.78	0.89	0.93	0.97	1.00	0.19	0.45	0.87	0.88	0.93	0.97	1.00
Other food manufacturing	0.18	0.41	0.48	0.71	0.83	0.93	1.00	0.36	0.69	0.76	0.84	0.88	0.95	1.00
Seafood preparation and packaging	0.68	0.68	0.62	0.44	0.54	0.86	1.00	0.38	0.33	0.26	0.51	0.78	0.86	1.00
Sugar, chocolate and confectionery products manufacturing	0.67	0.62	0.75	0.91	0.97	0.99	1.00	0.24	0.10	0.34	0.66	0.81	0.91	1.00
Total processed food and raw products	0.37	0.63	0.79	0.90	0.93	0.97	1.00	0.19	0.36	0.60	0.83	0.94	0.97	1.00

Source: Own estimations.

 manufacturing (NAICS 321) and furniture related product manufacturing (NAIC 337).

Table 9. Asymmetric Pass-Through by Item in the Producer-Wholesale Segment

[^20]Table 10. Asymmetric Pass-Through in the Wholesale-Retail Segment

Group	Items by group	Items with positive asymmetries		Cumulative response						
		Number	Weight in the CPI (\%)	0 months	1 month	2 months	3 months	4 months	5 months	6 months
	Manufactured non-food products									
Apparel	3	1	0.117	-0.233	-0.114	0.206	0.574 *	$0.613^{* *}$	0.609 **	0.597 **
Educational and recreative goods and supplies	6	4	0.638	-0.338 *	-0.145	0.162	0.159	0.155	0.275	0.327
Footwear and accesories	2	2	1.016	0.118 *	0.298 ***	0.466 ***	0.702 ***	$0.804^{* * *}$	0.851 ***	$0.833^{* * *}$
Furniture and domestic appliences	9	7	0.967	$0.133^{* * *}$	$0.279^{* * *}$	0.393 ***	0.391 ***	0.417 ***	$0.417^{* * *}$	0.421 ***
Housekeeping supplies	12	10	1.985	$0.248{ }^{* * *}$	$0.358^{* * *}$	0.500 ***	0.730 ***	$0.809^{* * *}$	0.844 ***	0.853 ***
Medicalcare commodities	4	2	0.046	0.390	-0.119	-0.148	0.327	0.448	0.484	0.494
Motor vehicle parts and equipment	5	5	3.293	$0.400^{* * *}$	$0.644^{* * *}$	$0.706^{* * *}$	0.707 ***	$0.611^{* * *}$	0.601 **	0.563 ***
Personal care supplies	11	7	2.726	0.181	0.411	0.741 **	0.747 *	0.780 *	0.785 *	0.771 *
Total non-food products	52	38	10.789	$0.139^{* * *}$	0.259 ***	0.445 ***	0.566 ***	0.601 ***	0.628 ***	$0.629^{* * *}$
	Processed food products									
Alcoholic beverages and tobacco	4	2	0.216	0.131	0.186 *	0.310 ***	$0.269^{* *}$	0.241 **	0.220 *	0.201 *
Bakery products, tortilla and cereals	6	5	0.678	$0.455^{* * *}$	0.490	0.462	0.639	0.846 *	0.935 **	0.859 **
Eggs, diary and related products	9	4	2.186	0.047	0.104	0.092	0.157	0.272 *	0.276	0.350 *
Fresh fruits	13	5	0.682	0.077 *	0.103 *	0.066	0.117	0.132 *	0.155 **	0.146 **
Fresh meats and other animal products	6	3	3.187	$0.184^{* * *}$	0.241 ***	0.195 **	0.208 **	0.198 **	0.179 **	0.159 *
Fresh vegetables	13	4	0.680	$0.075^{* * *}$	$0.100^{* * *}$	0.048	0.024	0.024	0.023	0.026
Otherfoods	4	3	0.163	0.309 ***	$0.907^{* * *}$	$1.672^{* * *}$	$1.722^{* * *}$	1.681 ***	$1.572^{* * *}$	$1.490^{* * *}$
Processed fruits and vegetables	6	6	0.452	0.279 **	$0.587^{* *}$	0.792 ***	0.766 **	$0.870^{* * *}$	0.946 ***	$0.921^{* * *}$
Processed meat and animal products	4	2	0.234	0.187 *	0.260 *	0.291 *	0.245	0.223	0.214	0.210
Sugar, coffee and soft drinks	5	5	1.819	0.346 ***	$0.654^{* * *}$	$1.059^{* * *}$	0.968 ***	$0.955^{* * *}$	0.940 ***	$0.919^{* * *}$
Total processed food and raw products	70	39	10.296	0.174 ***	$0.288{ }^{* * *}$	0.363 ***	0.382 ***	$0.419^{* * *}$	$0.427^{* * *}$	$0.418^{* * *}$

Source: Own estimations.
Robust standard errors were used to obtain statistical significance. ${ }^{* * *},{ }^{* *}, *$ indicate statistical significance at 1,5 , and 10 percent levels.

Table 11. Speed of Price Transmission in the Wholesale-Retail Segment

Industry category	Positive pass-through							Negative pass-through						
	0 months	1 month	2 months	3 months	4 months	5 months	6 months	0 months	1 month	2 months	3 months	4 months	5 months	6 months
	Manufactured non-food products, three-digit NAICS, subsector													
Apparel	0.18	0.46	0.65	0.84	0.92	0.97	1.00	-1.39	-3.31	-0.47	1.07	1.36	1.23	1.00
Educational and recreative goods and supplies	0.23	0.57	0.71	0.88	0.94	0.98	1.00	0.95	1.18	0.97	0.96	0.99	0.99	1.00
Footwear and accesories	0.13	0.30	0.43	0.68	0.87	0.99	1.00	0.04	0.84	1.34	2.15	1.91	1.48	1.00
Furniture and domestic appliances	0.21	0.44	0.65	0.79	0.88	0.94	1.00	0.21	0.23	0.30	0.64	0.75	0.76	1.00
Housekeeping supplies	0.21	0.46	0.70	0.86	0.94	0.98	1.00	0.37	0.79	0.87	1.01	0.99	1.04	1.00
Medicalcare commodities	0.24	0.46	0.69	0.85	0.93	0.98	1.00	-0.42	-0.40	0.98	1.11	1.07	0.96	1.00
Motor vehicle parts and equipment	0.39	0.59	0.79	0.94	0.99	0.99	1.00	0.57	0.40	1.31	1.46	1.17	1.07	1.00
Personal care supplies	0.24	0.47	0.60	0.81	0.90	0.96	1.00	0.43	0.46	0.68	0.89	0.99	1.00	1.00
Total non-food products	0.22	0.46	0.65	0.82	0.92	0.97	1.00	0.25	0.43	0.65	0.94	0.98	1.00	1.00
Processed and raw food products, four-digit NAICS, industry group														
Alcoholic beverages and tobacco	0.34	0.61	0.79	0.87	0.94	0.97	1.00	0.35	0.38	0.40	0.63	0.79	0.90	1.00
Bakeary products, tortilla and cereals	0.39	0.70	0.83	0.89	0.95	0.98	1.00	0.10	0.41	-0.10	0.25	0.20	0.94	1.00
Eggs, diary and related products	0.18	0.51	0.72	0.82	0.96	0.97	1.00	0.20	0.58	0.73	0.85	0.93	1.04	1.00
Fresh fruits	0.69	0.85	0.90	0.90	0.90	0.96	1.00	0.63	0.83	0.92	0.96	0.88	0.94	1.00
Fresh meat and other animal products	0.40	0.66	0.75	0.87	0.93	0.97	1.00	0.24	0.35	0.62	0.81	0.91	0.97	1.00
Fresh vegetables	0.76	0.88	0.90	0.89	0.93	0.96	1.00	0.61	0.82	0.86	0.91	0.94	0.97	1.00
Otherfoods	0.20	0.48	0.71	0.85	0.92	0.95	1.00	0.39	0.51	0.94	0.99	1.09	1.11	1.00
Processed fruits and vegetables	0.28	0.59	0.75	0.85	0.91	0.96	1.00	0.32	0.39	0.55	0.61	0.78	0.95	1.00
Processed meat and animal products	0.46	0.65	0.68	0.88	0.94	0.97	1.00	0.25	0.16	1.12	1.11	1.08	1.04	1.00
Sugar, coffee and soft drinks	0.40	0.75	0.86	0.92	0.97	0.99	1.00	-0.25	0.47	0.92	1.15	1.13	1.06	1.00
Total processed food and raw products	0.41	0.70	0.78	0.88	0.93	0.97	1.00	0.34	0.58	0.80	0.84	0.90	0.97	1.00
Source: Own estimations.														

Table 12. Asymmetric Pass-Through by Item in the Wholesale-Retail Segment

Source: INEGI, own estimations.
We used robust standard errors to obtain statistical significance. ${ }^{* * *},{ }^{* *}, *^{*}$ indicate statistical significance at 1,5 , and 10 percent levels.Price series with positive price asymmetries

[^0]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

[^1]: *We are indebted to several economic researchers and the anonymous reviewers of Banco de Mexico for their valuable comments and suggestions. We are also grateful to Luis Manuel Perea and Mariana Oviedo Pacheco for their support at the initial stages of this project. All remaining errors are ours.
 † Dirección Nacional de Medio Ambiente, Uruguay. Email: sguerreroe@gmail.com.
 \ddagger Dirección General de Investigación Económica. Email: mjuarez@banxico.org.mx.
 § Dirección General de Investigación Económica. Email: dsamano@banxico.org.mx.
 ** Department of Economics. Email: federico.kochen@nyu.edu.
 \pm Dirección General de Investigación Económica. Email: jpuigvert@banxico.org.mx.

[^2]: ${ }^{1}$ The PPI reflects the first transaction of domestic produced items that represent around 80% of the national production. It comprises 567 items and excludes services, imports, distribution services (wholesalers, retailers), insurance and finance activities, as well as corporative, government and international organizations' activities. The CPI reflects prices paid by the average consumer for every one of the goods and services included in a representative basket that reflects the consumption of Mexican population. The Mexican CPI basket is comprised of 283 categories: 223 products (manufactured and non-manufactured) that represent 42.81% of the CPI, 46 services (43.06%), 5 energy goods (8.78%), and 9 price-control services (5.35%).
 ${ }^{2}$ We describe the reasons we dropped different items from the analysis in sections 2.1 and 2.2.

[^3]: ${ }^{3}$ The authors analyze the causal relationship between the aggregated Producer Price Index (PPI) and the Consumer Price Index (CPI). They find that the information contained in the PPI can be useful to improve CPI forecasts.
 ${ }^{4}$ However, these conclusions do not extend to the goods not included in the analysis. Thus, a future study that analyzes price transmission for a bigger share of the CPI may reach different conclusions.

[^4]: ${ }^{5}$ In particular, we performed unit root tests to all the series employed in this analysis. Among the tests we employed were Augmented Dickey-Fuller tests and the Elliot-Rothenberg-Stock. The series that showed changes in persistence or unit roots according to these tests were not included in the analysis.

[^5]: ${ }^{6}$ According to the NAICS, in Mexico there are 1,049 national industries. The 2009 Economic Census reports Input-Output tables for 193 of the 1,049 universe of national industries.
 ${ }^{7}$ Since no data for import prices is available at the level of disaggregation we required, we exclude those industries in which the content of imported inputs is above 50 per cent of their total costs.
 ${ }^{8}$ This table reflects the share in the market value of all final and intermediate goods produced by all industries in Mexico (INEGI, 2013).

[^6]: ${ }^{9}$ Additionally, we also performed tests with other unit root tests with more power, such as Elliot-RothenbergStock (Generalized Dickey-Fuller, DFGLS), and tests by subsamples (using the 1996-2000 and the 2001-2013 periods) in order to check the change of persistence in the series. The results of the ADF test yielded similar outcomes.

[^7]: ${ }^{10}$ Altogether, 60 of the 283 CPI items correspond to services, energy and government tariffs. Their weight in the CPI, measured by their expenditure share, is 57%.
 ${ }^{11}$ In particular, since services PPI and CPI prices use the same quotes, we can expect (and indeed observe) that price transmission is one for positive and negative price changes, which implies an asymmetry of zero. This conclusion is, of course, inaccurate since there is no real "wholesale" price.

[^8]: ${ }^{12}$ These items are White bread, Sweetbread and Corn tortillas. In these cases, the PPI and CPI price quotes only differ by the value added tax.

[^9]: ${ }^{13}$ Thus, for example, in the case of "Disposable tissues", with missing values from January to December 1996, we used the expenditure group "Toilet paper and disposable tissues". When an item showed missing values for more than three years we dropped it from the analysis.
 ${ }^{14}$ The CPI collects price quotes from 21,000 establishments for 283 items in the index. Thus, on average every item of the CPI collects price quotes from 74.2 establishments. In contrast, PPI items have only 11.3 establishments per item as a source for information, INEGI (2013b).

[^10]: ${ }^{15}$ For the cases where we found no statistically significant evidence of a long-term relationship between input and output prices, we estimated an Autoregressive Distributed Lag model (ADL), with the same specification. This model is also frequently used when testing for asymmetric price transmission (Boetel and Liu, 2008; Zachmann and von Hirschhausen, 2007).

[^11]: ${ }^{16}$ The purpose of using the AIC as the criterion was that this statistic tends to select a larger lag structure, which yield results that are more robust for both, unit root tests and standard errors (Maddala \& Kim, 1999).
 ${ }^{17}$ Since in our specification uses total, positive and negative variations of input prices, as long as the number of price decreases is large enough, there should be limited collinearity between these two regressors. Furthermore, as pointed by Ravallion (1986), collinearity is not enough reason to adopt a more restrictive specification because this may create imposed restrictions on the model or employ methods that may cause loss of information (e.g. Principal components), which could produce omitted variable bias. Likewise, the removal of variables can affect the precision of coefficients.
 ${ }^{18}$ We expressed both of these variables in nominal terms and in the local currency (Mexican pesos).

[^12]: ${ }^{19}$ For both segments of the supply chain, other variables we also tested as controls. For the Producer-Wholesale segment, we tested the Average Daily Wage in the Manufacturing Sector and an Index of Energy prices as controls for supply shifts and the Global Index of Economic Activity (IGAE, by its acronym in Spanish) and the G7 Industrial Production Index. In the Wholesale-Retail segment, we used the IGAE and the G7 CPI as controls for demand shifts. However, our main results did not substantially change with other control variables. ${ }^{20}$ Details about these tests and estimations using other control variables are not reported here but are available upon request to the authors.

[^13]: ${ }^{21}$ Another possible strategy is to estimate the price pass-through and price asymmetries using impulse-response functions of an input price increase and decrease. This strategy is convenient when there are several autoregressive terms as in Peltzman (2000). Our estimations using this strategy and the method described here yield the same results.
 ${ }^{22}$ For the sake of the analysis, we only report the estimated asymmetries in price transmission; however, positive and negative pass-through estimations are available upon request.

[^14]: ${ }^{23}$ Positive pass-through is with the expected sign and highly significant in all of the analyzed groups, except for Fruits, vegetables, stews and Prepared meals freezing in which positive price transmission was not significant, although the coefficient had the expected sign. The magnitude of the pass-through was mainly around 0.5 percent and in just in one case was 0.2 . In contrast, negative pass-through was significant only for 10 of the 20 groups analyzed. However, it has the expected sign in all but three cases. The magnitude of the negative pass-through was rarely above 0.5 , and in most cases, it was below 0.3 . Results are available upon request.

[^15]: ${ }^{24}$ For example, the activity class "Livestock, slaughtering and processing" is comprised of 3 producer prices: Beef meat, Swine meat and Poultry (Table 3). The original weights used to construct the output price of the industry class, derived from the 2012 National Production Weights of INEGI, are 0.06 Beef meat, 0.05 Swine and 0.88 Poultry. To get the output price for beef, we use the following weights: 0.26 for Beef meat, 0.04 for Swine and 0.69 for Poultry.

[^16]: ${ }^{25}$ Positive asymmetries were always significant and with the expected sign on both, food and non-food items. The magnitude was between 0.3 and 0.8 points. The negative pass-through was highly significant and with the expected sign for almost all food groups; however, in three cases it was not significant and in one case was significant but with the wrong sign. For non-food items, the negative pass-through is never significant but for three cases and in two of them it has the wrong sign. The coefficient of this pass-through never has a magnitude bigger than 0.5 . Results are available upon request.
 ${ }^{26}$ Households in the bottom income quintile spend 33.2% of their total expenses on food products.

[^17]: ${ }^{27}$ See Attanasio et al. (2013) and Juarez (2015).

[^18]: ${ }^{28}$ In this exercise, we assumed that the positive price asymmetries we found in 41 products were eliminated for the period January 2006-August 2014, which corresponds to the month when CONEVAL carried out the last measurement of poverty in Mexico. Afterwards, price levels were simulated assuming that positive price asymmetries were zero. This implied a reduction in the cost of CONEVAL's basic consumption basket of 5.1% with respect of the observed cost in August 2014 and 1.7 million less people in food poverty in urban areas in contrast with the 15.8 million calculated by CONEVAL. Further details are provide in Banxico (2015).

[^19]: Source: Own estimations.

[^20]: Source: INEGI, own estimations.
 Robust standard errors were used to obtain statistical significance. ${ }^{* * *}$, $*^{*}$, $*$ indicate statistical significance at 1,5 , and 10 percent levels.
 \square Items without Positive Asymmetries $\mathbb{\square N}$ Items with Positive Asymmetries that could not be studied in the Consumer segment
 \square Items with Positive Asymmetries

