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Abstract: 

Large stream of literature studies interconnectedness among various assets that are 

relevant in current global markets. Transmission of shocks between 

cryptocurrencies and traditional asset classes is, however, not understood at all, but 

should not be ignored due to increasing influence of cryptocurrencies in recent 

years. In this paper, we study how shocks between the most liquid representatives of 

the traditional asset classes including commodities, foreign exchange, stocks, 

financials, and cryptocurrencies are being transmitted. Generally, we document very 

low level of connectedness between the main cryptocurrency and other studied 

assets. The only exception is gold which receives substantial amount of shocks from 

cryptocurrency market. Our findings are important since we show that 

cryptocurrencies play role in global markets, and the results could also be useful in 

portfolio diversification schemes. Moreover, we find significant positive asymmetry 

in spillovers between the studied assets, which is in contradiction to previous studies 

conducted on assets from a single asset class. 

 

Keywords: cryptocurrencies, volatility, connectedness, asymmetric effects, realized 

semivariance 

JEL: C38, C58, E49 

 

Acknowledgements: Support from the Czech Science Foundation under project no. 

P402/12/G097 DYME – “Dynamic Models in Economics”, and the Grant Agency of 

Charles University under projects 846217 is gratefully acknowledged. 
 

mailto:josef.kurka@fsv.cuni.cz


1 Introduction 

Rapid development of cryptocurrencies attracted lot of attention in recent research (Brandvold, 
Molnár, Vagstad, and Valstad, 2005; Bouri, Jalkh, Molnár, and Roubaud, 2017; Urquhart, 2016; 
Katsiampa, 2017; Urquhart, 2017; Nadarajah and Chu, 2017). Although the role of cryptocurrencies 
can still be disputed, they are certainly subject of rising awareness, and must be taken into account as a 
valid economic phenomenon. While connectedness of stock markets has been lively topic of research 
in the past decades (Kanas, 2000; Yang and Doong, 2004; Mensi, Beljid, Boubaker, and Managi, 
2013), there is no study examining connectedness between cryptocurrencies and traditional assets. In 
this paper, we contribute to the literature by examining asymmetric volatility spillovers between the 
most liquid cryptocurrency, Bitcoin, and most liquid representatives of the traditional asset classes 
including foreign exchange, stocks, financials and commodities.  

Interconnectedness of financial markets has been important topic in center of research agenda since 
the 1990s (e.g., Forbes and Rigobon, 2002; Gande and Parsley, 2005). Researchers felt it was a key to 
understand crises periods, which became a central topic especially after the Asian crisis. Among many 
studies, Diebold and Yilmaz (2009, 2012) provided a simple quantitative measure of markets 
interdependence that quickly became popular among researchers. Diebold and Yilmaz (2009, 2012) 
noted that the spillover index can be obtained by looking at variance decompositions estimated on a 
system of studied assets.  

In our work, we follow this strand of literature, and measure directional spillovers between main 
representatives of cryptocurrencies, and traditional asset classes in the framework developed by 
Diebold and Yilmaz (2012). We employ realized variance (Andersen, Bollerslev, Diebold, and Labys, 
2001; Barndorff-Nielsen, 2002), developed as a non-parametric estimator of variance based on 
intraday data. An extension of this framework allowing for asymmetric response of volatility to 
positive and negative returns, which is a widely documented stylized fact about volatility (e.g., Black, 
1976; Pindyck, 1984)1, was proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010). The 
basic idea is to separately consider the part of variation caused by positive returns, realized positive 
semivariance ሺܴܵ+ሻ, and the part of variation caused by negative returns, realized negative 
semivariance ሺܴܵ−ሻ.   

Since asymmetric behavior of stock markets is well documented stylized fact, information may 
transmit asymmetrically as well. This has been noted by Baruník, Kočenda, and Vácha (2015, 2016, 
2017), who developed a quantitative measure of spillover asymmetry that fits well into the popular 
framework of Diebold and Yilmaz (2012). Using this strand of literature, we also look how shocks to 
negative and positive volatility transmit between studied assets. Hence we uncover asymmetric 
connectedness between main cryptocurrency market and traditional assets. This contributes to current 
literature by exploring the position cryptocurrencies hold relative to assets traditionally traded on 
financial markets.  

2 Methodology 

Before proceeding to the empirical results, we need to introduce the key concepts used to obtain 
them. Nowadays, we are able to measure connectedness across markets by employing a directly 
implementable measure of volatility spillovers developed by Diebold and Yilmaz (2009, 2012). 
Although the range-based daily or even lower frequency estimators of volatility provide consistent 

                                                      
1 There are several hypotheses explaining such phenomenon. According to the leverage effect 

hypothesis (Black, 1976; Christie, 1982), decline in prices (i.e. negative returns) raises financial 
leverage, which increases volatility due to higher overall riskiness of stocks. In addition, Pindyck 
(1984) and French, Schwert, and Stambaugh (1987) point out the presence of time-varying risk premia 
on financial markets, which are a cornerstone to the volatility feedback effect hypothesis. When 
volatility is included in the pricing mechanism, its increase causes the required return on equity to 
increase and prices to fall. 



estimates, using realized measures of volatility in spillover framework brings several advantages. 
Firstly, it enables us to better understand dynamics of the transmission mechanisms. Secondly, it 
allows measuring of asymmetries in volatility transmission using methodology proposed by Baruník, 
Kočenda, and Vácha (2016). We begin by description of realized volatility measures in the next 
subsection, then we continue with Diebold and Yilmaz (2009, 2012) spillover indices, and lastly we 
show how Baruník, Kočenda, and Vácha (2016) combine these two concepts to obtain measures of 
spillover asymmetry. 

2.1 Realized measures of volatility 

Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen (2002) propose a non-
parametric measure of variance based on high-frequency observations of prices. Consider log-prices ௧ evolving through time over a horizon [Ͳ ≤ ݐ ≤ ܶ] according to a continuous time stochastic 
process, which consists of a continuous component and pure jump component, 

௧  = ∫ 𝜇௦ ݀ݏ௧ + ∫ 𝜎௦ ݀ ௦ܹ௧ +  ,௧ܬ

where  is a locally bounded and predictable drift component,  is a strictly positive volatility process, 

and all components are subject to common filtration . Then the quadratic variation of such process is 

௧]  , [௧ = ∫ 𝜎௦ଶ ݀ݏ௧ + ∑ ሺ∆௦ሻଶ<௦≤௧ , 

where ∆௦ = ௦ −  ௦− are jumps, if present. Andersen, Bollerslev, Diebold, and Labys (2001) and
Barndorff-Nielsen (2002) propose to estimate quadratic variation as a sum of squared returns from 
given time horizon, naming such measure realized variance (RV). Let , … , -, the intraday log
prices, be equally spaced over a time interval [0, t], and intraday log-returns be defined as ݎ =   í−ଵ, then−

 ܴܸ = ∑ ଶ=ଵݎ . 

It can be shown that RV converges in probability to [௧ , ݊ ௧] as → ∞. Barndorff-Nielsen, 
Kinnebrock, and Shephard (2010) further propose decomposition of RV into realized semivariance 
(RS), which allow us to measure volatility coming from positive and negative returns separately. In 
this paper, realized positive ሺܴܵ+ሻ and negative ሺܴܵ−ሻ semivariance is employed in a following way; 

 ܴܵ+ = ∑ ݎሺܫ > Ͳሻݎଶ=ଵ , 

 ܴܵ− = ∑ ݎሺܫ < Ͳሻݎଶ=ଵ  . 

Realized semivariance contains all components included in realized variance, hence ܴܸ = ܴܵ+ +ܴܵ−. Barndorff-Nielsen, Kinnebrock, and Shephard (2010) show that as ݊ → ∞, each RS converges to ଵଶ ∫ 𝜎௦ଶ ݀ݏ௧  plus the sum of jumps due to volatility of respective sign.  

Thus, realized semivariance enables us to examine discrepancies in movements in tails of volatility 
distribution. We can use negative semivariance as a proxy for bad volatility, and positive semivariance 
as a proxy for good volatility (Segal, Shaliastovich, and Yaron, 2015), thus, it allows us to observe 
different effects of good and bad volatility. 

2.2 Volatility spillovers 

A quantitative measure of volatility spillovers was defined by Diebold and Yilmaz (2009). It is 
based on forecast error variance decomposition (FEVD), which is a part of Vector Autoregressive 
(VAR) framework. FEVD records how much of the H-step ahead forecast error variance of variable i 
is due to innovations of variable j. Therefore, it can serve as a directly implementable measure of 
volatility spillovers. The simplicity of implementation was appealing, however, the new methodology 
suffered from few drawbacks. Firstly, FEVD from the standard VAR framework might be dependent 
on variable ordering, due to relying on Cholesky-factor identification of VARs. Secondly, it was only 



able to measure total spillovers. Diebold and Yilmaz (2012) presented an improvement to spillover 
methodology accounting for both of these shortcomings. The variance decomposition was newly 
based on generalized VAR framework, where FEVD is invariant to variable ordering. Furthermore, it 
allows us to measure also directional, not only total spillovers. 

Measure of spillovers used in this paper follows directly from a generalized VAR model FEVD, as 
proposed by Diebold and Yilmaz (2012). Consider vector ࡾ𝑽𝒕 = ሺࡾ𝑽𝒕, … ,  𝑽𝑵𝒕ሻ′ containing RVs ofࡾ
N assets, then the covariance-stationary VAR model of order p reads; 

𝑽𝒕ࡾ  = ∑ 𝝆ࡾ𝑽𝒕−𝒑= + 𝜺𝒕; 
where 𝜺𝒕~𝑵ሺ, 𝚺𝒆ሻ is a vector of independently, identically distributed disturbances, and 𝝆 are 

coefficient matrices for i=1,…,p. Each invertible VAR process has its moving average representation, 

𝑽𝒕ࡾ  = ∑ 𝝋𝜺𝒕−∞= , 

where the ܰ𝑥ܰ coefficient matrices 𝝋 can be obtained recursively as 𝝋 = ∑ 𝝆𝝋−𝒑= , with 𝝋 = 𝑰𝒏 and 𝝋 =  ݂ݎ 𝑖 < Ͳ. The infinite moving average representation is necessary for the 
computation of variance decomposition, which in Diebold and Yilmaz (2012) follows from 
generalized VAR framework proposed by Koop, Pesaran, and Potter (1996) and Pesaran and Shin 
(1998). This framework does not use orthogonalized shocks, instead, it allows for correlation and 
accounts for it by using the observed distribution of errors while assuming normality.  

2.2.1 Total spillovers 

Own variance shares are defined as fractions of the H-step-ahead variance forecast error of 
variable i, that are due to shocks to variable i for i=1,…,N. The cross variance shares – spillovers – 
are defined as fractions of the H-step-ahead variance forecast error of variable i, that are due to shocks 
to variable j, for i,j=1,…,N, i ≠ j. H-step-ahead FEVD generalized matrix for each H consists of NxN 
elements 𝜔𝐻 such that 

 𝜔𝐻 = 𝜎ೕೕ−భ ∑ (𝒆′𝝋ࢎ𝜺𝒆)మ𝐻−భℎ=బ∑ (𝒆′𝝋ࢎ𝜺𝝋ࢎ′ 𝒆)𝐻−భℎ=బ  , 

where 𝜀 is the variance matrix for the vector 𝜀௧, 𝜎 is the standard deviation of the error term in j-th 

equation, ݁ is a vector of zeros with 1 at the j-th place, and 𝜑ℎ are moving average coefficients from 

the forecast at time t. As the shocks are not orthogonalized, the row sums do not have to be equal to 1. 
Hence, each element needs to be normalized by the row sum; 

 �̂�𝐻 = 𝜔ೕ𝐻∑ 𝜔ೕ𝐻𝑁ೕ=భ  . 

Note that by construction, ∑ �̂�𝐻 = ͳ𝑁=ଵ  and  ∑ �̂�𝐻 = ܰ𝑁,=ଵ , thus contributions of both own and cross 

variance shares are normalized by the total forecast error for variable i,  i=1,…,N. For the sake of 
clarity, we multiply every element of the matrix by 100, such that 

 �̃�𝐻 = ͳͲͲ ∙ 𝜔ೕ𝐻∑ 𝜔ೕ𝐻𝑁ೕ=భ = ͳͲͲ ∙ �̂�𝐻 . 

Now, ∑ �̃�𝐻 = ͳͲͲ𝑁=ଵ  and ∑ �̃�𝐻 = ͳͲͲ ∙ ܰ𝑁,=ଵ . The total spillover index is then defined simply as 

 ܵ𝐻 = ଵ𝑁 ∑ �̃�𝐻𝑁,=ଵ≠ . 

The sum contains all cross-variance elements from FEVD.  



2.2.2 Directional spillovers 

The total spillover index gives us a basic idea about the overall magnitude of shocks that is 
transmitted across variables. However, by ignoring individual elements of the variance decomposition 
matrix, we would be losing large part of the information. Every element is an indicator of interaction 
between individual variables. Based on that, Diebold and Yilmaz (2012) formalize a measure of 
directional spillovers to, and from, variable i. Spillovers received by asset i from all other assets are 
measured as 

 ܵ←∙𝐻 = ଵ𝑁 ∑ �̃�𝐻𝑁=ଵ≠ . 

Spillovers transmitted by variable i to all other variables are measured as 

 ܵ→∙𝐻 = ଵ𝑁 ∑ �̃�𝐻𝑁=ଵ≠ . 

2.2.3 Net spillovers and net pairwise spillovers 

Using the directional spillover measures, we can obtain net spillovers for asset i, such that 

 ܵ𝐻 = ܵ→∙𝐻 − ܵ←∙𝐻 . 

Sign of this measure indicates, if asset i is the net giver (positive sign), or net receiver (negative sign) 
of shocks in the system. If we are particularly interested in mutual interaction of two variables, then 
we call for net pairwise spillovers 

 ܵ𝐻 = ଵ𝑁 (�̃�𝐻 − �̃�𝐻). 

2.3 Asymmetric spillovers 

Diebold and Yilmaz (2009, 2012) use daily or weekly range-based volatility estimators to measure 
spillovers. While the range-based estimators provide efficient spillover estimates, employing realized 
volatility measures enables us to conduct more detailed spillover analysis. The decomposition of RV 
into ܴܵ+ and ܴܵ− provides us with natural proxies of upside and downside risk. We are able to 
measure spillovers coming from good and bad volatility by letting  ܴܵ+ and ܴܵ− enter the spillover 
analysis separately, and then test whether they are of the same magnitude. 

As volatility is documented to be propagated in an asymmetric way, it is natural to expect such 
phenomenon to be present also in volatility spillovers. Baruník, Kočenda, and Vácha (2016) propose a 
measure of spillovers considering spillovers from good and bad volatility separately, creating positive 
and negative total spillover indices ሺܵ+, ܵ−ሻ, and directional spillovers due to positive returns ሺ ܵ←∙+ , ܵ→∙+ ሻ, and negative returns ሺ ܵ←∙− , ܵ→∙− ሻ. When we estimate spillovers, we take the vector of RVs ࡾ𝑽𝒕 = ሺࡾ𝑽𝒕, … ,  𝑽𝑵𝒕ሻ′, and then proceed as described in the above subsection. Spillovers comingࡾ
from positive volatility are estimated in the same manner, only the vector ࡾ𝑽𝒕 = ሺࡾ𝑽𝒕, … ,  𝑽𝑵𝒕ሻ′ isࡾ

substituted by the vector ࡿࡾ𝒕+ = ሺࡿࡾ𝒕+ , … , +𝑵𝒕ࡿࡾ ሻ′, which contains positive realized semivariances of 

N assets. To estimate spillovers coming from negative volatility, vector ࡿࡾ𝒕− = ሺࡿࡾ𝒕− , … , −𝑵𝒕ࡿࡾ ሻ′ 
containing realized negative semivariances of N assets is used, instead of ࡾ𝑽𝒕 = ሺࡾ𝑽𝒕, … ,  .′𝑽𝑵𝒕ሻࡾ
Index H is left off in the above definitions to ease notation, however, remains a valid parameter for 
estimation of asymmetric spillovers. 

Estimation of spillovers due to positive and negative returns, i.e. positive and negative spillovers, 
lets us test hypotheses about asymmetries in volatility transmission mechanism. Under the null 
hypothesis we assume the spillovers are symmetric. Rejection of the null is evidence for different 
reaction of assets to good and bad volatility of other assets. Testing will be based on comparing the 
magnitude of positive and negative spillovers. Our hypotheses on spillover asymmetry are; 

 



ଵܪ  ∶   ܵ+  = ܵ−   ; against ܪ𝐴ଵ ∶   ܵ+ . ≠ ܵ−  
ଶܪ  ∶  ܵ←∙+ = ܵ←∙−  ; against ܪ𝐴ଶ ∶  ܵ←∙+ ≠ ܵ←∙−  

ଷܪ  ∶  ܵ→∙+ = ܵ→∙−  ; against ܪ𝐴ଷ ∶  ܵ→∙+ ≠ ܵ→∙− . 

2.3.1 Spillover asymmetry measure 

Baruník, Kočenda, and Vácha (2016) also introduce Spillover Asymmetry Measure (SAM), which is 
a tool to simplify quantification of spillover asymmetry; ܵ𝐴ܯ = ܵ+ − ܵ−. SAM measures the 
direction and the magnitude of asymmetry between spillovers from ܴܵ+ and ܴܵ−. When SAM is 
equal to zero, then spillovers from ܴܵ+ are of the same magnitude as spillovers from ܴܵ−. When 
SAM is positive, then positive spillovers are larger than negative spillovers, and the opposite is true, 
when it is negative. 

2.3.2 Directional SAM 

Apart from asymmetry of total spillover index, we are interested in spillover asymmetries for the 
individual assets. Baruník, Kočenda, and Vácha (2016) define SAM for spillovers transmitted to asset 
i from all other assets as 

 ܵ𝐴ܯ←∙ = ܵ←∙+ − ܵ←∙− . 

SAM for spillovers transmitted from asset i to all other assets is defined in a similar fashion; 

 ܵ𝐴ܯ→∙ = ܵ→∙+ − ܵ→∙− . 

When ܵ𝐴ܯ→∙ ሺܵ𝐴ܯ←∙ሻ takes the value of zero, spillovers from (to) asset i from ܴܵ+are of the same 
magnitude as spillovers from (to) asset i from ܴܵ−. When ܵ𝐴ܯ→∙ ሺܵ𝐴ܯ←∙ሻ is greater than zero, then 
positive spillovers prevail among spillovers from (to) asset i, and vice versa when ܵ𝐴ܯ→∙ ሺܵ𝐴ܯ←∙ሻ is 
lower than zero. 

3 Empirical Results 

We study connectedness of cryptocurrencies and the major traditional asset classes; foreign 
exchange, commodities, stocks, financials represented by the most liquid assets from each class. The 
complete set of assets is listed in Table 1. Due to high volatility of Bitcoin, which could misrepresent 
the whole analysis, we rescaled returns of all variables such that  

,ݎ̃  = ,𝑛−𝑎ሺ𝑛ሻ௦ௗሺ𝑛ሻ  

for ݊ = {ͳ, … ,7}2. The sample period is from June 2011 to December 2015, which corresponds to time 
for which it is meaningful to track Bitcoin price changes. After deleting days with low trading activity 
and weekends for Bitcoin, the resulting number of observations is 1124. Bitcoin prices were obtained 
from bitcoincharts3. 

Table 1. Set of assets entering spillover analysis. 

Class Representatives 

Cryptocurrencies Bitcoin 

Foreign exchange EUR/USD forex, JPY/USD forex 

Commodities Gold, Crude oil 

Stocks S&P 500 stock index 

Bonds US 2-year T-note 

                                                      
2 Rescaled volatility time series are graphically presented in the Appendix. 
3 https://bitcoincharts.com/charts/bitstampUSD#rg10zig5-minztgSzm1g10zm2g25zv 



 

3.1 Overall connectedness 

Throughout our spillover analysis, we use horizon h=10, VAR model with number of lags p=24, 
and rolling window of 200 days when dynamics is in question5. Table 2 presents spillovers measured 
for the whole sample period, we are mostly interested in the bottom row and the last column. They 
represent volatility transmitted by asset i to all other assets, and volatility received by asset i from all 
other assets, respectively. By subtracting these two numbers we arrive at net spillovers. The largest net 
giver is S&P 500, while gold is on the opposite side of the spectrum. Bitcoin does not display 
interconnectedness with any of the assets, with the exception of gold. Shocks from Bitcoin are 
transmitted to the market for gold, however, the reversed causality does not hold. To be able to better 
understand this relationship, we examined the dynamics of Bitcoin to gold volatility transmission 
mechanism. The results are striking (see Figure 1).  

High amount of volatility transmitted from Bitcoin to gold is caused solely by a period starting 
with a sudden steep spike around quarter of 2013 and ending at the beginning of 2014. The exact date 
of this sudden change is April 12 2013, which is only 2 days after the first significant Bitcoin price 
crash (61% decline from the peak of 266$ per BTC)6. Exchanges trading Bitcoin were not able to cope 
with increased demand, which caused large problems with transaction processing. Delays in 
transaction completion resulted in substantial panic and subsequently a drastic price decline, as 
cryptocurrencies were almost completely unexplored territory then. The corresponding timing of the 
spillover increase and Bitcoin price crash is evident from Figure 1, where these two time-series are 
plotted next to each other.  

Table 2. Total spillovers 

 
Bitcoin EURO JPY Crude Oil Gold S&P 500 T-note i ←∙ 

Bitcoin 92,66   0,43   1,36   1,14   0,95   1,56   1,89   1,05 

EURO   1,08 55,26   8,18 15,29   3,63 13,82   2,74   6,39 

JPY   0,94 12,13 70,70   3,00   5,26   6,57   1,40   4,19 

Crude Oil   0,13   8,46   1,89 66,08   1,18 17,83   4,43   4,85 

Gold   3,65   7,70   6,28   4,15 65,20 12,20   0,82   4,97 

S&P 500   1,20   7,43   4,50 10,29   4,11 71,63   0,85   4,05 

T-Note   0,46   6,50   2,49   7,23   1,17   2,99 79,16   2,98 i →∙   1,07   6,09   3,53   5,87   2,33   7,85   1,73 28,47 

 

Investors in Bitcoin and gold are connected by a certain degree of doubts about the current 
monetary system. That is why it is likely that large part of panicking investors in Bitcoin quickly 
switched to gold in time of distress. Importantly, faith in Bitcoin was restored shortly after the first 
crash, which led investors to switch back from gold to Bitcoin, and triggered negative returns on 
markets for gold. Such mechanism would explain how the volatility spills over between these two 
markets, and also why these spillovers are driven exclusively by negative volatility, which we will 
elaborate on in the next subsection. Increased spillovers are present solely during 2013, the year with 
largest volatility spikes (see Figure 6, Appendix A). In 2011, when volatility was also substantial, 
Bitcoin was not relevant enough to notably increase volatility on other markets. 

Limited connectedness to volatility in other markets makes Bitcoin a candidate to be an efficient 
diversifier. Such potential is in accordance with Bouri, Jalkh, Molnár, and Roubaud (2017), whose 

                                                      
4  As a robustness check, we tried models with different values of forecast horizon and number of lags. 
The results did not qualitatively change, hence our analysis is robust to changes in parameters. Results 
available upon request. 
5 Points from t-199 to t are included in each of such windows. 
6https://www.forbes.com/sites/timothylee/2013/04/11/an-illustrated-history-of-bitcoin-
crashes/#adeb73940397 



results support role of Bitcoin as a diversifier, for certain periods of time even as a hedge or safe-
heaven to commodities. According to our results, the diversifying feature of Bitcoin could be applied 
to a broader class of assets. To confirm that low contribution of Bitcoin to total spillovers is robust, we 
present the evolution of total spillover index with and without Bitcoin in the set of assets (see Figure 7, 
Appendix A). There is no significant difference between the two lines. The index is even higher, when 
Bitcoin is excluded, which shows its contribution to shock transmission is negligible in total7.  

Figure 1. Spillovers from Bitcoin to gold (left), dynamics of Bitcoin price (right). 

 

Volatility is one of the most commonly used risk measures. Hence spillovers contain information 
about how market participants perceive the overall riskiness of markets, and how homogeneous their 
beliefs are. However, spillover estimation for the whole period provides only a snapshot of the 
situation, we must turn to examination of spillovers on a rolling window to capture the dynamics of 
such beliefs. Dynamics of Total spillover index (solid line) and TED spread (dashed line) are depicted 
in Figure 2. Spillovers may be interpreted as an indicator of expectations about overall riskiness in the 
economy, while TED spread is a widely recognized indicator of credit risk, it shows beliefs of lenders 
about the risk of default on interbank loans. Thus, theoretically, these two indicators should display 
similar evolution in time. The end of 2013 sees both TED spread and spillovers decrease substantially, 
arguably due to stabilization of financial markets following the global financial crisis. For most of the 
examined period both indicators co-move in quite a balanced way. From the economic perspective, 
Figure 2 confirms we can perceive spillovers of volatility also as the spillovers of risk. 

3.1.1 Asymmetric connectedness 

Spillover asymmetry is a very popular topic, recently it was examined for stock markets (Baruník, 
Kočenda, and Vácha, 2016), foreign exchange markets (Baruník, Kočenda, and Vácha, 2017), or 
petroleum markets (Baruník, Kočenda, and Vácha, 2015). The prevailing result in all papers is 
negative spillover asymmetry of larger or lower magnitude. Whereas these papers concentrate on 
assets from single class, we include assets from different classes, therefore, it will be interesting to 
observe how it affects the results. We use the spillover asymmetry measure defined in section 2.3.1 to 
test for asymmetries. Recall, that SAM is formulated as difference between positive and negative 
spillovers. To ease testing, we can reformulate the hypotheses in terms of SAM 

ଵܪ  ∶  ܵ𝐴ܯ←∙ = Ͳ ; against ܪ𝐴ଵ ∶  ܵ𝐴ܯ←∙ ≠ Ͳ. 

ଶܪ  ∶  ܵ𝐴ܯ←∙ = Ͳ ; against ܪ𝐴ଶ ∶  ܵ𝐴ܯ←∙ ≠ Ͳ. 

ଷܪ  ∶  ܵ𝐴ܯ→∙ = Ͳ ; against ܪ𝐴ଷ ∶  ܵ𝐴ܯ→∙ ≠ Ͳ. 

We use bootstrapped confidence intervals to test hypotheses of symmetrical spillovers. Departures 
from zero may also be caused by VAR estimation error, or discretization error from construction of 
realized measures. Thus, we take into account only asymmetries falling outside the confidence bands. 
While bootstrapping the standard errors and constructing the confidence intervals, we followed 
methodology used in Baruník, Kočenda, and Vácha (2016). The resulting 95 percent confidence 
interval is (-2.7585, 2.9741).  

                                                      
7 On the other hand, when any other asset is dropped, the index decreases significantly.  



Figure 2. Comparison of Total Spillover Index on 200-days rolling samples against TED spread 

 

Symmetric response of the total spillovers index can be rejected. Figure 3 shows that until 2013 

SAM oscillates between positive and negative values, and it is on the edge of statistical significance. 

Since then, the asymmetry becomes largely significant. The source of asymmetric behavior is positive 

volatility, which is contradictory to previous results (e.g., Baruník, Kočenda, and Vácha, 2017). As 

noted above, this may be due to presence of different asset classes in our dataset. Secondly, the 

selected time interval could play its role, as spillover asymmetry may be interpreted as an indicator of 

prevailing mood on examined markets. Positive asymmetry means optimistic traders dominate the 

market, negative spillover asymmetry indicates prevalence of pessimistic traders. Our interval is from 

mid-2011 to the end of 2015, as opposed to 2008 – 2016 used in Baruník, Kočenda and Vácha (2017). 

Spillover asymmetries observed during crises, are more likely to be negative, than asymmetries 

observed post-crises.  

3.1.2 Asymmetric connectedness at the individual markets level 

While SAM measures asymmetry of aggregate spillovers, ܵ𝐴ܯ→∙ (ܵ𝐴ܯ←∙) measures asymmetry 

in spillovers from (to) asset i to (from) all other assets. Measuring spillovers on rolling samples then 

allows us to capture the dynamics of ܵ𝐴ܯ→∙ and ܵ𝐴ܯ←∙. Disintegration into individual assets reveals 

sources of the observed asymmetry. Figure 5 displays ܵ𝐴ܯ→∙ in panel a and ܵ𝐴ܯ←∙ in panel b. In 

terms of spillovers transmitted to others, the only significant asymmetries are displayed by S&P 500 

and T-note. Both assets are givers of positive spillovers. Asymmetries in received spillovers are 

present for EURO, Japanese YEN, and T-note. The latter two are receivers of positive spillovers, 

when the asymmetry is significant. On the other hand, EURO is subject to largely negative spillovers 

in the beginning of the observed period, which likely reflects impacts of the European debt crisis. 

 

 



Figure 3. Dynamics of spillover asymmetry for total spillovers. Shaded band represents 95% confidence interval 
obtained by bootstrap. 

 

In the previous subsection, we detected large amount of volatility transmitted from Bitcoin to gold. 
Let us uncover, if it is driven by spillovers from positive or negative volatility. Figure 4 depicts 
asymmetries in this relationship. The period of significant asymmetry exactly corresponds to the 
period of increased spillovers in Figure 1, and evidently gold receives mainly negative spillovers from 
Bitcoin. It is a real-world example of sudden financial distress on market for cryptocurrency being 
transmitted to a traditional asset. It is evidence that cryptocurrencies can influence other assets, and 
interact with other markets. It is still too early to assume anything, but our results indicate that 
cryptocurrencies may play a certain role, negative or positive, in global financial markets of the future. 

Figure 4. Dynamics of SAM for spillovers from Bitcoin to gold. 

 



      a             b 

 

 

 

 

 

 

 

Figure 5: Panel (a) SAM for spillovers from individual assets. Panel (b) SAM for spillovers to individual assets 



 

4 Conclusion 

We combine several recently developed concepts to assess the interconnectedness between 
cryptocurrencies and traditional asset classes. Specifically, we use realized measures of volatility 
proposed by Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen (2002), and 
insert them into volatility spillovers methodology developed by Diebold and Yilmaz (2012). 
Moreover, we explore asymmetries in volatility transmission mechanisms using approach developed 
by Baruník, Kočenda, and Vácha (2016), which is based on spillover methodology (Diebold and 
Yilmaz, 2012), but employs realized semivariances (Barndorff-Nielsen, Kinnebrock, and Shephard, 
2010) that enable us to consider volatility coming from negative and positive returns separately.  

We selected the most liquid cryptocurrency, Bitcoin, and the most liquid representatives of 
traditional asset classes including foreign exchange, commodities, stocks and financials. Then, using 
the above described methodology, we assessed connectedness between these assets, and asymmetries 
in the potential transmission mechanisms. Analysis of spillover asymmetries provided contradictory 
results to previous studies conducted on assets from a single class (e.g., Baruník, Kočenda, and Vácha; 
2016, 2017). In our case, total spillovers are driven significantly by positive volatility for most of the 
studied period. The same applies for individual assets, as only one of them displays significant 
negative asymmetry for an extended time period. The reason behind this could be the examined 
period, as sign of spillover asymmetry indicates the prevailing mood on markets in question. Hence, 
including only post-crisis years pushes SAM towards positive figures. Another possible explanation is 
stabilization by including different asset classes. 

The role and relevance of cryptocurrencies to financial markets is largely disputed. Most of our 
results do not support Bitcoin as an instrument relevant to other markets, as the level of connectedness 
to other assets is negligible. However, we provide empirical evidence that situation in the market for 
Bitcoin can influence situation in a market for other assets. Our results show a large spike in spillovers 
to gold after a price crash on markets for Bitcoin. Sudden disruption triggered a stream of negative 
spillovers of substantial magnitude from Bitcoin to gold. Hence, by transmission of its shocks to gold, 
Bitcoin proves it might be a more relevant phenomenon for financial markets than previously 
believed. 

  



References 

Andersen, T., Bollerslev, T., Diebold, F., Labys, P., 2001. The distribution of realized stock return 
volatility. Journal of Financial Economics 61 (1), 43-76. 

Barndorff-Nielsen, O.E., 2002. Econometric analysis of realized volatility and its use in estimating 
stochastic volatility models. Journal of Royal Statstical Society: Series B (Statistical Methodology) 
64 (2), 253-280. 

Barndorff-Nielsen, O., Kinnebrock, S., Shephard, N., 2010. Measuring downside risk-realized 
semivariance. In: Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle. 
Oxford: Oxford University Press. 

Baruník, J., Kočenda, E., Vácha, L., 2015. Volatility Spillovers Across Petroleum Markets. The 
Energy Journal 77, 309-329. 

Baruník, J., Kočenda, E., Vácha, L., 2016. Asymmetric connectedness on the U.S. stock market: Bad 
and good volatility spillovers 27. Journal of Financial Markets, 55-78. 

Baruník, J., Kočenda, E., Vácha, L., 2017. Asymmetric volatility connectedness on the forex 
market. Journal of International Money and Finance 77, 39-56. 

Black, F, 1976. Studies of stock price volatility changes. In: Proceedings of the 1976 Meetings of the 

American Statistical Association, Business and Economical Statistics Section, pp. 177-181.   

Bouri, E., Jalkh, N., Molnár, P., Roubaud, D., 2017. Bitcoin for energy commodities before and after 
the December 2013 crash: diversifier, hedge or safe haven? Applied Economics 49 (50), 5063-
5073. 

Brandvold, M., Molnár, P., Vagstad, K., Valstad, O.C.A., 2015. Price discovery on Bitcoin 
exchanges. Journal of International Financial Markets, Institutions and Money 36, 18-35. 

Christie, A., 1982. The stochastic behavior of common stock variances: value, leverage and interest 
rate effects. Journal of Financial Economics 10 (4), 407-432. 

Diebold, F., Yilmaz, K., 2009. Measuring Financial Asset Return and Volatility Spillovers, with 
Application to Global Equity Markets. The Economic Journal 119 (534), 158-171. 

Diebold, F., Yilmaz, K., 2012. Better to give than to receive: Predictive directional measurement of 
volatility spillovers. International Journal of Forecasting 28 (1), 57-66. 

Forbes, K., Rigobon, R., 2002. No Contagion, Only Interdependence: Measuring Stock Market 
Comovements. Journal of Finance 57 (5), 2223-2261. 

French, K., Schwert, G., Stambaugh, R., 1987. Expected stock returns and volatility. Journal of 
Financial Econometrics 19 (1), 3-29. 

Gande, A., Parsley, D., 2005. News Spillovers in the Sovereign Debt Market. Journal of Financial 
Economics 75 (3), 691-734. 

Kanas, A., 2000. Volatility Spillovers Between Stock Returns and Exchange Rate Changes: 
International Evidence. Journal of Business Finance & Accounting 27 (3-4), 447-467. 

Katsiampa, P., 2017. Volatility estimation for Bitcoin: A comparison of GARCH models. Economics 
Letters 158, 3-6. 

Koop, G., Pesaran, M., Potter, S., 1996. Impulse response analysis in nonlinear multivariate models. 
Journal of Econometrics 74 (1), 119-147. 

Mensi, W., Beljid, M., Boubaker, A., Managi, S., 2013. Correlations and volatility spillovers across 
commodity and stock markets: Linking energies, food, and gold. Economic Modelling 32, 15-22. 

Nadarajah, S., Chu, J., 2017. On the inefficiency of Bitcoin. Economics Letters 150, 6-9. 

Pesaran, M., Shin, Y., 1998. Generalized impulse response analysis in linear multivariate models. 
Economic Letters 58 (1), 17-29. 

Pindyck, R., 1984. Risk, inflation, and the stock market. American Economic Review, 334-351. 

Segal, G., Shaliastovich, I., Yaron, A., 2015. Good and bad uncertainty: Macroeconomic and financial 
market implications. Journal of Financial Economics 117 (2), 369-397. 



Urquhart, A., 2016. The inefficiency of Bitcoin. Economics Letters 148, 80-82. 

Urquhart, A., 2017. Price clustering in Bitcoin. Economics Letters 159, 145-148. 

Yang, S.-Y., Doong, S.-C., 2004. Price and Volatility Spillovers between Stock Prices and Exchange 
Rates: Empirical Evidence from the G-7 Countries. International Journal of Business and 
Economics 3 (2), 139-153. 

 

A Additional Figures. 

Figure 6. Rescaled volatility series. Panel (a): √ܴܸ. Panel (b): √ܴܵ+ and −√ܴܵ− (in red) 

a      b 
 

 



 



Figure 7. Total spillover index with Bitcoin included in set of assets (black) and excluded from the set of assets 
(red) 
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