Vasilev, Aleksandar

Article — Accepted Manuscript (Postprint)

Aggregation with non-convex labor supply decision, unobservable effort, and reciprocity ("gift exchange") in labor relations

Theoretical and Practical Research in Economic Fields

Suggested Citation: Vasilev, Aleksandar (2018) : Aggregation with non-convex labor supply decision, unobservable effort, and reciprocity ("gift exchange") in labor relations, Theoretical and Practical Research in Economic Fields, ISSN 2068-7710, ASERS Publishing, Craiova, Vol. IX, Iss. 1(17) (forthcoming), http://dx.doi.org/10.14505/tpref

This Version is available at: http://hdl.handle.net/10419/174357

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Aggregation with non-convex labor supply decision, unobservable effort, and reciprocity ("gift exchange") in labor relations

Aleksandar Vasilev*

February 6, 2018

Abstract

The purpose of this note is to explore the problem of non-convex labor supply decision in an economy with reciprocity in labor relations ("gift exchange") a la Danthine and Kurmann (2010), and explicitly perform the aggregation presented in Vasilev (2017) without a formal proof, and thus provide - starting from micro-foundations - the derivation of the expected utility functions used for the aggregate household. We show how lotteries as in Rogerson (1988) can be used to convexify consumption sets, and aggregate over individual preferences. With a discrete labor supply decisions, the elasticity of aggregate labor supply increases from unity to infinity.

Keywords: Aggregation, Indivisible labour, Reciprocity, Non-convexities

JEL Classification Codes: E1, J22, J41, J46
1 Introduction and Motivation

The purpose of this note is to explore the problem of non-convex labor supply decision in an economy with reciprocity in labor relations ("gift exchange") a la Danthine and Kurmann (2010), and explicitly perform the aggregation presented in Vasilev (2017) without a formal proof, and thus provide - starting from micro-foundations - the derivation of the expected utility functions used for the aggregate household. We show how lotteries as in Rogerson (1988) can be used to convexify consumption sets, and aggregate over individual preferences. With a discrete labor supply decisions, the elasticity of aggregate labor supply increases from unity to infinity.

2 Model setup

The theoretical setup follows to a great extent Vasilev (2017). To simplify the analysis, the model economy here is static, without physical capital, and agents will face a non-convex labor supply decision. Effort exerted by workers is a productive input in the final goods sector, but unobservable, and thus not directly contractible. However, producers understand that while workers do not like exerting effort, they derive utility from returning the gift of a generous wage by supplying a higher effort level even in an environment of costly monitoring. This leads to the firm paying an efficiency wage. Since the focus is on a one-period world, the model abstracts away from technological progress, population growth and uncertainty. There is a large number of identical one-member households, indexed by i and distributed uniformly on the $[0,1]$ interval. In the exposition below, we will use small case letters to denote individual variables and suppress the index i to save on notation.

2.1 Description of the model

Each household maximizes the following utility function:

$$\ln c + \ln(1 - h) - h \left[\frac{e^2}{2} - \Phi(e, \cdot) \right], \tag{1}$$

where c denotes consumption of household i, h is the fraction of time available to household i that is spent working, and e is the level of effort exerted. The total time endowment available
to each household i is normalized to unity, thus leisure, $l = 1 - h$ is implicitly expressed as
time off work. The novelty here is the $\mathcal{R}(e,.)$ utility term, which is included to capture that
workers may derive utility out of ”reciprocal behavior towards their employer.” As long as
$\mathcal{R}_e(e,.) > 0$, household i would be willing to reward a wage that is perceived to be above
the competitive one (even in the absence of any direct material gain resulting from such an
action) with a level of effort above the required minimum (say, zero).

As in Hansen (1985) and Rogerson (1988) household i’s labor supply is assumed to be
indivisible, i.e. $h \in \{0, \bar{h}\}$. The problem faced by a household that decides to work full-time
is then to set $h = \bar{h}$ and enjoy

$$
U^w = \ln c^w + \ln(1 - \bar{h}) - \bar{h} \left[\frac{(e^w)^2}{2} - \mathcal{R}(e^w,.) \right],
$$

(2)

where $c^w = w\bar{h} + \pi$ and e^w are the consumption and effort levels when working. Note that
the effort level will be determined implicitly from its optimality condition $e = \mathcal{R}_e(e,.)$, which
does not depend on the other model variables. In contrast, a household that decides not to
work chooses $h = 0$ and enjoys

$$
U^u = \ln c^u,
$$

(3)

where $c^u = \pi$ is the consumption level when the household is not working.

2.2 Reciprocity

As in Vasilev (2017) the reciprocity $\mathcal{R}(e,.)$ term in the household’s utility function is modeled
as a product of the mutual ”gifts” of an employed household and the representative firm:

$$
\mathcal{R}(e,.) = d(e)g(w),
$$

(4)

where $d(e)$ denote the gift of the employed household towards the firm, expressed in terms
of effort exerted, and $g(w)$ is the counter-gift of the firm to the worker in terms of the
wage rate paid. Both terms are assumed to be concave in their respective arguments, i.e.
$d_e(e) > 0, d_{ee}(e) < 0$ and $g_w(w) > 0, g_{ww}(w) < 0$. Hence, when a worker receives a wage offer
that is perceived as generous (e.g. a wage above the competitive rate), i.e. $g(w) > 0$, the
household’s utility increases if there is a reciprocal gift expressed in terms of higher effort,
$d(e) > 0$. In addition, from the perspective of an atomistic worker, the wage rate is taken as given, that is why $d_w(e) = 0$. In addition, employed households do not take into consideration the effect of their (individual) effort on the firm’s output, and hence on the gift made by the firm to the worker, i.e., $g_e(w) = 0$ from the perspective of an employed household.

Note that in defining the two gifts, both are expressed as deviations from some expected norm (“reference level”). To simplify the analysis, we will normalize the minimum acceptable effort level to be $e_{\text{min}} = 0$. The worker’s gift then can be expressed as:

$$d(e) = f(e), \quad (5)$$

where the functional form was intentionally chosen the same as the firm’s production function.\(^1\) Next, we define the firm’s gift as follows:

$$g(w) = \ln w - \varphi \ln \frac{f(eH)}{n},$$

where the first term on the right-hand-side, $\ln w$, is the utility benefit resulting from a higher consumption, which the worker attributes to the firm’s wage offered. The remaining term in $g(w)$, $\ln \frac{f(eH)}{n}$ term more specifically, has to do with rent-sharing considerations between the firm and the worker, as it represents the surplus to be shared (worker’s product). In this case it represents a case where the firm distributes all the revenue to its workers. Plugging this expression into the optimal effort condition

$$e = \mathfrak{R}_e(e, .) = d_e(e)g(w) = f'(e)g(w), \quad (6)$$

which does not have a closed-form solution. However, if we use $f(e) = a^\alpha$, $0 < \alpha < 1$, then we can express the wage rate as

$$\ln w = \frac{e^{2-\alpha}}{\alpha} + \varphi \ln \frac{(eH)^\alpha}{n}.$$

From this equation it follows that the wage rate set by the firm positively depends on the firm’s revenue per worker ($\varphi > 0$), as it increases the total surplus/rent of the labor relationship; this is also referred to as a rent-sharing motive.

\(^1\)As shown in Danthine and Kurmann (2010), the dynamics of the model does not change when a multiplicative scale factor is added to the worker’s gift, or when the minimum effort is set to $e_{\text{min}} = 2$.\(^4\)
2.3 Stand-in firm

There is a representative firm in the model economy. It produces a homogeneous final product using a production function that requires labor \(H \) as the only input. For simplicity, output price will be normalized to unity. The production function \(f(H) \) features decreasing returns to scale (for any effort level):
\[
 f'(eH) > 0, \quad f''(eH) < 0, \quad f'(0) = \infty, \quad f'(e\bar{h}) = 0.
\]
The representative firm acts competitively by setting the wage rate \(w \) and choosing \(H \) to maximize profit by stimulating optimal effort:

\[
 \pi = f(eH) - wH \quad \text{s.t.} \quad 0 \leq H \leq \bar{h}. \tag{7}
\]

and

\[
 e = f'(e)g(w). \tag{8}
\]

In equilibrium, there will be positive profit, which follows from the assumptions imposed on the production function.

2.4 Decentralized competitive equilibrium (DCE): Definition

A DCE is defined by allocations \(\{c^w, c^u, e, H\} \), wage rate \(\{w\} \), and aggregate profit \(\Pi = \pi \) s.t. (1) all households maximize utility; (2) the stand-in firm maximizes profit; (3) all markets clear.

3 Characterization the DCE and derivation of the aggregate utility function

It will be shown that in the DCE, if it exists, only some of the households will be employed and work full-time, while the rest will be unemployed. Following the arguments in Rogerson (1988) and Hansen (1985), it can be easily shown that polar cases in which each household either, or a case in which nobody works, cannot be equilibrium outcomes. Therefore, it must be the case that a only proportion of the agents in the economy are working. Denote this mass of employed by \(n \). Workers in the official sector will receive consumption \(c^w \), while those working in the unofficial sector will consume \(c^u \). Note that \(n \) can be interpreted also
as the probability of being chosen to work: This probability is determined endogenously in the model, as workers would seek for the optimal balance between the net return from working in terms of increased utility of consumption, which, however, comes at the expense of lower utility out of leisure. Note that no matter of the employment outcome, ex post every household enjoys the same utility level. Thus, in equilibrium $H = n\bar{h}$. As derived earlier, the wage is set equal to:

$$\ln w = \frac{e^{2-\alpha}}{\alpha} + \varphi \ln \left(\frac{e\bar{h}n}{n}\right)^{\alpha}$$

Firm’s profit is then

$$\pi = \Pi = f(n\bar{h}e) - wn\bar{h} > 0, \tag{9}$$

which follows from the decreasing returns to scale featured by the production function. Next, to show that the DCE actually exists, it is sufficient to show the existence of a fixed point $n \in (0, 1)$ by analyzing a non-linear equation using the fact that in equilibrium utility is the same for all households. Note that from the result that grey-sector hours are a function of total market hours, it follows now that unofficial hours are a function of the proportion of households employed in the market sector (since \bar{h} is now a parameter).

It is trivial to show that everyone working in the market sector ($n = 1$) is not an equilibrium, since then $w = 0$. From the ex ante symmetry assumption for households, market consumption would be the same for workers and those not selected for work, while the latter would enjoy higher utility out of leisure, hence there is no benefit of working. Similarly, nobody working ($n = 0$) is not an equilibrium outcome either, since the firm would then offer a very high wage for the first unit of labor, and by taking a full-time job a marginal worker could increase his/her utility a lot.

Thus, if there is a DCE, then it must be that not all households would receive the same consumption bundle. If $n \in (0, 1)$ is an equilibrium, then total utility for households that work should equal to the utility of households that do not supply any hours. This equation is monotone in n, as the utility function is a sum of monotone functions. Thus we can explore the behavior of that function (the difference between the utility of working and not working) as we let n vary in the $(0, 1)$ interval. As $n \to 0$, the left-hand-side dominates (utility of
working is higher), while when $n \to 1$ the right-hand-side dominates (utility of not working is higher), where the results follow from the concavity of the utility functions and the production technology. In addition, from the continuity of those functions, $\exists n \in (0, 1)$, which is consistent with equilibrium. The unique value of n follows from the monotonicity of the utility and production functions. Let c^w and c^u denote equilibrium consumption allocations of individuals selected for work, and those who will work in the informal sector.

Given the indivisibility of the labor supply, the equilibrium allocation obtained above is not Pareto optimal, as demonstrated in Rogerson (1988). More specifically, a social planner (SP) could make everyone better off by using an employment lottery in the first stage and choosing the fraction n of individual households to work in the market sector and give everyone consumption $ne^w + (1 - n)e^u$. In order to show this, we need to check that such an allocation is feasible, and that it provides a higher level of total utility. Showing feasibility is trivial as total market labor input and total consumption are identical to the corresponding individual equilibrium values.

Next, we will show that the new allocation, which is independent of households employment status in the market sector, makes households better off since it generates higher utility on average. This is indeed the case, where the strict inequality follows from the convexity of the CES aggregation and the concavity of the logarithmic function. Thus, the SP is indeed giving in expected utility terms an allocation that is an improvement over the initial equilibrium allocation. If households can pool income together and doing so, they will be able to equalize consumption across states, i.e., $c = c^w = c^u$, so aggregate utility becomes:

$$\ln c + n \left[\ln(1 - \bar{h}) - \frac{e^2}{2} + \mathcal{R}(e, .) \right],$$

which is the representation in Vasilev (2017). On the aggregate, when each household faces an indivisible labor choices, the representative agent obtained from the aggregation features different preferences of work: as in Hansen (1985), the disutility of work in the market sector is now linear.
4 Conclusions

The purpose of this note is to explore the problem of non-convex labor supply decision in an economy with reciprocity in labor relations ("gift exchange") a la Danthine and Kurmann (2010), and explicitly perform the aggregation presented in Vasilev (2017) without a formal proof, and thus provide - starting from micro-foundations - the derivation of the expected utility functions used for the aggregate household. We show how lotteries as in Rogerson (1988) can be used to convexify consumption sets, and aggregate over individual preferences. With a discrete labor supply decisions, the elasticity of aggregate labor supply increases from unity to infinity.

References

