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Unit  Root  Test ing in  ARMA Models :  A Likel ihood Rat io
Approach*

 

Abstract: In this paper I propose a Likelihood Ratio test for a unit root (LR) with a local-to-unity
Autoregressive parameter embedded in ARMA(1,1) models. By dealing explicitly with dependence in a
time series through the Moving Average, as opposed to the long Autorregresive lag approximation, the
test shows gains in power and has good small-sample properties. The asymptotic distribution of the test
is shown to be independent of the short-run parameters. The Monte Carlo experiments show that the LR
test has higher power than the Augmented Dickey Fuller test for several sample sizes and true values of
the Moving Average parameter. The exception is the case when this parameter is very close to -1 with a
considerably small sample size.
Keywords: Likelihood ratio test; ARMA model; Unit root test.
JEL Classification: C22
 

Resumen: En este artículo propongo una prueba de raíz unitaria de razón de verosimilitud (LR) con
un parámetro Autorregresivo localmente cercano a la unidad en modelos ARMA(1,1). Al tratar
explícitamente la dependencia en una serie de tiempo con una Media Móvil, y no una aproximación
Autorregresiva con un gran número de rezagos, la prueba muestra ganancias en términos de su potencia
y tiene propiedades deseables en pequeñas muestras. Se demuestra que la distribución asintótica de la
prueba es independiente de parámetros de corto plazo. Los experimentos Monte Carlo muestran que la
prueba LR tiene mayor potencia que la prueba de Dickey-Fuller Aumentada para varios tamaños de
muestra y valores del verdadero parámetro de la Media Móvil. La excepción es el caso cuando este
parámetro es muy cercano -1 con un tamaño de muestra considerablemente reducido.
Palabras Clave: Prueba de razón de verosimilitud; Modelo ARMA; Prueba de raíz unitaria.
 

Documento de Investigación
2016-03

Working Paper
2016-03

Juan  Ramón Hernández  Gonzá lez y

Banco de México

    *I thank comments from Rod McCrorie and Maria Kyriacou and two anonymous referees on earlier drafts. I
owe special thanks to Marcus Chambers for his comments and guidance through the writing of this article which
is the first chapter of my PhD thesis. Andrea Miranda provided excellent research assistance. All remaining errors
are my own.
    y Dirección General de Investigación Económica. Email: juan.hernandez@banxico.org.mx.



1 Introduction

The econometric analysis of an economic time series requires the econometrician to decide
how to model two key properties of said series: (i) the inherent dependence between the
observations, and (ii) whether the series is stationary or non-stationary by means of a unit
root test. Under a small set of assumptions, the Autoregressive Moving Average (ARMA)
set-up presents itself as a parsimonious and flexible way to address the dependence since it is
parametric and, typically, easy to estimate through well known techniques.

Despite the popularity among empiricists of the Autoregressive (AR) model, there are a
number of arguments in favour of using an ARMA model instead when analysing an error
process that features serial correlation. First, modelling explicitly this serial correlation is of
value for the econometrician. The temporal aggregation, stemming from the patterns of data
collection, has been shown to hide information about the cycle of an economic time series
(see Rossana and Seater (1995)); thus creating serial correlation. Second, the same authors
conclude that a mixed ARMA model will be better addressing several macroeconomic time
series. Third, a mixed ARMA model will yield a parsimonious approximation to the actual
process. This in turn improves the power of the unit root test.

A great bulk of available unit root tests, however, is based on estimating “long” AR
models, thereby only approximating any dependence of the error process.1 Among the most
popular unit root tests are the Dickey-Fuller (DF ) test and its augmented version (ADF ) due
to Dickey and Fuller (1979) and Said and Dickey (1984), respectively.

While prominent in its insights and widespread use, these tests present some drawbacks.
The DF test is based on the assumption of i.i.d. Gaussian disturbances, but many economic
time series feature some form of dependence. The ADF deals with dependence, but this
requires theAR order of the linear regression to increase with the sample size. This, however,
has a cost: by increasing the AR order, the power of the ADF - that is, the probability of
rejecting the null hypothesis- decreases.

The latter introduces a trade-off between testing with low power, on the one hand, and
dealing appropriately with the serial correlation on the other. Up to now this issue has been
circumvented by choosing the AR order with an information criteria. The test I propose in
this paper does not possess said trade-off since dependence is modelled explicitly, and it has
better power properties than the ADF test.

1See Stock (1994) and Haldrup and Jansson (2007) for a thorough review of the unit root tests available.
Semi-parametric tests such as that advocated by Phillips and Perron (1988) are not discussed since the test
proposed here is fully parametric.
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In their seminal work Elliott, Rothenberg, and Stock (1996), ERS henceforth, proposed
the Likelihood Ratio test for the presence of a unit root -the Point Optimal test- and theDF−
GLS test. Their tests have better power properties than the ADF test, particularly dealing
with deterministic components - a constant mean or a linear trend. ERS worked on a local-
to-unity framework, and this allows easy comparisons across models. The framework also
allows simpler ways to write both the test statistic and its asymptotic distribution. Through
the Neyman-Pearson Lemma, ERS get an upper bound for the power of the test in an AR(p)

process, which overlaps the Gaussian Power Envelope. The ERS tests have been part of the
unit root testing practice they appeared and are now included in econometrics software as a
standard component.

The mechanics in the computation of the DF −GLS test statistic can be summarised in
two steps: (i) de-trend the economic time series through Generalised Least Squares (GLS)
or Maximum Likelihood (ML), (ii) test the de-trended series for a unit root with the ADF
test. This draws the econometrician to face the same trade-off as in the implementation of the
ADF test. The test I propose differs from those in ERS in two respects: (i) the avoidance of
the aforementioned trade-off and (ii) the computation is made in one-step.

In this paper I outline the construction of a likelihood ratio unit root test for ARMA(1, 1)

models with no deterministic terms (i.e. a constant and a trend). Focusing in the particular
case of the ARMA(1, 1) may seem restrictive, but can be justified on the following basis. If
the data generating process behind an economic time series is suspected to be a continuous
time process (e.g. consumption or pricing decisions), but the econometrician only has ac-
cess to data collected in discrete points in time, the exact discrete representation of the data
generating process will often be an ARMA(1, 1) model as shown by Bergstrom (1984) and
Chambers (2009). This model also buys a number of benefits. First, the main parameters
driving the dynamics are included. Second, consistency results and asymptotic distributions
are easier to present. Third, as in Said and Dickey (1985), the ARMA(1, 1) case provides a
foundation for more general cases.

This paper contains 6 additional sections. Section 2 outlines the DGP and the model to
be estimated. In section 3 I present the set-up to estimate through ML and then derive the
asymptotic behaviour of the estimates. The LR test is presented in section 4, followed by the
empirical analysis in section 5. Section 6 has an application of the test to inflation series in
several countries. Finally, section 7 presents some concluding remarks.
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Notation

Throughout this paper I use the following notation: −→ denotes convergence; −→p conver-
gence in probability; −→d convergence in distribution; ⇒ weak convergence. For matrix
operators I use: ‖A‖ = tr1/2 {A′A}; ‖A‖1 =

∑
t

∑
s |ats|; det |A| for determinant of matrix

A; tr{A} for trace of matrix A.

2 The Data Generating Process

In this section I introduce the elements on which the rest of the paper is built. In particular,
the probability space, the data generating process and the error process are introduced. This
will pave the way for the estimation set-up in the following sections.

The framework on which I develop the analysis requires a sample space Ωn and Fn, the
σ − field of Ωn. Moreover, Θ is the parameter space with typical element θn. Pn,θn is
a probability measure for n observations of a time series indexed by θn. Thus, the triple
(Ωn,Fn, Pn,θn) forms a complete probability space underlying the DGP as stated in the next
assumption.

Assumption 2.A (Data Generating Process). The observed time series, {yt}nt=0, is generated
by

∆yt = (ρ0 − 1)yt−1 + u0,t, (2.1)

ρ0 − 1 =
c

n
, c < 0. (2.2)

The local-to-unity set-up, given by (2.2), goes back at least to Phillips (1987a) and has
been exploited greatly in the unit root testing literature, while the stochastic behaviour of the
error process {u0,t}nt=0 in (2.1) can be thought as a draw from the probability space showing
linear dependence with behaviour summarised by the following assumption.

Assumption 2.B (Error Process). The error process {u0,t}nt=0, depends on a parameter vector
θ20 = (α0, σ

2
0)′ and satisfies: (i) εt ∼ i.i.d(0, σ2

0). (ii) εs = 0 for s ≤ 0. (iii) u0,t =

εt − α0εt−1. (iv) suptE|u0,t|δ <∞ for δ > 2.

Both (i) and (ii) are standard in econometric analysis, while (iii) sets up the MA and (iv)
is necessary in view that a MA process is a special case of a mixing process where δ controls
the dispersion as discussed in Phillips (1987a). Moreover, the assumed value of δ is needed
as the ML estimators will typically involve the second moments of σ2

0 . The error process
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sequence {u0,t}nt=0 can also be written in vector form by stacking its last n elements into the
n× 1 vector u0.

Write the observed time series in vector form stacking the observations so that ∆y =

(∆y1, . . . ,∆yn)′ is a n× 1 vector, similarly y−1 = (y0, . . . , yn−1)′ and u = (u1, . . . , un)′, to
get

u(θ1n) = ∆y − (θ1n − 1)y−1.

Assumption 2.B implies that the error vector, u0, has a covariance matrix Γ(θ20) with
typical jk element γ(j − k) = Cov(u0,t−j, u0,t−k). Moreover, Γ(θ20) satisfies: (i) γ(0) =

(1 + α2
0)σ2

0 . (ii) γ(1) = γ(−1) = −α0σ
2
0 . (iii) γ(j − k) = 0 for all |j − k| > 1. The latter

implies that Γ(θ20) is a band-Toeplitz matrix containing γ(j) in its jth-band. Finally, define
the (finite) long run variance σ2

u =
∑∞

k=−∞ γk = (1− α0)2σ2
0 .

3 Maximum Likelihood Estimation and Asymptotics

In this section the estimation is presented along with a series of preliminary definitions and
Lemmas that will ease the introduction of the main asymptotic results. After the set-up of the
ML estimation problem, I show that the obtained estimators are consistent, a task that will
require to split the objective function in two parts: one containing long-run parameters and
a second part with short-run parameters driving the dependence. The section concludes with
the derivation of the asymptotic distribution of the ML estimator.

ML estimation requires the properties of the parameter space to be clearly defined, which
I present in the next assumption.

Assumption 3.A (Parameter Space). (a) The parameter space Θ is (i) convex and (ii) com-
pact. (b) Write Θ = Θ1×Θ2, where Θ1 contains the long run parameters (i.e. θ1n = ρn) and
Θ2 contains only short-run parameters (i.e. θ2n = (αn, σ

2
n)′). (c) Θ2 contains only elements

that ensure Γ−1(θ2n) exists.

To estimate the parameter vector θn = (θ1n, θ2n)′ write the log-likelihood function for
{u0,t}nt=0,2

ln(θn) = −n
2

ln |2π| − 1

2
ln det |Γ(θ2n)| − 1

2
u(θ1n)′Γ−1(θ2n)u(θ1n), (3.1)

2The likelihood function is constructed “as if” the disturbances are normally distributed, anticipating an
approximation based on a limiting distribution.
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or equivalently, define the loss function Qn(θn) = −2ln(θn)− n ln |2π| so that the objective
is now to find the minimizer of

Qn(θn) = ln det |Γ(θ2n)|+ u(θ1n)′Γ−1(θ2n)u(θ1n). (3.2)

Let Γn = Γ(θ2n) to ease notation, and following Saikkonen (1995) add and subtract
θ10y−1 from un = u(θ1n) to obtain

Qn(θn) = Q1n(θn) +Q2n(θ2n),

where

Q1n(θn) = (θ1n − θ10)2y′−1Γ−1
n y−1 − 2(θ1n − θ10)y′−1Γ−1

n u0, (3.3)

Q2n(θ2n) = ln det |Γn|+ u′0Γ−1
n u0, (3.4)

where by making explicit the distance (θ1n−θ10), consistency results can be clearly presented
and additional advantages are presented in the form of two remarks for future reference.

Remark 3.B. The loss function Q1n(θn) depends on both long and short-run parameters.
The loss function Q2n(θ2n) as defined in (3.4) depends only on short-run parameters.

Remark 3.C. Q1n(θ0) = 0. Q2n(θ2n) is equivalent to the estimation problem of a stationary
MA(1) process.

3.1 Preliminaries

To present the main result on consistency of this paper, I need to introduce a number of
preliminary results and notation. The Wiener Processes W(r), as characterised in White
(2001), and the Ornstein-Uhlenbeck Process defined by Phillips (1987b).

Definition 3.D (Wiener Process). Within (Ωn,Fn, Pn,θn). Then W : [0,∞) × Ω → R is a
Wiener Process if for r ∈ [0,∞),W(r, ·) is measurable-Fn, and in addition:

i. The process starts at zero: Pn,θn [W(0, ·) = 0] = 1.

ii. The increments are independent: If 0 ≤ r0 ≤ r1 ≤ · · · ≤ rk < ∞, then W(ri, ·) −
W(ri−1, ·) is independent of W(rj, ·) − W(rj−1, ·), j = 1, . . . , k, j 6= i for all i =

1, . . . k.
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iii. The increments are normally distributed: For 0 ≤ a ≤ b <∞ the incrementW(b, ·)−
W(a, ·) is distributed as N(0, b− a).

To ease notation write: W =W(r) and
∫∞

0
W =

∫∞
0
W(r)dr.

Definition 3.E (Ornstein-Uhlenbeck Process). For r and s real numbers, the functional Jc(r)
of the form

Jc(r) =

∫ r

0

exp[(r − s)c]dW(s)

= W(r) + c

∫ r

0

exp[(r − s)c]W(s)ds,

is the Ornstein-Uhlenbeck Process associated with c. The process satisfies:

i. Being the solution to the stochastic differential equation dJc(r) = cJc(r)dr+ dW(r).

ii. Jc(0) = 0.

iii. Jc(r) is distributed as N
(

0, exp[2rc]−1
2c

)
.

To ease notation write Jc = Jc(r) and
∫ 1

0
Jc =

∫ 1

0
Jc(r)dr.

Remark 3.F. With Jc as given in Definition 3.E, in the particular case of c = 0, Jc collapses
toW .

Taking advantage of Γ−1
0 being itself a covariance matrix (i.e. symmetric and positive

definite), I introduce the following Definition and Lemma.

Definition 3.G (Spectral Density of Γ−1
0 ). Let gts denote the ts element of Γ−1

0 and with spec-
tral function g(ω) with ω ∈ (−π, π] so that each of its elements can be recovered using

gts =

∫ 1

0

ei(t−s)ωg(ω)dω,

g(ω) =
1

2π

∞∑
j=−∞

e−ijωgj.

Lemma 3.H. If {yt}nt=0 and {u0,t}nt=0 are given by assumptions 2.A and 2.B, then

n−1y′−1Γ−1
n u0 ⇒ 2πg(0)

[
σ2
u

∫ 1

0

JcdW +
σ2
u − γ0

2

]
+

∞∑
j=−∞

gjΦj, (3.5)

n−2y′−1Γ−1
n y−1 ⇒ 2πg(0)σ2

u

∫ 1

0

J 2
c , (3.6)
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where Φj = 0 if j = 0; Φj =
∑j−1

k=0 γk if j > 0; and Φj = −
∑|j|

k=1 γk if j < 0.

Proof. I prove first (3.5). Start by writing

n−1y′−1Γ−1
n u0 = n−1

n∑
t=1

n∑
s=1

yt−1u0,sgts

= n−1

n∑
t=1

n∑
s=1

yt−1u0,s

∫ 1

0

ei(t−s)ωg(ω)dω

= n−1

n∑
t=1

n∑
s=1

yt−1u0,s

∞∑
j=−∞

gj

∫ 1

0

ei(t−s−j)ωdω

=
∞∑

j=−∞

gj

[
n−1

n∑
t=1

yt−1u0,t−j

]
, (3.7)

where the second and third lines are obtained by direct substitution, and the fourth line fol-
lows from orthogonality of the integral for s = t− j. Now I take cases, if j = 0 in (3.7)

n−1

n∑
t=1

yt−1u0,t−j ⇒ σ2
u

∫ 1

0

JcdW +
σ2
u − γ0

2
, (3.8)

from Lemma 1 in Phillips (1987b). If j > 0 I need to use the backward solution of the
stochastic difference equation (2.1) at t− 1,

yt−1 = θj10yt−j−1 +

j−1∑
k=0

θk10u0,t−1−k,

which together with the bracket expression in (3.7) yields

n−1

n∑
t=1

yt−1u0,t−j = θj10n
−1

n∑
t=1

yt−j−1u0,t−j + n−1

n∑
t=1

j−1∑
k=0

θk10u0,t−1−ku0,t−j,

the first term has as asymptotic limit (3.8) since limn→∞ θ
k
10 = 1 for all k, and the second

term converges to

n−1

n∑
t=1

j−1∑
k=0

θk10u0,t−1−ku0,t−j −→p

j−1∑
k=0

γk.
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Finally, if j < 0 I need the forward solution of the stochastic difference equation, this is

yt−j = θ−j+1
10 yt−1 +

|j|∑
k=0

θk10u0,t+k,

which makes

n−1

n∑
t=1

yt−1u0,t−j = θ
−(−j+1)
10 n−1

n∑
t=1

yt−j−1u0,t−j − θ−(−j+1)
10 n−1

n∑
t=1

|j|∑
k=0

θk10u0,t+ku0,t−j,

where, again, the first term converges to (3.8) and the the second has limit

−θ−(−j+1)
10 n−1

n∑
t=1

|j|∑
k=0

θk10u0,t+ku0,t−j −→p −
|j|∑
k=1

γk,

adding across values of j completes the proof of (3.5).
To prove (3.6) start by noting that

n−2y′−1Γ−1
0 y−1 = n−2

n∑
t=1

n∑
s=1

yt−1ys−1gts

=
∞∑

j=−∞

gj

[
n−2

n∑
t=1

yt−1yt−j−1

]
,

if I follow the same steps used to obtain (3.7). If j = 0 I use again Lemma 1 from Phillips
(1987b) to obtain

n−2y′−1Γ−1
0 y−1 ⇒ σ2

u

∫ 1

0

J 2
c . (3.9)

When j > 0, using the backward solution note that I can write

n−2

n∑
t=1

yt−1yt−j−1 = θ−j10 n
−2

n∑
t=1

y2
t−1 − n−2θ−j10

n∑
t=1

yt−1

j−1∑
k=0

θk10u0,t−1−k,

the first term converges to (3.9) while the second is op(1) in view of (3.5). The same argument
shows that if j < 0 the limit I get is (3.9), adding across j completes the proof.

�

Now I define a few more objects, following Saikkonen (1995) let η > 0 (not necessarily
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the same across results), ν > 0, δ1, δ2 > 0. Define the closed balls

B1,ν =

{
θ1n ∈ Θ1 : |θ1n − θ10| ≤

δ1

nν

}
, (3.10)

B1,ν =

{
θ1n ∈ Θ1 : |θ1n − θ10| ≥

δ1

nν

}
, (3.11)

B2 = {θ2n ∈ Θ2 : ‖θ2n − θ20‖ ≥ δ2} . (3.12)

Also let

M1 = |y′−1Γ−1
n u0| = Op(n),

M2 = |y′−1Γ−1
n y−1| = Op(n

2),

as implied by Lemma 3.H, and

M i = sup
θ2n

Mi; M i = inf
θ2n

Mi.

3.2 Consistency of θ̂n

Proving consistency of the ML estimator θ̂1n in the framework outlined above is a task con-
siderably different from that in the textbook case where {yt}nt=0 is stationary. The main
reason, as explained by Chambers and McCrorie (2007) who found themselves in the same
conundrum, is that Qn(θn) does not satisfy weak uniform convergence. Specifically, Qn(·)
converges at different rates in different directions of the parameter space. To overcome this
difficulty they rely on the results developed by Saikkonen (1995), and I will use them here
extensively.

Proposition 3.I (Consistency of θ̂n). Let ν ∈ [0, 1). Given assumptions 2.A and 2.B, ML
estimate θ̂n satisfies nν(θ̂1n − θ10) −→p 0 and θ̂2n − θ20 −→p 0.

The proof of Proposition 3.I is based on Saikkonen (1995) and is divided in several Lem-
mas for ease of presentation. Lemma 3.J establishes consistency of the long run parameter
when ν = 0, Lemma 3.K does so for ν ∈ (0, 1), and Lemmas 3.L and 3.M prove the consis-
tency of the short run parameter vector.

Lemma 3.J. If Qn(θn) is given by (3.2) and ν = 0, then

lim
n→∞

Pn,θ0

{
inf

θn∈B1,0×Θ2

Qn(θn)−Qn(θ0) > 0

}
= 1.
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Equivalently,

inf
θn∈B1,0×Θ2

n−1Q1n(θn) + inf
θn∈B1,0×Θ2

n−1Q2n(θ2n)− n−1Q2n(θ20) > η. (3.13)

Proof. I prove (3.13) in two parts. First I claim infθn∈B1,0×Θ2
n−1Q1n(θn) > 0. To see this

note

n−1Q1n(θn) ≥ n−1|θ1n − θ10|2M2 − 2n−1|θ1n − θ10|M1,

or

inf
θn∈B1,0×Θ2

n−1Q1n(θn) ≥ n−1δ2
1M2 − 2n−1δ1M1,

where considering elements of Θ1 on the set defined in (3.11) the first element is diverging to
+∞ despite |θ1n − θ10|2 being bounded, since M2 = Op(n

2). The second element is Op(1)

since Θ1 is bounded and it can be shown that M1 = Op(n) from (3.5); thus n−1Q1n(θn) > 0.
For the second part, let θ̃2n be the (infeasible) ML estimate for the stationary MA(1)

process inQ2n(θ2n). Note that standard theory on ML estimation now applies and θ̃2n−θ20 =

Op(n
−1/2). I claim that infθn∈B1,0×Θ2

n−1Q2n(θ̃2n)−n−1Q2n(θ20) = op(1). To see this, write

inf
θn∈B1,0×Θ2

n−1Q2n(θ̃2n)− n−1Q2n(θ20) ≥ inf
θn∈B1,0×Θ2

n−1 ln det |Γ̃n| − n−1 ln det |Γ0|

+ inf
θn∈B1,0×Θ2

n−1u′0Γ̃−1
n u0 − n−1u′0Γ−1

0 u0.

The first term in the right of the last expression is op(1) as proven in Lemma 1 of Yao and
Brockwell (2006). The same authors show that the second term is op(1) in their Theorem 1.

�

Lemma 3.K. If Qn(θn) is given by (3.2) and ν ∈ (0, 1), then

lim
n→∞

Pn,θ0

{
inf

θn∈B1,ν×Θ2

Qn(θn)−Qn(θ0) > 0

}
= 1.

Equivalently,

inf
θn∈B1,ν×Θ2

Q1n(θn) + inf
θn∈B1,ν×Θ2

Q2n(θ2n)−Q2n(θ20) > η. (3.14)

Proof. Here I prove (3.14), starting with the claim: infθn∈B1,ν×Θ2
Q1n(θn) > 0. To see this

10



write

Q1n(θn) ≥ |θ1n − θ10|2M2 − 2|θ1n − θ10|M1

= |θ1n − θ10|2M2

[
1− 2M1

|θn − θ10|M2

]
.

Considering θn ∈ B1,ν as defined in (3.11), I can now write

inf
θn∈B1,ν×Θ2

Q1n(θn) ≥ δ2
1n
−2νM2

[
1− 2n−1M1

n−(1+ν)δ1M2

]
.

The term within brackets in the last expression converges to 1 since ν ∈ (0, 1), while
δ2

1n
−2νM2 is diverging to +∞ proving the claim.
Regarding the short-term part of (3.14), again, let θ̃2n be the (infeasible) ML estimate for

the stationaryMA(1) process, so that standard results on ML estimation of stationary process
apply (e.g. from Hannan (1973)) and I have θ̃2n−θ20 = Op(n

−1/2) and infθn∈B1,ν×Θ2
Q2n(θ̃2n)−

Q2n(θ20) = Op(1). �

Lemma 3.L. If Q1n(θn) is given by (3.3) and ν ∈ (1/2, 1), then

lim
n→∞

Pn,θ0

{
sup

θn∈B1,ν×B2

∣∣n−1Q1n(θn)
∣∣ ≤ η

}
= 1.

Proof. Write directly

sup
θn∈B1,ν×B2

|n−1Q1n(θn)| ≤ sup
θ1n∈B1,ν×B2

|θn − θ10|2n−1M2 + 2 sup
θ1n∈B1,ν×B2

|θ1n − θ10|n−1M1.

Recall ν ∈ (1/2, 1) and, from Lemma 3.H, M1 = Op(n) and M2 = Op(n
2). Since θn ∈

B1,ν × B2, with these sets defined in (3.10) and (3.12), note that both terms on the right are
op(1). Start with the first term,

sup
θ1n∈B1,ν×B2

|θn − θ10|2n−1M2 ≤ δ2
1n
−(1+2ν)M2 = op(1).

Finally,

sup
θ1n∈B1,ν×B2

|θ1n − θ10|n−1M1 ≤ δ1n
−(1+ν)M1 = op(1).

11



�

Lemma 3.M. If Q2n(θ2n) is given by (3.4), then

lim
n→∞

Pn,θ0

{
inf

θ2n∈B2

n−1Q2n(θn)− n−1Q2n(θ0) > η

}
= 1.

Proof. Write

inf
θ2n∈B2

n−1Q2n(θn)− n−1Q2n(θ0) ≥ inf
θ2n∈B2

n−1 ln det |Γn| − n−1 ln det |Γ0|

+ inf
θ2n∈B2

n−1u′0Γ−1
n u0 − n−1u′0Γ−1

0 u0.

The first term on the right is op(1) from Lemma 1 of Yao and Brockwell (2006). The second
term satisfies standard ML theory arguments for stationary time series. In particular, for
θ2n ∈ B2 defined in (3.12), I have n−1u′0Γ−1

n u0 > n−1u′0Γ−1
0 u0 as proved by the same authors

in their Theorem 1. This proves the Lemma. �

Proof of Proposition 3.I. From Lemmas 3.J and 3.K,

lim
n→∞

Pn,θ0

{
inf

θn∈B1,ν×Θ2

Qn(θn)−Qn(θ0) > 0

}
= 1,

which together with a standard convergence result such as Theorem 21.6 from Davidson
(1994) implies nν(θ̂1n − θ10) −→p 0.

Also, from Lemmas 3.L and 3.M it follows that

lim
n→∞

Pn,θ0

{
inf

θn∈Θ1×B2

Qn(θn)−Qn(θ0) > 0

}
= 1,

and again with the aid of Theorem 21.6 from Davidson (1994) I conclude θ̂2n − θ20 −→p

0. �

3.3 Asymptotic Distribution of θ̂n

After I have proved consistency of θ̂n, in this section I present its asymptotic distribution.
The textbook way to obtain the asymptotic distribution of the ML estimate is through a mean
value expansion and the asymptotics of the Score vector and the sample information matrix.
To follow this road, I would need to prove that the sample information matrix is stochastic
equicontinous as explained by Saikkonen (1995). The Score vector of the ML problem in

12



this paper yields closed forms for θ̂1n− θ10 and θ̂2n− θ20. Thus, instead of proving stochastic
equicontinuity, I apply the expansions proposed by Phillips (1991) and Saikkonen (2001) and
used by Chambers and McCrorie (2007).

The normalised Score vector sn(θn), corresponding to the optimization problem (3.2) is
partitioned accordingly to the previous section into θn = (θ1n, θ

′
2n)′,

s1n(θn) = 2n−1
[
(θ1n − θ10)y′−1Γ−1

n y−1 − y′−1Γ−1
n u0

]
, (3.15)

s2n,j(θn) = n−1/2∂Q1n(θn)

∂θ2n,j

+ n−1/2∂Q2n(θn)

∂θ2n,j

, j = 1, 2, (3.16)

where

∂Q1n(θn)

∂θ2n,j

= (θ1n − θ10)2y′−1

∂Γ−1
n

∂θ2n,j

y−1 − 2(θ1n − θ10)y′−1

∂Γ−1
n

∂θ2n,j

u0,

∂Q2n(θn)

∂θ2n,j

= tr

{
Γ−1
n

∂Γn
∂θ2n,j

}
+ u′0

∂Γ−1
n

∂θ2n,j

u0,

j = 1, 2 and, as usual, solving the system sn(θ̂n) = 0 yields the ML estimate for a given n,
θ̂n. I present the closed form of θ̂1 for future reference, and then its asymptotic distribution. I
write Γ̂n = Γ(θ̂2n) in the rest of the paper.

Remark 3.N. s1n(θn) as given in (3.15) implies a closed form for θ̂1n,

θ̂1n − θ10 =
y′−1Γ̂−1

n u0

y′−1Γ̂−1
n y−1

.

Proposition 3.O (Asymptotic Distribution of θ̂1n). Given s1n(θn) from (3.15), then

n(θ̂1n − θ10)⇒
∫ 1

0
JcdW∫ 1

0
J 2
c

.

An important feature of the result presented in this Proposition is the absence of short-
term parameters, θ20. The following Lemmas and Definitions shed light on why this is so,
and will ease the presentation of the proof of the Proposition.

13



Lemma 3.P. If θ̂2n − θ20 −→p 0 , then

n−2y′−1Γ̂−1
n y−1 − n−2y′−1Γ−1

0 y−1 −→p 0,

n−1y′−1Γ̂−1
n u0 − n−1y′−1Γ−1

0 u0 −→p 0.

Proof. The proof is contained in Chambers and Hernandez (2015) Lemma 4. �

Definition 3.Q (Spectral Density of Γ0). Denote the spectral density of {u0,t}nt=0 by f(ω; θ20),
with ω ∈ (−π, π], the ts element of Γ0, γt−s, can be recovered by

γt−s =

∫ π

−π
ei(t−s)ωf(ω; θ20)dω,

f(ω; θ20) =
1

2π

∞∑
j=−∞

e−ijωγt−j,

consequently, 2πf(0; θ20) = σ2
u.

Definition 3.R (Spectral Density of Ψ). Let Ψ be a n × n matrix with ts element, ψt−s,
satisfying

ψt−s =

∫ π

−π
ei(t−s)ω

[
4π2f(ω; θ20)

]−1
dω,

[
4π2f(ω; θ20)

]−1
=

∞∑
j=−∞

e−ijωψt−j.

Lemma 3.S. If Γ0 is the true covariance matrix of the error process {u0,t}nt=0 and if Ψ is
given by Definition 3.R , then

n−2y′−1Γ−1
0 y−1 − n−2y′−1Ψy−1 −→p 0,

n−1y′−1Γ−1
0 u0 − n−1y′−1Ψu0 −→p 0.

Proof. See Lemma 3 of Chambers and Hernandez (2015).
�
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Lemma 3.T. If θ̂2n − θ20 −→p 0 and if {yt}nt=0 and {u0,t}nt=0 are given by assumptions 2.A
and 2.B, then

n−2y′−1Γ̂−1
n y−1 ⇒

∫ 1

0

J 2
c ,

n−1y′−1Γ̂−1
n u0 ⇒

∫ 1

0

JcdW .

The following proof is based on the proof of Lemma 2 of Chambers and Hernandez
(2015) and is pivotal for the main result.

Proof. To prove the first item, note

n−2y′−1Γ̂−1
n y−1 = n−2y′−1(Γ̂−1

n − Γ−1
0 )y−1 + n−2y′−1(Γ−1

0 −Ψ)y−1 + n−2y′−1Ψy−1

= n−2y′−1Ψy−1 + op(1),

where the first line is direct and the second follows from Lemmas 3.P and 3.S. Now, I claim
that n−2y′−1Ψy−1 ⇒

∫ 1

0
J 2
c . To see this, note that the same steps of the proof of Lemma 3.H

yield

n−2y′−1Ψy−1 ⇒ 2π
∞∑

j=−∞

ψj

[
σ2
u

∫ 1

0

J 2
c

]
,

but σ2
u = 2πf(0; θ20) from Definition 3.Q and

∑∞
j=−∞ ψj = [4π2f(0; θ20)]

−1 from Definition
3.R; thus the claim follows.

Addressing the second item, I use again Lemmas 3.P and 3.S so that

n−1y′−1Γ̂−1
n u0 = n−1y′−1Ψu0 + op(1),

and claim n−1y′−1Ψu0 ⇒
∫ 1

0
JcdW . I prove this claim in two steps. First, note how the logic

of proof of Lemma 3.H implies

n−1y′−1Ψu0 ⇒ 2π
∞∑

j=−∞

ψj

[
σ2
u

∫ 1

0

JcdW +
σ2
u − γ0

2
+ Φj

]
.

The second step requires me to prove that 2π
∑∞

j=−∞ ψj

[
σ2
u−γ0

2
+ Φj

]
= 0. Recall the
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definition of Φj from Lemma 3.H and write

2π
∞∑

j=−∞

ψj

[
σ2
u − γ0

2
+ Φj

]
= π(σ2

u − γ0)
∞∑

j=−∞

ψj + 2πγ0

∞∑
j=1

ψj − 2π
∞∑
j=1

ψjγj,

(3.17)

where the latter expression follows from symmetry of Γ0. From the symmetry of the Fourier
coefficients of Ψ note that

∞∑
j=1

ψj =
1

2

[
∞∑

j=−∞

ψj − ψ0

]
=

1

2

[
4π2f(0; θ20)

]−1 − 1

2
ψ0,

which together with Definition 3.Q allows me to write the right side of (3.17) as

π(σ2
u − γ0)

[
4π2f(0; θ20)

]−1
+ πγ0

[[
4π2f(0; θ20)

]−1 − ψ0

]
− 2π

∞∑
j=1

ψjγj,

or

1

2
− πψ0γ0 − 2π

∞∑
j=1

ψjγj = 0.

To see the last equality, from Zygmund (1959) I know that for the Fourier series, 2π
∑∞

j=−∞ ψjγje
ijx,

there exist a function

h(x) =
1

2π

∫ π

−π
[2πf(x− s; θ20)]−1 2πf(s; θ20)ds,

implying h(0) = 1 and thus 2π
∑∞

j=−∞ ψjγj = 1, or

2π
∞∑
j=1

ψjγj =
1

2
(1− 2πψ0γ0),

where the equality is explained by the symmetry of the Fourier coefficients. �
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Proof of Proposition 3.O. Following Chambers and McCrorie (2007), I start by expanding
s1n(θ̂n)

sn1(θ̂n) = n−1(θ̂1n − θ10)y′−1(Γ̂−1
n − Γ−1

0 )y−1 − n−1y′−1(Γ̂−1
n − Γ−1

0 )u0

+ n−1(θ̂1n − θ10)y′−1(Γ−1
0 −Ψ)y−1 − n−1y′−1(Γ−1

0 −Ψ)u0

+ n−1(θ̂1n − θ10)y′−1Ψy−1 − n−1y′−1Ψu0.

The first line of the right side is op(1) from Lemma 3.P and n(θ̂1n−θ10) = Op(1). The second
line is also op(1) by direct application of Lemma 3.S. This allows me to write s1n(θ̂n) = 0 as

n(θ̂1n − θ10) =
n−1y′−1Ψu0

n−2y′−1Ψy−1

+ op(1),

finally, Lemma 3.T together with the Continuous Mapping Theorem yield the result.
�

Corollary 3.U. From sn1(θ̂n), I can also obtain the closed form,

θ̂1n − 1 =
y′−1Ψ∆y

y′−1Ψy−1

+ op(1),

with corresponding asymptotic behaviour,

n(θ̂1n − 1)⇒
∫ 1

0
JcdJc∫ 1

0
J 2
c

.

Proof. The closed form for θ̂1n − 1 is obtained by subtracting one on both sides of the
expression in Remark 3.N and using the definition of u0 with Lemmas 3.P and 3.S. The
asymptotic behaviour is analogous to that in Proposition 3.O. �

Now I present the following Lemma that allows me to ignore Q1n(θn) in derivations of
the asymptotic distribution of θ̂2n.

Lemma 3.V. Q1n(θn) as defined by (3.3) is not relevant to derive the asymptotic distribution
of θ̂2n. Equivalently,

n−1/2Q1n(θn) −→p 0.
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Proof. From (3.3) note that

n−1/2Q1n(θ) = n2ν(θ1n − θ10)2n−(2ν+1/2)y′−1Γ−1
n y−1

− 2nν(θ1n − θ10)n−(ν+1/2)y′−1Γ−1
n u0.

The first term on the right is op(1), y′−1Γ−1
n y−1 is only bounded in probability for ν = 3/4

while n3/2(θ1n − θ10)2 = op(1). The second term is also op(1), y′−1Γ−1
n u0 is bounded in

probability only if ν = 1/2, but n1/2(θ1n − θ10) = op(1) from Proposition 3.I. �

Proposition 3.W (Asymptotic Distribution of θ̂2n). Given Lemma 3.V, and (3.16) the asymp-
totic distribution of θ̂2n is that of a ML estimate for a stationary MA(1) process. This is,

n1/2
(
θ̂2n − θ20

)
−→d N

(
0, V −1(θ20)

)
,

where the kl element of V (θ20) is given by

Vkl(θ20) =
1

2π

∫ π

−π
f−1(ω; θ20)

∂f(ω; θ20)

∂θ20,k

f−1(ω; θ20)
∂f(ω; θ20)

∂θ20,l

,

and f(ω; θ20) is the spectral density of {u0,t}nt=0.

Proof. See Hannan (1973). �

4 Unit Root Test

In this section I introduce the likelihood ratio unit root test and its asymptotic properties.
With the ML framework presented in the previous section and the asymptotic behaviour of
θ̂n at hand, I can now present the LR test statistic and set up the hypothesis testing problem
in the next Definition and Proposition.

Definition 4.A (LR Test Statistic). For a given sample size, n, and the log-likelihood function
defined by (3.1), the Likelihood Ratio Statistic for testing the Null Hypothesis θ10 = 1, against
the Alternative Hypothesis θ10 < 1, is given by

LRc = 2
[
ln(θ̂n)− ln(θ̃n)

]
,

where θ̂nand θ̃n are the unrestricted and restricted ML estimates, respectively.
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Proposition 4.B (Asymptotic Distribution of LRc). If nν(θ̂1n − θ10) −→p 0 for ν ∈ [0, 1),
and θ̂2n − θ20 −→p 0, and the Null Hypothesis to test is that of Definition 4.A, then

LRc ⇒

[∫ 1

0
JcdJc

]2

∫ 1

0
J 2
c

.

Proof of Proposition 4.B . The proof is based on one fact, that LRc can be written as a sec-
ond order mean value expansion of the log-likelihood function ln(θ̃) about θ̂n (see Davidson
(2000) p.290)

LRc = −(θ̂n − θ̃n)′Hn(θ̂n − θ̃n),

where Hn is the Hessian of ln(θn) evaluated at θn, a convex combination of θ̂n and θ̃n. A con-
venient feature of Hn is that it can be divided in blocks according to the rate of convergence
of its elements. In particular

Hn = −

y′−1Γ
−1

n y−1 A
′
1

A1 H


where A1 is a 2× 1 vector with elements

A1,[i,1] =
∂2ln(θn)

∂θ1n∂θ2n,i

= y′−1

∂Γ−1
n

∂θ2n,i

u0, i = 1, 2. (4.1)

and H is the 2× 2 Hessian of the short-run parameters.

H [i,j] = −1

2

∂

∂θ2n,i

tr

{
Γ−1
n

∂Γn
∂θ2n,j

}
− u′n

∂2Γ−1
n

∂θ2n,i∂θ2n,j

u0 i, j = 1, 2. (4.2)

Thus, I get

LRc =
[
n(θ̂1n − 1)

]2 1

n2
y′−1Γ

−1

n y−1

− 2n(θ̂1n − 1)
(
n1/2(θ̂2n − θ20)− n1/2(θ̃2n − θ20)

)′ 1

n3/2
A1

+ n1/2
(

(θ̂2n − θ20)− (θ̃2n − θ20)
)′ 1

n
Hn1/2

(
(θ̂2n − θ20)− (θ̃2n − θ20)

)
,

where the second and third terms on the right are op(1) since the elements of A1 are Op(n),
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and H has only Op(n
1/2) elements. After some algebra and using n−2y′−1(Γ

−1

n − Γ−1
0 )y−1 =

op(1), I have the expression

LRc =
1

n
∆y′Γ

−1

n y−1n(θ̂1n − 1) + op(1),

thus, I only need to invoke Lemma 3.T, Proposition 3.O, and the Continuous Mapping The-
orem to obtain the result. �

Remark 4.C. Stock (1994) lists the characteristics that good unit root tests have: (i) the
test is independent of the parameters for the constant, the trend or serial correlation; (ii) the
test has good power in large samples; and (iii) the test has both good power and small size
distortions when computed over different models and samples.3

Remark 4.D. The asymptotic distribution of LRc presented in Proposition 4.B coincides with
that found in Johansen (1988), Larsson (1998) and Rothenberg and Stock (1997). Moreover
it is independent of serial correlation parameters. Thus, it satisfies the first of Stock’s require-
ments for a good test of Remark 4.C (i).

Corollary 4.E (Asymptotic Distribution of LRc under the Null Hypothesis). If c = 0, then I
get the squared of the Dickey-Fuller t-statistic’s asymptotic distribution

LR0 ⇒

[∫ 1

0
WdW

]2

∫ 1

0
W2

.

Proof. The proof is straight forward from Remark 3.F. �

5 Empirical Analysis

Once I have the LRc test, the next step entails the evaluation of its empirical properties.
The analytical tool to do so is the Power Envelope, and its derivation is presented in this
section. It includes a subsection with preliminary definitions that should help the exposition
of the power envelope, both in finite samples and its definition for the large sample case. The
empirical properties of the LRc are then presented along with the algorithm to obtain them.
The section concludes with a comparison of the power properties of LRc with the Augmented
Dickey Fuller test.

3Stock (1994) pp 2764. The Null and alternative hypothesis he considers are standard.
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5.1 Preliminaries

A few preliminary definitions and notation are necessary here, in particular, recall I make a
Type I Error if I incorrectly reject the Null Hypothesis. Additionally, I make a Type II Error
if I fail to reject the Null Hypothesis when the true parameter is not satisfying it. Thus, I can
introduce a straightforward definition of the power the test and Power Function.

Definition 5.A (Power Function). The power of the test is defined as the probability of re-
jecting the Null Hypothesis, and φ(θn) is the Power Function satisfying
(i) φ(θn) = Pr(Type I error), or
(ii) φ(θn) = 1− Pr(Type II error).

Remark 5.B. Given definitions 4.A and 5.A, a unit root test that has low power will under-
reject the Null Hypothesis of a unit root.

5.2 Power Envelope: Finite Samples

I will derive the Power Envelope following the exposition of Jansson and Nielsen (2012).
Define the rejection region for the test statistic,R, and the size of the test, α. Recall the LRc

statistic is given by Definition (4.A) and define the Power Envelope for each R, ᾱ, n, and c
as

Πᾱ
n(θ1n(c)) = max

Pr(LRc∈R):φ(θ1n(0))=ᾱ
φ (θ1n(c)) .

An application of the Neyman-Pearson Lemma yields,

Πᾱ
n(θ1n(c)) = Pθ1n(c) (LRc > kᾱn) , (5.1)

where Pθ1n(c)(·) is the probability measure underlying θ1n(c), and kᾱn satisfies

Pθ1n(0) (LRc > kᾱn) = ᾱ. (5.2)

This is, kᾱn is the critical value obtained from the frequency distribution of LR0 as given by
Proposition 4.B at the (1− ᾱ) quantile and sample size n.

Remark 5.C. (i) kᾱn does not depend on c. (ii) By construction, the Power Envelope as
described by (5.1) corresponds to the family of most powerful unit root tests.4 (iii) This
family of tests has an Asymptotic Power Envelope.

4Stock (1994) p. 2771.
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5.3 Asymptotic Power Envelope

An additional tool for the evaluation of the test is the Asymptotic Power Envelope, which
provides a benchmark for the asymptotic behaviour of the family of tests and is given by

lim
n→∞

Πᾱ
n(θ1n(c)) = max

Pr(LRc∈R):limn→∞ φ(θ1n(0))=ᾱ
lim
n→∞

φ (θ1n(c)) .

Let limn→∞ k
ᾱ
n = kᾱ, taking limits to (5.1) and using the Neyman-Pearson Lemma

lim
n→∞

Πᾱ
n(θ1n(c)) = lim

n→∞
Pθ1n(c) [LRc > kᾱ] = P1


[∫ 1

0
JcdJc

]2

∫ 1

0
J 2
c

> kᾱ

 , (5.3)

where, kᾱ satisfies P1

[
[
∫ 1
0 WdW]

2∫ 1
0 W2

> kᾱ
]

= ᾱ.

Remark 5.D. The Asymptotic Power Envelope as defined by equation (5.3) does not depend
on the short run parameters θ2n.

5.4 Empirical Properties

I conducted Monte Carlo experiments to obtain the empirical properties of the test statistic in
Definition 4.A. Recall the asymptotic expression for LRc in Proposition 4.B corresponds to
that found in previous work, in particular in Johansen (1988). This means there are critical
values that can be used as a benchmark, and they are a useful guide. Regarding the discrete
approximations to the Wiener processes and the Ornstein -Uhlenbeck processes, I have fol-
lowed the methods outlined in Johansen (1995) chapter 15 and Saikkonen and Lutkepohl
(1999) p. 61, respectively. Finally, selection of the sample size, n, and true values for the
short run parameters related to the error process correspond to that of the recent literature
(c.f. Jansson and Nielsen (2012)).

Asymptotic Size

To obtain the asymptotic distribution ofLRc under the Null Hypothesis, I simulate the asymp-
totic expression in Proposition 4.B through discrete approximations to Wiener Processes.
Results are contained in Table 1 for 106 replications and the distribution is shown in Figure
1.
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Figure 1: Asymptotic Distribution of LR0.

Sample/(1− ᾱ) 85% 90% 95% 97.5% 99% 99.5%
n = 104 2.3345 2.9857 4.1332 5.3210 6.9288 8.1821

Note: Wiener Processes were simulated in Matlab R© with variance 1/n in 106

Monte Carlo replications.

Table 1: Critical Values from Simulations of Wiener Process

Sample/(1− ᾱ) 50% 75% 80% 85% 90% 95% 97.5% 99%
n = 400 0.60 1.56 1.89 2.32 2.98 4.14 5.30 7.02

Table 2: Critical Values from Johansen’s Test out of 5,000 Monte Carlo replications.

Given that the asymptotic distribution of LRc coincides with that of Johansen (1988) rank
test as mentioned, I can use it as a benchmark to check its validity. In Table 2 I reproduce
the critical values given in Johansen (1995) Table 15.1. The outcome of the comparison is
contained in the following Remark for future reference.

Remark 5.E. The similarity between the values for (1 − ᾱ) = 95% in Table 1 and Table 2
guarantees the experiments are designed correctly.
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Asymptotic Power Envelope

To simulate the Asymptotic Power Envelope (5.3), I could have used Johansen’s, but the
critical values presented in Table 1 enjoy a computational advantage as they were obtained by
a considerably larger number of repetitions, 106 against 5000. I use the following algorithm
to get the simulations.

1. Set initial parameters: n = 104 for the sample size as an approximation to infinite
sample size and choose kᾱ for ᾱ = 5%, this is the 4th column of Table 1 and the true
σ2

0 = 1. Moreover maxit is the total number of repetitions and maxj as the number of
values c can take.

2. Define a count M of dimensions maxit,maxj.

3. Define a sensible grid for the local-to-unity parameter c. I use cj = −j with j ∈
{0, 1, 2, . . . , 30} which is the same as in Jansson and Nielsen (2012).

4. Set it = 1 for the first repetition.

5. Obtain an i.i.d sequence of standard normal errors {ε}nt=0 with the random number
generator.

6. Set ε1 = 0, and construct a discretized Wiener Process defined as: Wt =
∑t

s=1 εs.

7. For j = 0, construct a discretized Ornstein-Uhlenbeck Process: Jcj ,t = (1+cj/n)Jc,t−1+

εt where Jcj ,0 = 0 for all j.5

8. Compute dJcj ,t = Jcj ,t − Jcj ,t−1.

9. Compute and save the asymptotic test statistic from Proposition 4.B

LRcj =
[
n−2

∑n
s=1 J

2
cj ,s

]−1 [
n−1

∑n
s=1 Jcj ,sdJcj ,s

]2.

10. Change the value of j to j + 1 and go back to Step 7. Repeat the loop until j = maxj.

11. Once the loop on j is finished, change it to it + 1 and go back to Step 4. Repeat the
loop until it = maxit. I repeated the experiment 106 times; thus maxit = 106.

5The discrete approximations to the Ornstein-Uhlenbeck Processes are obtained following Saikkonen and
Lutkepohl (1999) pp 61.
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Finally, compute the Empirical Asymptotic Power

Π̂ᾱ
∞(θ1n(cj)) =

1

106

106∑
s=1

I
{
LRcj,s > kᾱn

}
,

for each j where I {·} is the indicator function. The outcome of the simulations is presented
in Figure 2.

Figure 2: Asymptotic Power Envelope for LRc.

Power Function

In this subsection I outline the algorithm to construct the Power Function, φ(θ1n(c)), and
present the results from the Monte Carlo experiments. These include results for (small) sam-
ple sizes n ∈ {50, 100, 250, 500} and a set of Moving Average (MA) parameters α0 ∈
{±0.8,±0.5, 0} with a grid for c as previously defined.

Algorithm

To get the Power Function for each value α0 and each n, I use the following algorithm.

1. Set initial parameters: n ∈ {50, 100, 250, 500} for the sample size, and the “true”
a ∈ {±0.8,±0.5, 0}. Set the total number of repetitions maxit, and the number of
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values c can take, maxj = 30.

2. Define the grid for the local-to-unity parameter c. I use cj = −j with j ∈ {0, 2, 4, . . . , 28, 30}.

3. Define a vector of “true” values of r with element j: rj = 1− cj/n.

4. Set it = 1 for the first repetition.

5. Obtain an i.i.d. sequence of standard normal errors {εt}nt=0.

6. Create the “true” DGP for cj given by {yt}nt=0, where yt = rjyt−1 + εt + aεt−1 and
ε0 = y0.

7. Estimate the unrestricted and the restricted (c = 0) models with the following sub-
algorithm:

(a) For j = 1, write the model as: εt = yt − rjyt−1 − aεt−1, where rj and a are the
parameters to be estimated.

(b) Since in practice I only observe the sequence {yt}nt=0 I need to get a sequence of
estimated errors, {ε̂t}nt=0, to estimate rj and a. Note that, for given y0 = ε̂0 = 0

the process can be written in iterative form:

ε̂1 = y1

ε̂2 = y2 − rjy1 − aε̂1
...

ε̂n = yn − rjyn−1 − aε̂n−1

to use Maximum Likelihood on

−n
2

ln |s2| − 1

2s2

n∑
t=1

ε̂2t .

(c) Obtain θ̂ = (r̂j, â, ŝ
2)
′ and θ̃ = (1, ã, s̃2)

′.

8. Compute and save LRc from Definition 4.A. Compute and save the Modified Akaike

Criteria Augmented Dickey Fuller, ADF ∗, test statistic as detailed in Ng and Perron
(2001).
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9. Change j = 1 to j = j + 1 and go back to step 6. When the case j = maxj is finish,
change it = 1 to it = it+ 1 and go back to step 5. Repeat until it = maxit.

This allows me to obtain sequences
{
LRcj,s

}104

s=1
and

{
ADF ∗cj,s

}104

s=1
. Finally, I compute

the (empirical) power for each cj as:

Π̂ᾱ
n(cj) =

1

104

104∑
s=1

I
{
LRcj,s > kᾱn

}
, (5.4)

Π̂ᾱ
ADF ∗,n(cj) =

1

104

104∑
s=1

I
{
ADF ∗cj,s > kᾱADF ∗,n

}
, (5.5)

where I{·} in (5.4) is the indicator function that is equal to 1 if LRcj,s > kᾱn is true, and 0
otherwise. Likewise, I{·} is 1 if ADF ∗cj,s > kᾱADF ∗,n and 0 otherwise in (5.5), kᾱADF ∗,n is the
critical value for the ADF at k∗ lags obtained with the Modified Akaike Criteria.

Monte Carlo Results

Figure 3 shows the Asymptotic Power Envelope from Figure 2 and the Power Function for
each value of α0 and n. Several general conclusions emerge from the inspection of the Monte
Carlo experiments. First, for all values of n, the simulations show negligible size-bias. This
is a desirable property in view of Remark 4.C. Second, for a large sample, n = 500, all power
functions are considerably close to the asymptotic power envelope. Third, in line with the
derived asymptotic behaviour in this paper, as n increases, the Power Functions for all values
of α0 converge towards the Asymptotic Power Envelope (c.f. lower-right plot in Figure 3).

Particular conclusions, can also be drawn from the empirical exercise. First, for each
value of n, if α0 > 0, the test shows power levels close to the asymptotic power envelope.
When n ≥ 100, the power is close to optimal for α0 = 0 as well. I conclude that when α0 ≥ 0

I can test for a unit root with LRc and expect to have close to optimal power properties and
negligible size-bias.

For the case of α0 < 0 I need to be more careful. There is a caveat when analysing
an ARMA(1, 1) model. It is important to keep track of the values of the roots for the lag
polynomials, this is, if θ0 = −α0, then the stochastic process {yt}nt=0 degenerates into a
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white noise process. To see why, write the model as

(1− θ10L)yt = (1 + α0L)εt.

θ10 = 1 +
c

n
, c < 0.

With θ10 = −α0, note how the previous expression reduces to yt = εt. In view of the
definition of θ10, and given the choice of the values for the parameter c, I should expect that
the roots nearly cancel depending on the value of n.

In particular, I should observe the following “slumped” power functions. First, the com-
bination n = 50, c ∈ {−9,−10,−11}, and α0 = −0.8. Second, the combination n = 50,
c ∈ {−24,−26,−27}, and α0 = −0.5. Third, the case of n = 100, c ∈ {−19,−20,−21},
and α0 = −0.8. Fourth, if n = 250, c ∈ {−29,−30}, and α0 = −0.8. Finally, no loss of
power is expected for n = 500.

Figure 3 corroborate the expectations on the cancelling roots where is clear that as n
increases the “slumps” correct gradually. The experiments with n = 50 have three “slumps”
in α0 ∈ {−0.8,−0.5, 0}, whereas that for n = 100 only has two in α0 ∈ {−0.8,−0.5} and
for n = 250 only one in α0 = −0.8. Finally, at n = 500 there is no loss of power derived by
cancelling roots.

I conclude from the analysis that for a large sample, n = 500, all desirable properties
proposed by Stock (1994) given in Remark 4.C are satisfied. For smaller sample sizes the
negative values of theMA parameter may fail to have a good power while retaining negligible
size-bias.

Comparison with the Benchmark

Having established the empirical properties of the power of the LRc, I compare its perfor-
mance to that of the ADF ∗ test. This test is a good benchmark since it is still popular among
practitioners in cases with no deterministic terms. Moreover, the work from Ng and Perron
(2001) has reduced considerably the size distortion caused by the serial correlation.

Table 3 displays the rejection rates for both the LRc and the ADF ∗ tests for all values
of α0 and a set of values of the local-to-unity parameter, including the Null Hypothesis. In
particular, the table contains ρ0 ∈ {1, 0.99, 0.98, 0.96, 0.94}. The size bias for LRc is smaller
in the majority of cases than that of the ADF ∗, as shown in the column corresponding to
ρ0 = 1. The rest of the Table shows that, except for the case of α0 = −0.8, LRc has higher
power, even for small sample sizes.
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For several combinations of parameters the rejection rate of the LRc test is more than two
times that of the ADF ∗, this is true for example when ρ0 = 0.96 and n ≤ 100. Another
feature displayed in the Table corresponds to the stark differences in rejection rates between
the tests when ρ0 = 0.94 and n = 250. The latter is significant as the true local-to-unity
parameter is well off from the Null Hypothesis value and the ADF ∗ test is still failing to
reject in more than 25 per cent of the cases. For a large sample size, in this case n = 500, the
differences in power between the tests for α0 = −0.8 decrease considerably.

Figure 4 shows the Power Function of the LRc and ADF ∗ with k∗ lags determined by
the Modified Akaike Criterion. Each sub-plot corresponds to a value of α0 and each Figure
to a sample size. There are features that can be observed across the figure. First, for all
combinations of n and α0 ≥ 0, LRc has better power properties than ADF ∗. Second, as c
moves away from zero, the differences in power between the tests grow whenever α0 > 0.

Particular conclusions are, first, gains in power are largest for small sample sizes n ∈
{50, 100} and α0 ≥ 0, as shown in the first and second rows of Figure 4. Second, there is
no misspecification to worry about when the true process resembles an ARMA(1, 1), even
in small samples. This conclusion does not hold, however, for the case of α0 = −0.8. When
the true value of θ1n(c) approximates −0.8 the test has lower power than the ADF ∗. Finally,
if n = 500, the LRc test will perform better for each value of α0. Note that even though the
ADF ∗ test converges to the Asymptotic Power Envelope as n increases, the LRc has higher
power in the majority of the cases.

6 Empirical Application

For the empirical application I borrow that from Ng and Perron (2001), and test the perfor-
mance of LRc against ADF ∗ on inflation from the GDP Deflator for the G7 countries -U.S.,
Canada(CAN), Japan (JPN), Great Britain (GBR), Germany (GER), Italy (ITA) and France
(FRA). The term structure literature provides a good motivation for testing inflation for a
unit root when parameters are estimated with a VAR model. In particular, Ang and Piazzesi
(2003) and Kim (2009) use inflation as a factor in their models for the term structure of the
interest rate.

I obtained the data from the FRED database. The largest data span starts in the first quarter
of 1955 through the fourth quarter of 2014 for the U.S. and GBR, while the shortest, that of
Japan, starts in the second quarter of 1994. As Ng and Perron, I compute the inflation rates as
400 times the log-differences of successive quarters. In order to have mean-zero processes, I
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ρ0 = 1 ρ0 = 0.99 ρ0 = 0.98 ρ0 = 0.96 ρ0 = 0.94
n α0 LRc ADF ∗ LRc ADF ∗ LRc ADF ∗ LRc ADF ∗ LRc ADF ∗

50 -0.8 0.065 0.070 0.061 0.156
-0.5 0.050 0.026 0.073 0.064

0 0.050 0.021 0.086 0.046
0.5 0.051 0.015 0.087 0.033
0.8 0.055 0.012 0.095 0.025

100 -0.8 0.056 0.050 0.071 0.108 0.109 0.201 0.147 0.309
-0.5 0.050 0.027 0.085 0.062 0.168 0.120 0.283 0.199

0 0.051 0.024 0.090 0.056 0.187 0.112 0.325 0.196
0.5 0.051 0.022 0.094 0.049 0.197 0.097 0.344 0.160
0.8 0.051 0.020 0.096 0.045 0.198 0.082 0.348 0.129

250 -0.8 0.055 0.053 0.090 0.122 0.169 0.224 0.480 0.630 0.625 0.817
-0.5 0.055 0.038 0.097 0.090 0.192 0.174 0.631 0.523 0.846 0.706

0 0.052 0.035 0.101 0.085 0.199 0.161 0.678 0.512 0.896 0.705
0.5 0.052 0.034 0.101 0.084 0.206 0.157 0.694 0.481 0.913 0.666
0.8 0.052 0.034 0.101 0.083 0.207 0.156 0.697 0.457 0.920 0.633

500 -0.8 0.055 0.056 0.185 0.247 0.588 0.675 0.932 0.972 0.974 0.998
-0.5 0.057 0.044 0.194 0.200 0.660 0.609 0.987 0.941 1.000 0.990

0 0.058 0.043 0.199 0.192 0.682 0.600 0.993 0.934 1.000 0.987
0.5 0.058 0.042 0.199 0.185 0.690 0.581 0.996 0.924 1.000 0.984
0.8 0.058 0.042 0.200 0.183 0.693 0.568 0.996 0.914 1.000 0.983

Table 3: Rejection rates for a set of values for ρ0. The rejection rates for the parameter
combinations in blank were not computed as these values of ρ0 were not feasible given the
set of values for n and c.

subtract the mean of each inflation series.
Following Ng and Perron and Kim (2009), I estimate an ARMA(1, 1) model for each

country and obtain values of the estimate of the AR ranging from −0.6767 (JAP) to 0.9786

(FRA). The estimates for theMA parameter are negative except for JPN and ITA. The results
are summarized in Table 4. Several interesting features emerge from the application. First,
the range of values for α̂n covers that of the simulation. Second, the cancelling root issue
discussed above is present for the cases of JPN and ITA. Third, α̃n is negative in all cases
and close to -1 for GER, an issue that has been widely discussed in the literature as in Ng and
Perron (2001).
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U.S. CAN JPN GBR GER ITA FRA
Start 1955Q1 1961Q2 1994Q2 1955Q2 1970Q2 1991Q2 1960Q2
(Obs) (239) (215) (83) (239) (179) (95) (219)

AR(θ̂1n) 0.9622 0.9213 -0.6767 0.9584 0.9702 -0.8749 0.9786
(S.E.) (0.0188) (0.0427) (0.2631) (0.0235) (0.0206) (0.0674) (0.0210)

MA(α̂n) -0.4292 -0.5474 0.6495 -0.6908 -0.8217 0.7331 -0.7078
(S.E.) (0.0428) (0.1110) (0.2664) (0.0377) (0.0507) (0.0744) (0.0483)

MA(α̃n) -0.4540 -0.6541 -0.7848 -0.7310 -0.8439 -0.8115 -0.7269
(S.E.) (0.0543) (0.0032) (0.0653) (0.0492) (0.0754) (0.0516) (0.0443)

Note: De-mean Quarterly Inflation: 400 times the log-differences of GDP Deflator
about the mean. All series end in 2014Q4.

Table 4: ML estimates for the De-mean GDP Deflator Inflation in G7 countries.
θ̂n and θ̃n are the unrestricted and restricted parameter vector estimates, respectively.

U.S. CAN JPN GBR GER ITA FRA
kMAIC 4 4 5 3 4 4 5

Implicit c 8.9890 16.8322 137.4927 9.8991 5.3106 176.2438 4.6607
LRc 4.0937 6.6095 10.7454 4.2118 2.7690 31.8083 1.9978

(p-value) (0.0550) (0.0150) (0.0050) (0.0350) (0.1450) (0.0000) (0.1850)
ADF ∗ -2.2467 -2.3678 -1.7026 -2.6946 -2.8920 -1.6835 -1.6428

(p-value) (0.0242) (0.0178) (0.0836) (0.0075) (0.0044) (0.0871) (0.0944)

Table 5: De-mean GDP Deflator Inflation in G7 countries unit root tests. ADF ∗ is the
Augmented Dickey-Fuller test with lag structure chosen from MAIC.

Table 5 contains the outcome of the unit root tests. In particular, the first row displays
kMAIC , the number of autoregressive parameters in addition to the unit root parameter and
the variance estimate, that the MAIC suggests (i.e. the ADF ∗ test for the U.S. requires
to estimate 6 parameters). This confirms that for all countries the computation of the LRc

test requires a more parsimonious model. The second row computes the implicit value of
the local-to-unity parameter, given the number of observations and the estimate for θ̂1n, this
should provide a basis for comparison of the power of each test, in view of the Monte Carlo
experiments above. Both the LRc and the ADF ∗ tests reject the null hypothesis for the U.S.,
CAN and GBR, but the former was found to have higher power (see the third row in Figure
4).

The tests yield different results for the rest of the countries. For JPN and ITA the LRc

rejects the null hypothesis whereas the ADF ∗ fails to reject. As shown in the second row of
Figure 4, the LRc has a higher power (i.e. a lower probability of making a Type II Error).
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Finally, the tests for GER and FRA, which need to deal with α̂n close to -1, are computed
with a sample size that is not large enough for LRc to have higher power than ADF ∗, as
shown in the third row of Figure 4.

7 Concluding Remarks

Testing the nonstationarity of a particular time series with AR based tools has been the norm
in parametric unit root testing. But this is not the only way to model dependence. The LRc I
propose here provides an alternative to the AR paradigm, and has more flexibility in dealing
with dependence. This is true, in particular, when the error process shows dependence in the
form of a MA process since the asymptotic distribution of LRc is independent of the short
run parameters. The LRc test proves to be just as good in power terms as the ADF ∗ test for
true values of the MA parameter α0 ∈ {±0.8,±0.5, 0}. For a small sample size of n ≤ 100,
the test has close to optimal power only if α0 > 0, but as the sample size increases optimality
is gained for the cases α0 ∈ {−0.8,−0.5, 0}.

Comparing the LRc test with the ADF ∗ for sample size n = 250, Monte Carlo simula-
tions show that LRc has higher power thanADF ∗, except for the case of α0 = −0.8. The low
power is explained by the caveat detailed in Section 5.4, when θ10 is close to α0 = −0.8 the
test can not distinguish between the time series and a pure white noise process. For a sample
size of n = 500 LRc has close to optimal power properties for all values of α0. The em-
pirical application shows both the advantages and shortcomings of the LRc test. The model
analysed in this paper can be extended to account for deterministic components, in particular
a polynomial trend of order one or zero. I leave this task for a follow-up paper. The model
can also be extended to the more general ARMA(p, q), a work which is already in progress
in Chambers and Hernandez (2015). The latter in turn will possibly require an information
criterion to choose the lag lengths, and will be pursued in future research.
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