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September 28, 2017

Abstract

A recent series of papers has introduced a fresh perspective on
the problem of the evolution of human cooperation by suggesting an
amendment to the concept of cooperation itself: instead of thinking of
cooperation as playing a particular strategy in a given game, usually
C in the prisoner’s dilemma, we could also think of cooperation as col-
laboration, i.e. as coalitional strategy choice, such as jointly switching
from (D,D) to (C,C). The present paper complements previous work
on collaboration by expanding on its genericity: conditions for the
evolutionary viability and stability of collaboration under fairly unde-
manding assumptions about population and interaction structure are
derived. Doing so, this paper shows that collaboration is an adaptive
principle of strategy choice in a broad range of niches, i.e., stochastic
mixtures of games.
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1 Introduction

Humans are highly cooperative animals (Tomasello 2009). We possess a

rich toolbox of cooperative behaviors and are equipped with the cognitive

abilities required to carry them out. Arguably, cooperation with conspecifics

is so essential to our way of life that we cannot survive more than a couple

of days on our own (Tomasello 1999).

It may appear unambitious to claim that a species whose members are

able to reap mutual benefits by working together in the pursuit of joint goals

must evolutionarily fare better than species whose members are not. Still,

comparative research in evolutionary anthropology suggests that the extent

to which humans are able to detect opportunities for mutual benefit and to

coordinate their actions in order to exploit them is unparalleled in the animal

world (Tomasello et al. 2005; Bowles and Gintis 2011; Tomasello et al. 2012).

This immediately prompts the question of why this is so, i.e. why similarly

generic cooperative capabilities do not seem to have evolved in other species

(Pennisi 2005).

Ample game theoretic research on the conditions allowing for cooperative

behavioral traits to be fostered by natural and/or cultural selection exists

(see, e.g.: Nowak 2006; West, Griffin, and Gardner 2007; West, El Mouden,

and Gardner 2011; Nowak 2012; Rand and Nowak 2013). However, a recent

series of papers has introduced a fresh perspective on the subject within the

game theoretic framework by suggesting an amendment to the concept of co-

operation itself (Newton 2012; Sawa 2014; Angus and Newton 2015; Newton

2017). These authors argue that, instead of thinking of cooperation as play-

ing a particular strategy in a given game, usually C in the prisoner’s dilemma

[Pd ], we could also think of cooperation as coalitional strategy choice, such

as jointly switching from (D,D) to (C,C) in the Pd. To disambiguate play

of a cooperative strategy from coalitional strategy choice, Angus and Newton

(2015) suggest to refer to the latter as collaboration.

One particular strength of the concept of collaboration is its genericity, i.e.

it provides a unified formal approach to describing cooperative behavior in

more than one game. Correspondingly, Angus and Newton (2015) and New-
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ton (2017) have already shown that collaboration can be positively selected

for by evolutionary processes when social interaction between individuals is

modeled as one of a range of specific games.

The present paper complements previous work on collaboration by ex-

panding on its genericity: conditions for the evolutionary viability and sta-

bility of collaboration under fairly undemanding assumptions about popula-

tion and interaction structure are derived. Doing so, this paper shows that

collaboration is an adaptive principle of strategy choice in a broad range of

niches, i.e., stochastic mixtures of games—a concept to be concretized later.

Naturally, analyses also characterize niches in which collaboration does not

readily evolve. (Readers interested more generally in the strengths and lim-

itations of the concept of collaboration are referred to the papers referenced

above.)

This paper is organized as follows: Section 2 provides the motivation for

the formal model presented in Section 3. This model is analyzed in Section

4. Section 5 discusses results and concludes.

2 Motivation

Canonically, game theoretic studies of the evolution of cooperativeness start

with a given game, usually some variety of the Pd (e.g. Axelrod and Hamilton

1981; Nowak et al. 2004; for a literature review see: Nowak 2012). Subse-

quently, they add assumptions about population structure, interaction pat-

terns, and/or information available to players. Next, they analyze under

which conditions these ingredients facilitate the proliferation of strategies

that entail some form of cooperative behavior. The fruitfulness of this ap-

proach is evident from the vast literature it has produced (for reviews see,

e.g., Nowak 2006; West, Griffin, and Gardner 2007; Rand and Nowak 2013).

Beginning analyses by specifying a particular ‘base-game’ is inevitable as

long as cooperativeness, i.e. the very phenomenon in focus, needs to be de-

fined in terms of players playing a specific strategy of that game—be it C in

the one-shot Pd, TFT in its iterated variant, or positive levels of contribution

in a public good game. However, the concept of collaboration renders an al-
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terative approach possible. As collaboration represents a principle of strategy

choice, shorthand: a maxim, it can be defined independently of any concrete

game (for comprehensive discussions of the relation of collaborative maxims

with more traditional principles of strategy choice, e.g. best-responding, see,

e.g.: Karpus and Radzvilas, forthcoming; Newton 2012).

For the purpose of this paper, following Newton (2017), we will just as-

sume that collaborative players are able to determine a status quo strategy

profile for any given game and to jointly optimize their payoffs subsequently,

i.e. to search for possible Pareto-improvements from the status quo and to co-

ordinate on them if available. The only assumptions we will make about the

games played are that these are voluntary, symmetric, simultaneous, one-shot

2×2-games with random payoffs. We confine ourselves to symmetric 2×2-

games to maintain comparability with the bulk of the previous literature on

the evolution of cooperativeness. We allow for voluntary games, as these may

be more apt to capture the essence of the problem of the evolution of coopera-

tiveness (Hauert et al. 2002, 2007; Silva et al. 2010; also note that compulsory

games are included as a special case in the model presented below). We add

to the existing literature by relaxing constraints on the strategic nature of

the game played and analyzing the evolutionary performance of maxims—as

opposed to strategies—in such a variable environment.

We will compare the performance of collaboration to that of two other

maxims: self-sufficiency and self-protection. All three maxims determine be-

havior in volutary, one-shot 2×2-games, which are assumed have the follow-

ing timing. In stage one, players independently decide whether to engage in

social interaction or not. If at least one player opts out, no interaction takes

place and both receive a fixed baseline payoff. The maxim of self-suffiency

always opts out at this stage, while the other two opt in. In stage two, the

payoffs of the 2×2-game realize. In stage three, players simultaneously play

the strategy determined by their maxim given these payoffs. To this end, the

maxim of self-protection applies the maximin rule, thereby securing that it

cannot be taken advantage off by interaction partners (leading, e.g., to play

of D in the Pd). The maxim of collaboration, in contrast, determines a sta-

tus quo strategy profile by applying maximin, but then proceeds as described
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above (leading, e.g., to play of C in the Pd).

The motivation for this setup is threefold. One, allowing for voluntary

entry into social interaction as a first stage yields self-suffiency as the ref-

erence case—as opposed to defectiveness. This can be considered as being

biologically more realistic (Hauert et al. 2002, 2007). Two, letting payoffs

realize only after players have opted in, i.e. disallowing players to opt out

of dillemmatic 2×2-games like the Pd, makes it harder for collaboration to

evolve, as it is vulnarable to being exploited in these types of interactions.

Three, self-protection is chosen here as an opponent maxim to collaboration

because of (i) its simplicity—only information about own payoffs is required

for applying the maximin rule—, (ii) its behavioral equivalency to defective

strategies like ‘AllD’ in the Pd, and (iii) its genericity. (Note that ‘defection’

or ‘uncooperative behavior’ may be well defined for variants of the Pd, i.e.

on the strategy level. However, a formal concept of ‘defectiveness’ on the

maxim level is not available, yet.)

Other opponent maxims are certainly worth being studied, too. How-

ever, definitions of more exploitative opponent maxims than self-protection

are more demanding with respect to the cognitive abilities of players. The

maxims compared here, instead, are relatively abstemious and thus, arguably,

more likely to represent first steps in a series of evolutionary refinements of

maxims guiding social interaction (Tomasello et al. 2012; Rusch and Luetge

2016). Furthermore, the model presented in the following Section 3 already

shows that collaboration, even when faced with self-protection as its oppo-

nent maxim, does not evolve as readily as one may be tempted to expect

given its intuitively quite obvious advantages.

3 Model description

We analyze evolutionary dynamics in an unstructured population consisting

of N animals. Reproductive success is fitness proportional. The baseline

fitness of all animals is 1. Animals have one of three types: L (‘loners’), M

(‘maximiners’), or S (‘intention sharers’). L-types do not engage in social

interaction with other animals, whereas M - and S-types do. When two
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animals engage in social interaction, they play a simultaneous, one-shot,

symmetric 2×2-game represented by matrix A.

A =

(
a c

b d

)
(1)

Herein, payoffs a, b, c, d are i.i.d. random variables following a symmetric dis-

tribution, F (X), with mean 1 and support Z. In expected terms, thus, each

time two animals interact socially, they play one of the twelve strategically

distinct symmetric 2×2-games with payoffs X(i), i ∈ {1, 2, 3, 4}, where X(i)

denotes the ith order statistic of sampling four values from Z according to

F (X). Shorthand, we write 1 = X(1), 2 = X(2), etc. (In the following we

let F (X) = X/2 and Z = [0, 2], i.e. payoffs are uniformly distributed over

[0, 2], yielding 4 = 1.6, 3 = 1.2, 2 = 0.8, 1 = 0.6. However, mutatis mutandis,

qualitative results hold for any symmetric CDF.)

Using the notation suggested by Bruns (2015), the set of games played by

social types is Γ = {As,Ba, Ch,Cm,Co,Dl,Ha,Hr,Nc, Pc, Pd, Sh}. If no

further assumptions are made, each of these games realizes as a game played

by social types with equal probability (= 1/12, but see below).

The two social types differ in their maxims. M -types apply the maximin

rule: they choose their strategy such that they never receive the lowest pos-

sible payoff (= 1), irrespective of their opponent’s choice. S -types, on the

other hand, use the maximin rule to determine a status quo strategy profile

but then check for mutually beneficial, i.e. Pareto-better, deviations from

that status quo profile. If one such Pareto-better strategy profile exists, they

jointly deviate accordingly. If two such Pareto-better profiles exist, S -types

coordinate on each of them with equal probability. If none exists, they stick

to the status quo profile. Table S1 shows the resulting strategy choices by S -

and M -types for all games in Γ. When an S -type plays with an M -type, the

S -type behaves as if matched with another S -type and is thus vulnerable to

failures of coordination on Pareto-better profiles. When a social type plays

with a loner, finally, no interaction takes place, and both receive the baseline

payoff of 1 (6= 1).

As can be seen from Table S1, M - and S -types choose the same strate-
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gies in seven games (Ch,Cm,Co,Dl,Ha,Nc, and Pc). In the remaining

five games, however, their choices differ: γ = {As,Ba,Hr, Pd, Sh}. Obvi-

ously, these five games are the ones decisive for the dynamics of the popula-

tion. Therefore, we introduce an individual occurrence probability for each

of them: pAs, pBa, pHr, pPd, and pSh, respectively, with
∑
i∈γ

pi ≤ 1. Short-

hand, we say that η = (pi)i∈γ characterizes the niche that the population is

inhabiting.

Finally, we assume that fitness is evaluated after animals have lived long

enough, such that it is approximated sufficiently well by the expected payoffs

given in matrix G.

G =

πS,S(η) πS,M(η) πS,L(η)

πM,S(η) πM,M(η) πM,L(η)

πL,S(η) πL,M(η) πL,L(η)

 (2)

Herein,

πS,S(η) =
50 + 6(pAs + pSh)− pBa − pHr − 8pPd

35

,

πS,M(η) =
50− 29(pAs + pPd + pSh)− 8pBa − 15pHr

35
,

πM,S =
50− 22pAs − 15pBa − 8(pHr + pSh) + 6pPd

35
,

πM,M(η) =
50− 8pAs − 22(pBa + pHr + pPd + pSh)

35
,

and πL,•(η) = π•,L(η) = 1 always. (The non-trivial expected payoffs are ob-

tained by summing over the respectively probability-weighted payoffs obained

by the types S and M in the games in Γ using 4 = 1.6, 3 = 1.2, 2 = 0.8, 1 =

0.6. The general form of G is derived in the supplements, S2.)

4 Results

Given a population of size N inhabiting a niche η, is it possible for S -types

to invade? And if so, will they prevail?
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4.1 Very large populations

We focus on the case of very large, well-mixed populations first, i.e. N =∞.

In these, population dynamics can be described using the replicator equation

(3), wherein φ(t) = (s,m, l)T denotes the shares of the respective types in

the population at time t, implying s+m+ l = 1 always.

φ̇i(t) = φi
[
(Gφ)i − φTGφ

]
, i ∈ {1, 2, 3} (3)

First, we check for equilibria on the edges of the (s,m, l)-simplex. Shorthand,

slightly abusing notation, let S = (1, 0, 0)T , M = (0, 1, 0)T , and L = (0, 0, 1)T

denote the three trivial monomorphic equilibria, i.e. the corners of the sim-

plex. We find an equilibrium on the S/M -edge, i.e. in the (s, 1 − s, 0)T -

hyperplane, at

s∗ =
3pAs − 2pBa − pHr + pPd + pSh

7pAs − pPd + 3pSh
. (4)

The S/L- and M /L-edges, in contrast, are degenerate in the following sense.

As πL,•(η) = π•,L(η) = 1 always, solving for payoff equality between M -

and L-types yields that this edge either contains only trivial equilibria or is

entirely equilibrial. The latter is the case if πM,M(η) = 1, i.e. if

pPd =
15− 8pAs − 22(pBa + pHr + pSh)

22
=: p

M/L
Pd . (5)

As πS,S(η) > 1 always holds for
∑
i∈γ

pi ≤ 1, the S/L-edge only contains the

trivial equilibria at S and L.

Second, we check for asymptotic stability of S and M . (Note that as

πS,S(η) > 1 always holds, L can never be stable.) Deriving conditions for the

negativity of all eigenvalues of Jφ(S), we find that S is asymptotically stable

as long as

pPd < 2pAs + pBa +
1

2
pHr + pSh =: pSPd. (6)

(Note that eq. 6 is equivalent to πS,S(η) > πM,S(η).) Similarly, we find that
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M is asymptotically stable as long as pPd < p
M/L
Pd and

pPd > 2pBa − 3pAs + pHr − pSh =: pMPd. (7)

(Note that eq. 7 is equivalent to πM,M(η) > πS,M(η).)

Figure 1: Two illustrative dynamics.
Panel A: pAs = pBa = pHr = pPd = pSh = 1

12
;

Panel B: pAs = pBa = pHr = pSh = 1
10
, pPd = 4

10

Figure 1 illustrates evolutionary dynamics for two niches. Panel A of Fig.

1 shows the dynamics for pi = 1
12
,∀i ∈ γ, implying pMPd < pPd < pSPd, p

M/L
Pd ,

i.e. both S and M are stable (and s∗ = 2
9
). Parameters in panel B are

pAs = pBa = pHr = pSh = 1
10
, and pPd = 4

10
, implying pMPd, p

M/L
Pd < pPd < pSPd,

i.e. S is stable, M is unstable (and s∗ = 5
6
).

4.2 Finite populations

We have just seen that many niches exist in which S -types can invade into and

grow to dominate very large populations consisting of S -, M - and L-types.
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Furthermore, when s∗ ≤ 0 in eq. (4) and pPd < pSPd hold simultaneously,

S -types even prevail when exclusively competing against resident M -types.

The respective condition, pMPd < pPd < pSPd, can be relaxed further in finite

populations, i.e. when N < ∞. As shown by Nowak et al. (2004), a

straightforward 1/3-rule applies for large finite populations in the limit of

weak selection. For these, we obtain that selection favors invading S -types

replacing resident M -types (L-types being absent) for sufficiently large N

and sufficiently weak selection if pPd < pMPd, p
S
Pd and s∗ < 1/3. The latter

condition holds if

pPd <
6pBa − 2pAs + 3pHr

4
=: p

1/3
Pd . (8)

Figure 2: Rates of evolution in finite populations of size N.
Parameters: pAs = pBa = pHr = pPd = pSh = 1

12
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More generally, for any strength of selection w ∈ [0, 1] and population size

N , we can use the methods of Nowak et al. (2004) to calculate the fixation

probability, ρS, for a single S -type in a finite population with N − 1 resident

M -types using

ρS = 1/

(
1 +

N−1∑
k=1

k∏
i=1

gi
fi

)
, (9)

wherein fi = 1 − w + w [πS,S(η)(i− 1) + πS,M(η)(N − i)] / [N − 1] and gi =

1−w+w [πM,S(η)i+ πM,M(η)(N − i− 1)] / [N − 1]. Whenever ρS > 1/N , i.e.

whenever the fixation probability of a single S -type is larger than its fixation

probability in the case of no selection (1/N), we have positive selection for

S -types. As eq. (9) contains N th-order polynomials, though, no convenient

form of this condition can be obtained. Figure 2 shows rates of evolution

(NρS) for different population sizes and selection strengths for pi = 1
12
,∀i ∈

γ. As can be seen from Fig. 2, numerical evaluations of eq. (9) indicate

that selection favors S -types replacing M -types, i.e. NρS > 1, for w ∈
{1, 0.1, 0.01} as long as 13 ≤ N ≤ 302 in this particular niche.

5 Discussion and conclusion

The model devised and analyzed here demonstrates that collaboration as a

principle of strategy choice, i.e. as a maxim, can be evolutionarily viable

and successful in both finite and infinite populations. Collaboration can

prevail against both self-sufficiency and self-protection as opponent maxims

provided that the niches inhabited by the respective populations fulfill certain

conditions.

Notably, collaboration’s potential for evolutionary success in this model

is not based on repeated encounter, population structure, information about

opponents’ type or past behavior nor any of the other previously studied

factors favoring the evolution of cooperativeness (see, e.g.: Nowak 2006).

In fact, we have seen that collaboration can potentially prevail in entirely

unstructured populations, even when all interaction is assumed to be one-

shot. Rather, collaboration’s evolutionarily fate in this model depends on
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whether social interaction offers sufficiently many opportunities for attaining

mutual benefits, i.e. on whether a population’s niche favors collaboration or

not. In light of these results, several observations are worth being addressed.

One, previous work on the evolution of cooperativeness has mostly fo-

cused on the Pd in its many varieties, as it represents “the most stringent

cooperative dilemma” (Nowak 2012). The model presented here reconfirms

this focus. In niches that are ‘too dilemmatic’, i.e. whenever pPd exceeds

certain thresholds, collaboration does not evolve. However, the model also

shows that there are ‘quite dilemmatic’ niches in which it still does (e.g.: for

appropriate N and w, collaboration can evolve in finite populations inhabit-

ing the niche characterized by pAs = 0.05, pBa = 0.35, pHr = 0.01, pSh = 0.08,

and pPd = 0.5, i.e. a niche in which every second social interaction is a Pd).

Two, it may be deemed a weakness of collaboration that it cannot evolve

in niches that are too dilemmatic. However, when we return to our opening

question of why humans are highly collaborative while other species are not,

or not as much, this weakness may have some explanatory value. Think of

the rudimentary collaborative maxim studied here as modeling an early step

in the evolution of human cooperative behavior. Then, the main implication

of the present model is that we should try to find out what types of niches

our ancestors were inhabiting and how these differed from those occupied by

other animals. This way of phrasing and formally modeling the problem of

‘the evolution of human cooperation’ seamlessly connects with less formal

biological theorizing, particularly in evolutionary anthropology (Tomasello

2009; Tomasello et al. 2012), and follows the principles of behavioral ecology

(Davies, Krebs, and West 2012).

Three, apart from its potential value for the study of the evolutionary ori-

gins of human cooperative behavior, studying collaboration as a maxim may

also prove helpful in explaining choice behavior of contemporary humans. A

recent strand of experimental literature in psychology and economics has be-

gun to study the question of whether participants in laboratory experiments

use distinct strategies for different games they play or whether they follow

more generic heuristics that do not distinguish too sharply between different

strategic contexts (e.g. Bednar et al. 2012; Peysakhovich, Nowak, and Rand
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2014; Rand et al. 2014; Peysakhovich and Rand 2016; Rusch and Luetge

2016). The evidence collected in these studies points more in the direction of

the latter conjecture, rendering maxims a promising formal tool for modeling

choice behavior of this kind.

Finally, the model presented here has several limitations, including the

following. One, only symmetric 2×2-games were studied. Two, the base-

line payoff for the case of no social interaction was exogenously fixed at 1.

Three, players were assumed to be unable to opt out of social interactions

once payoffs have realized. Four, players’ fitness was assumed to be approx-

imated sufficiently closely by expected payoffs. Five, maxims were assumed

to be inherited without mutations. Removing these limitations represents a

promising task for future research.
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Supplements

S1: The twelve strict symmetric ordinal 2×2-games

Ch L R
U

∥∥3, 3∥∥ 2, 4
D 4, 2 1, 1

Cm L R
U

∥∥3, 3∥∥ 4, 2
D 2, 4 1, 1

Co L R
U

∥∥4, 4∥∥ 2, 1
D 1, 2 3, 3

Dl L R
U

∥∥3, 3∥∥ 4, 1
D 1, 4 2, 2

Ha L R
U

∥∥4, 4∥∥ 3, 2
D 2, 3 1, 1

Nc L R
U

∥∥4, 4∥∥ 2, 3
D 3, 2 1, 1

Pc L R
U

∥∥4, 4∥∥ 3, 1
D 1, 3 2, 2

As L R
U ‖4, 4‖ 1, 2
D 2, 1 3, 3

Ba L R
U 2, 2 ‖3, 4‖
D ‖4, 3‖ 1, 1

Hr L R
U 2, 2 ‖4, 3‖
D ‖3, 4‖ 1, 1

Pd L R
U ‖3, 3‖ 1, 4
D 4, 1 2, 2

Sh L R
U ‖4, 4‖ 1, 3
D 3, 1 2, 2

Table S1: Overview of the 12 strict symmetric ordinal 2×2-games;
underlined profiles are reached by M -types, profiles in norm dashes (‖•, •‖)

are reached by S -types

S2: Derivation of payoff matrix G

Given a niche η = (pAs, pBa, pHr, pPd, pSh), we can derive the entries of G as
follows. First, note that with probability pR = 1−pAs−pBa−pHr−pPd−pSh
two animals play one of the seven games in which S- and M -types obtain
the same payoff; these are: Ch,Cm,Co,Dl,Ha,Nc, and Pc. For simplicity,
we assume that each of these realizes with the same probability, resulting
in an expected payoff of pR · (4 · 4 + 3 · 3) / 7 for S- and M -types in these
cases. Payoffs in the remaining cases differ for S- and M -types; these are
γ = {As,Ba,Hr, Pd, Sh}. Take the example of the Pd. It realizes with
probability pPd. S-types obtain 3 when playing against other S-types and 1

when playing against M -types. Conversely, M -types obtain 4 when matched
with an S-type and 2 when matched with another M -type. Payoffs for the
other games in γ are calculated analogously to the Pd example just given,
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resulting in

πS,S(η) = 4 · (pAs + pSh) +
4 + 3

2
· (pHr + pBa) + 3 · pPd +

4 · 4 + 3 · 3
7

· pR,

πS,M(η) = 1 · (pAs + pPd + pSh) +
3 + 2

2
· pHr +

4 + 2

2
· pBa +

4 · 4 + 3 · 3
7

· pR,

πM,S(η) = 2 ·pAs+
3 + 2

2
·pBa+

4 + 2

2
·pHr+4 ·pPd+3 ·pSh+

4 · 4 + 3 · 3
7

·pR,

πM,M(η) = 3 · pAs + 2 · (pBa + pHr + pPd + pSh) +
4 · 4 + 3 · 3

7
· pR.
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