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Abstract

In this paper, I derive an expression for the asymptotic bias in the OLS estimator of the

partial effect of a regressor on the dependent variable when there is reverse causality

and all variables in the model are covariance stationary. I show that the sign of the

asymptotic bias depends only on the signs of the bi-directional causal effects.

JEL Codes: C10, C30.

Keywords: reverse causality; simultaneity bias.

1 Introduction

In applied econometric work, it is common to encounter models where there is bi-directional

causality. This is especially common in macroeconomic contexts where key variables are

jointly determined, but also in microeconometric contexts, where there are two-way causal

mechanisms at work. In such cases, not only does the key regressor have a causal effect on

the dependent variable, but a casual effect runs in the other direction – from the dependent

variable to the same regressor – too.

∗Department of Economics, University of Massachusetts, 1012 Thompson Hall, Amherst, MA 01003,

email: dbasu@econs.umass.edu. I would like to thank Michael Ash for comments on an earlier version of

this note.
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Some common examples of reverse causality are: (a) the relationship between public

debt (regressor) and economic growth (dependent variable) across countries (Panizza and

Presbitero, 2014); (b) the relationship between per capita real income (regressor) and life

expectancy at birth (dependent variable) across countries or states (Pritchett and Summers,

1996); (c) the relationship between public expenditure on health care (regressor) and health

outcomes (dependent variable) across countries (Filmer and Pritchett, 1999). Other exam-

ples could be estimation of demand-supply systems, estimation of a Keynesian consumption

function (where endogeneity emerges from the equilibrium condition), estimation of the effect

of crime control on the incidence of crime, and many other such cases.

While it is obvious that the OLS estimator of the partial effect of the regressor on the

dependent variable is biased and inconsistent due of endogeneity, the direction or magnitude

of the bias is not immediately clear. But in such cases, knowing the direction of the bias can

be useful. For instance, if the sign of the bias is positive (negative) then we can assert that

the OLS estimator provides an upper (lower) bound for the true partial effect. This short

note derives an expression for the asymptotic bias for a general model of reverse causality,

and shows that it is possible to know its sign when we have information about the signs of

the bi-directional causal effects.

The rest of the paper is organized as follows: in the next section I set out the model and

derive the main results. The proof of the main proposition is given in an appendix.

2 Model and Results

To fix ideas, let us posit a bi-directional causal relationship between two covariance stationary

processes yit and zit in a panel data setting. We will capture this two-way causal relationship
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in terms of two structural relationships. The first captures the causal effect of zit on yit,

yit = zitα1 + u′

itβ1 + ǫ1,it, (1)

and the second captures the causal relationship running in the opposite direction from yit to

zit,

zit = yitα2 + v′

itβ2 + ǫ2,it. (2)

In (1) and (2), i = 1, 2, . . . n indexes units (e.g., cities, states, countries), t = 1, 2, . . . T

indexes years, u′

it = (1, u1,it, u2,it, . . . , uk−1,it, ) and v′

it = (1, v1,it, v2,it, . . . , vk−1,it, ) are k-

vectors of covariance stationary, strictly exogenous variables (including a constant), β1,β2

are vectors of parameters, and ǫ1,it, ǫ2,it are structural errors with







ǫ1,it

ǫ2,it






∼







σ2

1
0

0 σ2

2






.

To ensure the existence of the reduced form models, we will need

Assumption 1. For the models in (1) and (2), we have α1α2 6= 1.

To proceed, let us re-write the structural relationships given by (1) and (2) as







1 −α1

−α2 1













yit

zit






=







u′

itβ1 + ǫ1,it

v′

itβ2 + ǫ2,it






.

As long as the matrix on the left is non-singular, which is guaranteed by assumption 1, we
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can get the following reduced form system







yit

zit






=







1 −α1

−α2 1







−1 





u′

itβ1 + ǫ1,it

v′

itβ2 + ǫ2,it






.

This shows that

zit =

(

α2

1− α1α2

)

u′

itβ1 +

(

1

1− α1α2

)

v′

itβ2 +

(

α2

1− α1α2

)

ǫ1,it +

(

1

1− α1α2

)

ǫ2,it,

so that

E(zitǫ1,it) =

(

α2

1− α1α2

)

σ2

1
6= 0, (3)

because u′

it and v′

it are vectors of strictly exogenous variables, ǫ1,it and ǫ2,it are uncorrelated

(because they are zero mean, structural errors), and we use the fact that E(ǫ2
1,it) = σ2

1
6= 0.

This immediately shows that the OLS estimator of α1 in (1) will be inconsistent.

To derive an expression for the asymptotic bias, let us replace the full set of exogenous

variables in (1) with a constant and a linear combination of the non-constant exogenous

regressors as

u′

itβ = β0 + β1x1,it (4)

where

x1,it = u1,it +
β2

β1

u2,it + · · ·+
βk−1

β1

uk−1,it

which can always be done without loss of generality by choosing the exogenous regressor
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with a non-zero coefficient as u1. Using this, we can re-write (1) as

y = Wβ + ǫ1 (5)

where W = (z 1 x1), with z a (N×1) vector (where N = n×T ) and x1 a (N×1) vector,

and β′ = (α1 β0 β1), with α1 the scalar parameter of interest (the partial effect of z on

y). Our main result about the asymptotic bias in the OLS estimator of α1 is given as

Proposition 1. Let α̂1 denote the OLS estimator of α1 in the model in (1). Let V (z) > 0

denote the variance of z and rz,x1
denote the correlation coefficient between z and x1. Then,

the asymptotic bias is given by

plimN→∞
α̂1 − α1 =

1

V (z)
{

1− r2z,x1

}

(

α2

1− α1α2

)

σ2

1
.

The proof of Proposition 1 is given in the Appendix. Here, we can use it to derive signs

of the asymptotic bias. To proceed, note that since σ2

1
/
(

V (z)
{

1− r2z,x1

})

> 0, the sign of

the asymptotic bias is equal to sgn(α2/(1−α1α2)), where sgn(.) is the sign function. Hence,

we can derive the sign of the asymptotic bias for the following cases.

1. Case 1, where α1 and α2 in (1) and (2) are of opposite signs: In this case, the sign of

the asymptotic bias is equal to sgn(α2). This is because 1− α1α2 > 0.

2. Case 2, where α1 and α2 in (1) and (2) are of the same sign: There are two sub-cases.

(a) Case 2a, where 1−α1α2 > 0: In this case, the sign of the asymptotic bias is equal

to sgn(α2).

(b) Case 2b, where 1−α1α2 < 0: In this case, the sign of the asymptotic bias is equal

to sgn(−α2).
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Thus, the sign of the asymptotic bias of the OLS emtimator of α1 in (1) is equal to either

sgn(α2) or sgn(−α2) depending on whether α1 and α2 are of the same sign, and if they have

opposite signs, whether their product is less than unity.
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Appendix

Here, I give the proof of Proposition 1. Denoting the OLS estimator of β in (5) as β̂, we

have

β̂ − β =

(

W′W

N

)

−1 (

W′ǫ1

N

)

.

Using the expression for W, we see that

W′W

N
=

1

N













∑

i z
2

i

∑

i zi
∑

i zix1i

∑

i zi
∑

i 1
∑

i x1i

∑

i zix1i

∑

i x1i

∑

i x
2

1i
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so that, under standard regularity conditions for the convergence of covariance stationary

processes,

plimN→∞

W′W

N
= A−1, where A =













E(z2) E(z) E(zx1)

E(z) 1 E(x1)

E(zx1) E(x1) E(x2

1
)













.

On the other hand, we have

plimN→∞

W′ǫ1

N
=













plimN→∞

z
′
ǫ1

N

plimN→∞

1
′
ǫ1

N

plimN→∞

x
′

1
ǫ1

N













=













(

α2

1−α1α2

)

σ2

1

0

0













Bringing these together, we get

plimN→∞
β̂ − β =













E(z2) E(z) E(zx1)

E(z) 1 E(x1)

E(zx1) E(x1) E(x2

1
)













−1 











(

α2

1−α1α2

)

σ2

1

0

0













.

Hence,

plimN→∞
α̂1 − α1 =

V (x1)

det(A)

(

α2

1− α1α2

)

σ2

1
(6)

where V (x1) and det(A) denote the variance of x1 and the determinant of A, respectively.

The determinant of A can be written as

det(A) =E(z2)
{

E(x2

1
)− [E(x1)]

2
}

− E(z)
{

E(z)E(x2

1
)− E(x1)E(zx1)

}

+ E(zx1) {E(z)E(x1)− E(zx1)}
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which can be simplified to give

det(A) = V (z)V (x1)







1−

[

E(zx1)− E(z)E(x1)
√

V (z)V (x1)

]2






.

Plugging this expression in (6), we get

plimN→∞
α̂1 − α1 =

1

V (z)
{

1− r2z,x1

}

(

α2

1− α1α2

)

σ2

1
,

where rz,x1
is the correlation coefficient between z and x1. This completes the proof.

8


