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1. Introduction

Many governments have adopted policies for expanding the use of renewable energy sources

(RES) aimed at reducing greenhouse gas emissions. As a result of an increasing use particularly

of fluctuating RES, such as wind and solar energy, the volatility of the system residual load

will increase strongly leading to growing flexibility requirements [1]. In order to meet these

requirements, electricity markets need to become more flexible. While traditionally, flexibility

has been mainly provided by the supply side, demand side flexibility has gained increasing

interest over the last decade and is expected to become increasingly important in the future

[2, 3, 4]. Kirby and Hirst [5] as well as Chen et al. [6], for instance, describe the system

benefits (mainly efficiency gains and cost reductions) of an increased demand side flexibility.

In this context, Palensky and Dietrich [2] distinguish between four categories of demand side

management: energy efficiency, time of use, demand response and spinning reserve. Aimed

at exploring market-based solutions to meet short-term flexibility requirements, we focus on

the demand response category in this paper. Within the demand response category, Albadi

and El-Saadany [7] distinguish between load reduction/shedding, load shifting and customer

owned distributed self-generation, whereas Bayer [8] distinguishes between reduction/shedding,

shifting and increase of load. While the majority of research concentrates on load shifting, we

shall focus on the examination of benefits of load shedding strategies, i.e. on the temporary

short-term reduction of load in situations where the demand for electricity exceeds the supply

capacity or where there is inadequate transmission infrastructure to deliver sufficient electricity

to the areas and consumers where it is needed.

Traditionally, load shedding involved strategies where the system operator chooses the con-

sumers that must shed their load - mostly following a rather static or a rotational scheme.

Under a static scheme, the system operator can shed load of specific consumers according to

predefined conditions (e.g., sheddable capacity and corresponding price) laid down in a contract

or according to predefined priorities [9] of consumers. Under a rotational scheme, the system

operator can shed load in a specific part of the electricity network at a time, where the affected

areas and consumers will change over time in order to ensure a fair burden sharing. While being

a common event in many developing countries, load shedding, particularly the rotational scheme

is rather a measure of last resort in developed countries today, used by the system operator to

avoid a total blackout of the power system.

However, the increasing digitisation driven by ongoing developments in information and

communication technology (ICT) enables the transformation of electricity distribution grids
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towards active distribution grids [10, 11, 12] and provides the basis for smarter and more efficient

(non-static) load shedding strategies. For instance, shedding load of a particular consumer

would not need to result in a complete blackout for this consumer but could simply imply a

partial load reduction (“brownout”). Such interruptible and curtailable load programmes have

also been reported and explored by others focussing on electricity [7, 10, 13, 14, 15] as well

as gas transportation [16]. In essence, while implying curtailments for some consumers, such

approaches, are aimed at avoiding blackouts and therefore at increasing energy security on a

system level. The European Energy Security Strategy [17] and European Directive on Security of

Network and Information Systems [18] both acknowledge the need for increasing energy system

security and underline the relevance of such approaches, while at the same time highlighting the

need for addressing these challenges in a competitive market environment.

Our focus in this paper is to examine the potential costs and benefits of different strategies for

load shedding as one set of instruments within the field of demand response. For this purpose,

we assume a competitive electricity market with multiple generators and different types of

consumers which can be distinguished according to their load shedding ability and costs. We

also assume that some consumers provide flexibility to the market through load shedding only

while others additionally have the ability to generate their own electricity by auxiliary power

generation units (APUs). Moreover, we consider uncertain generator availability. In such an

environment, we are particularly interested in exploring the following research questions:

1. What are the benefits of allowing consumers with own generation to provide generation

to the whole market?

2. How do ‘smart’ (non-static) load shedding strategies compare with static and rotational

load shedding schemes and how do they differ in terms of costs to consumers?

3. How does the presence/absence of market power affect costs to consumers?

4. Is there an optimal foresight horizon for consumers with generation ability to plan their

auxiliary generation and what are the drivers determining this optimality?

5. What are the benefits of a stochastic planning approach in the light of the uncertainties?

Demand response has been studied intensely in literature (see e.g. reviews by [7, 19, 20, 21,

22, 23]). Load shedding, in particular, has been investigated using heuristic techniques [24] as

well as linear or nonlinear programming techniques [25]. Wang and Billinton [26], for instance,

consider time-dependent, linear load shedding cost functions of different consumer types in an

optimal load shedding approach. However, in order to explore the research questions set out
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above, most existing approaches are limited with respect to at least one of the following two

characteristics:

• The load shedding cost functions are assumed to be linear.

• Load shedding is optimised from a central planning perspective using a single optimisation

problem.

In relation to the first limitation, we wish to note that the costs associated with load shedding

should not be assumed to increase linearly when the amount of load shedding is increased. Low

amounts of lost load, for instance, may only lead to low-cost effects (e.g., reduced illumination)

whereas higher amounts of lost load may induce much higher losses across different consumer

types [11]. In relation to the second limitation, a central planning optimisation does not take into

account individual optimisation targets of different players. Hence, methods are needed that

allow for the simultaneous consideration of multiple, individual optimisation problems (such

as complementarity problems) and for the incorporation of consumer-specific, nonlinear load

shedding cost functions. Moreover, with a view to our research questions, the methods should

be able to consider market power, electricity generation by consumers and stochastic supply.

Chen et al. [6], for instance, use a game-theoretic equilibrium model with a quadratic load

shedding cost function. The model by De Jonghe et al. [3] is very similar. However, both don’t

take into account market power, APU generation or stochastic supply.

We therefore propose using a game-theoretic equilibrium model, namely a mixed comple-

mentarity problem (MCP) with quadratic load shedding cost functions, to analyse interactions

of different players in a competitive electricity market. MCPs allow the optimisation problems

of multiple individual players to be solved simultaneously and in equilibrium by combining the

Karush-Khun-Tucker (KKT) conditions for optimality of each of the players and connecting

them via market clearing conditions. In addition, MCPs allow both primal variables (eg., power

generation) and dual variables (eg., prices) to be constrained together [27] while also allowing

players with constrained optimisation problems to be modelled as either price-takers or price-

makers, hence, incorporating market power into such models [28]. MCPs have been used to

model various types of energy markets [29, 30, 31, 32, 33].

We apply the proposed MCP in the context of a case study based on demand side data for

Ireland. The players that we consider in the case study, include different types of generators

and consumers. The generators produce electricity to maximise their profits and may be price-

takers or price-makers as described above. The consumers choose how much of their load to
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shed in order to meet their demand at minimum cost and may differ in terms of their electricity

demand profiles, their load shedding potential and cost functions and their ability to generate

their own electricity. We consider consumers with the ability to generate electricity as active

load shedding consumers and consumers without this ability as passive load shedding consumers.

As load shedding is of greatest significance in times when demand is high and supply is low,

we initially assume that RES generation is not available during the entire time period and, in

addition, that one of the conventional generators is unavailable for generation and the time when

it will return online is the model’s main source of uncertainty.

In order to take this uncertainty into account, we use a rolling horizon stochastic MCP in this

work, which involves solving multiple MCPs along multiple sequences paths where the results

from the previous problem are used to update the parameters for the subsequent problem, i.e. for

each problem solved, only a subset of all time steps are considered. The alternative approach to

solving optimisation/equilibrium models would be the perfect foresight approach which involves

solving the problem once over all time steps. However, rolling horizon models have been used

to solve many optimisation/equilibrium problems in energy markets [34, 35, 36] as they have

been shown to model such markets more realistically than perfect foresight approaches and in

a computationally efficient manner [29, 35].

The contribution of our paper can be summarised as follows: We examine the benefits of

load shedding strategies using a rolling horizon stochastic MCP with quadratic load shedding

cost functions to allow the optimisation problems of multiple individual players to be solved

simultaneously. Beyond the existing work by Chen et al. [6] and De Jonghe et al. [3], we consider

market power, own generation by consumers and stochastic generator availability. Note that

the proposed model is a short-term model, i.e. we do not consider aspects related to investment

planning in this paper. One aspect of rolling horizon models that has not been investigated in

the literature thus far is: What level of look-ahead foresight should the players in the model

consider (i.e., how should the timesteps be subdivided)? This work examines this novel question

in the context of the market described.

The remainder of this paper is structured as follows: In section 2, we introduce the mathe-

matical model. In section 3, we present the data of our case study followed by the results. In

section 4, we discuss and interpret the results before concluding the paper in section 5. In Ap-

pendix A, we provide the Karush-Kuhn-Tucker conditions for each player type that we consider

in our model. In Appendix B, we provide additional data related to the case study.
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2. Model formulation

In this section we describe the formulation of the rolling-horizon stochastic mixed comple-

mentarity approach. The model involves solving multiple rolling-horizon sequences of stochastic

Mixed Complementarity Problems (MCPs). Each stochastic MCP models an electricity mar-

ket with |I| conventional generators, |J | passive load shedding consumers and |K| active load

shedding consumers. The conventional generators produce electricity in order to maximise their

profits (subject to capacity constraints) and may be modelled as either price-takers or price-

makers. Thus, the model can incorporate market power. The two types of consumers choose

how much of their load to shed, subject to constraints, in order to meet their demand at min-

imum cost. In addition, active load shedding consumers also have the ability to generate their

own electricity, known as auxiliary generation, to help meet their demand (again, subject to

capacity and storage constraints).

Each of these three types of players has separate optimisation problems that are connected

through market clearing conditions. The stochastic MCP is made up of these market clearing

conditions along with the Karush-Kuhn-Tucker (KKT) conditions for optimality from each of

the players. Thus, the MCP solves the optimisation problem of each player simultaneously and

in equilibrium.

There are |R| rolls in each sequence path l (described in detail in Section 2.2) with |L| paths

in total. At each roll, the MCP is solved. Hence, the MCP is solved |L| × |R| times in total.

Each MCP has H timesteps. For roll r ∈ R, ∀ l ∈ L, the set of hourly timesteps for the MCP is

T = {r, r+ 1, ..,H+ r−1}. Hence, the set of timesteps changes for each roll along a path. Once

the MCP for a given roll is solved, reference demand and storage parameters are updated for the

next MCP to be solved in the sequence (see Section 2.2.1). When the last MCP of a given rolling

horizon sequence is solved (i.e., the MCP for roll r = |R|), demand and storage parameters for

auxiliary generation are reset to their original levels and the model moves forward to the MCP

for the first roll of the next sequence path.

For the MCP at roll r, each player has first-stage decisions that represent ‘here and now’

decisions or actual decisions for timestep t = r. These decisions are scenario-independent.

Furthermore, each player also has second-stage decisions that represent ‘wait and see’ or hypo-

thetical decisions for all other hourly timesteps (i.e., r < t < H + r − 1). These decisions are

scenario-dependent. One, and only one, of the conventional generators is assumed to be un-

reliable, i.e., this generator is available/unavailable for generation at different timesteps. Each

MCP is solved over |S| scenarios with each scenario s representing different outage lengths for
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the unreliable generator (see Section 2.2). Once the unreliable generator returns online it is

assumed it does not go offline again. We believe this assumption is reasonable, as the model

is solved over relativity short timescale (no more than 48 hours). In addition, to include sce-

narios where the unreliable generator could return online and then offline again would require

an excess amount of scenarios, which would make the model computationally intractable. All

other generators are assumed to be fully available for generation for each hourly timestep and

scenario.

Tables 1 - 4 describe the sets, variables and parameters used in the model. The following

conventions are used: lower-case Roman letters indicate indices or variables, upper-case Roman

letters represent parameters (i.e., data, functions), while Greek letters indicate endogenous or

exogenous prices. The variables in parentheses alongside each constraint in this section are the

Lagrange multipliers associated with those constraints.

Table 1: Sets for MCP solved at roll r.

r ∈ R Rolls. For each roll an MCP is solved.

l ∈ L Path of rolling horizon sequences.

i ∈ I Conventional generators.

j ∈ J Passive load shedding consumers.

k ∈ K Active load shedding consumers.

t ∈ T (r) = {r, .., r +H − 1} Hourly timeteps for roll r where H is the time horizon.

Table 2: Primal variables for MCP solved at roll r. All units are MW.

gi,t,s Electricity generated by generator i in timestep t and scenario s.

gFS
i,t=r Electricity generated by generator i for scenario-independent first timestep (t = r).

∆gP
j,t,s Load shed by passive load shedding consumer j in timestep t and scenario s.

∆gP,FS
k,t=r Load shed by passive load shedding consumer j for scenario-independent first timestep (t = r).

∆gA
k,t,s Load shed by active load shedding consumer k in timestep t and scenario s.

∆gA,FS
j,t=r Load shed by active load shedding consumer k for scenario-independent first timestep (t = r).

gAPU
k,t,s Electricity generated by active load shedding consumer k in timestep t and scenario s.

gAPU,FS
k,t=r Electricity generated by active load shedding consumer k for scenario-independent first timestep

(t = r).
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Table 3: Dual variables for MCP solved at roll r.

γt,s System electricity price for timestep t and scenario s (e/MW h).

γt=r System electricity price for scenario-independent first timestep (t = r) (e/MW h).

λ.G# Lagrange multipliers associated with the constraints in generators’ problems (unit depends on

constraint).

λ.P# Lagrange multipliers associated with the constraints in passive load shedding consumers’ problems

(unit depends on constraint).

λ.A# Lagrange multipliers associated with the constraints in active load shedding consumers’ problems

(unit depends on constraint).

Table 4: Parameters for MCP solved at roll r.

PRs Probability associated with scenario s for MCP solved at roll r.

PRl Probability associated with path l.

H Time horizon, i.e., total number of hourly timesteps for each MCP.

Fi Marginal cost for generator i (e/MW h).

Gmax
i Generator i’s maximum capacity for each timestep (MW).

MG
i Binary parameter indicating whether generator i is a price maker (MG

i = 1) or price taker (MG
i = 0).

DP
j,t Reference demand for passive load shedding consumer j at timestep t (MW).

∆gP,max
j Maximum amount of electricity passive load shedding consumer j can shed at timestep t (MW).

CP
j,t(.) Passive load shedding consumer j’s marginal cost function for time t (e/MW h).

EP
j,t Intercept for passive load shedding consumer j’s marginal cost function for time t (e/MW h).

BP
j,t Slope for passive load shedding consumer j’s marginal cost function for time t.

DA
k,t Reference demand for active load shedding consumer k at timestep t (MW).

∆gA,max
k Maximum amount of electricity active load shedding consumer k can shed at timestep t (MW).

CA
k,t(.) Active load shedding consumer k’s marginal cost function for time t (e/MW h).

EA
k,t Intercept for active load shedding consumer k’s marginal cost function for time t (e/MW h).

BA
k,t Slope for active load shedding consumer k’s marginal cost function for time t.

FAPU
k Marginal cost of auxiliary generation for active load shedding consumer k (e/MW h).

gAPU,max
k Maximum amount of electricity active load shedding consumer k can generate at each timestep (MW).

Vk Maximum capacity of electrical energy active load shedding consumer k can store a (MW h).

a In reality, while the energy in storage would be some sort of fuel (e.g., diesel or gas), Vk represents the total

amount of electrical energy the stored fuel can generate.
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2.1. Stochastic mixed complementarity problem for roll r

We now describe in detail the optimisation problems of the generators (equations (1a)-(3),

Section 2.1.1), passive load shedding consumers (equations (4a)-(5), Section 2.1.2) and the active

load shedding consumers (equations (6a)-(7), Section 2.1.3) in addition to the market clearing

conditions (equations (8a)-(8b), Section 2.1.4) that connect them. The corresponding KKT

conditions for the different optimisation problems (equations (A.1)-(A.24)) can be found in

Appendix A.

2.1.1. Generator i’s problem

Generator i maximises its expected profits (revenues less cost) by choosing the amount of

electricity to generate. For timestep t = r, it makes scenario-independent first-stage decisions

(gFS
i,t=r), representing actual decisions. For timesteps t > r it makes second-stage hypothetical

decisions, for each scenario s (gi,t,s). The marginal price generators receive is γt=r for timestep

t = r and γt,s for timesteps t > r, ∀s ∈ S. The marginal cost of generation for generator i is Fi.

Generator i’s problem at roll r is

max
gFS
i,t=r,gi,t,s

(γt=r − Fi)g
FS
i,t=r +

∑
s∈S

PRs

r+H−1∑
t>r

(γt,s − Fi)gi,t,s, (1a)

subject to

gFS
i,t=r ≤ Gmax

i , (λFS
G1i,t=r

) (1b)

gi,t,s ≤ Gmax
i , ∀s, t > r, (λG1i,t,s

). (1c)

Constraints (1b) and (1c) ensure that the amount of electricity generator i produces in each

hourly timestep and scenario is capped. Generator i’s primal decision variables are also con-

strained to be non-negative.

If generator i is assumed to be a price taker then its decision variables cannot affect the prices

γt=r and γt,s. Hence, these price variables are assumed exogenous to generator i’s problem whilst

still being variables of the overall MCP. If generator i is assumed to be a price-maker, then its

decision variables can affect price. As a result we derive the following relationship between
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prices and generation for price-makers:

γt=r =− 1

2

(
(
∑

j∈J B
P
j,t=r)(

∑
k∈K BA

k,t=r)

(
∑

j∈J B
P
j,t=r) + (

∑
k∈K BA

k,t=r)

)(∑
i∈I

gFS
i,t=r +

∑
k∈K

gAPU,FS
k,t=r

−
∑
j∈J

(
DP

j,t=r +
1

2
∑

j∈J B
P
j,t=r

(EP
j,t=r + λFS

P1j,t=r
− λFS

P2j,t=r
)
)

−
∑
k∈K

(
DA

k,t=r +
1

2
∑

k∈K BA
k,t=r

(EA
k,t=r + λFS

A1k,t=r
+ λFS

A2k,t=r
− λFS

A5k,t=r
)
))
,

(2)

and

γt,s =− 1

2

(
(
∑

j∈J B
P
j,t)(

∑
k∈K BA

k,t)

(
∑

j∈J B
P
j,t) + (

∑
k∈K BA

k,t)

)(∑
i∈I

gi,t,s +
∑
k∈K

gAPU
k,t,s

−
∑
j∈J

(
DP

j,t +
PRs

2
∑

j∈J B
P
j,t

(λP1j,t,s − λP2j,t,s +
EP

j,t

PRs
)
)

−
∑
k∈K

(
DA

k,t +
PRs

2
∑

k∈K BA
k,t

(λA1k,t,s
+ λA2k,t,s

− λA5k,t,s
+
EA

k,t

PRs
)
))
, ∀s, t > r.

(3)

These relationships are then substituted into the objective function (1a). Equation (2) is deter-

mined by combining the market clearing condition (8a below), with the KKT conditions that

determine how passive and active load shedding change with the system price, equations (A.6)

and (A.12) resepectively. Similarly, equation (3) is determined by combining equations (8b),

(A.7) and (A.13).

If generator i is a price-taker, then their problem is linear and hence convex. If generator

i’s is a price-maker, then their problem is strictly convex, assuming BP
j,t > 0, ∀j ∈ J, t ∈ T and

BA
k,t > 0, ∀k ∈ K, t ∈ T . Note: MG

i is a binary parameter that is used in the KKT conditions

to indicate whether generator i is a price maker (MG
i = 1) or price taker (MG

i = 0).

2.1.2. Passive load shedding consumer j’s problem

Passive load shedding consumer j seeks to minimise the expected cost of meeting their

demand plus the expected cost of any load shedding. Their demand consists of a reference

demand less any load shedding. Reference demand (DP
j,t) is the demand consumer group j

would have at time t if they did not shed any of their load. For timestep t = r, passive

load shedding consumers make scenario-independent first-stage decisions (∆gP,FS
j,t=r), representing

actual decisions. For timesteps t > r they make second-stage hypothetical decisions, for each
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scenario s (∆gP
j,t,s). Passive load shedding consumer j’s problem at roll r is:

min
∆gP,FS

j,t=r,∆gP
j,t,s

γt=r(DP
j,t=r −∆gP, FS

j,t=r ) + ∆gP,FS
j,t=rCj,t=r(∆gP, FS

j,t=r )+

∑
s∈S

PRs

r+H−1∑
t>r

(
γt,s(D

P
j,t −∆gP

j,t,s) + ∆gP
j,t,sC

P
j,t(∆g

P
j,t,s)

)
,

(4a)

subject to

∆gP, FS
j,t=r ≤ ∆gP,max

j , (λFS
P1j,t=r

), (4b)

∆gP
j,t,s ≤ ∆gP,max

j , ∀s, t > r, (λP1j,t,s), (4c)

∆gP,FS
j,t=r ≥ 0, (λFS

P2j,t=r
), (4d)

∆gP
j,t,s ≥ 0 ∀s, t > r, (λP2j,t,s

). (4e)

Equations (4b) and (4c) constrain the amount of their load passive consumer’s can shed for

each hourly timestep and scenario while constraints (4d) and (4e) ensure that load-shedding are

non-negative. We assume the marginal cost of load shedding for passive consumers j at time

t, ∀s ∈ S is linear:

CP
j,t(x) = EP

j,t +BP
j,tx, (5)

which means their total cost of load shedding is quadratic. Assuming BP
j,t > 0, ∀t ∈ T , consumer

j’s problem is strictly convex.

2.1.3. Active load shedding consumer k’s problem

Active load shedding consumer k seeks to minimise the expected cost of meeting their demand

plus the expected cost of any load shedding or auxiliary generation. Their demand consists of

a reference demand less any load shedding. Reference demand (DA
k,t) is the demand consumer

group k would have at time t if they did not shed any of their load or produce any auxiliary

generation. For timestep t = r, active load shedding consumers make scenario-independent

first-stage decisions on the amount of their load to shed (∆gA,FS
k,t=r) and on the level of auxiliary

generation (gAPU,FS
k,t=r ), both representing actual decisions. For timesteps t > r they make second-

stage hypothetical decisions, for each scenario s (∆gA
k,t,s and gAPU

k,t,s ). Active load shedding
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consumer k’s problem at roll r is:

min
∆gA,FS

k,t=r,

gAPU,FS
k,t=r ,

∆gA
k,t,s,

gAPU
k,t,s

γt=r(DA
k,t=r −∆gA,FS

k,t=r − g
APU,FS
k,t=r ) + ∆gA,FS

k,t=rC
A
k,t=r(∆gA,FS

k,t=r) + gAPU, FS
k,t=r FAPU

k

+
∑
s∈S

PRs

r+H−1∑
t>r

(
γt,s(D

A
k,t −∆gA

k,t,s − gAPU
k,t,s ) + ∆gA

k,t,sCk,t(∆g
A
k,t,s) + gAPU

k,t,s F
APU
k

)
,

(6a)

subject to

∆gA,FS
k,t=r ≤ ∆gA,max

k , (λFS
A1k,t=r

), (6b)

∆gA
k,t,s ≤ ∆gA,max

k , ∀s, t > r, (λA1k,t,s
), (6c)

∆gA,FS
k,t=r + gAPU,FS

k,t=r ≤ DA
k,t=r, (λFS

A2k,t=r
), (6d)

∆gA
k,t,s + gAPU

k,t,s ≤ DA
k,t, ∀s, t > r, (λA2k,t,s

), (6e)

gAPU,FS
k,t=r ≤ gAPU,max

k , (λFS
A3k,t=r

), (6f)

gAPU
k,t,s ≤ gAPU,max

k ∀s, t > r, (λA3k,t,s
), (6g)

gAPU,FS
k,t=r +

r+H−1∑
t>r

gAPU
k,t,s ≤ Vk, ∀s, (λA4k,s

), (6h)

∆gA,FS
k,t=r ≥ 0, (λFS

A5k,t=r
), (6i)

∆gA
k,t,s ≥ 0, ∀s, t > r, (λA5k,t,s

). (6j)

Equations (6b) and (6c) constrain the amount of the load active consumer’s can shed for each

hourly timestep and scenario while equations (6d) and (6e) ensure their auxiliary generation is

capped at their demand, i.e., they cannot provide auxiliary generation to meet demand other

than their own. Equations (6f) and (6g) constrains the amount of auxiliary generation they

can produce at each timestep and scenario while equation (6h) constrains the total amount of

auxiliary generation they can produce for scenario s over the entire time horizon of roll r. Note:

the variable gAPU,FS
k,t=r appears in every one of the |S| instances of constraint (6h) reflecting how

this variable represents an actual decision that must hold for each possible future scenario. The

parameter Vk represents the maximum capacity of electrical energy that active load shedding

consumer k can store (e.g., through diesel tanks) and is updated after the MCP at each roll r

is solved; see Section 2.2.1. Constraints (6i) and (6j) ensure active load shedding consumer k’s

load shedding decisions are non-negative.
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Active load shedding consumer k’s marginal cost for auxiliary generation is FAPU
k while we

assume their marginal cost for load shedding at time t is linear:

Ck,t(x) = EA
k,t +BA

k,tx, (7)

which means their total cost of load shedding is quadratic. Assuming BA
k,t > 0, ∀t ∈ T , consumer

k’s problem is strictly convex.

2.1.4. Market clearing condition

The |I| + |J | + |K| optimisation problems are connected via the following market clearing

conditions:∑
i∈I

gFS
i,t=r +

∑
k∈K

gAPU,FS
k,t=r =

∑
j∈J

(
DP

j,t=r −∆gP,FS
j,t=r

)
+
∑
k∈K

(
DA

k,t=r −∆gA,FS
k,t=r

)
, (γt=r), (8a)

∑
i∈I

gi,t,s +
∑
k

gAPU
k,t,s =

∑
j∈J

(
DP

j,t −∆gPj,t,s
)

+
∑
k∈K

(
DA

k,t −∆gA
k,t,s

)
,∀s, t > r, (γt,s).(8b)

which state that the total amount of electricity produced from conventional generation and aux-

iliary generation must equal the sum of the passive and active load shedding demand (reference

demand less load shedding). The prices γt=r and γt,s are the free Lagrange multiplier associated

with conditions (8a) and (8b) respectively.

2.1.5. The complete MCP for roll r

The KKT conditions for each of the three types of players are presented in Appendix A.1 -

Appendix A.3 respectively. As each of the optimisation problems are convex, these conditions

are both necessary and sufficient for optimality for each type of player [27]. The MCP for roll

r consists of conditions (A.1) - (A.24) in addition to the market clearing conditions (8).

2.2. Solving the model

As mentioned previously, the overall model involves solving the stochastic MCP for |R| rolls

along each possible sequence path l. Figure 1 describes these paths. Each path p represents

different sequences of rolls with each node presenting a different instance of when the MCP is

solved. Circular nodes in Figure 1 model a situation where the unreliable generator is initially

offline and the other players are unsure of when it will return. Consequently, the MCPs solved

at these rolls contain multiple scenarios, representing the uncertain information the players have

when making their decisions. Diamond shaped nodes reflect a situation where the unreliable

generator has returned online all players assume it will not go on outage again. As a result,

12



Figure 1: Schematic of rolling horizon sequence paths. For circular nodes, the MCP is solved with multiple

scenarios (see Figure 2) while for diamond shaped nodes, the MCP is solved with only one sceanrio.

MCPs solved at these rolls are deterministic, i.e., S = {1} and PRs=1 = 1. Each path l

represents different time points when the unreliable returns online. For path l the unreliable

generator is assumed initially offline (with uncertainty about its return) for the MCPs solved at

rolls r ≤ l while, for rolls r > l, the unreliable generator is assumed to have returned online for

all timesteps and scenarios.

Figure 2 describes the |S| scenarios for the MCPs associated with circular nodes in Figure

1. It reflects the uncertain information the other players have about the return of the unreliable

generator when making decisions at these rolls. Circular nodes in Figure 2 represent timesteps

when the unreliable generator is offline while diamond shaped nodes represent timesteps where

this generator is online. For scenario s, the unreliable generator is assumed offline for t−r+1 ≤ s

and online for t − r + 1 > s. Consequently, these scenarios have the same probabilities as the

paths, i.e., PRs = PRl, ({∀s ∈ S, ∀l ∈ L |s = l}). For the first hourly timestep (t = r) for

13



each roll described with circular nodes in Figure 2, the unreliable generator is assumed offline

in every scenario. Hence the decisions made at this timestep are scenario-independent for each

player.

Figure 2: Schematic of scenarios associated with nodes the MCP is solved with the unreliable generator is initially

assumed offline and its return is uncertain.

2.2.1. Update rules

When a MCP is solved, the model moves forward to the next roll on the path and the

following parameters are updated before the next roll:

DP
j,t,s → DP

j,t+1,s ∀j, t, s, (9a)

DA
k,t,s → DA

k,t+1,s ∀k, t, s, (9b)

EP
j,t,s → EP

j,t+1,s ∀j, t, s, (9c)

EA
k,t,s → EA

k,t+1,s ∀k, t, s, (9d)

BP
j,t,s → BP

j,t+1,s ∀j, t, s, (9e)

BA
k,t,s → BA

k,t+1,s ∀k, t, s, (9f)

Vk → Vk − gAPU,FS
k,t=r ∀k. (9g)
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Equations (9a) and (9b) reflect what happens in real-world electricity markets: when a new

time period begins (i.e., when the model moves to a new roll), those in the market have updated

information regarding demand. Similarly, Equations (9c) - (9f) reflect how the cost of load

shedding for the consumers changes when made load shedding decisions are being made for a

new time period. As gAPU,FS
k,t=r represents the actual amount of auxiliary generation (in contrast

to the hypothetical gAPU
k,t,s decisions), equation (9g) reflects how the amount of electrical energy

in storage is reduced after it is used for auxiliary generation.

After the last roll of a sequence path is solved, these parameters are reset to their original

values (described in Section 3.1) for roll r = 1 of the next sequence path.

3. Case Study and Results

In this section, we present the case study assumptions (section 3.1), followed by the results for

these assumptions (section 3.2). The assumptions concerning the load shedding costs constitute

a crucial part of the input data for the analysis in this paper. With respect to this aspect, our

analysis builds on Leahy and Toll [37] who estimate the value of lost load (VOLL) for different

types of consumers in Ireland (see section 3.1.1 below for further details on how their results

are used for our analysis).

3.1. Model input assumptions for the case study

3.1.1. Generation and demand data

In this section, numerical examples are presented. We firstly describe the parameters for the

main policy test case, the Base Case. This policy assumes that the regulator/system operator

maintains a non-static load-shedding strategy which means that, at each hourly timestep, the

ability of both consumers to shed their load is not constrained nor is their demand prioritised over

the other player’s demand. In addition, the Base Case policy assumes that active consumers

have the ability to use their auxiliary generation to meet their demand. The Base Case is

formulated with |I| = 5 generators, |J | = 1 passive load shedding consumers, |K| = 1 active

load shedding consumers and |L| = 48 rolling horizon sequence paths. Each sequence path

has |R| = 48 rolls. For the MCPs solved when the unreliable generator is initially assumed

offline, there are |S| = 48 scenarios with the probability associated with these (PRs) described

in Figure 3a and Table B.7. These probabilities are normalised such that
∑

s PRs = 1 and are

initially taken form a log-normal distribution with values of 2.233 and 1 for the location and

scale parameters respectively. These parameters are chosen such that each player assumes that
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(a) Probabilities associated with each path l and

scenario s (only for MCPs at nodes in Figure 1

where the unreliable generator is assumed offline).

(b) Reference demand for passive (DP
j=1,t) and ac-

tive (DA
k=1,t) consumers including total (DP

j=1,t +

DA
k=1,t).

Figure 3: Input parameters.

the expected outage length of the unreliable generator is 12 hours. Note: these probabilities are

also the same as those associated with the |L| = 48 rolling horizon sequence paths (PRl). For

MCPs solved once the unreliable generator has returned online there is only |S| = 1 scenario

for all timesteps. For each MCP solved there are H = 24 hourly timesteps, i.e., each player has

a look-ahead foresight of 24 hours. Hence, the set of hourly timesteps are t = {1, 2, ..., 24} for

rolls r = 1, t = {2, 3, ..., 25} for rolls r = 2 and t = {48, 49, ..., 72} for rolls r = |R| = 48.

The five different thermal generators represent different technologies with marginal cost and

maximum capacity values described in Table 5. The baseload generator (i = 1) is assumed to

be a modern hard coal power plant with high efficiency. Midload generators are assumed to

be combined cycle gas turbines (CCGTs) with high (i = 2) and moderate efficiency (i = 3)

respectively. Peak generator i = 4 is assumed to be an open cycle gas turbine (OCGT) whereas

peak generator i = 5 is assumed to be an oil fired gas turbine. The marginal costs in Table 5

were calculated using fuel and carbon prices of the corresponding futures markets for 2017 as

obtained from the European Energy Exchange (www.eex.com). For this purpose, we used the

average market results of the futures markets for 2017 as traded during the first six months of

2016. All generators are assumed to be price-takers except for generator i = 5, i.e., MG
i = 0, for

i = 1, 2, 3, 4 and MG
i = 1, for i = 5. The unreliable generator, that is assumed initially offline

for some rolls, is generator i = 4 while all other generators are assumed online and available for

all rolls and timesteps.
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Table 5: Values for generator marginal cost and maximum hourly capacity.

Generator Fi Gmax
i

i = 1 22 800

i = 2 30 100

i = 3 43 600

i = 4 50 600

i = 5 133 700

Table 6: Parameter values for passive and active load shedding consumer.

Parameter Value

∆gP,max
j=1 500

EP
j=1,t 200 (∀t)

∆gA,max
k=1 500

EA
k=1,t 150 (∀t)

FAPU
k=1 176

gAPU,max
k=1 200

Vk=1 100
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Table 6 displays the maximum amount of electricity both types of consumers can shed in each

hourly timestep as well as the intercepts of their load shedding marginal cost functions, which

we assume do not vary in time. In addition, Table 6 also displays the marginal cost, maximum

hourly capacity and total storage capacity for the active load shedding consumer’s auxiliary

generation. The total storage capacity is equal to five hours worth of generation. Figure 3b

displays reference demand for both types of consumers (as well as their sum) while Table B.8

gives the values for these reference demands in addition to the slopes associated with both types

of consumers’ marginal cost functions. The values for both the parameters in the marginal load

shedding cost functions as well as the reference demands are obtained on the basis of Leahy and

Toll [37]. While they distinguish between industrial, commercial and residential consumers, we

focus on passive and active load shedding consumers. We assume residential consumers to be

passive while we assume industrial, in addition to commercial consumers, to be active, i.e. we

aggregate industrial and commercial consumers for illustrative purposes. The passive reference

demand values DP
j,t in Table B.8 are therefore identical with the demand values in Leahy and

Toll [37] while the active reference demand values DA
k,t represent the sum of the industrial and

commercial demand values in Leahy and Toll [37].

The slopes BP
j,t and BA

k,t of the marginal load shedding cost functions are calculated on the

basis of the time-dependent VOLL values, according to equations (10a) and (10b). As for the

reference demand, the values of lost load for the passive consumers (V OLLP
j,t) are identical

to the residential consumer VOLLs in Leahy and Toll [37]. The values of lost load of the

active consumers (V OLLA
k,t) are calculated as the demand-weighted average of the industrial

and commercial VOLLs. The calculation according to equations (10a) and (10b) is based on the

idea that low amounts of lost or shed load lead to rather low-cost effects and that the marginal

load shedding costs increase with increasing amounts of load shedding [11]. Equations (10a)

and (10b) assume the marginal load shedding costs of the last MWh of demand that can be

shed to be equal to the VOLL for each considered type of consumer. Since we are aware of the

uncertainty related to this assumption, we shall consider different marginal load shedding cost

function slopes aimed at exploring the sensitivity of this assumption (see section 4).

BP
j,t =

V OLLP
j,t

DP
j,t

(10a)

BA
k,t =

V OLLA
k,t

DA
k,t

(10b)

18



Note: the parameters DP
j,t,s, D

A
k,t,s, B

P
j,t,s, B

A
k,t,s and Vk update after each roll1, thus the

values described here for these parameters are the values for rolls r = 1 only with the values

for all other rolls being obtained as described in Section 2.2.1. All other parameters remain the

same for each path solved.

3.1.2. Considered load shedding policies

The above describes the values for the parameters used in the Base Case which represents a

non-static load shedding policy. We now proceed and describe the other policies, in particular

the difference between them and the Base Case:

1. APU-to-Market Case:

Constraints (6d) and (6e) ensure that the active load shedding consumer can only provide

auxiliary generation to meet their own demand. In this case, these constraints are removed

from the MCPs solved and thus, the active load shedding consumer can provide auxiliary

generation to the full market. As with the Base Case, this test represents a non-static

load shedding policy.

2. Static (Priority/Rotational) Policies:

(a) Priority (No passive load shedding) Case:

In this case, only the active load shedding consumer’s demand is shed. As such, the

passive load shedding consumer’s demand is prioritised, i.e., ∆gP,max
j = 0.

(b) Priority (No passive load shedding & no APU) Case:

This case is similar to the previous case except, in this case, the active load shedding

consumer also cannot provide any auxiliary generation, i.e., gAPU,max
k = 0.

(c) Priority (No active load shedding & no APU) Case:

In this case, only the passive load shedding consumer’s demand is shed. As such,

the active load shedding consumer’s demand is prioritised, i.e., ∆gA,max
k = 0. In

addition, the active load shedding consumer cannot provide any auxiliary generation,

i.e., gAPU,max
k = 0.

(d) Rotational load shedding Case:

In this case, load shedding switches between the two types of consumers. For the first

24-hour period, only the passive load shedding consumer’s demand can be shed while

for the second 24-hour period, only the active load shedding consumer’s demand can

be shed.

1As EP
j,t,s and EA

k,t,s are constant through time, there is no need to update these parameters after each roll.
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(e) Rotational load shedding & no APU Case:

This case is similar to the previous case except, in this case, the active load shedding

consumer also cannot provide any auxiliary generation, i.e., gAPU,max
k = 0, for all

time periods.

3. No Market Power Case:

In the Base Case, generator i = 5 is assumed to be a price-maker. In this case it is

assumed to be a price-taker along with all other generators. As with the Base Case, this

test represents a non-static load shedding policy.

In addition to these policy test cases, we also consider test cases for different levels of look-ahead

foresight for each of the players. In the Base Case, there are H = 24 hourly timesteps. With

the aim of identifying the optimal level of foresight, we also consider similar cases where each

player has H = 2, 6, 12 and 48 hours of look-ahead foresight.

3.2. Results

In the following, we present the results of our study for the input data described above. We

start by presenting and comparing the results for different load shedding policies, followed by

describing the effect of market power. Subsequently, we present our findings concerning the

optimal level of foresight and the value of stochastic solution as well as the expected value of

perfect information.

3.2.1. Load shedding policies

In this section the results from the different load shedding policies are compared. Figure 4

displays the Total Expected Consumer Costs (TECC) for the different test cases. This cost is

calculated by taking the optimal decisions from the scenario-independent timesteps t = r from

each MCP solved:

TECC =
∑
l

PRlTECCl, (11)

where

TECCl =
∑
r

(
γt=r(DP

j,t=r +DA
k,t=r −∆gP,FS

j,t=r −∆gA,FS
k,t=r − g

APU,FS
k,t=r )

+ ∆gP,FS
j,t=rCj,t=r(∆gP, FS

j,t=r ) + ∆gA,FS
k,t=rC

A
k,t=r(∆gA,FS

k,t=r) + gAPU, FS
k,t=r FAPU

k

)
.

(12)

These decisions represent the actual decisions the players would make assuming scenario path l

and hence this cost is calculated as a weighted sum of the costs associated with each path.
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Figure 4: Total expected consumer costs associated with different load shedding policies.

Figure 4 shows that the Base Case and APU-to-Market case have the lowest TECC. In fact,

for the data considered in this work, these two cases give the same optimal decisions values for

each MCP solved. The difference between the two cases is that constraints (6d) and (6e) are

excluded from the APU-to-Market case. However, in the Base Case, these two constraints are

never binding. This is because APU generation is constrained (through both hourly and storage

capacity constraints)2 on the amount of electricity it can provide. Thus, APU generation is never

large enough to be able to meet demand from active consumers, never mind demand from both

types of consumers. In order to examine a case where APU generation is large enough to meet

at least some of both types of demand, we also, as a sensitivity check, examined both of these

cases with extremely low (and unrealistic) reference demand for active consumers. However,

only a minor reduction in TECC was found by allowing auxiliary generation be available to the

full market. Henceforth, the Base Case and APU-to-Market are considered equivalent.

Figure 4 also shows that, overall, the Base Case has the lowest TECC. For each of the other

2Given that the model is solved over a relatively short period of time (48) hours, we assume the active

consumer is unable to refuel the storage tank associated with APU generation.
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cases, load shedding and/or the APU are restricted in some way. Excluding the Base Case, the

lowest TECC is seen when passive consumers’ load is prioritised (i.e., there is load shedding

for active consumers only) while the highest TECC is found when active consumers’ load is

prioritised. Consequently, when load shedding rotates between active and passive consumers,

there are intermediate levels of TECC. This suggests that if a regulator had to prioritise between

the two types of consumers then active consumers should be chosen for load shedding while

rotational policies should be chosen ahead of prioritising active consumers only. Figure 4 also

shows that removing auxiliary generation increases TECC. This can be seen when the Priority

(No passive load shedding) case is compared with the Priority (No passive load shedding & no

APU) case and similarly when the Rotational load shedding case is compared with the Rotational

load shedding & no APU case.

In a similar manner to equations (11) and (12), expected total amount of load shedding and

expected prices are also calculated; see Figures 5 and 6. These results match with those seen in

Figure 4 with decreased potential for load shedding leading to lower amounts of load shedding,

increased expected prices and hence increased TECC. However, when the APU is removed, both

load shedding and TECC increase. This is because, in these cases, the extra load shedding is

not used to reduce costs but rather to replace auxiliary generation. These results highlight the

benefits of auxiliary generation to the market.

3.2.2. Effect of market power

Figure 7 displays the TECC and total expected amount of load shedding for the Base Case

and the case where no market power is present. Unsurprisingly both TECC and load shedding

are lower when there is no market power present. In the Base Case the price-maker (generator

i = 5) holds back on the amount of electricity it can provide. It is able to do this at times of high

demand and low supply, i.e., when all other generators are supplying electricity at maximum

capacity and are hence unable to prevent the price-maker’s strategic behaviour. Consequently,

load shedding, prices and the price-maker’s profits all increase.

Figure 8 presents the generator profits for the Base Case and the No Market Power case

and shows that each of the generators substantially increase its profits when market power is

present. This is despite only generator i = 5 being modelled as a price-maker. As the price-

maker strategically chooses its production to increase the system price and hence its profit, all

other generators benefit too. Ironically, generator i = 5 has the smallest percentage increase

(469%) in profit between the Base Case and the No Market Power case. This is because this
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Figure 5: Total expected amount of load shed for different load shedding policies.

Figure 6: Expected price time series for different load shedding policies.
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(a) Total expected consumer costs. (b) Total expected amount of load shed.

Figure 7: Results with and without market power.

generator is modelled as a peaking unit and is generating the least amount in comparison to the

other units.

Figure 8: Expected generator profits with and without market power present.
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(a) Total expected consumer costs. (b) Expected energy in storage.

Figure 9: Effect of different levels of look-ahead foresight.

3.2.3. Optimal level of foresight

This section examines the cases where the players in the model have different levels of look-

ahead foresight when making decisions at each MCP. Figure 9a displays the TECC when the

model considers H = 2, 6, 12, 24 and 48 hours of foresight while Figure 9b gives the expected

amount of energy in storage associated with the APU. Reference demand is initially high; see

Figure 3b. Thus, when H = 2 and H = 6, the active consumers have limited foresight and thus

use the energy they have in storage to meet this initially high level of demand without concern

for the larger demand peak that occurs at later timesteps. Consequently, in these cases, there

is reduced auxiliary generation to meet the peak demand of the first 24 hours and no auxiliary

generation to meet the peak demand of the second 24 hours. This results in higher TECC.

When H = 12 the active consumers do not use the APU to meet the initially high demand

and save it for the first peak in demand. However, with only 12 hours of foresight they have

no concern for the peak in the second 24 hour period and thus empty the tank when the first

peak occurs. This leads to reduced TECC compared with the cases when H = 2 and H = 6

but increased costs compared with the H = 24 case. When H = 24, the active consumers do

not empty the tank when the peak in the first 24 hours occurs and save enough energy to meet

some of the peak demand in the second 24 hours.

This trend suggests that the more foresight players have in the rolling-horizon model, the

more informed decisions they can make. However, the H = 48 case shows increased TECC

compared with the H = 12 and H = 24 cases. The active consumers in the H = 48 case are

over conservative when using the APU to meet the daily demand peaks. This is because, in this
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case, they become concerned with peaks in the third and fourth 24 hour periods despite the

model being solved over 48 rolls, i.e., despite the players only having to make actual decisions

for 48 hours. For instance, when making decisions at roll r = 44, the set of timesteps considered

is t = {44, 45, .., 91} and consequently the active consumers save energy excessively for future

timesteps. Thus, in the rolling-horizon model considered, the H = 48 case contains too many

timesteps.

To further examine the optimal level of look-ahead foresight, Figure 10 displays the TECC

(normalised to the H = 24 results in each case) for different sensitivity checks, for each level of

foresight:

1. Original Case:

Provides the same results as those presented in Figure 9a.

2. 6 Hours Expected Outage Length:

In this case the log-normal distribution, that determines the PRl and PRs parameters,

is adjusted such that the expected outage length is 6 hours instead of 12 with values of

1.519 and 0.75 for the location and scale parameters respectively.

3. Two Peaks Daily :

In this case the reference demand for both types of consumers is adjusted such that there

are two peaks in each 24 hour period in contrast to the one peak seen in Figure 3b.

4. Two Peaks Daily and 6 Hours Expected Outage Length:

In this case, the two previous cases are combined.

In the 6 Hours Expected Outage Length case, H = 24 hours of foresight still leads to the lowest

TECC. While the expected outage is six hours, outage lengths greater than this still have

significant probabilities associated with them and thus it remains prudent for active consumers

to save energy for peak demands that do not occur in the first 6 or 12 hour periods. Similarly,

for the Two Peaks Daily case, H = 24 hours of foresight also leads to the lowest TECC. While

the active consumers in the H = 6 and H = 12 cases now save energy for the first peak in

demand they still do not have enough for the two peaks in the second 24 hours and thus endure

greater costs. When there is H = 48 hours of foresight, for each case, the active consumers are

again overly conservative and concerned with the peaks in the third and fourth 24 hour periods

and thus do not use the APU effectively to reduce costs.

When the 6 Hours Expected Outage Length and Two Peaks Daily cases are combined, the

optimal level of foresight changes to H = 12 hours. In this case, the active consumers with

H = 24 hours of foresight unnecessarily become overly concerned with the peaks in future
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timesteps. This is because the probability of the unreliable generator returning at these time

steps is reduced. These results suggest that it is a combination of the demand profile plus

expected outage length that determines the optimal level of foresight that players in rolling-

horizons models should have.

Figure 10: Normalised total expected consumer costs for different sensitivity checks.

3.2.4. Value of stochastic solution and expected value of perfect information

To justify the use of stochastics and rolling-horizons in the modelling approach employed, we

also calculate well known metrics in stochastic programming: the Value of Stochastic Solution

(VSS) and the Expected Value of Perfect Information (EVPI) [38]. The EVPI measures the

increase in costs as a result of having uncertainty in the model, i.e., it measures the cost of not

having perfect information. In this work, it is calculated using the following three steps:

1. For each MCP, taking the difference in expected consumer costs (sum of objective functions

(4a) and (6a)) between the Base Case and when, for each MCP, the scenarios described

in Figure 2 are replaced with a deterministic process whereby each player knows exactly

when the unreliable generator will return.
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2. For each path, averaging these values over the total number of stochastic MCPs in that

path3 (circular shaped nodes in Figure 1)).

3. Calculating a weighted average over all paths, using the probabilities associated with each

path.

The EVPI’s value was found to be e5,018,824 which is 19% of the corresponding cost associated

with the Base Case.

The VSS measures the cost of considering expected values instead of stochastic solutions.

In this work, it is calculated in a similar way to the EVPI described above but, for each MCP,

the scenarios described in Figure 2 are replaced with a deterministic process whereby each

player assumes, with probability one, that the unreliable generator will return in 12 hours (the

expected outage length), regardless of which path or scenario they are on. It’s value was found

to be e2,289,030 which is 9.7% of the corresponding cost associated with the Base Case.

4. Discussion

The five main findings of our research can be summarised as follows. While the first three are

particularly relevant for system operators or regulators, the fourth provides insights particularly

valuable for the players in the market - consumers as well as producers. The fifth finding is

related to the methodology.

First, allowing consumers with auxiliary generation ability to supply their generation to the

entire market only results in marginal benefits. Again, this finding needs to be interpreted in the

context of our assumptions but even the sensitivity check with an unrealistically low reference

demand for active consumers did not show a noteworthy benefit for this policy.

Second, a load shedding policy which does not discriminate or prioritise between different

consumer groups leads to the lowest consumer costs: amongst the considered policies, smart load

shedding policies (considered as Base Case in section 3) lead to the lowest costs to consumers,

followed by shedding load of active consumers only and a rotational load shedding scheme (al-

ternating between shedding active and passive consumers). Shedding load of passive consumers

only leads to the highest costs to consumers. At the same time, the amount of load shedding (in

MWh) is highest for smart load shedding and lowest for shedding passive consumers only. Since

high amounts of load shedding represent a high demand side flexibility, this finding suggests that

increasing demand side flexibility can strongly reduce consumer costs. Obviously, these results

3There is no EVPI or VSS associated with deterministic MCPs (diamond-shaped nodes in Figure 1)
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are driven by our assumptions to a large extent, particularly concerning the load shedding cost

functions for the two different consumer groups. Leahy & Tol [37], on the basis of whose results

we derive the cost functions for our case study, find the VOLL to be highest for the residential

sector. This assumption, together with the fact that we did not consider households with auxil-

iary generation ability, is important for interpreting the results. However, the generalised result

that a load shedding policy which does not discriminate or prioritise between different consumer

groups leads to the lowest consumer costs holds regardless of these assumptions. In addition, we

ran the model with different slopes for the load shedding cost functions as a sensitivity check.

While the total costs to consumers changed strongly with the slopes, the ranking of the policies

remained unchanged. Finally, our results suggest that the importance of a deeper understanding

of the load shedding costs and the value of lost load for different consumer groups will increase

in future.

Third, preventing market power will significantly reduce consumer costs as well as the amount

of load shedding. While this finding is not surprising, it is especially relevant for markets with

dominant players on the generation side. Moreover, it is interesting to note that costs and load

shedding between absence and presence of market power differ by a factor of six approximately.

Costs and load shedding between the Base Case and Priority (No active load shedding & no

APU) policy differ by a factor of approximately two only.

Fourth, concerning the optimal look-ahead foresight for the players in the market, we found

that a very short look-ahead foresight might be disadvantageous particularly for active load

shedding consumers since they might use up a limited amount of fuel in the storage of their

auxiliary generation too quickly. From the perspective of active consumers, it is interesting to

note that an unlimited increase of the look-ahead foresight is not necessarily beneficial either.

This is because the optimal foresight is driven by a combination of the (daily) demand profile

and the uncertainty concerning the length of a shortage period, which is the main source of

uncertainty considered in our model.

Fifth, the calculated EVPI and VSS provide proof that it is advisable to use a rolling-horizon

stochastic programming approach in this context. Incorporating stochastics into the model more

realistically replicates the uncertain information those in the market have when making decisions.

Additionally, and in contrast to a perfect foresight approach, the rolling-horizon model allows

for the capture of the actual decisions players would make for each timestep, as well as the

hypothetical decision they would consider making. Consequently, the results obtained replicate

real-world markets more convincingly.
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Critically reflecting our approach, we wish to acknowledge its short-term nature. This means

that we do neither consider refueling strategies for the limited auxiliary generation storage nor

do we consider interactions between load shedding and investment decisions. Moreover, we

did not analyse the impact of own generation ability or decentralised storage availability for

residential consumers within the scope of this paper. Concerning the data, while being based

on actual values for Ireland, the case study has an illustrative character. In particular, there

is uncertainty around the VOLL which, at the same time, drives the results. These limitations

will be subject to future research activities.

5. Conclusions

In this paper, we examine the costs and strategies associated with load shedding as one

demand response mechanism contributing to an increased demand side flexibility. For this

purpose, we model an electricity market with different types of generators and consumers. More

specifically, we propose a rolling horizon stochastic mixed complementarity equilibrium model.

Overall, we found that leveraging demand side flexibility can reduce costs to consumers.

When comparing different policies, a smart load shedding policy, which does not discriminate

between consumer groups, leads to the lowest costs. Furthermore, we found that allowing

consumers with generation ability to supply their generation to the entire market only provides

marginal benefits, whereas the prevention of market power is highly important in terms of

ensuring low costs to consumers. Our study also included the analysis of the optimal foresight

horizon that market players should consider, which has not been studied before in this context.

We found that the optimal foresight horizon is driven by the daily load structure and, to a lower

extent, by the uncertainty of the generators availability. In the light of these findings and bearing

the smart meter rollout in mind, which is imminent particularly in many European countries, it

is therefore now important that the specification of the technical requirements allows realisation

of such policies - ideally without or with limited loss of comfort. This will ensure that full use

of the smart infrastructure to be installed can be made in future.

Future research in this area should explore the impact of decentralised storage and own

generation ability of residential consumers as well as interdependencies between the introduction

of load shedding policies and investment decisions into generation capacity. Moreover, a deeper

understanding of load shedding cost functions should be sought for different consumer groups.
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Appendix A. Karush-Kuhn-Tucker conditions

This appendix presents the Karush-Kuhn-Tucker (KKT) conditions for optimality for each

of the three types of players modelled in this work. These conditions, along with the market

clearing conditions (8), make up the mixed complementarity problem solved at roll r. The ‘perb’

notation 0 ≤ a ⊥ b ≥ 0 is equivalent to a ≥ 0, b ≥ 0 and a.b = 0.

Appendix A.1. Generators’ KKT conditions

The generators’ KKT conditions are

0 ≤ gFS
i,t=r ⊥ −γt=r −MG

i g
FS
i,t=r

∂γt=r

gFS
i,t=r

+ Fi + λFS
G1i,t=r

≥ 0, ∀i, (A.1)

0 ≤ gi,t,s ⊥ PRs

(
− γt,s −MG

i gi,t,s
∂γt,s
gi,t,s

+ Fi

)
+ λG1i,t,s ≥ 0, ∀i, s, t > r, (A.2)

0 ≤ λFS
G1i,t=r

⊥ −gFS
i,t=r +Gmax

i ≥ 0, ∀i, (A.3)

0 ≤ λG1i,t,s ⊥ −gi,t,s +Gmax
i ≥ 0, ∀i, s, t > r, (A.4)

where MG
i is a binary parameter indicating whether generator i is a price maker (MG

i = 1) or

price taker (MG
i = 0) and

∂γt=r

∂gFS
i,t=r

=
∂γt,s
∂gi,t,s

= −1

2

(
(
∑

j∈J B
P
j,t)(

∑
k∈K BA

k,t)

(
∑

j∈J B
P
j,t) + (

∑
k∈K BA

k,t)

)
, ∀i, s, t. (A.5)

Appendix A.2. Passive load shedding consumers’ KKT conditions

The passive load shedding consumers’ KKT conditions are

−γt=r + EP
j,t=r + 2BP

j,t=r∆gP,FS
j,t=r + λFS

P1j,t=r
− λFS

P2j,t=r
= 0, ∀j, (A.6)

PRs

(
− γt,s + EP

j,t + 2BP
j,t∆g

P
j,t,s

)
+ λP1j,t,s − λP2j,t,s = 0, ∀j, s, t > r, (A.7)

0 ≤ λFS
P1j,t=r

⊥ −∆gP,FS
j,t=r + ∆gP,max

j ≥ 0, ∀j, (A.8)

0 ≤ λP1j,t,s ⊥ −∆gP
j,t,s + ∆gP,max

j ≥ 0, ∀j, s, t > r, (A.9)

0 ≤ λFS
P2j,t=r

⊥ ∆gP,FS
j,t=r ≥ 0, ∀j, (A.10)

0 ≤ λP2j,t,s
⊥ ∆gP

j,t,s ≥ 0, ∀j, s, t > r. (A.11)
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Appendix A.3. Active load shedding consumers’ KKT conditions

The active load shedding consumers’ KKT conditions are

−γt=r + EA
k,t=r + 2BA

k,t=r∆gA,FS
k,t=r + λFS

A1k,t=r
+ λFS

A2k,t=r
− λFS

A5k,t=r
= 0, ∀k, (A.12)

PRs

(
− γt,s + EA

k + 2BA
k ∆gA

k,t,s

)
+ λA1k,t,s

+ λA2k,t,s
− λA5k,t,s

= 0, ∀k, s, t > r, (A.13)

0 ≤ gAPU,FS
k,t=r ⊥ −γt=r + FAPU

k + λFS
A2k,t=r

+ λA3k,t=r
+
∑
s∈S

λA4k,s
≥ 0, ∀k, (A.14)

0 ≤ gAPU
k,t,s ⊥ −γt,s + FAPU

k + λA1k,t,s
+ λA3k,t,s

+ λA4k,s
≥ 0, ∀k, s, t > r, (A.15)

0 ≤ λFS
A1k,t=r

⊥ −∆gA,FS
k,t=r + ∆gA,max

k ≥ 0, ∀k, (A.16)

0 ≤ λA1k,t,s
⊥ −∆gA

k,t,s + ∆gA,max
k ≥ 0, ∀k, s, t > r, (A.17)

0 ≤ λFS
A2k,t=r

⊥ −∆gA
k,t=r − g

APU,FS
k,t=r +DA

k,t=r ≥ 0, ∀k, (A.18)

0 ≤ λA2k,t,s
⊥ −∆gA

k,t,s − gAPU
k,t,s +DA

k,t ≥ 0, ∀k, s, t > r, (A.19)

0 ≤ λFS
A3k,t=r

⊥ −gAPU,FS
k,t=r + gAPU,max

k ≥ 0, ∀k, (A.20)

0 ≤ λA3k,t,s
⊥ −gAPU

k,t,s + gAPU,max
k ≥ 0, ∀k, s, t > r, (A.21)

0 ≤ λA4k,s
⊥ −gAPU,FS

k,t=r −
r+H−1∑

t>r

gAPU
k,t,s + Vk ≥ 0, ∀k, s, (A.22)

0 ≤ λFS
A5k,t=r

⊥ ∆gA,FS
k,t=r ≥ 0, ∀k, (A.23)

0 ≤ λA5k,t,s
⊥ ∆gA

k,t,s ≥ 0, ∀k, s, t > r. (A.24)

Appendix B. Supplementary data
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Table B.7: Probabilities associated with each path l and scenario s (only for nodes where unreliable generator is

offline).

s/l 1 2 3 4 5 6 7 8 9 10 11 12

PRs/PRl 0.035 0.064 0.074 0.073 0.069 0.063 0.058 0.052 0.047 0.042 0.038 0.034

s/l 13 14 15 16 17 18 19 20 21 22 23 24

PRs/PRl 0.031 0.028 0.025 0.023 0.021 0.019 0.017 0.016 0.014 0.013 0.012 0.011

s/l 25 26 27 28 29 30 31 32 33 34 35 36

PRs/PRl 0.010 0.010 0.009 0.008 0.008 0.007 0.007 0.006 0.006 0.005 0.005 0.005

s/l 37 38 39 40 41 42 43 44 45 46 47 48

PRs/PRl 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002
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Table B.8: Values for refernce demands and slopes of marginal load shedding cost functins.

t 1 2 3 4 5 6 7 8 9 10 11 12

DP
j=1,t 1316 1062 902 766 674 613 568 513 512 546 659 770

DA
k=1,t 1821 1809 1714 1661 1607 1598 1657 1730 1651 1736 1886 2061

BP
j=1,t 4.7 2.4 1.2 1.7 1.2 2.2 15.0 68.2 102.0 85.7 58.2 40.4

BA
k=1,t 4.5 4.6 4.8 5.0 5.1 5.2 5.0 4.8 5.0 4.8 4.4 4.0

t 13 14 15 16 17 18 19 20 21 22 23 24

DP
j=1,t 2204 2250 2262 2265 2272 2091 1944 2108 2070 1963 1825 1911

DA
k=1,t 879 941 885 872 1092 1569 1714 1441 1375 1336 1294 1230

BP
j=1,t 32.6 28.4 31.6 33.5 23.6 13.8 14.2 20.7 23.4 25.6 25.0 16.1

BA
k=1,t 3.7 3.7 3.7 3.6 3.6 4.0 4.3 3.9 4.0 4.2 4.5 4.3

t 25 26 27 28 29 30 31 32 33 34 35 36

DP
j=1,t 1821 1809 1714 1661 1607 1598 1657 1730 1651 1736 1886 2061

DA
k=1,t 1316 1062 902 766 674 613 568 513 512 546 659 770

BP
j=1,t 4.7 2.4 1.2 1.7 1.2 2.2 15.0 68.2 102.0 85.7 58.2 40.4

BA
k=1,t 4.5 4.6 4.8 5.0 5.1 5.2 5.0 4.8 5.0 4.8 4.4 4.0

t 37 38 39 40 41 42 43 44 45 46 47 48

DP
j=1,t 2204 2250 2262 2265 2272 2091 1944 2108 2070 1963 1825 1911

DA
k=1,t 879 941 885 872 1092 1569 1714 1441 1375 1336 1294 1230

BP
j=1,t 32.6 28.4 31.6 33.5 23.6 13.8 14.2 20.7 23.4 25.6 25.0 16.1

BA
k=1,t 3.7 3.7 3.7 3.6 3.6 4.0 4.3 3.9 4.0 4.2 4.5 4.3
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