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We investigate the stability of cooperative relationships between inventors 
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1.  Division of innovative labor, innovation networks, and regional 

performance1  

Innovation processes are increasingly characterized by a pronounced division 

of labor among actors, such as private firms and public institutions of 

education and research (Jones et al. 2008; Wuchty et al. 2007). This division 

of innovative labor has become an important topic of innovation research. A 

main focus of this research is on the networks of relationships among actors. 

It is a basic conjecture of this type of research that embeddedness in 

networks and the structure of these networks leads to more highly effective 

innovation processes and higher levels of innovation.2 The analysis of 

innovation networks plays a particularly prominent role in attempts to explain 

the performance of regions (Ejermo & Karlsson 2006; Fleming, King & Juda 

2007). 

Although research on regional networks has produced many 

interesting results concerning network structures and the role of certain types 

of actors (for an overview, see Cantner & Graf 2011), still little is known about 

the dynamic characteristics and development of network structures over time. 

In fact, empirical studies on the stability of network structures and of the 

underlying relationships hardly exist. Many scholars claim that cooperative 

relationships between actors should be long lasting because the effort of 

establishing and maintaining a trusting relationship would be sunk if the link is 

abandoned (Gilsing & Nooteboom 2005; Ejermo & Karlsson 2006; Storper & 

                                            
1 We are indebted to Holger Graf and Muhamed Kudic for helpful comments on an earlier 
version of this paper. 
2 There are two main reasons why embeddedness in networks may have a positive effect on 
the performance of actors. First, interaction with others may be an important channel for 
transferring (tacit) knowledge (Owen-Smith & Powell 2004; Storper & Venables 2004). 
Particularly, face-to-face contact promotes the development of personal trust that can be 
regarded as an important precondition for fruitful R&D cooperation. Second, the formation of 
links in R&D networks implies a process of screening and selection. Assuming that actors 
choose cooperation partners according to their abilities, actors included in a network have 
been positively evaluated. This positive selection of relatively able cooperation partners 
should have a positive effect on the probability of success (Granovetter 1995; Storper & 
Venables 2004; Wilhelmsson 2009). 
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Venables 2004). Stability of network ties is a key assumption of Barabási & 

Albert’s (1999, 2000) well-known model of network development.3 Quite 

remarkably, some researchers even exclude unstable relationships from their 

empirical analysis because they regard them as outliers (e.g., Balland et al. 

2013). 

This paper seeks to shed some light on the dynamics of innovation 

networks. We describe and analyze the disappearance of actors and links, as 

well as the emergence of new actors and links, and the consequences for 

network structure and performance. Our data is patent information on co-

inventorship for nine German regions over a time span of 15 years. The 

starting point of our analyses are hypotheses about the stability of 

cooperative relationships in R&D. Testing the assumption of stable network 

relationships with these data we find a surprisingly high level of instability. 

Our analysis shows that inventors that appear to be well embedded within a 

network in one period are unlikely to re-occur in the following (three year) 

period. As a result, links between nodes of the networks tend to be highly 

unstable. Hence, in contrast to a widespread assumption, regional innovation 

networks are characterized by a rather high level of fluidity with quickly 

changing relationships between actors over time. However, we find that when 

we relate the measures of actor fluidity to the structure of a network, these 

structures remain rather stable. There are both significantly positive and 

negative relationships between the micro-level fluidity of actors and links with 

the performance of the respective regional innovation system (RIS) in terms 

of patent productivity. Based on these results we draw conclusions for theory 

and for further research. 

In what follows, we first review the reasons offered for the stability of 

R&D cooperation and implications for network development (Section 2). 

                                            
3 Barabási & Albert (1999) investigate two generic mechanisms for large networks: (i) 
networks grow over time by entry of new actors, and (ii) the new actors tend to collaborate 
with already well embedded actors (preferential attachment). 
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Section 3 introduces the spatial framework, data, indicators and modelling of 

our analysis, followed by a brief overview on the development of networks 

over time (Section 4). We then describe the magnitude of the fluidity 

phenomenon and perform micro-level analyses in order to identify 

determinants of the reoccurrence of actors in subsequent time periods 

(Section 5). Section 6 analyzes the relationship between micro-level fluidity 

and the macro structure, as well as the performance of the specific networks 

we exam. Finally, we discuss the results and draw conclusions for theory and 

further research (Section 7).  

2. The nature and the stability of cooperative Research and 
Development 

Cooperation in Research and Development (R&D) is characterized by 

considerable levels of uncertainty and asymmetric information. The 

uncertainty follows from the very nature of R&D as a discovery procedure. 

Since the result of this discovery procedure is unknown ex ante, it cannot be 

completely specified in an R&D contract, leaving room for opportunistic 

behavior of cooperation partners. Asymmetric information arises when there 

is incomplete knowledge about the abilities and future behavior of a potential 

cooperation partner. Because R&D involves asymmetric information and the 

danger of opportunistic behavior by a cooperation partner, successful 

cooperation requires trust (Gilsing & Noteboom 2005; Noteboom 2002). 

Another reason why trust is a critical component of any cooperative R&D 

effort is the considerable transfer of information and knowledge between 

partners that may be regarded sensitive. When engaging in cooperative R&D, 

actors need to trust that their partners will not use this information in an 

undesirable way. The development of trust between actors is often based on 

past experiences of frequent and intensive collaborations and an actor’s 

reputation (Gilsing & Nooteboom 2005; Tomkins 2001).  
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The R&D problems of uncertainty and asymmetric information are 

reflected in the transaction costs of establishing a cooperative relationship. 

There are costs involved in identifying a suitable cooperation partner, in 

negotiating the terms of the cooperation and in establishing a well-working 

and trust-based relationship that may require frequent face-to-face contacts 

(Ejermo & Karlsson 2006; Storper & Venables 2004; Gilsing & Nooteboom 

2005). Particularly, the generation of trust involves a partner-specific effort 

that is irreversible and is sunk if a relationship is abandoned. Sunk costs of 

terminating cooperative R&D relationship may also occur if the relationship 

requires specific skills and equipment (e.g., Powell et al. 2005). The sunk 

costs of abandoning an R&D cooperation create an incentive for actors to 

maintain the relationship over longer periods of time, unless maintaining the 

relationship is more costly than establishing a new relationship with a different 

actor. Based on these arguments we expect: 

Hypothesis I: Cooperative relationships between actors in R&D are long-
lasting. Hence, actors remain in the network for longer periods of time so that 
the level of ‘fluidity’ is rather low.  

The model of Barabási & Albert (1999) assumes that network 

relationships are stable over time so that all actors that are part of a network 

at a certain point in time remain in the network in subsequent periods. Based 

on this stability assumption, Barabási & Albert investigate a certain mode of 

tie formation, “preferential attachment”. According to the preferential 

attachment mode of tie formation, new actors are especially attracted to and 

try to link with already well embedded actors. Barabási & Albert (1999) run 

simulations of network dynamics based on the preferential attachment mode. 

The resulting networks show properties such as a scale-free or fat-tailed 

degree distribution4 that fit quite well with the characteristics of large and 

heterogeneous real world networks (Powell et al. 2005). They then examine 

                                            
4 Scale-free networks are characterized by a highly heterogeneous degree distribution that 
includes some nodes with many degrees and a long tail of nodes with very few connections. 
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the structural robustness of the simulated networks if network actors are 

randomly omitted. 

Barabási & Albert (1999, 2000) use the average length of the shortest 

path between any two nodes in the network as the indicator for the 

robustness of a network. They argue that this measure can be regarded as 

an indicator for the ease of transferring information and knowledge within a 

network. The smaller the length of the average shortest path, the lower the 

frictions created when there is an exchange between actors, and the better 

the interconnectivity of a network. Based on their simulations, Barabási & 

Albert (1999, 2000) conclude that the disappearance of actors has a rather 

minor effect on average path length. Their results suggest that large scale-

free networks (Powell et al. 2005) are highly robust against randomly 

removed nodes. 

The high level of macro-level stability of networks found by Barabási & 

Albert (1999, 2000) in their simulations, despite the disruption of randomly 

removed nodes, raises the question about the relationship between micro-

level stability and the robustness of a network from a macro-level perspective. 

Does high fluidity of actors and links, in fact, lead to unstable network 

structures? To what extent does micro-level stability, in terms of persistence 

of actors and links, constitute a precondition for stability at the macro-level? 

Following Albert, Jeong & Barabási (2000), the performance of large scale-

free networks is highly stable with regard to fluctuations of actors and links for 

two reasons. First, since most actors in such type of network have only a few 

links (Albert, Jeong & Barabási 2000), the probability that a randomly 

removed actor has a central position in the network is rather low. Second, 

assuming that new actors tend to gravitate to well-embedded actors 

(‘preferential attachment’) there is a high probability that these new actors are 

at least as well connected in the network as the discontinued actors. Based 

on these considerations we expect: 
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Hypothesis II: Macro-level robustness and performance of scale-free 
networks does not require high levels of stability of actors and their links at 
the micro-level.  

Dynamic innovation processes require some fluidity of actors and links, 

yet abandoning cooperative relationships and establishing new links may 

imply considerable sunk costs and significant effort. It is rather unclear how 

the fluidity of actors and links might impact the performance of a RIS. Due to 

this ambiguity, we abstain from setting up a concrete hypothesis about the 

expected relationship between RIS performance and the fluidity of actors and 

their links. 

3. Data and indicators 

3.1 Data  

We analyze inventor networks based on data from the DEPATISnet database 

(www.depatisnet.de) maintained by the German Patent and Trademark Office 

(Deutsches Patent- und Markenamt). Analysis of inventor networks is based 

on the assumption that actors who are named as inventors on the same 

patent document5 know each other and have worked together (Balconi, 

Breschi & Lissoni 2004). Patents are assigned to regions based on the 

information about the residence of the inventor. We are well aware that 

patents reflect only a part of the diverse types of formal and informal 

relationships among innovating actors.6 It is, however, plausible to assume 

that documented co-inventorship implies other forms of cooperation, such as 

co-publications and informal knowledge exchange. A comprehensive data 

                                            
5 By harmonizing the data, we corrected for misspellings and compared the obtaining 
individuals regarding their first name, second name and ZIP code. If all of these three criteria 
were identical, we assumed that the individuals are identical. 
6 A comparison of regional innovation networks constructed with different data sources 
(Fritsch, Titze & Piontek 2017) finds that patent data tend to underestimate links of private 
sector firms, while universities and other public research institutions are well-represented in 
patent data. 
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source that accounts for the variety of relationships between innovating 

actors does not exist.   

We construct the regional inventor networks in nine German planning 

regions for five, three-year periods7 over a time span of 15 years (1994 to 

2008). Five of these regions are located in East Germany, the former socialist 

GDR, and four regions are in West Germany (see Figure 1). Planning regions 

are functional spatial units that tend to be somewhat larger than labor market 

regions or travel-to-work areas. They normally comprise several NUTS3-level 

districts, namely, a core city and its surrounding area. While districts are 

administrative geographic units, planning regions are more often used for 

spatial analysis and policy development, particularly regarding public 

infrastructure planning. We consider planning regions to be more suitable for 

an analysis of regional innovation systems (RIS) for two reasons. First, a 

single district, particularly a core city, is probably too small to include the most 

important actors of innovation-related local interaction. The second reason is 

of a methodological nature; since patents are assigned to the residence of the 

inventor, taking simply a core city as a region would lead to an 

underestimation of patenting activity since many inventors who work in cities 

have their private residence in surrounding districts. 

The case study regions have been selected to fulfill two primary 

purposes. First, these regions allow us to compare regions that have a 

relatively high innovation performance with low innovation performance 

regions. Second, although this is not the principal thrust of our paper, the 

sample contains regions in East and West Germany that are similar in size 

and density, allowing for a meaningful comparison of the two parts of the 

country. Aachen, Dresden, Jena and Karlsruhe have a medium level 

population density and are characterized by a relatively good RIS 

                                            
7 These periods are 1994-96, 1997-99, 2000-02, 2003-05 and 2006-08. 
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Figure 1: The regional framework of the analysis 
 

performance. The other four regions, Halle, Kassel, Magdeburg, Rostock and 

Siegen, have a relatively low innovation activity performance. Rostock and 

Siegen are smaller cities located in rather low-density rural areas. Halle, 

Magdeburg and Kassel are larger urban areas, but they can hardly be 

considered as densely populated (see Table A1). Each region hosts at least 

one university. Data on the regional number of employees in R&D are from 

the Establishment History File of the Institute for Employment Research (IAB, 

Nuremberg). Figure 1 shows the location of the nine case-study regions. 
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3.2 Indicators 

The following measures are used to investigate the fluctuation of actors at the 

micro-level. The dependent variable is the presence of an actor in the 

network, i.e., if he or she has contributed to a patent in a previous period. 

This variable has the value 1 if the actor was present in any previous period 

and it is 0 otherwise. We measure the amount of an actor’s innovative output 

by the number of patents filed in a certain period that mention him or her as 

an inventor. The intensity of an actor’s involvement in a network is measured 

by three variables:  

• the number of links that an actor maintains with other actors in the network 

during a certain period of time (degree); 

• the presence of an actor in the largest component (1 = yes; 0 = no); 

• being an isolate (degree = 0) with no links to other actors. 

Characteristics of a network are measured by variables, such as the mean 

degree, the share of the largest component, the share of isolates, the overall 

clustering coefficient, and the patent productivity. The mean degree is the 

average number of links an actor maintains, constituting a precondition of 

knowledge and information transfers (Jackson 2008). Average path length is 

defined as the average shortest path between two nodes within a network 

(Albert et al. 2000; Wassermann & Faust 2007). Patent productivity is the 

number of patents per R&D employee, and describes the performance of a 

network. The higher the level of patent productivity the better the 

performance, in terms of generating new ideas (Fritsch & Slavtchev 2011). 

Table A2 in the Appendix provides descriptive statistics for the variables and 

Table A3 displays the correlations between variables. 

The distribution of the number of patents per actor is highly skewed 

(Figure A1 in the Appendix). While over 60 percent of all actors have just one 

patent, less than 20 percent have two patents, and the share of actors with 

larger numbers of patents is rather small. The degree distribution of the 

Jena Economic Research Papers 2017 - 009



10 

 
networks (Figure A2 in the Appendix) corresponds to a scale-free distribution, 

i.e., there are only a few actors with relatively numerous network links, while 

most actors have very few or no relationships. As mentioned in Section 2, this 

type of network should be better able to compensate for discontinued nodes 

than a network where all actors have about the same number of links (Albert 

et al. 2000; Barabási & Albert 1999; Jackson 2008; Khokhlova & Kipnis 

2013). 

4. The development of the regional networks over time 

The nine regional inventor networks we exam show quite diverse 

characteristics with regard to the numbers of patents, actors, ties, and 

components. All regions, except Halle and Aachen, show steady growth in 

the numbers of actors (network size) and ties (Table A4). In all regions, the 

number of components increases over the period of analysis. Except for 

Halle, all regions exhibit a total increase in the mean degree, indicating 

increasing interconnectedness of regional actors (Table A5). The number of 

patents varies slightly over time but does not exhibit any clear trend. It 

reaches its maximum in the 1997-99 period, followed by a decrease in the 

following two period, and an increase in the final period (Table A6). 

The share of co-patents increases over the observation period, 

accounting for about 90 percent in the final sub-period. We also find a 

growing number of inventors per patent (Table A6). These developments of 

the mean degree and the increasing importance of R&D collaborations are in 

line with overall trends reported in the literature (e.g., Jones et al. 2008; 

Wuchty et al. 2007) and indicate an increasing importance of research 

collaboration. The steady growth of nearly all networks, together with an 

increasing mean degree over time, is consistent with Barabási & Albert’s 

(1999) preferential attachment hypothesis claiming that new actors are more 

likely to link with relatively well-embedded actors. 
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Due to the increasing mean degree of the networks over time, one 

might also expect a decrease of average path length. We find, however, that 

the average path length increases in most of the networks (Table A5). The 

increasing path length can be explained by an exponential increase in the 

number of potential cooperation partners created by the growing number of 

actors, a higher share of actors in the largest component of a network and a 

larger average component size.8 An additional explanation could be that the 

growing number of components (Table A4) may also indicate greater variety 

of knowledge fields within a region. As a consequence of the rather 

pronounced effects of changes in the number of actors on average path 

length, we refrain from using average path length as an indicator for network 

performance, in contrast to Albert, Jeong & Barabási (2000).  

5. Fluidity of actors at the micro level 

5.1 General observations 

This section analyzes the fluidity of actors at the micro level over time. What 

determines the re-emergence of actors in a subsequent time period, and how 

do actor’s positions within a network change over time? 

 In contrast to the widespread assumption that actors and ties in 

networks are rather persistent (Section 2), our data shows a rather high level 

of actor turnover. We find that more than 78 percent of all actors are present 

only in one observation period, 14.51 percent are active in two periods and 

only about 7 percent appear in networks for more than two periods (Figure 2). 

On average, 32.34 percent of the actors that are active in a network are 

carryovers from the previous period. Hence, at least 60 percent of the 

                                            
8 Isolates are not included in the calculation of the average component size. 
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Figure 2: Share of actors that are present in different numbers of time periods 

inventors in a regional network appear in a sub-period for the first time. Based 

on these figures, we clearly have to reject our Hypothesis I about the 

persistence of actors at the micro-level.9 

Table 1 shows rank correlations between the shares of discontinued and 

newly occurring actors and links.  Looking at the statistical relationships 

between the different measures for the fluidity of actors we find a remarkably 

strong relationship between the share of discontinued actors and the share of 

new actors indicating that the number of exits from the network is more or 

less completely substituted by about the same number of newcomers. As to 

                                            
9 Persistence of links among actors is even less pronounced. We find that 83.73 percent of 
the links exist only in one period, 13.06 percent last for two periods, 2.51 percent of the links 
can be found in three periods, 0.52 percent in four periods and only 0.17 percent of the links 
last over five periods.    
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Table 1: Correlations between fluidity of actors and links 

   1 2 3 4 5 

1 Share of discontinued actors from t-1 1     
2 Share of new actors 0.948*** 1    

3 
Net change of actors: share of new 
actors minus  share of discontinued 
actors 

-0.961*** 0.840*** 1   

4 Share of discontinued links from t-1 0.138 0.314* 0.025 1  
5 Share of new links 0.677*** 0.638*** -0.668* 0.424*** 1 

6 Net change of links: share of new 
links minus share of terminated links 0.327* 0.090 -0.494*** -0.692*** 0.259 

Notes: Spearman rank correlation coefficients. ***: statistically significant at the 1 % level; 
*: statistically significant at the 10 % level. 

 

be expected there are considerable correlations between the fluidity of actors 

and of links. However, correlations between the fluidity of actors and links and 

the measures for the different types of link changes are considerably less 

pronounced than those between the measures for the fluidity of actors. Most 

interestingly, the correlations between the net change of the number of actors 

with the share of new links as well as with the net change of the number of 

links are significantly negative. This suggests that an increasing number of 

actors does not necessarily lead to a larger number of connections within the 

regional innovation system. 

There is a pronounced tendency of new actors to occur as part of a 

collaboration. Nearly 93 percent of the new actors are part of a component 

(around 9 percent are part of the largest component) while only 7 percent 

occur first as an isolate. These shares closely correspond to the overall 

shares of co-patents or isolates respectively (Table A6). The largest 

components of the networks grow over time (see Table A5) as they have a 

larger inflow of new actors as compared to the loss due to discontinued 

actors. With regard to the isolates, we can see the opposite development, i.e., 

there are more discontinued than new actors. For the other components 

(excluding the 

Jena Economic Research Papers 2017 - 009



14 

 

 

Figure 3: Positions of newly emerging and of discontinued actors over the 
entire observation period 

largest component) the inflow of new actors and the number of discontinued 

actors are of about the same magnitude (Figure 3). Only about 53 percent of 

the newcomers are attached to an actor that has already been present in the 

previous period.10 

 Summing up, regional innovation networks are characterized by a 

rather high level of fluidity with rapidly changing relationships between actors 

over time. In contrast to a basic assumption of Barabási & Albert (1999), most 

actors that are in a network in one period are not included in this network in 

                                            
10 If the networks are constructed for a period of five years, the share of actors in the largest 
component is considerably larger (28.35%) than in the case of a three year period (Figure 3) 
and the share of isolates comes out to be smaller (8.39%). As a consequence, a larger share 
of the newly emerging actors become part of the largest component (30.08%). The share of 
discontinued actors from the largest component in the case of five-year networks is 19.66%; 
72.56% are from other components and 7.78% are isolates. 
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the subsequent time period. However, the number of exits from the network is 

more or less completely compensated for by an equal number of newcomers. 

This results in a rather small net change in the number of actors. There is a 

tendency for new actors to collaborate with already active nodes within a 

network leading to a decreasing share of isolates. However, in contrast to the 

preferential attachment hypothesis, not all of the new actors collaborate with 

actors that are already established in the network, about 10 percent of the 

newcomers enter the network as isolates. All in all, an increasing number of 

actors does not lead to a larger number of links. On the contrary, the 

statistical relationship between the net change of the number of actors and 

the number of links is significantly negative. 

5.2 What determines the reoccurrence of actors?  

We estimate several multivariate models in order to assess the probability of 

an actor reoccurring in a network. The dependent variable is 1 if an inventor 

is included in the network in the period 2006-08 and it is 0 otherwise. The 

independent variables are the presence of an actor in a previous period (yes 

= 1, no = 0), if the actor has been part of the largest component in a previous 

period (yes = 1, no = 0), the number of patents held by an actor, and the 

number of an actor’s links (degree) (Table 2).11 We present a separate model 

for each variable because of some quite significant correlations between 

these variables (see Table A3 in the Appendix). All models include dummy 

variables for the regions that are always highly significant. 

The marginal effect of having been present in the previous period (t-1) 

on reoccurrence in the present period is 26.4 percent. Not surprisingly, the 

estimated coefficients for periods t-2, t-3 and t-4 clearly indicate that this 

effect decreases with the time distance. The effect of the position of an actor   

                                            
11 For the coefficients, see Table A6 in the Appendix. 
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Table 2:  Marginal effects of the binominal logistic regression models  

 
Reoccurrence of a node in the period 2006-2008 

Variables I II III IV 
Actor present in     
t-1 0.264*** - - - 
 (0.0044)    
t-2 0.087*** - - - 
 (0.0033)    
t-3 0.056*** - - - 
 (0.0038)    
t-4 0.043*** - - - 

 
(0.0046)    

Actor was part of largest 
component in    

  

t-1 - 0.276*** - - 
  (0.011)   
t-2 - 0.039*** - - 
  (0.0078)   
t-3 - 0.052*** - - 
  (0.0108)   
t-4 - 0.058*** - - 

 
 (0.0182)   

Number of actor’s patents in      
t-1 - - 0.065*** - 

   (0.0018)  
t-2 - - 0.008*** - 
   (0.0012)  
t-3 - - 0.006*** - 
   (0.009)  
t-4 - - 0.005*** - 
   (0.0013)  
Number of an actor’s links in      
t-1 - - - 0.009*** 
    (0.0006) 
t-2 - - - 0.002*** 
    (0.0002) 
t-3 - - - 0.001*** 
 
t-4 

   (0.0003) 
- - - 0.001*** 

    (0.0005) 
Log likelihood -15011.173 -17118.235 -15049.471 -16785.956 
Pseudo R² 0.170 0.054 0.168 0.072 
McFadden's R2 0.170 0.053 0.167 0.072 
Number of observations 46,827 46,872 46,872 46,872 

Notes:  All models include dummy variables for regions that are statistically significant at the 1% 
level (the reference region is Siegen). Robust standard errors in parentheses. ***: statistically 
significant at the 1% level; **: statistically significant at the 5% level; *: statistically significant at 
the 10% level. 
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in the largest component in one of the previous periods does not differ much 

from that of an actor’s previous presence. The number of patents held by an 

actor in a sub-period also has a highly significant effect on the probability of 

continuing in the final sub-period. However, the marginal effect for the 

number of patents in period t-1 on reoccurrence of an actor in the present 

period is only 6.52 percent, whereas the remaining sub-periods exhibit only a 

rather small effect of less than 1 percent. An actor’s number of links (degree) 

in a previous period also has a positive effect on his probability of being 

present in a subsequent period. This result suggests that comparatively well 

connected inventors tend to be active over a longer time span and, thus, have 

a higher probability of being involved in future projects. The marginal effect of 

this variable for all sub-periods is, however, less than 1 percent, and 

decreases with the time distance. Thus, an actor’s embeddedness must not 

be a major factor in explaining his or her or reemergence in a later period. 

These surprising results for an actor’s number of patents and an actor’s 

degree are in accordance with the observation that slightly less that 40 

percent of the inventors generate two or more patents (see Figure A1 in the 

Appendix), and that about half of all actors do not have more than three links 

(Figure A2 in the Appendix). 

 Putting all the results of the empirical models together, we can 

conclude that the pure presence of an actor and his position in the largest 

component of a network are more important for reoccurrence in a subsequent 

period than a high individual performance as represented by the individual’s 

degree and the absolute number of patents. Having been part of the largest 

component in t-1 has the strongest impact on the reoccurrence of a node in 

the final sub-period. The number of an actor’s patents as well as his or her 

number of links has only a minor impact on subsequent network presence.  
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6. The effect of fluidity on network structure and performance  

The previous section showed that networks are characterized by a high level 

of actor fluidity at the micro-level. This raises the question about the 

relationship between micro-level fluidity of a network and its macro structure. 

According to our Hypothesis II the macro structure of a network should be 

unaffected by the fluctuation of actors. To investigate the effect of actor 

fluctuation on network structure we run fixed effects regressions with three 

fluidity measures as independent variables: the share of discontinued actors 

from period t-1, the share of new actors, and the net change in the number of 

actors. Table 3 shows the results for the dependent variables share of the 

largest component, share of isolates, and mean degree.12 

Table 3:  The relationship between the shares of discontinued actors, shares 
of new actors and network structure  

Variables Share of largest component Share of isolates Mean degree 

Share of 
discontinued 
actors from t-1 

-0.356** 
(0.146) - - 0.230*** 

(0.067) 
- 

- -1.810 
(2.558) - - 

 

Share of new 
actors - -0.691*** 

(0.232) - - 0.118 
(0.132) - - -2.226 

(4.259) - 

Net change 
number of actors - - 0.240 

(0.219) - - -0.414*** 
(0.062) - - 3.586 

(4.266) 

Constant 0.339*** 
(0.104) 

0.612*** 
(0.176) 

0.077*** 
(0.024) 

-0.047 
(0.048) 

0.025 
(0.100) 

0.137*** 
(0.007) 

5.957*** 
(1.829)  6.373** 

(3.237) 
4.491*** 
(0.473) 

Adjusted R² 0.740 0.761 0.728 0.744 0.639 0.642 0.631  0.628 0.629 

Notes: Fixed effects panel regressions. Robust standard errors in parentheses. ***: statistically 
significant at the 1 % level; **: statistically significant at the 5 % level. The number of observations is 
36 in all models (nine regions). 

 

We find that the share of discontinued actors from the previous period 

is significantly related to a smaller share of actors in the largest component 

and a higher share of isolates. The mean degree seems to be, however, 

                                            
12 See Tables A8 and A9 for descriptive statistics and correlations between the variables. 
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unaffected by the fluidity of actors. A higher share of new actors is related to 

a smaller share of actors in the largest component, and a higher net change 

of the number of actors is related to a lower share of isolates. The non-

significance of a relationship between the share of new actors and the share 

of isolates is consistent with the observation that the vast majority of new 

actors do not enter as an isolate, but connect with a component (Section 5.1). 

It is quite remarkable that the relationship between the three fluidity indicators 

and the mean degree is not statistically significant. This result suggests that 

the number of new links created by new actors is not significantly smaller 

than the number of links that are disrupted because of actors exiting the 

network. This corresponds to our earlier finding that the share of actors who 

attach themselves to a network component is larger among newcomers than 

among those who exit (Section 5.1). Relationships with other measures of 

network structure such as average component size, network centralization 

and overall clustering coefficient were found to be not statistically 

significant.13 All in all, we can conclude from the results of these regressions 

that fluidity of actors leads to some fragmentation of a network, but does not 

affect the average number of relationships. Besides these observations, 

network structures appear to be rather robust with regards to entry and exit of 

actors, supporting our Hypothesis II. 

For investigating the effect of fluidity of actors on the performance of 

the respective regional innovation system we use patent productivity as the 

measure of performance. Patent productivity is the number of patents filed by 

private sector innovators with at least one inventor residing in the respective 

region per 1,000 R&D employees. While this metric reflects the level of the 

efficiency of a RIS (Fritsch 2002; Fritsch & Slavtchev 2011), we also take the 

percent change of the patent productivity to analyze the development of that 

level. Two control variables are included in all models. The first of these 

                                            
13 The squared form of the fluidity measures is never statistically significant, indicating 
absence of non-linear relationships. 
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variables is the share of service sector employment, this accounts for the 

observation that the propensity of actors in this sector to apply for a patent is 

comparatively low (Bode 2004; Fritsch & Slavtchev 2011). Hence, we expect 

a negative sign for the respective coefficient because regions with higher 

shares of service employment should have lower numbers of patents. The 

second control variable is the share of manufacturing employees in 

establishments with less than 50 employees. This control variable accounts 

for the observation that the number of patents per unit of R&D input tends to 

be higher in smaller firms than in larger firms (for a theoretical explanation 

and discussion, see Cohen & Klepper 1996) so that we expect a negative 

sign for this variable. 

Table 4:  The relationship between the shares of discontinued actors, new 
actors and patent productivity 

In the model with the percent change of patent productivity as the 

dependent variable, we also include the level of patent productivity in the 

 
Patent productivity (ln) Change of patent productivity (%) 

Share of discontinued actors 
from t-1 

1.501*** 
(0.417) - - 1.387*** 

(0.434) - 
 
 

Share of new actors in t0 - 2.647*** 
(0.934) - - 2.299** 

(0.954) 
 
 

Net change number of actors - - -2.999*** 
(0.726) - - -2.870*** 

(0.756) 

Share of service employment -0.768 
(1.762) 

0.560 
(1.787) 

-1.935 
(1.773) 

-1.228 
(1.744) 

-0.192 
(1.818) 

-2.267 
(1.717) 

Employment share of 
manufacturing establishments 
< 50 employees 

0.638 
(0.779) 

1.280 
(0.791) 

0.048 
(0.791) 

0.950 
(0.766) 

1.463* 
(0.799) 

0.416 
(0.761) 

Patent productivity in t-1 (ln) - - - -0.911*** 
(0.177) 

-0.848*** 
(0.186) 

-.951*** 
(0.168) 

Constant -0.425 
(1.521) 

-3.163** 
(1.554) 

2.415 
(1.777) 

0.003 
(1.568) 

-2.199 
(1.759) 

2.607 
(1.714) 

Adjusted R² 0.636 0.663 0.737 0.497 0.535 0.677 

Notes: Fixed-effects panel regressions. Robust standard errors in parentheses. ***: statistically 
significant at the 1 % level; **: statistically significant at the 5 % level; *: statistically significant at 
the 10% level. The number of observations is 36 in all models (nine regions). 
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base year. This variable should have a negative sign for two reasons. First, 

regions with an already relatively high level of patent productivity may have 

lower potentials for improvements than regions that are characterized by a 

comparatively low performance. Second, the level of patent productivity in the 

base year controls for a regression to the mean effect. This denotes the 

phenomenon that periods of relatively large changes into one direction may 

be followed by periods where the changes are relatively small or even in the 

opposite direction. 

Table 5:  The relationship between the shares of ceased and new links with 
patent productivity 

 
Patent productivity (ln) Change of patent productivity (%) 

Share of discontinued  links 
from t-1 

-4.810** 
(1.919) - - -5.117*** 

(1.715) - - 

Share of new links - 6.135*** 
(2.118) - - 5.638*** 

(2.140) - 
 
Net change number of links - - 6.579*** 

(1.187) - - 6.236*** 
(1.069) 

Share of service employment 1.088 
(1.807) 

1.166 
(1.741) 

0.256 
(1.357) 

-0.743 
(1.750) 

0.368 
(1.778) 

-0.756 
(1.298) 

Employment share of 
manufacturing establishments 
< 50 employees 

0.463 
(0.932) 

1.203 
(0.791) 

-0.460 
(0.708) 

0.170 
(0.887) 

1.398* 
(0.785) 

-0.289 
(0.649) 

Patent productivity in t-1 (ln) - - - -0.629*** 
(0.168) 

-0.863*** 
(0.183) 

-0.803*** 
(0.126) 

Constant 2.886 
(2.618) 

-7.376*** 
(2.303) 

-0.560 
(1.213) 

5.064** 
(2.523) 

-6.179** 
(2.610) 

0.409 
(1.200) 

Adjusted R² 0.643 0.667 0.803 0.580 0.552 0.765 

Notes: Fixed effects panel regressions. Robust standard errors in parentheses. ***: statistically 
significant at the 1 % level; **: statistically significant at the 5 % level. The number of 
observations is 36 in all models (nine regions). 

Generally, the relationship between the indicators for the fluidity of 

actors and our measures of network performance are highly statistically 

significant (Table 4). The significantly positive signs of the estimated 

coefficient for both, the share of discontinued actors and the share of new 

actors, suggests that replacement of ‘old’ actors by new ones may be 
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conducive for the performance of the respective regional innovation system.  

We find, however, a significantly negative relationship between patent 

productivity and the net change of the number of actors. This result could be 

caused by the trend towards an increasing number of inventors per patent 

(see Table A6 in the Appendix), so that the number of inventors grows 

stronger than the number of patents.   

There are also highly significant relationships between the fluidity of 

links and network performance, but the directions of the effects are quite 

different from the estimations for fluidity of actors (Table 5). The negative 

effect of the share of ceased links may indicate negative effects of dissolving 

R&D cooperation on the division of innovative labor. In contrast, the 

pronounced positive coefficients for the share of new links and the net 

change of the number of links suggest that newly established relationships, 

as well as increasing numbers of relationships, are conducive to the 

performance of RIS. These results clearly support the notion that the 

connectedness of actors resulting in an intense transfer of knowledge along 

with the division of innovative labor are both important determinants of the 

performance of regional innovation systems (Fritsch & Slavtchev 2011). The 

results for the control variables remain the same as in the analysis of the 

fluidity of actors (Table 4). 

7. Discussion: What does this mean and what do we need to know? 

We investigated the stability of cooperative relationships within regional 

inventor networks, focusing our analysis on the effect of the fluidity of actors 

and their links for the structural stability of networks and the performance of 

the respective regional innovation system. The analysis was performed for 

nine German planning regions over a period of 15 years (1994-2008). At the 

micro-level of individual inventors, we observed rather high levels of 

fluctuation of actors across time periods. This finding challenges 

considerations that suggest longer-term stability of R&D cooperation because 
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of transaction costs, as well as the assumptions of the well-established 

Barabási & Albert (1999, 2000, 2002) model. We find that the pure presence 

of an actor and an actor’s position in the largest component have a higher 

impact on the probability of his or her reemergence in a subsequent period 

than an inventors’ performance in terms of the number of patents or links. 

 Our analyses show some statistically significant relationships between 

fluidity at the micro-level and stability of network structure. Higher fluidity of 

actors leads to more fragmentation, as indicated by a lower share of the 

largest component and a higher share of isolates. However, there is no 

statistically significant relationship with the mean degree and other 

conventional measures of network structure. This result suggests that 

abandoned ties due to actors leaving the network are, more or less, 

completely replaced by newly established relationships. We found 

pronounced statistically significant relationships between the fluidity of actors 

and patent productivity as a measure for the performance of the respective 

regional innovation system. This result suggests that the termination of 

cooperative relationships due to fluidity of actors is not generally harmful for 

regional innovation activities. However, the net change in the number of 

actors is negatively related to the performance of the respective regional 

innovation system. In contrast, an increase in the number of links among 

actors is positively related to network performance. This is consistent with the 

notion that the intensity of knowledge transfer and division of innovative labor 

are important determinants of the performance of regional innovation systems 

(Fritsch & Slavtchev 2011). 

We conclude from our analysis that the efficiency of a RIS does not 

depend on actors remaining in an innovation network for long periods of time. 

On the contrary, since dynamic innovation processes require a permanent 

inflow of new actors with new knowledge and ideas, at least a certain degree 

of fluctuation of the actors in an innovation network can be regarded as 

essential for its effective performance. The negative relationship between the 
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net change of actors and the performance of the respective regional 

innovation system requires further investigation. Our analyses suggest that 

increasing the connectedness within a network is more decisive for the 

effective performance of an innovation system than the fluidity of actors.  

 The high level of actor fluidity revealed by our analyses clearly 

indicates that the notion that transaction costs motivate long-term persistent 

cooperative relationships in R&D ignores other more important factors that 

influence the stability of cooperative relationships. One important influence 

could be the dynamics of innovative processes that require frequent changes 

in the combination of knowledge fields and, hence, of cooperative 

relationships among actors. Further research should seek to identify these 

influences in order to enable a more comprehensive understanding of the 

factors that determine the choice of cooperation partners and the duration of 

the relationship. How and why do actors select certain partners for R&D 

cooperation? Why do they decide to discontinue a once-established 

relationship? The preferential attachment mechanism proposed by Barabási 

& Albert (1999, 2000) is obviously inappropriate when discussing innovation 

networks, because, at best, it only explain a small part of an actor’s behavior. 

Another interesting consequence of fluidity in networks worthy of 

further investigation is how it effects the knowledge content of a network and 

on knowledge diffusion. While the inclusion of new actors in a network implies 

an inflow of additional knowledge, it is unclear if the knowledge transferred by 

an actor who leaves a network continues to be used by those cooperation 

partners who remain in the network. The effect of this type of knowledge 

transfer should depend on number of links held by the non-continuing actor, 

and on the structure of the network. Hence, the effect of a well-connected 

member belonging to the largest component of a network should be much 

more significant than that of an isolate or of someone in a small component. 

Moreover, the structure of the network should play a role here. Does a larger 

and denser network lead to higher robustness against missing nodes? 
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A principal shortcoming of our analysis may follow from the fact that 

our data, drawn from patent statistics, covers only a certain aspect of 

innovation activities, i.e., research that leads to a patent application. Actors 

may pursue other types of collaborative innovation that do not lead to a 

patent application, e.g., basic research, that are not recorded in patent data. 

Hence, it could well be that data sources with a more comprehensive 

coverage of innovation activity would show higher levels of long-lasting R&D 

cooperation. 
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Appendix 

 

Figure A1: Shares of actors by number of patents (all periods) 
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Figure A2: Shares of actors by number of degrees (all periods) 
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Table A2: Descriptive statistics of variables (all regions and all periods) 

 
Mean Median Minimum Maximum Standard 

deviation 

Average path length 3.502 2.644 1.313 17.033 2.443 

Share of continuing actors 
in successive periods 0.211 0.224 0.102 0.3 0.0544 

Number of degrees 1.347 0 0 201 4.856 

Actor was part of the 
largest component in 
previous period 

0.0265 0 0 1 0.161 

Actor appears in network 
for the first time 0.242 0 0 1 0.428 

Actor’s number of patens 3.634 2 2 135 3.525 
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Table A3: Correlations between variables 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 Number of patents t-0 1                   
2 Number of patents t-1  0.46 1                  
3 Number of patents t-2 0.26 0.41 1                 
4 Number of patents t-3 0.11 0.18 0.37 1                
5 Number of patents t-4 0.07 0.12 0.19 0.37 1               
6 Actor present t-0 0.57 0.13 0.03 -0.04 -0.05 1              
7 Actor present t-1 0.12 0.53 0.09 -0.02 -0.05 0.06 1             
8 Actor present t-2 0.02 0.09 0.5 0.07 -0.02 -0.08 -0.02 1            
9 Actor present t-3 -0.02 0.02 0.11 0.6 0.11 -0.13 -0.13 -0.06 1           
10 Actor resent t-4 -0.05 -0.03 0.01 0.12 0.53 -0.16 -0.18 -0.17 -0.02 1          
11 Actor’s degree t-0 0.79 0.34 0.17 0.06 0.03 0.54 0.1 0 -0.04 -0.06 1         
12 Actor’s degree t-1 0.31 0.75 0.27 0.1 0.05 0.11 0.5 0.06 -0.02 -0.06 0.34 1        
13 Actor’s degree t-2 0.14 0.26 0.76 0.23 0.09 0.00 0.07 0.48 0.05 -0.03 0.12 0.27 1       
14 Actor’s degree t-3 0.04 0.09 0.24 0.76 0.21 -0.05 -0.04 0.04 0.47 0.05 0.02 0.06 0.2 1      
15 Actor’s degree t-4 0.01 0.06 0.12 0.27 0.81 -0.07 -0.07 -0.04 0.07 0.5 0.01 0.03 0.07 0.21 1     
16 In largest component t-0 0.24 0.13 0.07 0.03 0.02 0.19 0.04 0.00 -0.01 -0.02 0.26 0.11 0.04 0.01 0.01 1    
17 In largest component t-1 0.09 0.25 0.1 0.05 0.03 0.05 0.24 0.03 0.00 -0.02 0.08 0.25 0.12 0.04 0.02 0.06 1   
18 In largest component t-2 0.02 0.1 0.23 0.12 0.04 -0.02 0.03 0.26 0.07 -0.01 0.01 0.11 0.27 0.11 0.04 0.02 0.11 1  
19 In largest component t-3 0.02 0.07 0.14 0.32 0.16 -0.03 -0.01 0.05 0.29 0.06 0.02 0.06 0.13 0.28 0.13 0.03 0.05 0.23 1 
20 In largest component t-4 0.04 0.06 0.06 0.12 0.27 -0.02 -0.02 -0.01 0.04 0.29 0.05 0.06 0.05 0.08 0.29 0.08 0.07 0.08 0.18 
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Table A4:  Numbers of nodes, ties, components, and total patents in different 

time periods 

 Number of 
 Time 
period Actors Ties Compo-

nents Patents 

94-96 9,845 27,964 1,900 8,630 

97-99 14,767 49,844 2,498 14,240 

00-02 15,394 63,856 2,439 13,103 

03-05 17,483 74,132 2,700 10,663 

06-08 18,324 76,932 2,727 12,348 
 

 

Table A5: Mean degree and average path length in different time periods 

  94-96 97-99 00-02 03-05 06-08 

Mean 
degree 3.76 5.11 5.51 5.44 5.36 

Average 
path length 2.216 3.569 3.847 3.773 3.831 

Share of 
largest 
component 

0.05 0.07 0.10 0.12 0.10 

Average 
component 
size 

4.42 5.14 5.09 5.72 5.78 

 

 

Table A6: Number of co-patents and single patents (all regions) 

 
94-96 97-99 00-02 03-05 06-08 94-08 

Total number of patents 8,630 14,240 13,103 10,663 12,348 58,984 
Number of co-patents 7,374 12,597 11,848 9,498 11,138 52,455 
Share of co-patents in % 85.45 88.46 90.42 89.07 90.20 88.93 
Number of patents with single inventor  1,256 1,643 1,255 1,165 1,210 6,529 
Number of inventors per patent 2.708 2.819 2.987 3.071 2.955 2.914 
Number of inventors per co-patents 3.400 3.512 3.652 3.698 3.582 3.577 
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Table A7: Logistic regressions 

 
Reoccurrence of a node in the period 2006-2008 

Variables I II III IV 
Actor present in t-1     
t-1 2.34*** - - - 
 (0.0344)    
t-2 0.95*** - - - 
 (0.0317)    
t-3 0.63*** - - - 
 (0.03641)    
t-4 0.47*** - - - 

 
(0.0439)    

Actor was part of largest 
component in    

  

t-1 - 1.625*** - - 
  (0.047)   
t-2 - 0.332*** - - 
  (0.059)   
t-3 - 0.430*** - - 
  (0.076)   
t-4 - 0.470*** - - 

 
 (0.126)   

Number of actor’s patents in      
t-1 - - 0.682*** - 

   (0.018)  
t-2 - - 0.092*** - 
   (0.0121)  
t-3 - - 0.068*** - 
   (0.009)  
t-4 - - 0.047*** - 
   (0.014)  
Number of an actor’s links in      
t-1 - - - 0.091*** 
    (0.006) 
t-2 - - - 0.017*** 
    (0.002) 
t-3 - - - 0.012*** 
 
t-4 

   (0.0026) 
- - - 0.007* 

    (0.0046) 
Regional dummies Yes*** Yes*** Yes*** Yes*** 

Constant 
-4.07*** 
(0.0692) 

-1.876*** 
(0.0528) 

-2.437*** 
(0.0578) 

-2.017*** 
(0.0548) 

Log likelihood -15011.173 -17118.235 -15049.471 -16785.956 
Pseudo R² 0.1702 0.054 0.168 0.072 
McFadden's R2 0.170 0.053 0.167 0.072 
Number of observations 46,827 46,872 46,872 46,872 

Notes: Coefficients; robust standard errors in parentheses. ***: statistically significant at the 1 % 
level; **: statistically significant at the 5 % level; *: statistically significant at the 10 % level. 
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Table A8:  Descriptive statistics for measures of fluidity, network structure and 

network performance 

 
Mean Median Minimum Maximum Standard 

deviation 

Share of discontinued actors 
from t-1 0 .7404 0.7386 0.6078 0.8984 0.0716 

Share of new actors 0.7768 0.7762 0.5967 0.8984 0.0702 

Net change number of actors 0.0364 0.0407 -0.0614 0.1032 0.0420 

Share of discontinued links 
from t-1 0.9030 0.9034 0.8288 0.9640 0.0290 

Share of new links 0.9206 0. 9205 0.8724 0.9541 0.0195 

Net change of the number of 
links 0.0176 0.0173 -0.0364 0.1052 0.0267 

Share of largest component 0.0982 0 .0716 0.0226 0.3333 0.0792 

Share of isolates 0.0870 0 .0837 0.0327 0.1876 0.0366 

Mean degree 5.3552 5.5645 3.225 7.26 1.1647 

Patent productivity (ln) -0.3677 -0.4157 -0.7851 0.5466 0.2589 

Change of patent 
productivity (%) -0.0384 -0.0477 -0.4856 0.3367 0.1882 

Share of service 
employment 0.8773 0.8762 0.7579 0.9706 0.0483 

Employment share of 
manufacturing 
establishments < 50 
employees 

0.3496 0.3307 0.1872 0.5603 0.1059 
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Table A9:  Rank correlations between measures of fluidity, network structure and network performance 

   1 2 3 4 5 6 7 8 9 10 11 12 

1 Share of discontinued 
actors from t-1 1            

2 Share of new actors 0.840*** 1           

3 Net change number of 
actors -0.356** 0.107 1          

4 Share of discontinues 
links from t-1 -0.025 0.314* 0.503*** 1         

5 Share of new links 0.668*** 0.638*** -0.190 0.424*** 1        

6 Net change number of 
links 0.494*** 0.090 -

0.682*** 
-

0.692*** 0.259 1       

7 Share of largest 
component 

-
0.538*** 

-
0.641*** -0.196 -

0.542*** 
-

0.532*** 0.098 1      

8 Share of isolates 0.445*** 0.399** -0.041 -0.117 0.267 0.354** -0.337** 1     

9 Mean degree -0.355** -
0.480*** -0.150 -0.393** -0.380** 0.138 0.541*** -

0.606*** 1    

10 Patent productivity (ln) -0.060 -0.241 -
0.503*** 

-
0.505*** 0.121 0.661*** 0.237 0.210 0.307* 1   

11 Change of patent 
productivity (%) 0.030 0.031 0.116 -0.074 0.106 0.083 -0.181 -0.014 0.058 0.286* 1  

12 Share of service 
employment 0.149 0.085 -0.077 -0.004 0.226 0.168 -0.043 0.150 -0.288* -0.124 -0.059 1 

13 

Employment share of 
manufacturing 
establishments < 50 
employees 

0.158 0.055 -0.341** -0.370** -0.039 0.263 0.073 -0.076 0.008 -0.287* 0.060 0.436*** 

Notes: Spearman rank correlation coefficients. ***: statistically significant at the 1 % level; **: statistically significant at 
the 5 % level; *: statistically significant at the 10 % level. 
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