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Abstract 

 

One of the biggest problems faced by freelance tutors is choosing a price. Too high or too low, and 

tutors lose out on earnings. What should a tutor take into account when setting a price? This project 

surveys the relevant economic literature—most importantly wage determination—to specify a tutor 

pricing model, and then applies econometric methods to test the model. The data set used is from 

Knowledge Roundtable, which is a website matching independent tutors to students, and contains data 

on 1,250 tutors from around the United States. Using the natural logarithm of tutor price as the 

dependent variable, it was found that education level, years of experience (tenure and age), having a 

professional certification related to teaching, teaching technical subjects, income level by zip code, and 

population density have positive and statistically significant effects on tutor price. Surprisingly, the 

coefficients on binary variables for gender, test prep, and versatility (offering both technical and 

nontechnical subjects) were not statistically significant. While the R2 of 0.21 in the final model is in line 

with conventional wage determination studies, it also supports the need for research into additional 

determinants of earnings, especially if the goal is to help individual tutors choose the right price. 
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Introduction 

 
Every freelance tutor faces the challenge of deciding what price to charge for his or her services. 

Most tutors rely on their own intuition or knowledge of their local market when setting their hourly 

rate. While tutors can adjust prices based on responses from clients, starting with the wrong price has 

detrimental implications. First, tutors need to make enough money to live, and want to maximize 

earnings. If tutors charge too much, they receive too few clients (if any), and lose out on earnings 

relative to the earnings-maximizing price. If tutors charge too little, they may receive too many clients, 

and again lose out on earnings. Even more harmful, too low of a price may actually send a signal to 

potential clients of low quality, leading to fewer clients at a low price, greatly reducing earnings. The 

trial and error method of finding the right price can take months or years, making it difficult for tutors to 

make a living. In recent years, national tutor directories have accumulated tens of thousands of data 

points on tutors including price, location, experience, education, certifications, and subjects offered. 

This project attempts, for the first time, to apply an econometric model, using OLS estimators, to this 

data in hopes of reliably predicting tutor prices. The next section reviews the related economic 

literature, which is followed by a theory based tutor price model, a description of the variables and data 

used, a discussion of the estimation process and results, and a brief conclusion summarizing the 

methods and results. The results of this project can be adapted for commercial use benefiting parents 

and tutors alike by helping them make better decisions about who to hire and how much to charge, 

respectively. 

Literature Review 

No one has theorized or tested price determination models specifically for independent tutors. 

This section will briefly survey the informal literature available on tutoring websites, and then review the 

relevant theoretical and empirical literature that will help specify a model to be tested. This literature on 
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wage determination more generally, wage determination of self-employed workers, and school teacher 

salaries by subject. 

Before getting into theory, it is helpful to look at articles published by the tutoring companies at 

the base of the market. These companies match tutors with clients, and some provide an online 

platform for clients to make payments. At Appointment-Plus, hourly prices range from $10-$100; at 

Care.com, $10-$75; and at Angie’s List, $15-$85 (Appointment-Plus, 2015; “The Tutor Guide”, 2013; 

Warkentin, 2015). WyzAnt, the largest company, doesn’t give an overall range, but according to their 

“Rates and Policies” page, the majority of tutors charge in the range of $30-$60/hour. At Angie’s List, 

most tutors charge $30-$40/hour (Warkentin, 2015). Some websites also offer suggestions on price 

determinants. According to Appointment-Plus, the main determinants are cost of living, demand for 

tutoring services, education level, teaching certifications, and subjects taught. With the exception of 

subjects, all of these determinants should be positively related to tutoring price. Tutors that teach 

technical subjects, such as math or chemistry, should charge more than non-technical, such as English, 

or social studies (Appointment-Plus, 2016). The Knowledge Roundtable generally agrees, adding that 

certain subjects are in higher demand than others, including SAT prep, math, English, biology, chemistry, 

and physics. Moreover, science, math, and standardized testing see a relative scarcity of tutors due to 

their “American cultural aversion,” further increasing tutors’ prices for these subjects (Rand, 2015). 

In neoclassical economic theory, the value of the marginal product is equal to wage. 

Determinants of wage are thus limited to productive skills, assuming constant prices throughout the 

economy (Bowles, 2000, p. 6). However much value a worker can add to production in an hour is what 

he or she will earn. The late George Johnson (2001) of University of Michigan broke down the 

conventional wage determinants, based on a survey of empirical studies, into five categories: skills, job 

location, job characteristics, discrimination, and rents (p. 16346). The two associated with neoclassical 

theory include skills and job characteristics. The greater one’s skill level, the more productive, and high 
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wage jobs often require higher skilled workers. The typical variables associated with skill level include 

years of schooling and work experience, and dummy variables are often used to look at low-skilled vs. 

high skilled jobs (pp. 16346, 16348). 

Because reality differs from a perfect Walrasian economy, even mainstream wage 

determination models generally go beyond skill differentials. Dummy variables for job characteristics 

perceived as “bad” (e.g. danger, risk of injury), geographic location, race, gender, and rents (institutions 

affecting labor market equilibrium, like trade unions), are often included (pp. 16247-50). The reasoning, 

respectively, is that fewer people are willing to work in dangerous jobs, cost of living varies by location, 

gender and racial discrimination in labor markets have been widely confirmed (Altonji, 1999), and union 

workers (as one example) have more bargaining power than their non-union counterparts. In most 

empirical studies, wage determination models use the natural logarithm of wage as the dependent 

variable instead of wage, as this normalizes the distribution of the earnings (Johnson, 2001, p. 16346). 

The basic model used, according to Johnson, is lnW=βX+γU+ε, where W=hourly wage, X=vector of 

observed wage determinants, and U=vector of unobserved wage determinants. All of the determinants, 

observed and unobserved, fall into the five categories outlined above (p. 16346). A survey of empirical 

studies by Samuel Bowles, Herbert Gintis, and Melissa Osborne (2000) Bowles et al. found the 

conventional variables to be indisputably determinant of wages, but they also found that “between two 

thirds and four fifths of the variance of the natural logarithm of hourly wages or annual earnings is 

unexplained” by them (p. 2). 

This unexplained variance has led to the inclusion of seemingly irrelevant regressors, including 

beauty and household cleanliness. Using a binary variable (1=“above average looks”; 0=“below average 

looks”), Daniel Hamermesh and Jeff Biddle (1994) found that men with “above average looks” had 

wages 14% higher than their “below average” counterparts. The “looks premium” for women was 9%. 

Both coefficients were statistically significant. Greg Duncan and Rachel Dunifon (2012) found that having 
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a clean house is an important and statistically significant determinant of wages.  Moreover, several 

empirical studies, controlling for all the conventional variables, have found the income, education, and 

occupation of a worker’s parents to be important and statistically significant indicators of wage (Bowles, 

2000, p. 2). The significant relationships between the apparently irrelevant variables and wage suggests 

there may be personality traits generally held by people with these characteristics. 

Research on the effects of personality traits on wage began to emerge, especially since 

“Determinants of Earnings” was published by Bowles et al. in 2000. Their work drew heavily on what 

they called the “Schumpterian” and “Coasean” models of wage determination, which relax the 

neoclassical assumptions (respectively) of labor market equilibria and exogenously determined and 

constant worker effort (pp. 5-9). Assuming labor market disequilibria, a high level of entrepreneurship 

(seen as a personality disposition), according to Theodore Schultz (1975), enables workers to effectively 

take advantage of economic disequilibria (p. 827). Relaxing the effort assumption paved the way for a 

theoretical wage determination model by Bowles et al. (2001) which included “incentive-enhancing 

preferences.” Incentive-enhancing preferences, such as low time preference, internal locus of control 

(strong belief in personal agency), distaste of handouts, and high level of shame when unemployed, 

increase worker effort, and therefore profits (p. 156). So, employers would be willing to pay more for 

workers exhibiting these traits. While still under-researched, Viinikainen et al. (2010) published a 

literature review on empirical work testing the effects of personality traits on wages. Emotional stability, 

internal locus of control, and openness have been found to have statistically significant positive effects 

on wages, whereas aggression and introversion have statistically significant negative effects on wage (p. 

202). Thus, it is clear that personality traits are needed to increase measures of R2. 

Because independent tutors are self-employed, it is important review the empirical work on 

wages of the self-employed as well. Unfortunately, most of the literature is focused on supply of self-

employed labor versus wage/salaried employees. However, some literature has looked at determinants 
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of wages. Peter Robinson and Edwin Sexton (1994) measure the effect of education and experience on 

self-employed and wage/salaried workers. They dispel the myth that the self-employed, or 

entrepreneurs, are less educated than wage/salaried workers (according to the myth, entrepreneurs are 

high school dropouts that made it big), finding instead that self-employed workers are more educated 

by about one year (p. 148). They used a linear model (dependent variable was earnings), controlling for 

occupation, industry, marriage status, and children using dummy variables; and hours worked per week, 

and weeks worked per year using continuous variables. Their main findings were that an additional year 

of education increased yearly earnings by about $380 more for self-employed workers than for 

wage/salaried workers, and an additional year of experience increased earnings by about $180 more for 

self-employed workers. R2 came out at 0.33, in line with other mainstream studies. They did not test the 

wage coefficient differentials between self-employed and wage workers, and they treated each year of 

education as having the same effect on earnings, but their study nevertheless provides evidence that 

conventional variables can be used for the self-employed. 

Barton Hamilton (2000) completed a similar study, comparing self-employed to wage/salaried 

workers, using a dataset of 8,771 working age male workers. He found self-employed workers to be 

more educated than wage/salaried workers on average, and education, experience, and tenure to be 

important and statistically significant determinants of earnings (pp. 610, 616-617). Returns to these 

variables were not higher than wage workers. Hamilton’s regressions used the natural logarithm of 

wage as the dependent variable, and included squared terms for experience and tenure, neither of 

which were statistically significant. He also experimented with an experience*tenure interaction term, 

also not statistically significant. The coefficient on the binary variable for race (1=nonwhite; 0=white) 

was statistically significant, and negative, suggesting that consumers discriminate against people of color 

(p. 615). 
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Other relevant studies regarding the self-employed include those on gender, social capital, and 

commute time. Jessica Simon and Megan Way (2015) apply the fact that women generally earn less than 

men to self-employment, finding that self-employed women make 75% of self-employed men, and that 

working from home is negatively related to earnings of self-employed women, but not self-employed 

men (pp. 211-212). They admit that their sample size of 256 is small, and there may be omitted variable 

bias. An earlier study by Robert Moore (1983) also found gender discrimination amongst self-employed 

workers, whereas Theresa Devine (1994) found that returns to skill are higher for self-employed women 

relative to wage/salaried women, though a gender gap still exists. Per Davidsson and Benson Honig 

(2003) found social capital, or networking, to be an important determinant of earnings among self-

employed entrepreneurs, as networking increases business opportunities. Jose Gimenez-Nadal, Jose 

Molina, and Jorge Velilla (2016) built a wage-efficiency spatial model, suggesting that commute time will 

be negatively related to self-employment. They claim that commute time and leisure time are 

substitutes, and commute time and effort are negatively related. Their empirical work supports this 

hypothesis, though they did not have the available data to look at commute time and earnings of the 

self-employed. 

Lastly, wages and supply of school teachers by subject can give some clues of what to expect for 

tutor wages by subject. According to Martin West (2013), public schools found it between two and eight 

times more difficult to fill teacher vacancies for math and biological/physical sciences relative to general 

elementary, English, and social studies. Interestingly, salary differentials between English and math or 

science teachers was not statistically significant, though the coefficients did favor math and science 

slightly. However, West also looked at teachers who left teaching, and found that former math and 

science teachers, respectively, made 15% and 11.8% more than former English teachers. Both figures 

were statistically significant. This study confirms that subjects taught matters. 

Model Specification 
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Freelance tutors are self-employed workers. In setting their prices, they are essentially setting 

their wages. Clients, or students, then hire the tutors based on price and tutor characteristics. The 

dependent variable being explained is hourly price. In order to normalize the distribution of wages and 

be consistent with previous wage determination studies, the natural logarithm of wage will be used. The 

independent variables determining price—based on conventional economic theory—include skills, 

geographic location, job characteristics, social location (e.g. gender and race), and non-market 

institutions affecting wage. Beyond conventional theory, two other wage determinants that will be 

included are social capital and commute time. While personality is important, this data is unavailable for 

tutors. 

The variables capturing skill differentials include education, tutoring experience, and 

professional certifications. A tutor with more education and experience is expected to be more skilled, 

and thus higher paid, than a tutor with less. Similarly, a professional certification is expected to increase 

skill and thus price. So, the coefficients on all of these variables are expected to be positive. To see the 

effect of different educational degrees, education must be broken up into binary variables: some high 

school, high school diploma, some college, BS/BA degree, some grad school, MS/MA degree, 

Ph.D./professional student, and Ph.D./professional degree. The “some” variables are included because 

there are many tutors who fall into these categories, and a college student, for example, is likely seen as 

more qualified that a high school graduate not in college. To see the effect of different professional 

certifications, binary variables will be included for the following certifications: teacher, tutor, social 

worker, and other professional. Tutoring experience, as well as age (proxy for overall experience) is 

measured in years. 

Geographic location must be included because cost of living varies considerably across the 

United States. Cost of living data is only available by state, so to more accurately capture this effect, 
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median wage by zip code is included. An area with higher wages is expected to have a higher cost of 

living and therefore higher tutor prices. 

Job characteristics generally refers to differing characteristics between jobs. This model is 

looking at one specific job. However, as shown in the literature review, prices are expected to differ by 

subject taught. Generally, technical subjects (math and science) are expected to pay more than non-

technical subjects (humanities and social studies) due to lack of tutors in these fields. Going beyond the 

literature surveyed, a well-rounded tutor, or one who teaches both technical and non-technical subjects, 

is likely seen as better than a tutor who teaches just one or the other. To capture these effects, binary 

variables for only technical, only non-technical, and both must be defined. Because standardized testing 

is widespread and very important for getting into college and grad school, an additional binary variable 

for test-prep will be included. A tutor who teaches test-prep is expected to set a higher price than one 

who does not. 

Social location generally refers to race and gender. While race data is unavailable, data for 

gender is. Conventionally, due to discrimination, women are expected to earn less than men. An 

interaction variable between gender and experience will also be included as women may earn less than 

men per additional year of experience (Johnson, 2001 p. 16349). Women may be seen, however, equally 

as competent as men regarding teaching ability. As explained in the lit review, one study actually found 

that women were entering self-employment in order to escape the gender wage gap (Devine, 1994). 

Thus, gender variables may end up being unimportant. 

Non-market institutions usually include trade unions and minimum wage laws. Freelance tutors 

are not unionized, and minimum wage laws actually do not apply to self-employed workers (Banaian, 

2013). Moreover, any effect minimum wage laws have on general wages would already be included in 

the median income variable, supporting the expected positive effect of median income. 
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To capture the non-conventional determinants, population density by zip code will be included. 

While not perfect, the higher the population density, the greater one’s ability to network (social capital). 

Additionally, denser areas are expected to have higher traffic and therefore longer commutes. Both 

effects suggest that the higher the population density, the higher the wages. 

This discussion suggests the following model: 

lnPricei = β0 + β1Expi + β2Agei + β3Cert_Teachi + β4Cert_Tutori + β5Cert_Soci + β6Cert_Profi + γ1HSi + 

γ2Some_BSi + γ3BSi + γ4Some_MSi + γ5MSi + γ6Some_Profi + γ7Profi + δ1Incomei + δ2PopDensi + α1Techi + 

α2Nontechi + α3Testprepi + η1fei + η2expfei+ ui 

To escape the dummy variable trap, Versatilei and Some_HSi were left out, and will thus be part of the 

intercept. The precise definitions of the variables will be discussed in the next section. 

 In addition to the mixed work around gender, and the lack of theory around including a variable 

for both technical and nontechnical, one problem that may occur with including so many variables is 

multicollinearity. It also may be problematic to include different dummy variables for different 

certifications, as well as the “in-between” education variables (e.g. Some_MS). These issues, and more, 

will be taken up in next sections. 

Data 

We have access to data from two tutor directories: WyzAnt.com (WyzAnt) and 

TheKnowledgeRoundtable.com (KnowRo). The WyzAnt data set contains about 70,000 tutors, while the 

KnowRo data set contains about 2100 tutors. Although it has more rows, the WyzAnt data set lacks 

many variables we expect from theory to be important, including years of experience, certifications, 

education, gender, and age. Since the KnowRo data set includes all the variables needed for our model, 

it will be used in the analysis below. Note that this data is not publicly available; one of the authors is 

the manager of KnowRo. The KnowRo data set is then supplemented by census data in order to map 
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income and population density to each tutor by zipcode (Population Studies Center, 2010; Bittner, 

2014). 

This data is cross-sectional, looking at many tutors at one point in time. Tutors registered in the 

directory between 2013 and 2016. Of the 2100 tutors, 1250 have complete data, of which 900 

registered in the 4 weeks prior to this analysis. Tutors are located across the US, with a higher density in 

the Northeast (see map below for relative densities). The census data on median income by zipcode was 

collected between 2006 and 2010, and the census data on population density by zipcode was collected 

in 2010. 

Variable definitions and summary statistics for each variable are provided in Appendix A. 

Figure 1 - Tutor location density 

 

Results 

 

Ordinary least squares estimation is applied on the model specified previously. The results of 

this full model are included in Appendix B. As can be seen, a large number of coefficients are not 

statistically significant, suggesting that a simpler, restricted model may be preferred. Indeed, as shown 
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in the next subsection, an F-test of a model with 13 restrictions indicates that a vastly simpler model is in 

fact preferred. Interpretations will be made on this simpler model. 

Model Selection 

The alternate model below is considered. This model is simpler in two ways: first, the 

certification variables are combined as well as the education variables; second, the model restricts 

variables for age, nontechnical subjects, test prep, gender, and interaction of gender with years of 

experience to be zero. Thus, this model simultaneously tests whether greater detail in certifications and 

education help explain more variance in hourly rate and whether gender, age, and certain subject 

offerings have any explanatory power. The decision to combine education and certification variables for 

this test was driven by concerns about multicollinearity. The variable Some_BS was kept due to the 

significant percentage of tutors who are either current college students or associate’s degree holders. 

The decision to test significance of nontechnical subjects, test prep, gender, and interaction of gender 

with years of experience was driven by low p-values on these variables’ parameter estimates in the full 

model and by weak theoretical justification. The decision to test significance of age, despite its 

parameter estimate having a low p-value, was driven by weak theoretical justification, namely the 

concern that years of tutoring experience would capture the same effect and do so more directly. 

lnPricei = β0 + β1Expi + β7Certi + γ8Some_BSi + γ9BSi + γ10MSi + γ11Profi + δ1Incomei + δ2PopDensi + α1Techi 

+ ui 

Note that this model does not simply restrict by setting coefficients to zero; Cert and the 

education variables are logical ORs of variables defined in the full model. Variable definitions and 

summary statistics are provided in Appendix A. Coefficients and model statistics are provided in 

Appendix B. 
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This simpler model is compared to the full model using an F-test. The results of this test are 

presented below.  

 

H0: The reduced model explains the same or more of the variance in hourly rate as does the full model. 
HA: The full model explains more of the variance in hourly rate than does the reduced model. 
 

F-test: full model vs reduced 

model     
ESSu 44.31012244  Alpha 0.05 
ESSr 41.88060033  Fvalue 1.421788165 
RSSu 161.413916  Fcrit 1.728123043 
J 13  F_pvalue 0.141951412 
n 1250  Reject H0? Fail to Reject 
k_u 22  Conclusion Accept Reduced Model 

 

Failing to reject the null hypothesis is a surprising result, as it suggests that many factors that are 

significant wage determinants in the general labor market and even the general self-employed labor 

market are not significant in the self-employed tutor labor market. However, restricting so many 

variables in one test may drown out explanatory power of individual variables. Thus, we now test this 

reduced model against models in which age is included and gender and its interaction with years of 

experience are included. 

H0: Coefficient of Age = 0 
HA: Coefficient of Age ≠ 0 

 

F-test: age model vs reduced 

model     
ESSu 43.51164457  Alpha 0.05 
ESSr 41.88060033  Fvalue 12.46818938 
RSSu 162.2123938  Fcrit 3.848968989 
J 1  F_pvalue 0.000429121 
n 1250  Reject H0? Yes 
k_u 10  Conclusion Accept Age Model 

 

H0: 𝜂1 = 0, 𝜂2 = 0 
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HA: 𝜂1 ≠ 0, 𝜂2 ≠ 0 

 

F-test: gender model vs age model     
ESSu 43.55697937  Alpha 0.05 
ESSr 43.51164457  Fvalue 0.173045298 
RSSu 162.167059  Fcrit 3.002993103 
J 2  F_pvalue 0.841119855 
n 1250  Reject H0? Fail to Reject 
k_u 12  Conclusion Accept Age Model 

 

These tests suggest that Age should be included in the model, but not fe or expfe. The 

significance of age despite the presence of the seemingly redundant factor of years of experience can be 

explained by the fact that, for example, some middle-aged professionals need to earn a high rate 

because of their life circumstances, but may have less tutoring experience than a college student who 

has tutored their peers for several years.  

Our final model is as follows. 

lnPricei = β0 + β1Expi + β2Agei + β7Certi + γ8Some_BSi + γ9BSi + γ10MSi + γ11Profi + δ1Incomei + δ2PopDensi + 

α1Techi + ui 

It should be noted that for the final reduced model, we fail to reject the null hypothesis that 

error variances are constant via the Breusch-Pagan test (p-values presented in Appendix B). Thus, there 

are no signs of heteroskedasticity. Lack of autocorrelation is also confirmed with a Durbin-Watson 

statistic close to 2 (which is expected for cross-sectional data). Finally, multicollinearity was a major 

issue in the full model (indicated by high variance inflation factors on many variables), but was resolved 

for all variables in the final reduced model with the exception of the intercept (perhaps because 95% of 

tutors have Some_Bach=1). 

Model Interpretation 
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The final reduced model explains 21.2% of the variance in tutors’ hourly rates according to the 

model’s R2 value, and is highly statistically significant (the p-value for an F-test with null hypothesis “all 

coefficients=0” is 1.49x10-57). Also, as mentioned in the section above, no issues with heteroskedasticity, 

autocorrelation, or multicollinearity are present. Thus, since all parameter estimates are statistically 

significant at the 0.05 level (whether one-tailed or two-tailed tests are used), except for that for Prof, we 

can safely and confidently interpret the model’s parameters as follows. 

Variable Parameter 

Parameter 

Estimate Interpretation 

CONST β0 2.759 
When all variables are zero, a tutor will charge 𝑒2.759 =
$15.78/hr. This includes the base cases of high school 
degree only and offering not only technical subjects. 

INCOME δ1 1.21E-06 
A $10,000 increase in median annual income of a tutor’s 
zipcode results in an hourly rate increase of 1.21%, all 
else constant. 

POPDEN δ2 3.24E-06 
A 10,000 person per square mile increase in population 
density of a tutor’s zipcode results in an hourly rate 
increase of 3.24%, all else constant. 

tech α1 0.070 

Tutors offering only technical subjects charge (𝑒0.066 −
1)100 = 7.25% more per hour than those who offer 
non-technical subjects only or both technical and 
nontechnical subjects, all else constant. 

age β2 0.004 One additional year of age results in an hourly rate 
increase of 0.4%, all else constant. 

years_exp β1 0.026 One additional year of tutoring experience results in an 
hourly rate increase of 2.6%, all else constant. 

cert β7 0.092 
Tutors holding at least one certification charge (𝑒0.092 −
1)100 = 9.64% more per hour than those who do not 
hold any, all else constant. 

some_bach γ8 0.122 
Tutors having some college, including associates, charge 
(𝑒0.122 − 1)100 = 12.98% more per hour than those 
who only have a high school degree, all else constant. 

bach γ9 0.090 
Tutors having a bachelor’s degree charge (𝑒0.090 −
1)100 = 9.42% more per hour than those who only have 
some college, all else constant. 

grad γ10 0.096 
Tutors having a graduate degree charge (𝑒0.096 −
1)100 = 10.08% more per hour than those who only 
have a bachelor’s degree, all else constant. 

All of these parameter estimates confirm our expectations from theory, with the exception of offering 

technical subjects only. In that case, we expected tutors offering both technical and nontechnical 
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subjects to demand a premium over those offering only one or the other. Surprisingly, versatile tutors 

charge (1 − 1
1+0.0725) ∗ 100% = 6.76% less than those who only offer technical subjects.  

While most variables in the simple model have parameter estimates with the expected sign, it is 

unexpected that estimates for the variables test prep, nontechnical subjects, gender, and interaction of 

gender with years of experience do not explain a statistically significant portion of the variance in hourly 

rate. This suggests additional work to be done on the importance of subjects taught. The insignificance 

of gender supports Theresa Devine’s work, but also could simply be due to female tutors refusing to set 

their prices lower than men. It is still possible that clients choose male tutors more than females, 

something this model could not test. 

Summary and Conclusions 

This paper fills gaps in the academic literature and the tutoring industry by presenting the first 

quantitative tutor pricing model of national scale. From a review of formal academic literature related to 

wage determinants and the self-employed labor market, as well as informal literature available on 

popular tutoring websites, we first identify categories of factors likely to have explanatory power as 

wage determinants in the self-employed labor market, shown below. We then select specific factors for 

each category that are particularly relevant for the tutoring industry and have data available. 

Skills Geography 

Job 

Characteristics 

Social 

Location Unconventional 

Education 
Median Annual 

Income 
Technical Gender 

Population 

density 

Years of tutoring 

experience 
Population density Non-technical Age  

Professional 

certifications 
 Test prep   

Age     
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Our data set contains 1250 tutors from TheKnowledgeRoundtable.com, a national directory of 

tutors. The tutor data set is supplemented with Census data that provides the income and population 

density of each tutor’s zipcode. After comparing the statistical significance of 5 model variants, we show 

that the best model is the following, where variables are as defined in Appendix A. 

lnPricei = β0 + β1Expi + β2Agei + β7Certi + γ8Some_BSi + γ9BSi + γ10MSi + γ11Profi + δ1Incomei + δ2PopDensi +  

α1Techi + ui 

This model was estimated using Ordinary Least Squares and successfully explained 21.2% of the 

variation in tutor prices. We show that the model does not suffer from issues of heteroskedasticity, 

autocorrelation, or multicollinearity and thus inference can be performed. 

There are two key, unexpected results. First, gender and the interaction of gender with years of 

experience are not statistically significant factors determining tutor price. Tutoring thus appears to 

break the mold of the gender pay gap. Second, the effects of subjects offered on tutor price are 

unexpected: tutors who offer only technical subjects surprisingly charge more than versatile tutors who 

offer both technical and non-technical subjects; and tutors who offer test prep do not charge more than 

those who do not. 

The model otherwise confirms established theories regarding wage determinants and the self-

employed labor market. Education, experience, certifications, age, income, and population density all 

have a positive effect on tutor prices. Our research suggests that the model could be improved—that is, 

more variation in tutor price could be explained—by collecting data on tutors’ personality traits.  
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Appendix A: Variable Definitions and Summary Statistics 

Full Model 

Variable Definition 

ln(hourly_rate) Natural log of the hourly rate set by each tutor, in dollars 
INCOME 2010 median annual income of each tutor's zipcode, in dollars 
POPDEN 2010 population density of each tutor's zipcode, in people per square mile 
tech 1 if tutor offers only technical subjects, defined as math or science; 0 otherwise 

nontech 
1 if tutor offers only nontechnical subjects, defined as English, humanities, or foreign 
language; 0 otherwise 

testprep 1 if tutor offers test prep tutoring; 0 otherwise 
age Age in years 
years_exp Number of years of tutoring experience 
fe 1 if female; 0 if male 
fexp fe*years_exp 
cert_tutor 1 if certified by a tutoring certification organization such as NRLA; 0 otherwise 
cert_teacher 1 if certified as a teacher; 0 otherwise 
cert_prof 1 if tutor has other related professional certifications, e.g. actuarial exams; 0 otherwise 
cert_social 1 if certified as a social worker; 0 otherwise 
high 1 if tutor has high school degree; 0 otherwise 
some_asso 1 if tutor has some associate degree work; 0 otherwise 
asso 1 if tutor has associates degree; 0 otherwise 
some_bach 1 if tutor has some college; 0 otherwise 
bach 1 if tutor has bachelor's degree; 0 otherwise 
some grad 1 if tutor has some master's work; 0 otherwise 
grad 1 if tutor has master's degree; 0 otherwise 
some prof 1 if tutor has some phd, md, or jd; 0 otherwise 
prof 1 if tutor has phd, md, or jd; 0 otherwise 

 

 Mean Standard Deviation  Mean Standard Deviation 

hourly_rate 30.198 12.735 cert_teacher 0.210 0.407 
ln(hourly_rate) 3.326 0.406 cert_prof 0.226 0.419 
INCOME 59231.595 22543.879 cert_social 0.011 0.105 
POPDEN 6386.218 13902.274 high 0.986 0.116 
tech 0.198 0.399 some_asso 0.955 0.207 
nontech 0.286 0.452 asso 0.950 0.219 
testprep 0.582 0.493 some_bach 0.920 0.271 
age 29.798 11.983 bach 0.842 0.365 
years_exp 3.491 2.882 some grad 0.318 0.466 
fe 0.621 0.485 grad 0.306 0.461 
fexp 2.195 2.852 some prof 0.075 0.264 
cert_tutor 0.034 0.180 prof 0.064 0.245 

 



TUTOR PRICING MODEL   20 
 

Reduced Model 

Variable Definition 

ln(hourly_rate) Natural log of the hourly rate set by each tutor, in dollars 
INCOME 2010 median annual income of each tutor's zipcode, in dollars 
POPDEN 2010 population density of each tutor's zipcode, in people per square mile 
tech 1 if tutor offers only technical subjects, defined as math or science; 0 otherwise 
years_exp Number of years of tutoring experience 
cert 1 if any certifications; 0 otherwise 
some_bach 1 if tutor has some college, including associates; 0 otherwise 
bach 1 if tutor has bachelor's degree; 0 otherwise 
grad 1 if tutor has or is currently studying for master's degree; 0 otherwise 
prof 1 if tutor has or is currently studying for phd, md, or jd; 0 otherwise 

 

 Mean Standard Deviation 

hourly_rate 30.1976 12.7354744 
ln(hourly_rate) 3.325987208 0.40584568 
INCOME 59231.59499 22543.87921 
POPDEN 6386.217668 13902.27399 
tech 0.1984 0.398954599 
years_exp 3.4912 2.882042244 
cert 0.3904 0.488035227 
some_bach 0.9552 0.206947389 
bach 0.8424 0.364511364 
grad 0.3184 0.466042054 
prof 0.0752 0.263819333 
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Appendix B: Model Outputs 

Full Model 

Labels coeff stderr tvals pvals* conf_lower conf_higher vif 

Const 2.843 0.098 28.928 1.02E-140 2.650 3.035 91.756 
INCOME 1.15E-06 4.67E-07 2.454 0.014 2.29E-07 2.06E-06 1.051 
POPDEN 3.18E-06 7.55E-07 4.207 2.78E-05 1.69E-06 4.66E-06 1.045 
tech 0.070 0.029 2.458 0.014 0.014 0.126 1.228 
nontech -0.004 0.025 -0.141 0.888 -0.052 0.045 1.199 
testprep 0.026 0.021 1.212 0.226 -0.016 0.068 1.065 
age 0.004 0.001 3.688 0.0002 0.002 0.006 1.502 
years_exp 0.024 0.006 3.887 0.0001 0.012 0.037 3.086 
fe 0.008 0.034 0.239 0.812 -0.058 0.074 2.550 
fexp 0.002 0.007 0.306 0.760 -0.012 0.017 4.309 
cert_tutor 0.086 0.058 1.474 0.141 -0.028 0.200 1.042 
cert_teacher 0.039 0.028 1.374 0.170 -0.017 0.094 1.244 
cert_prof 0.078 0.026 3.038 0.002 0.028 0.129 1.110 
cert_social -0.111 0.098 -1.122 0.262 -0.304 0.083 1.021 
high -0.137 0.106 -1.295 0.196 -0.344 0.070 1.420 
some_asso 0.128 0.150 0.858 0.391 -0.165 0.422 9.102 
asso 0.065 0.150 0.434 0.664 -0.229 0.359 10.223 
some_bach -0.046 0.070 -0.660 0.509 -0.185 0.092 3.464 
bach 0.106 0.041 2.611 0.009 0.026 0.186 2.082 
some grad 0.105 0.092 1.145 0.252 -0.075 0.286 17.510 
grad -0.009 0.094 -0.094 0.925 -0.194 0.176 17.977 
some prof -0.094 0.100 -0.936 0.349 -0.290 0.103 6.627 
prof 0.145 0.106 1.366 0.172 -0.063 0.354 6.427 

*All p-values shown for two-tailed tests. 

nobs 1250 
df_resid 1227 
df_model 22 
ess 44.31012 
ssr 161.4139 
mse_model 2.014096 
mse_resid 0.131552 
mse_total 0.164711 
fvalue 15.31031 
f_pvalue 1.22E-50 
rsquared 0.215386 
rsquared_adj 0.201318 
breushpagan_fvalue 0.900269 
breushpagan_f_pvalue 0.595085 
durbin_watson 1.969380283 
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Reduced Model 

Labels coeff stderr tvals pvals* conf_lower conf_higher vif 

Const 2.809 0.058 48.401 5.75E-288 2.695 2.923 31.863 
INCOME 1.35E-06 4.64E-07 2.908 0.004 4.39E-07 2.26E-06 1.035 
POPDEN 3.11E-06 7.52E-07 4.136 3.78E-05 1.63E-06 4.58E-06 1.033 
tech 0.066 0.026 2.491 0.013 0.014 0.117 1.041 
years_exp 0.030 0.004 7.664 3.61E-14 0.022 0.038 1.215 
cert 0.103 0.023 4.480 8.16E-06 0.058 0.148 1.196 
some_bach 0.136 0.057 2.371 0.018 0.024 0.249 1.338 
bach 0.104 0.034 3.037 0.002 0.037 0.172 1.480 
grad 0.119 0.026 4.513 6.98E-06 0.067 0.171 1.430 
prof 0.036 0.043 0.837 0.403 -0.049 0.121 1.224 

*All p-values shown for two-tailed tests. 

nobs 1250 
df_resid 1240 
df_model 9 
ess 41.88060033 
ssr 163.8434381 
mse_model 4.653400037 
mse_resid 0.132131805 
mse_total 0.164711 
fvalue 35.21786477 
f_pvalue 1.03E-55 
rsquared 0.2035766 
rsquared_adj 0.197796108 
breushpagan_fvalue 1.190750838 
breushpagan_f_pvalue 0.296777219 
durbin_watson 1.948641589 
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Age Model (Final Reduced Model) 

Labels coeff stderr tvals pvals* conf_lower conf_higher vif 

Const 2.759 0.059 46.371 5.17E-273 2.642 2.875 33.794 
INCOME 1.21E-06 4.64E-07 2.614 0.009 3.02E-07 2.12E-06 1.042 
POPDEN 3.24E-06 7.49E-07 4.327 1.63E-05 1.77E-06 4.71E-06 1.036 
tech 0.070 0.026 2.664 0.008 0.018 0.121 1.043 
age 0.004 0.001 3.530 0.0004 0.002 0.006 1.439 
years_exp 0.026 0.004 6.483 1.30E-10 0.018 0.034 1.308 
cert 0.092 0.023 3.975 7.44E-05 0.047 0.137 1.218 
some_bach 0.122 0.057 2.127 0.034 0.009 0.235 1.344 
bach 0.090 0.034 2.609 0.009 0.022 0.157 1.501 
grad 0.096 0.027 3.558 0.0004 0.043 0.149 1.516 
prof 0.032 0.043 0.737 0.461 -0.053 0.116 1.225 

*All p-values shown for two-tailed tests. 

nobs 1250 
df_resid 1239 
df_model 10 
ess 43.51164457 
ssr 162.2123938 
mse_model 4.351164457 
mse_resid 0.130922029 
mse_total 0.164711 
fvalue 33.23477716 
f_pvalue 1.49E-57 
rsquared 0.211504912 
rsquared_adj 0.205140948 
breushpagan_fvalue 1.199005014 
breushpagan_f_pvalue 0.287010967 
durbin_watson 1.958830888 
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Gender Model 

labels coeff stderr tvals pvals* conf_lower conf_higher vif 

Const 2.755 0.063 43.891 1.76E-254 2.632 2.878 37.575 
INCOME 1.22E-06 4.64E-07 2.630 0.009 3.10E-07 2.13E-06 1.044 
POPDEN 3.27E-06 7.51E-07 4.350 1.48E-05 1.79E-06 4.74E-06 1.039 
tech 0.073 0.027 2.708 0.007 0.020 0.127 1.114 
age 0.004 0.001 3.570 0.0004 0.002 0.006 1.458 
years_exp 0.025 0.006 4.000 6.72E-05 0.013 0.037 3.016 
fe 0.003 0.033 0.078 0.938 -0.063 0.068 2.510 
fexp 0.002 0.007 0.325 0.746 -0.012 0.017 4.205 
cert 0.091 0.023 3.939 8.63E-05 0.046 0.137 1.221 
some_bach 0.122 0.057 2.119 0.034 0.009 0.234 1.346 
bach 0.089 0.034 2.582 0.010 0.021 0.157 1.503 
grad 0.096 0.027 3.558 0.0004 0.043 0.149 1.516 

*All p-values shown for two-tailed tests. 

nobs 1250 
df_resid 1237 
df_model 12 
ess 43.55697937 
ssr 162.167059 
mse_model 3.629748281 
mse_resid 0.131097057 
mse_total 0.164711 
fvalue 27.68748876 
f_pvalue 4.22E-56 
rsquared 0.211725279 
rsquared_adj 0.204078313 
breushpagan_fvalue 1.253395041 
breushpagan_f_pvalue 0.240871174 
durbin_watson 1.959949502 
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