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Abstract: 

This paper investigates how to measure common market risk factors using newly 

proposed Panel Quantile Regression Model for Returns. By exploring the fact that 

volatility crosses all quantiles of the return distribution and using penalized fixed 

effects estimator we are able to control for otherwise unobserved heterogeneity 

among financial assets. Direct benefits of the proposed approach are revealed in the 

portfolio Value-at-Risk forecasting application, where our modeling strategy 

performs significantly better than several benchmark models according to both 

statistical and economic comparison. In particular Panel Quantile Regression Model 

for Returns consistently outperforms all the competitors in the 5% and 10% 

quantiles. Sound statistical performance translates directly into economic gains 

which is demonstrated in the Global Minimum Value-at-Risk Portfolio and 

Markowitz-like comparison. Overall results of our research are important for correct 

identification of the sources of systemic risk, and are particularly attractive for high 

dimensional applications. 

 

Keywords: panel quantile regression, realized measures, Value-at-Risk 

JEL: C14, C23, G17, G32 

 

Acknowledgements: The support from the Czech Science Foundation under the 16-

14151S project and the support from the Grant Agency of Charles University under 

the 610317 project is gratefully acknowledged. This project has received funding 

from the European Unions Horizon 2020 Research and Innovation Staff 

mailto:frantisek.cech@fsv.cuni.cz


Exchange programme under the Marie Sklodowska-Curie grant agreement No 

681228. We would also like to thank James L. Powell, Antonio F. Galvao and 

seminar participants at 3rd InternationalWorkshop on Financial Markets and 

Nonlinear Dynamics in Paris (FMND 2017) as well as conference participants at the 

2015 CFE Network Conference in London, the Joint Annual Meeting of the Slovak 

Economic Association and the Austrian Economic Association (NOeG-SEA 2016), 

the 2016 CFE Network Conference in Seville and the 2017 IAAE meetings in 

Sapporo for helpful comments. 

 



1 Introduction

Many studies document cross-sectional relations between risk and expected returns, generally
measuring a stock’s risk as the covariance between its return and some factor. In this laborious
search for proper risk factors,1 volatility still plays central role in explaining expected stock
returns for decades. Most recent efforts explore increasingly available datasets, and make
measurement of ex-post volatility more precise than ever before. In turn, these measures can be
used for more precise identification of market risk. Although predictions about expected returns
are essential for understating of classical asset pricing, little is known about potential of the
factors to precisely identify extreme tail events of the returns distribution. More importantly,
even less is known about commonalities between more assets with this respect. Our research
attempts to contribute in this direction.

Asset pricing models explaining risk valuation theoretically assume an economic agent who
decides based on the preference about her consumption by maximizing expected utility function.
However, these preferences may be too restrictive to deliver satisfactory description of the real
behavior of agents. Instead of working with standard expected utilities, recent literature strives
to incorporate heterogeneity into dynamic economic models assuming agents maximize their
stream of future quantile utilities (Chambers, 2007; Rostek, 2010; de Castro and Galvao, 2017).
We contribute to these efforts by developing a Panel Quantile Regression Model for Returns
that is able to control for otherwise unobserved heterogeneity among financial assets and allows
us to exploit common factors in volatility that directly affect future quantiles of returns. In
a sense, we revisit large literature connecting volatility with cross-section of returns, as by
construction, we model tail events of the conditional distributions via volatility.

Since the seminal work of Koenker and Bassett Jr (1978), quantile regression models have
been increasingly used in many disciplines. In finance, Engle and Manganelli (2004) were
among the first to use quantile regression to develop the Conditional Autoregressive Value–
at–Risk (CAViaR) model and capture conditional quantiles of the asset returns. Baur et al.
(2012) use quantile autoregressions to study conditional return distributions, Cappiello et al.
(2014) detects comovements between random variables with time-varying quantile regression.
Žikeš and Baruńık (2016) show that various realized measures are useful in forecasting quan-
tiles of future returns without making assumptions about underlying conditional distributions.
Resulting semi-parametric modeling strategy captures conditional quantiles of financial returns
well in a flexible framework of quantile regression. Moving the research focus towards multi-
variate framework, and concentrating on interrelations between quantiles of more assets, White
et al. (2015) pioneers the extension. Different stream of multivariate quantile regression based
literature concentrates on the analysis using factors (Chen et al., 2016; Ando and Bai, 2017).2

From the theoretical point of view, Giovannetti (2013) derives an asset pricing model in which
equity premium is no longer based on the covariance between return and consumption. In-
stead, Giovannetti (2013) argue that under optimism, higher volatility can be connected to
high chance of high returns leading to increased prices, hence decreasing expected returns, and
vice versa under pessimism. Based on Choquet utility functions, Bassett et al. (2004) show

1See for example Harvey et al. (2016); Feng et al. (2017) for recent very complete overviews. This research
dates back to French et al. (1987).

2Panel quantiles methods are useful in the other areas of economics besides finance. They are mostly applied
in the labour economics (Billger and Lamarche (2015), Dahl et al. (2013), Toomet (2011)), banking and economic
policy analysis (Covas et al. (2014), Klomp and De Haan (2012)), economics of education (Lamarche (2008),
Lamarche (2011)), energy and environmental economics (You et al. (2015), Zhang et al. (2015)) or international
trade (Dufrenot et al. (2010), Foster-McGregor et al. (2014), Powell and Wagner (2014)).
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that pessimistic optimization may be formulated as a linear quantile regression problem, and
can lead to optimal portfolio allocation.

With this respect, work by Žikeš and Baruńık (2016) is important as it provides link be-
tween future quantiles of return distribution and its past variation. As the financial sector is
highly connected and the co-movements in asset prices are common, there is a need for proper
identification of dependencies in joint distributions. In the classical mean-regression frame-
work, Bollerslev et al. (2016) showed that realized volatility of financial time series shares many
commonalities. In the quantile regression set-up, however, there is no similar study that will
try to uncover information captured in the panels of volatility series. Moreover, to the best of
our knowledge there is no study estimating conditional distribution of returns in a multivariate
setting that explores ex-post information in the volatility.

In this paper, we contribute to the literature by introducing Panel Quantile Regression
Model for Returns. Our model utilize all the advantages offered by panel quantile regression
and financial market datasets. In particular, we are able to control for otherwise unobserved
heterogeneity among financial assets and reveal common factors in volatility that have direct
influence on the future quantiles of returns. To the best of our knowledge this is one of the
first applications of the panel quantile regression using dataset where time dimension T is much
greater than cross-sectional dimension N , i.e. T >> N . As a result we are able to obtain
estimates of quantile specific individual fixed effects that represents idiosyncratic part of the
market risk.

In an empirical application, we hypothesize that newly proposed model will deliver more
accurate estimates compared to currently established methods. These estimates moreover trans-
lates into better forecasting performance of Panel Quantile Regression Model for Returns. In
addition, using penalized fixed effect estimator we will be able to disentangle overall market
risk into systematic and idiosyncratic parts. Actual performance of our model is tested in the
portfolio Value–at–Risk forecasting exercise. Before the analysis of the empirical dataset (29
highly liquid stocks from the New York Stock Exchange) we run small Monte-Carlo experiment
that enable us to study well-behaved data. For the robustness reasons we evaluate forecasts
from both statistical and economic perspective. In the statistical comparison we furthermore
distinguish between absolute and relative performance of the given model.

Results of our analysis suggest that the Panel Quantile Regression Model for Returns is dy-
namically correctly specified. Moreover it dominates the benchmark models in the economically
important quantiles (5%,10% or 95%). Overall we find that according to statistical comparison
none of the benchmark models is able to outperform our model consistently. Furthermore model
we introduce in this paper provide us with direct economic gains according to both economic
evaluation criteria.

2 Risk Measurement using High Frequency Data

Let’s assume that the efficient logarithmic price process pi,t of ith asset evolves over time
0 ≤ t ≤ T according to the following dynamics

dpi,t = µi,tdt+ σi,tdWi,t + dJi,t, (1)

where µi,t is a predictable component, σi,t is cadlag process, Wi,t is a standard Brownian motion,
and Ji,t is a jump process.

The volatility of the logarithmic price process can be measured by quadratic return variation
which can be decomposed into integrated variance (IV) of the price process and the jump

3



variation (JV):

QVi,t =

∫ t

t−1
σ2i,sds︸ ︷︷ ︸

IVi,t

+

Ni,t∑
l=1

κ2i,t,l︸ ︷︷ ︸
JVi,t

, (2)

where Ni,t is total number of jumps during day t and
∑Nt

l=1 κ
2
i,t,l represents magnitude of the

jumps. As shown by Andersen et al. (2003) Realized Variance estimator can be simply con-
structed by squaring intraday returns:

R̂V i,t =
N∑
k=1

(∆kpi,t)
2 , (3)

where ∆kpi,t = pi,t−1+νk/N − pi,t−1+νk−1/N is a discretely sampled vector of k-th intraday log-
returns of ith asset in [t − 1, t], with N intraday observations. Realized Variance estimator
moreover converges uniformly in probability to QVi,t as the sampling frequency goes to infinity

R̂V i,t
p−−−−→

N→∞

∫ t

t−1
σ2i,sds+

Nt∑
l=1

κ2i,t,l

Building on the concept of Realized Variance Barndorff-Nielsen and Shephard (2004b) and
Barndorff-Nielsen and Shephard (2006) introduced bipower variation estimator that is robust
to jumps and thus able to consistently estimate IVi,t. Furthermore, Andersen et al. (2011)
adjust original estimator, which helps render it robust to certain type of microstructure noise:

ÎV
BPV

i,t = µ−21

(
N

N − 2

) N∑
k=3

|∆k−2pi,t||∆kpi,t|,

where µα = E(|Zα|), and Z ∼ N(0, 1). Having estimator of IVi,t in hand jump variation can be
consistently estimated3 as a difference between Realized Variance and the bipower variation:

(
R̂V i,t − ÎV

BPV

i,t

)
p−−−−→

N→∞

Nt∑
l=1

κ2i,t,l.

For many financial applications not only magnitude of the variation but also its sign is
important. Therefore Barndorff-Nielsen et al. (2010) introduce innovative approach for mea-
suring negative and positive variation in data called Realized Semivariance. They showed that
Realized Variance can be decomposed to realized downside semivariance (RS−i,t) and realized

upside semivariance (RS+
i,t):

RVi,t = RS+
i,t +RS−i,t,

where RS+
i,t and RS−i,t are defined as follows,

R̂S
+

i,t =
N∑
k=1

(∆kpi,t)
2 I (∆kpi,t > 0)

p−→ 1

2
IVi,t +

Nt∑
l=1

κ2i,t,lI (κi,t,l > 0) (4)

3Asymptotic behaviour and further details of the estimator can be found in Barndorff-Nielsen and Shephard
(2006).
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R̂S
−
i,t =

N∑
k=1

(∆kpi,t)
2 I (∆kpi,t < 0)

p−→ 1

2
IVi,t +

Nt∑
l=1

κ2i,t,lI (κi,t,l < 0) . (5)

Consequently, the negative and positive semivariance provides information about variation
associated with movements in the tails of the underlying variable. Similarly to Patton and
Sheppard (2015); Bollerslev et al. (2017), we use negative semivariance as a proxy to the bad
state of the returns, and positive semivariance as an empirical proxy of the good state of the
underlying variable.

Since correlation is inevitably important in portfolio applications, and we use it later in
portfolio Value–at–Risk application, we also define Realized Covariance estimator (Barndorff-
Nielsen and Shephard, 2004a) as

Σ̂t =
N∑
k=1

(∆kpt) (∆kpt)
′,

where ∆kpt = (∆kp1,t, ...,∆kpq,t)
′ is vector containing log-returns of q individual assets.

3 Panel Quantile Regression Model for Returns

Having briefly described realized measures that we need for model construction, we now pro-
pose simple linear models for cross-section of quantiles of future returns. We base our model
in a recent theoretical endeavors to move from expected values to quantiles and understand
heterogeneity in asset prices. Based on the risk preferences of quantile maximizers (Manski,
1988; Rostek, 2010), de Castro and Galvao (2017) develop a dynamic model of rational behavior
under uncertainty, in which agent maximizes stream of future quantile utilities. This is in sharp
contrast to the mainstream literature that assumes decision making process to be driven by
maximization of the expected utility instead. In a similar spirit as in Bassett et al. (2004), our
model can be viewed as linear asset pricing equation

Qri,t+1(τ |vi,t) = αi(τ) + v>i,tβ(τ), τ ∈ (0, 1), (6)

where ri,t+1 = pi,t+1 − pi,t are logarithmic daily returns, vi,t =
(
Q̂V

1/2

i,t , Q̂V
1/2

i,t−1, . . . , ÎV
1/2

i,t ,

ÎV
1/2

i,t−1, . . . , ĴV
1/2

i,t , ĴV
1/2

i,t−1, . . .
)

are individual components of the quadratic variation, αi rep-

resents individual fixed effects. This model enables us to study influence of the individual fixed
effects αi and coefficient estimates β on the specific quantiles of the future returns. Equation 6
can be easily extended by exogenous variables such as factors used in Fama and French (1993),
as already attempted by Galvao et al. (2017).

To obtain the parameters defined in Equation 6 we use panel quantile regression as in-
troduced in Koenker (2004). In this seminal work Roger Koenker proposed a penalized fixed
effects estimator as a general approach to estimating quantile regression models in the panel
data framework. Recently the ideas of Koenker (2004) have been further developed by Lamarche
(2010) who studied penalized quantile regression estimator, Galvao (2011) where the fixed effects
model for dynamic panels is introduced, Galvao and Montes-Rojas (2010) where it is shown that
bias in dynamic panels can be reduced using penalty term, work of Canay (2011) who introduced
simple two-step approach to estimation of panel quantile regression and showed consistency and
asymptotic normality of the proposed estimator, or application of the instrumental variables to
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quantile regression estimation (Harding and Lamarche, 2009). Other influential works develop-
ing theory of panel quantile methods are Galvao and Montes-Rojas (2015), Galvao and Wang
(2015), Galvao and Kato (2015), Graham et al. (2015), Harding and Lamarche (2014) or Kato
et al. (2012).

In our work we propose to model quantiles of several return series using original penalized
fixed effects estimator of Koenker (2004). The advantage of this approach is ability to account
and to control for unobserved heterogeneity among financial assets which will yield more precise
quantile specific estimates. As a consequence these estimates will translate into better forecast-
ing performance directly. Moreover one can use this approach to obtain precise estimates of
the Value–at–Risk (VaR) which is commonly used financial industry risk measure. In the VaR
application panel data will utilize all the favorable properties of the standard time series. In
additon, cross-sectional dimension will help us to account for common shocks among the assets.
To obtain parameter estimates we solve following optimization problem

min
α(τ),β(τ)

n∑
t=1

ti∑
i=1

ρτ (ri,t+1 − αi(τ)− v>i,tβ(τ)) + λ

n∑
i=1

|αi(τ)|, (7)

where ρτ (u) = u (τ − I(u(< 0))) is the quantile loss function (Koenker and Bassett Jr, 1978)
and

∑n
i=1|αi| is l1 penalty that controls variability introduced by the large number of estimated

parameters. In our set-up individual fixed effects are consider to have distributional effects and
we concentrate on each quantile separately rather than minimizing through several quantiles. In
contrast, Koenker (2004) and vast majority of the theoretical and applied works consider αi to
have a pure location shift effect on the conditional quantiles. This restriction is a consequence
of the structure of the usual panel-datasets where cross-sectional dimension is much larger than
time dimension4. This problem is however not so sever in analysis of financial market data
because majority of the assets have long history and thus consist of thousands of observations.
Moreover analysis of the specific quantiles is essential for many financial applications including
popular Value–at–Risk in which we are most often interested in finding 1-day 5% VaR or 10-day
1% VaR as historically recommended by Basel Committee on Banking Supervision.

Another important part of the Equation 7 besides fixed effects is the penalty term λ which
influence the precision of the estimates of αi(τ) and β(τ). Our analysis starts with the standard
pure fixed effects model where λ = 0. This approach allows us to obtain estimates of all
individual quantile specific fixed effects. As a robustness check we also carried out the analysis
with values of λ from range (0; 1) as in Damette and Delacote (2012) and Covas et al. (2014)
and with λ = 1 as in Koenker (2004), Bache et al. (2008), Matano and Naticchioni (2011), Lee
et al. (2012) and You et al. (2015). Overall we find out that choice of λ does not affect precision
of β estimates. We address this finding to the structure and characteristics of the dataset (high
time dimension T compared to low cross-section dimension N). Although parameter λ is set
arbitrarily in our work there exist also theoretical approach of λ selection. Interested reader
can find it in Lamarche (2010) or Galvao and Montes-Rojas (2010).

3.1 Model specifications

While Equation 6 can accommodate many possible model specifications, we are interested in
estimation results for following three models. In each specification quantiles of return series
depends on different realized measure - Realized Volatility, Realized Semivariances and Realized

4As detailed in Koenker (2004) it is not advisable to estimate τ -specific αi in problems with small/medium
T .
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Bi-Power Variation. Hence, we are estimating following Panel Quantile Regression Models for
Returns specifications:

1. PQR-RV for Realized Volatility, with quantile function defined as

Qri,t+1(τ) = αi(τ) + βRV 1/2(τ) ∗RV 1/2
t , (8)

2. PQR-RSV for Realized Semivariance, with quantile function defined as

Qri,t+1(τ) = αi(τ) + β
RS+1/2(τ) ∗RS+

t
1/2

+ β
RS−1/2(τ) ∗RS−t

1/2
, (9)

3. PQR-BPV for Realized Bi-Power Variation, with quantile function defined as

Qri,t+1(τ) = αi(τ) + βBPV 1/2(τ) ∗BPV 1/2
t + βJumps1/2(τ) ∗ Jumps1/2t . (10)

4 Competing Models and Evaluation

In the previous section we introduce Panel Quantile Regression Model for Returns which will
be used in the applied part of the paper to analyze simulated and empirical data. In this
section we describe alternative approaches that can be viewed as the direct competitors to our
model. Benchmarks in our work includes popular and widely used RiskMetrics model that is
the industry standard for the risk evaluation in high-dimensional problems and two applications
of the Univariate Quantile Regression Model for Returns.

4.1 RiskMetrics

Based on Exponentially Weighted Moving Average, J.P. Morgan Chase in 1996 introduced
new methodology for accessing the financial risk called RiskMetrics. It is considered to be the
baseline benchmark model for numerous fiancial applications. For our benchmark purposes,
we adopt the specification in its original form as defined in Longerstaey and Spencer (1996)
with decay factor, λ set to 0.94. We assume a q × 1 vector of daily returns rt =

∑n
k=1 (∆kpt)

for t = 1, ..., T such that rt ∼ N
(
µt, σ

2
t

)
, where µt is conditional mean and σ2t is conditional

variance of daily returns. We also assume that µt = 0 and therefore conditional covariance has
the form

σi,j,t = λσi,j,t−1 + (1− λ)ri,t−1rj,t−1,

where σi,j,t denotes covariance between assets i and j at time t.

4.2 Univariate Quantile Regression Model for Returns

As already mentioned Žikeš and Baruńık (2016) introduced elegant framework for modelling
and obtaining forecasts of the conditional quantiles of future returns in the univariate setting.
They proposed to model quantiles of return series according to:

Qri,t+1(τ |vi,t) = αi(τ) + v>i,tβi(τ), (11)

where ri,t+1 = pi,t+1 − pi,t is return series of ith asset and vi,t =
(
Q̂V

1/2

i,t , Q̂V
1/2

i,t−1, . . . , ÎV
1/2

i,t ,

ÎV
1/2

i,t−1, . . . , ĴV
1/2

i,t , ĴV
1/2

i,t−1, ...
)

are components of quadratic variation. Estimates of asset i
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quantile specific β from Equation 11 are obtained by minimizing following objective function:

min
αi(τ),βi(τ)

1

n

n∑
t=1

ρτ

(
ri,t+1 − αi(τ)− v>i,tβi(τ)

)
, (12)

where ρτ (u) = u(τ − I(u < 0))) is the quantile loss function defined in Koenker and Bassett Jr
(1978). Application of the model in the multivariate setting is further described in the following
section.

4.3 Forecasting Exercise and Forecast Evaluation

In order to evaluate performance of the newly proposed Panel Quantile Regression Model for
Returns we conduct forecasting exercise in which we study portfolio Value–at–Risk from the
statistical and economic point of view. We decided to concentrate on both statistical and
economic evaluation in order to get complete picture of behavior of the new model. Moreover
concentrating on statistical evaluation only might get us into trouble because good statistical
performance might not necessarily translates also into economic gains. Therefore to make our
results robust we apply two statistical and two economic evaluation criteria.

In statistical comparison we focus on the absolute and relative performance of the considered
models in the equally weighted portfolio set-up. By focusing on the equally weighted portfolio,
we refrain from specifying complicated weighting scheme which might theoretically affects the
overall performance.

In economic comparison we study efficient frontier of the Value–at–Risk - return trade-
off and also Global Minimum Value–at–Risk Portfolio (GMVaRP). As both approaches by
definition tries to find optimal weights of the assets we are not using equally weighted portfolio
here anymore.

4.3.1 Portfolio Value–at–Risk

Value–at–Risk is elegant way of quantifying risk of an investment. Its simplicity makes it
popular in the financial industry because it provides us with single number that represents
potential loss we can incur at certain probability level during pre-defined period of time. Use
of VaR as the only risk measure however has some limitations. There are well known problems
of VaR generally not being a coherent risk measure because of violating the subadditivity
criteria (Artzner et al., 1999). However, Dańıelsson et al. (2013) show that under reasonable
assumptions VaR might be subadditive. In this paper we decided to use VaR framework because
forecasts we obtain from the Panel Quantile Regression Model for Returns are by definition
semi-parametric VaRs. Moreover we are not trying to introduce new measure of financial risk,
rather we want to show accuracy of the model we proposed in the standard well–known set–up.

Having briefly discussed our motivation to concentrate on the VaR in our analysis we now
turn to Value–at–Risk framework itself. Generally there are two main approaches of calculating
VaR: (semi)parametric estimation vs. historical simulation. In our work we will concentrate
on parametric approach because it directly enable us to easily compare forecasts from several
benchmark models.

Original parametric way of VaR calculation was introduced by J.P.Morgan. In their set-up,
VaR is derived from quantile of standard normal distribution,

V aRi = γτσi,

8



where γτ is the τ quantile of the standard normal distribution and σi is the volatility of the
asset i. If we would like to study VaR of the portfolio instead of the individual assets, σi is
replaced by the portfolio volatility σP . Under assumption of the multivariate normality σP is
calculated as

σP =
√
w> ∗ Σ ∗ w,

where Σ is the covariance matrix and w is the vector of asset weights. We can therefore calculate
percentage Value–at–Risk (%V aR) of the given portfolio as a

%V aRP =
√
γ2τ ∗ w> ∗ Σ ∗ w. (13)

We can rewrite Equation 13 in terms of VaRs of the individual assets as

%V aRP =
√

(w> �%V aR>) ∗ Ω ∗ (w �%V aR), (14)

where %V aR is a vector of individual percentage VaR estimates, Ω stands for correlation matrix
and � is the Hadamar product. Alternatively we can also write it as

%V aRP =

√√√√ N∑
i=1

(wi%V aRi)
2 + 2

N∑
i=1

N∑
j=i+1

wiwj%V aRi%V aRjρi,j

where wi is the weight of asset i, %V aRi is the percentage VaR of the ith asset and ρi,j represents
correlation between asset i and j.

In the forecasting exercise we will study portfolio Value-at-Risk performance of the 4 bench-
mark model specifications:

• RiskMetrics,

• Panel Quantile Regression(PQR) Model for Returns,

• Univariate Quantile Regression(UQR) Model for Returns,

• portfolio version of Univariate Quantile Regression(Portfolio UQR) Model for Returns.

For calculation of portfolio VaR using RiskMetrics approach we directly apply Equation 13
where Σ is covariance matrix obtained from RiskMetrics and γτ is a cut–off point of standard
normal distribution at a given quantile τ .

In case of PQR and UQR forecasts of quantiles of return series are considered to be semi-
parametric percentage VaR. Correlation matrix Ω is obtained from Realized Covariance matrix
estimate, Σ, as

Ω = (diag(Σ))−1/2 ∗ Σ ∗ (diag(Σ))−1/2

and therefore Equation 14 can be used for VaR calculation.
In contrast to previous approaches, Portfolio UQR is calculated in a different fashion. We

firstly create portfolio returns and portfolio volatility series using individual returns and corre-
lation structure obtained from Realized Covariance matrix, Σ, as

rt,P = w> ∗ rt
and

σt,P =
√
w> ∗ Σt ∗ w,

where rt,P and σt,P is portfolio return and portfolio volatility at time t respectively and rt is
vector of individual returns at time t. Series rt,P and σt,P are further modeled using Univariate
Quantile Regression Model for Returns and the forecasts of the quantiles of the portfolio return
series are considered to be semi-parametric percentage portfolio VaR.

9



4.3.2 Statistical Evaluation

In the statistical comparison we study absolute performance which tells us whether model
is dynamically correctly specified, i.e. we study goodness-of-fit, and relative performance in
which we compare models against each other. For the absolute performance evaluation we use
modified version of the Dynamic Quantile test (Engle and Manganelli, 2004), referred to as the
CAViaR test by Berkowitz et al. (2011). In their work, Berkowitz et al. (2011) define “hit”
variable in a way that

hitt+1 =

{
1 if rt+1 ≤ Qrt+1(τ)
0 otherwise

i.e. hitt+1 is a binary variable taking values 1 if conditional quantile is violated and 0 otherwise.
Hit series of a dynamically correctly specified series should be i.i.d Bernoulli distributed with
parameter τ

hitt+1 ∼ iid(τ, τ(1− τ))

By construction, hit is a binary variable, therefore Berkowitz et al. (2011) propose to test the
hypothesis of correct dynamic specification using following logistic regression

hitt = c+

n∑
d=1

β1dhitt−l +

n∑
d=1

β2dQrt−d+1
(τ) + ut

where ut is assumed to have logistic distribution. We use likelihood ratio test to verify null

hypothesis that β‘s are equal to zero and P(hitt = 1) =
ec

1 + ec
= τ . Exact finite sample critical

values for the likelihood ratio test are obtained from Monte Carlo simulation as suggested by
Berkowitz et al. (2011).

Relative performance of benchmark models is tested using expected tick loss for pairwise
model comparison (Giacomini and Komunjer, 2005; Clements et al., 2008). Loss function is
defined as

Lτ,m = E
(
(τ − I

(
emt+1 < 0

)
emt+1

)
,

where I(·) is indicator function, emt+1 = rt+1−Qmrt+1
(τ) and Qmrt+1

(τ) is the m‘th model quantile
forecast. Forecasting accuracy of two models is assessed using Diebold and Mariano (1995) test.
Null hypothesis of the test that expected losses of two models are equal i.e. H0 : Lτ,1 = Lτ,2 is
tested against general alternative.

4.3.3 Economic Evaluation

As we mentioned at the begining of the section besides the statistical evaluation we also study
performance from the economic point of view which is particularly important for practitioners
(e.g. portfolio managers). At first, for the economic evaluation of portfolio Value-at-Risk
forecasts modified approach of Markowitz (1952) is used. From the original work of Markowitz
(1952) it differs in a way that we concentrate on the relationship of the return and Value-at-Risk
compared to original risk–return trade-off 5. To overcome the difficulties of specifying proper
model for returns and covariance/correlation matrices we decide to use their ex-post realizations
i.e. for day T we use returns realized in day T , realized covariance/correlation matrix in day T
and forecasts of univariate VaR for day T .

In general, efficient frontier of the optimal portfolio can be constructed in a two equivalent
ways:

5Note that if we assume that quantiles of returns are standard normally distributed and we use standard
cut–off points i.e. -1.645 for 5% quantile both approaches are equivalent
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1. Expected portfolio return is maximized for various levels of portfolio Value-at-Risk

2. Portfolio Value-at-Risk is minimized for various levels of expected portfolio return

In both approaches asset weights, w = (w1, . . . , wq)
′, maximizing utility of risk averse in-

vestor can be found by solving following problem:

min
wt+1

w′t+1Ξ̂t+1|twt+1 (15)

s.t. l′wt+1 = 1

w′t+1 ≥ 06

w′t+1µ̂t+1 = µP

where wt+1 is n×1 vector of assets weights, l denotes a n×1 vector of ones, µ̂t+1 is a vector

of ex-post returns, µP stands for portfolio return and Ξ̂t+1|t = diag
(

̂%V aRt+1|t

)
∗ Ω̂t+1 ∗

diag
(

%̂V aRt+1|t

)
represents a correlated Value-at-Risk covariance matrix where ̂%V aRt+1|t is

n× 1 vector of univariate %VaR forecast and Ω̂t+1 is correlation matrix obtained from realized
covariance matrix estimate. Once we solve optimization problem for different levels of risk we
construct efficient frontier. In the Markowitz-type portfolio optimization exercise we do not
allow short-selling in order to meet restrictions imposed mainly by regulators on certain types
of investors (pension funds etc.).

Finally we get to description of the second economic evaluation criteria used in our study,
Global Minimum Value-at-Risk Portfolio. Basic problem of GMVaRP is similar to Markowitz,
there are only two differences in the set-up. The first one is the existence of the closed-form
solution. As a consequence we are not restricting asset weights because global minimum of the
optimization problem might require negative weights of some assets. Second difference is the
absence of targeted portfolio return. Therefore in some cases we might get negative portfolio
return for the asset weights minimizing the overall risk of the portfolio. GMVaRP optimization
problem can be written as

min
wt+1

w′t+1Ξ̂t+1|twt+1 (16)

s.t. l′wt+1 = 1.

In the Kempf and Memmel (2006) was shown that analytic solution of the problem is

wGMV aR
t+1 =

Ξ̂−1t+1|tl

l′Ξ̂−1t+1|tl
, (17)

and portfolio Value-at-Risk corresponding to calculated asset weights is finally obtained as

%V aRGMV aR
t+1 = wGMV aR

t+1
′
Ξ̂t+1|tw

GMV aR
t+1 .

6We do not allow short-selling in this set-up.
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5 Simulation Study

Before we analyze empirical data we would like to show performance of the newly proposed
model in the controlled environment. Our aim is to show how various error distributions used
for continuous price process simulation affect performance of the Panel Quantile Regression for
Returns model.

As it is common in the literature let’s assume that price process follow jump diffusion process
with stochastic volatility:

dpt =

(
µ− σ2t

2

)
dt+ σtdW1t + ctdNt

dσ2t = κ
(
α− σ2t

)
dt+ γσtdW2t,

(18)

where W1 and W2 are Brownian motions, ctdNt is a compound Poisson process with random
jump size distributed as N(0, σJ) and σJ = 0.01. Parameters in Equation 18 are set to the
values which are reasonable for a stock price, i.e. α = 0.04, κ = 5, γ = 0.5 as in Zhang et al.
(2005) and µ = 0 because we assume that returns are zero-mean. The volatility parameters
satisfy Feller’s condition 2κα ≥ γ2, which keeps the volatility process away from the zero
boundary. Moreover we assume that W1 comes from one of the following distributions with Σ
being Realized Covariance matrix obtained from the empirical data.

1. Multivariate normal distribution, N(0,Σ).

2. Multivariate Student-t distribution with 9 degrees of freedom, t9(0,Σ).

3. Univariate normal distribution, N(0, 1).

4. Univariate Student-t distribution with 9 degrees of freedom, t9(0, 1).

To work with similar environment as with empirical data, we simulate 7 hours of 1 minutes
intra-day prices for 2613 days. From the intra-day prices we calculate daily returns and all the
realized measures. In case of multivariate normal and multivariate Student-t distribution we
use empirical estimate of Realized Covariance matrix for given day as the input for multivari-
ate random number generation. For each error distribution we run 500 simulations. In each
simulation step we use same estimation procedure as in case of empirical data - rolling window
of length 1000.

5.1 In-Sample Fit

We start description of the results with the data generated from Multivariate Normal Distri-
bution i.e. N(0,Σ). For the rest of the distributions results are presented in the Appendix -
Table 7, 8, 9 and we comment here only main differences from Multivariate Normal Distribu-
tion. Table 1 shows detailed estimation results for 5%, 10%, 90% and 95% quantiles that are
most important from the economic point of view for all three model specifications. To get a
better view of quantile dynamics we also report lower and upper quartile together with median.

Table 1 reveals significant estimates (except median) for PQR-RV model, with parame-
ter values increasing in quantiles. Median coefficient is zero as a consequence of setting µ in
Equation 18. Similarly to PQR-RV model, all but median quantiles are statistically significant
also for the second model, PQR-RSV. We can notice difference in smaller magnitudes of coef-
ficients in comparison to PQR-RV. Since both positive and negative semivariance should carry
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equal information in Multivariate Normal distribution, we expect equal coefficients. Finally,
PQR-BPV model shows insignificant estimates for jump component, while coefficients for the
volatility component are equal to PQR-RV model. This again is consistent with our expecta-
tion, as simulated jump variation in the simulations is too small. We conclude with observation
that results for all three models are symmetric, as expected.

Tables 7, 8, and 9 reveal similar patterns. Heavy tails introduced to the data with Student-t
distribution cause higher coefficients on both tails.

Table 1: Multivariate Normal Distribution – Mean of coefficients estimates from Monte-Carlo
simulations

τ 5% 10% 25% 50% 75% 90% 95%

PQR-RV

β̂RV 1/2 -1.54 -1.15 -0.57 0 0.56 1.14 1.55
(-18.9) (-18.37) (-12.51) (-0.06) (11.85) (17.72) (17.97)

PQR-RSV

β̂RS+1/2 -1.12 -0.83 -0.43 -0.02 0.36 0.76 1.04
(-2.17) (-2.35) (-2.23) (-0.18) (1.96) (2.29) (2.07)

β̂RS−1/2 -1.06 -0.79 -0.38 0.02 0.44 0.86 1.15
(-2.06) (-2.21) (-1.95) (0.15) (2.42) (2.63) (2.32)

PQR-BPV

β̂BPV 1/2 -1.55 -1.15 -0.57 0 0.57 1.15 1.55
(-18.9) (-18.46) (-12.49) (-0.06) (11.83) (17.81) (17.87)

β̂Jumps1/2 0.06 0.04 0.02 0 -0.03 -0.05 -0.06
(0.49) (0.56) (0.45) (0.01) (-0.47) (-0.63) (-0.52)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. Individual
fixed effects αi(τ) are not reported for brevity.

5.2 Out-of-Sample Performance

In the out-of-sample forecasting exercise we start with comparison of absolute performance
represented by various measures of unconditional coverage (τ̂avg, τ̂max, τ̂min, τ̂avg−dev) and dy-

namic quantile CAViaR test (D̂Qviolations) followed by pair-wise relative comparison according
to Diebol-Mariano test (DM). For the unconditional coverage we report average unconditional
coverage (τ̂avg) from the Monte-Carlo simulation which indicates how close our model was to
theoretical quantile hit rate (i.e. for 5% quantile we expect unconditional coverage to be some-
where around 5%), maximum and minimum unconditional coverage (τ̂max, τ̂min) which show
the range of possible movements of unconditional coverage rate and average deviation from
the theoretical quantile hit rate (τ̂avg−dev) that shows on average how close our estimates were
to theoretical values. Results of Diebold-Mariano test shows us percentage values when the
benchmark model was outperformed by its competitors.

In the PanelA.1 and PanelA.2 of the Table 2 we present absolute performance of the PQR
and benchmark models respectively. Overall we can say that all the models are dynamically
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correctly specified in the majority of simulation trials for all the quantiles but median. Mod-
els with the lowest average deviation from studied quantile τ are all PQR specifications and
UQR for all but median quantile. In case of median Portfolio UQR is the winner. Similarly
to in-sample fit we obtain qualitatively identical results when we study data simulated from
Multivariate Student-t distribution. When we switch to univariate error distributions situation
change a bit and the Portfolio UQR seems to be the model with lowest average deviation and
with lowest number of dynamically not correctly specified models. However, we must stress
that for all but median quantile all the results are close to each other which indicates that none
of the models is systematically misspecified.

More interesting comparison comes from PanelB.1 and PanelB.2 of the Table 2 where PQR
models are compared to benchmarks directly. All the PQR variants outperform significantly
Portfolio UQR in all studied quantiles and RiskMetrics in all quantiles but median. Median
RiskMetrics performance is overall the best which we attribute to the fact that median cut-
off point for VaR calculation is zero and by construction series we simulated are supposed
to be zero mean. When we concentrate on the comparison of the PQR to UQR situation
is identical in both tails - UQR outperform slightly all PQR specifications. We address this
result to the nature of simulated data - data generating process is driven by generated random
numbers and contains just little heterogeneity that could possibly translate into the gains using
PQR. Median performance however is better for PQR which is result of the averaging in the
PQR median calculation. Moreover as the number of estimated parameters is significantly
lower in case of PQR compared to UQR, median forecasts are less noisy which translates to
better median PQR performance directly. Qualitatively identical results are obtained also for
Multivariate Student-t distribution. If we turn to comparison with univariate distributions
PQR outperform UQR significantly in all studied quantiles. Source of this interesting fact lies
in the degree of heterogeneity present in the data. The only source of heterogeneity in our
simulated data is random number generation process. In case of univariate distributions each
generated time series has errors that are independent from remaining time series. However,
in the multivariate distributions all error terms are affected by each other because we assume
some correlation/covariance structure. As a result multivariate random numbers are more
homogeneous compared to univariate one.

Generally results obtained from Monte-Carlo simulation helps us to justify the use of panel
quantile regression for modelling quantiles of future returns. Our main results are that what-
ever error distribution for simulation we use PQR models are specified well dynamically, they
dominate RiskMetrics and Portfolio UQR benchmark models and are slightly outperformed by
UQR due to the lack of heterogeneity in the simulated data in case of multivariate distributions
while PQR outperform UQR in more heterogeneous data created by univariate error distri-
butions. We also show importance of covariance structure in the comparison of the results of
multivariate and univariate distributions.
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6 Empirical Application

Confident about performance of the modeling strategy in the controlled environment, we turn
to application of the proposed models on the empirical data. First, we describe in-sample fit of
the PQR-RV, PQR-RSV and PQR-BPV model specifications. Second, we present results of the
out-of-sample Value–at–Risk forecasting exercise. Third, we complement results of statistical
evaluation by the simple portfolio allocation exercise where we study Global Minimum Value-
at-Risk Portfolio and Markowitz like relationship between Value-at-Risk and return of the
portfolio.

Empirical application is carried out using 29 U.S. stocks7 that are traded at New York
Stock Exchange. These stocks have been chosen according to market capitalization and their
liquidity. Sample we study spans from July 1, 2005 to December 31, 2015 and we consider trades
executed within U.S. business hours (9:30 – 16:00 EST). In order to ensure sufficient liquidity
and eliminate possible bias we explicitly exclude weekends and bank holidays (Christmas, New
Year’s Day, Thanksgiving Day, Independence Day). In total, our final dataset consists of 2613
trading days. Basic descriptive statistic of the data can be found in Table 6 in Appendix.

For estimation and forecasting purposes we use rolling window estimation with fixed length
of 1000 observation,8 hence our model is always calibrated on a 4 years history. Our analysis is
restricted to 5 minutes intraday log-returns that are used for computation of the daily returns
and realized measures.

All the results presented in this section were obtained using pure fixed effects panel quantile
regression, i.e. penalty parameter λ set to 0. In the Appendix9 we present also estimation
results when λ = 1 which serves as a robustness check.

6.1 In-Sample Fit

Estimation results are detailed in the Table 3. In addition, to get a better view of the dynamics,
we show results of the PQR-RV, PQR-RSV and PQR-BPV also graphically in the Figures 1, 2
and 3 respectively.

7Apple Inc. (AAPL), Amazon.com, Inc. (AMZN), Bank of America Corp (BAC), Comcast Corporation
(CMCSA), Cisco Systems, Inc. (CSCO), Chevron Corporation (CVX), Citigroup Inc. (C), Walt Disney Co
(DIS), General Electric Company (GE), Home Depot Inc. (HD), International Business Machines Corp. (IBM),
Intel Corporation (INTC), Johnson & Johnson (JNJ), JPMorgan Chase & Co. (JPM), The Coca-Cola Co (KO),
McDonald’s Corporation (MCD), Merck & Co., Inc. (MRK),Microsoft Corporation (MSFT), Oracle Corporation
(ORCL), PepsiCo, Inc. (PEP), Pfizer Inc. (PFE), Procter & Gamble Co (PG), QUALCOMM, Inc. (QCOM),
Schlumberger Limited. (SLB), AT&T Inc. (T), Verizon Communications Inc. (VZ), Wells Fargo & Co (WFC),
Wal-Mart Stores, Inc. (WMT), Exxon Mobil Corporation (XOM).

8We have tried different length of rolling window with the qualitative results of our analysis remaining
unchanged. These results are available from authors upon request.

9Table 13, Figure 5, Figure 6 and Figure 7
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Table 3: Coefficient estimates of Panel Quantile Regressions

τ 5% 10% 25% 50% 75% 90% 95%

PQR-RV

β̂RV 1/2 -1.5 -1.16 -0.6 -0.01 0.56 1.11 1.42
(-23.5) (-20.62) (-15.65) (-0.2) (20.37) (24.84) (20.7)

PQR-RSV

β̂RS+1/2 -0.97 -0.75 -0.44 -0.16 0.18 0.41 0.53
(-12.74) (-11.98) (-8.31) (-2.73) (2.69) (4.55) (4.51)

β̂RS−1/2 -1.18 -0.9 -0.41 0.14 0.62 1.14 1.49
(-11.72) (-14.05) (-9.9) (2.7) (9.17) (13.66) (10.39)

PQR-BPV

β̂BPV 1/2 -1.55 -1.18 -0.62 0 0.59 1.15 1.44
(-19.5) (-18.15) (-16.27) (-0.13) (23.84) (23.22) (25.72)

β̂Jumps1/2 -0.25 -0.21 -0.14 -0.03 0.06 0.21 0.44
(-3.24) (-3.54) (-3.39) (-0.58) (1.11) (1.9) (2.56)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed
effects αi(τ) are not reported for brevity - they are available from authors upon request

Table 3 reveals that parameters of the first model specification (PQR-RV) where lagged
volatility is used to explain conditional quantiles of returns are significantly different from zero
for all quantiles except median. Moreover, signs of the estimated parameters correspond to
our expectations – coefficients at lower (upper) quantiles are negative (positive). Our expecta-
tions follow the Value–at–Risk concept in which quantiles of standard normal distribution are
combined with volatility estimate. For illustration, 5% and 95% quantiles of standard normal
distribution are -1.645 and 1.645 respectively. Furthermore, median parameter estimate that
is not statistically significant confirm hypothesis about the randomness/unpredictability of the
short-term returns.

In the Table 3, we can also see that absolute values of parameter estimates are not symmetric
around median which highlight the relative importance of the realized volatility on the estima-
tion of the lower quantiles of returns. We arrive to a similar conclusion also when looking at
the Figure 1 that compares and displays PQR estimates together with their corresponding 95%
confidence intervals and individual UQR parameter estimates plotted in boxplots. Importantly,
the Figure 1 shows that once we control for unobserved heterogeneity by PQR past volatility
has larger influence on both the lower and the upper quantiles of returns than the majority of
individual UQR. This is highlighted in far quantiles, e.g. coefficient of PQR in 5% quantile is
-1.5 whereas median of individual UQR coefficient is -1.33 (mean -1.36) or 95% quantile PQR
coefficient is 1.42 and median of individual UQR is only 1.30 (mean 1.31).

This finding constitutes important empirical result, as we document unobserved heterogene-
ity in far quantiles that needs to be controlled.
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Figure 1: PQR-RV parameter estimates
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Note: Parameter estimates with corresponding 95% confidence intervals from the PQR-RV specification are
ploted by solid and dashed lines respectively. Individual UQR-RV estimates are ploted in boxplots.

Coefficients form the second model specification (PQR-RSV) where Realized Variance is
decomposed into realized downside (RS−) and upside (RS+) semivariance are significantly
different from zero for all considered quantiles. Magnitude of coefficients driving impact of
both variables is highest at far quantiles showing strongest impact of both negative, and positive
semivariance on tails of the returns distributions.

However, influence of RS− is far more important in the upper quantiles where it dominates
RS+. On the contrary, in the lower quantiles values of parameters are close to each other and
therefore we cannot draw the similar conclusion as in upper quantiles. Median performance
is bit different from PQR-RV case. We can see that coefficients for both RS− and RS+ are
statistically significant and in case that magnitude of RS− and RS+ is equal they sum to -0.02
which translates into loss in 50% of cases. However as theory and stylized facts about financial
time series suggest influence of negative returns and subsequently negative semivariances should
be greater than the effect of the positive one. Therefore one can not draw straightforward
conclusion about sign and magnitude of median return.
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Figure 2: PQR-RSV parameter estimates

(a) RS+1/2
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(b) RS−1/2
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Note: For both realized upside and downside semivariance parameters estimates with corresponding 95%
confidence intervals are ploted by solid and dashed lines respectively. Individual UQR-RSV estimates are

ploted in boxplots.

Careful reader might also notice that median coefficient of β̂
RS+1/2 is negative and opposite

is true for β̂
RS−1/2 . Explanation of this feature rely on short and long term mean-reversion

nature of the returns and fact that we are using lagged values of realized semivariances as
regressors. If we put it together negative return at day t−1 will cause that RS−t−1 > RS+

t−1 and

prediction of the median quantile for day t will be positive because β̂
RS−1/2 is positive and vice

versa for positive return and subsequent RS−t−1 < RS+
t−1. Behavior described in the previous

sentence lead to mean-reversion. Results of our analysis are also supported by the Figure 2.
Similarly to PQR-RV specification we can see in the Figure 2 that controlling for unobserved
heterogeneity among financial assets is important because influence of both downside and upside
semivariance is greater in the lower quantiles than in individual UQR. For example in 5%
quantile coefficients obtained by PQR-RSV are -0.97 and -1.18 for RS+ and RS− respectively,
however median values of individual UQR are -0.82 (mean -0.84) for RS+ and -0.95 (mean
-1.1) for RS−. Moreover, in the upper quantiles of negative semivariance (Figure 2b)PQR
coefficients differs substantially from individual UQR (95% quantile β̂

RS−1/2 coefficient of 1.49
vs. individual UQR median/mean coefficient of 1.28/1.27), however, the opposite is true for
RS+ (95% quantile β̂

RS+1/2 coefficient of 0.54 vs. individual UQR median/mean coefficient
of 0.55/0.55). These findings support previous conclusion that RS− influences future upper
quantiles of returns more than RS+.

Finally, Table 3 reveals interesting results about parameter estimates of the third model
specification (PQR-BPV), where the Bi-Power Variation and Jump Component as regressors
are used to drive the return quantiles. We can infer that jumps have significant impact on both
far upper and lower quantiles of future returns. To be precise, magnitude of the jump coefficient
β̂Jumps1/2 is highest for 95% quantile with the value of 0.44. For the remaining above median
quantiles jumps are not statistically significant and therefore influence of Quadratic Variation
reduces to Integrated Variance represented by Bi-Power Variation. We can observe opposite

19



situation for the below median quantiles where β̂Jumps1/2 coefficients are always significant.
Figure 3 helps us to confirm results of our previous analysis also graphically. If we compare
Figure 3a to Figure 1 we get almost identical picture. Moreover in the Figure 3b we can see
that from 45% to 85% quantiles confidence intervals of the jump component are getting wider
and include zero. Once we combine these two findings we can state that for these quantiles
Quadratic Variation reduces to Integrated Variance. In contrast none of the confidence intervals
of the 5% to 40% quantiles contain zero which highlights the relative importance of the jump
component in the modelling lower future quantiles of returns.

Overall, results of the in-sample analysis show asymmetric impact of the regressors on the
quantiles of future returns. This impact is higher in the below median quantiles. We have
also found evidence for positive/negative news asymmetry. This asymmetry is the highest in
the 95% quantile (0.53 coefficient of RS+ vs. 1.49 of RS−) while 5% quantile shows only
little asymmetry (-0.97 in case of RS+ vs. -1.18 for RS−). In addition we show importance of
jumps for below median and far above median quantiles. Importantly, we document unobserved
heterogeneity in far quantiles. We have also tested all three models (PQR-RV, PQR-RSV, PQR-
BPV) for correct dynamic specification and we have found that none of them is systematically
misspecified.

Figure 3: PQR-BPV parameter estimates

(a) BPV 1/2
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Note: For both realized bi-power variation and jump component parameters estimates with corresponding 95%
confidence intervals are ploted by solid and dashed lines respectively. Individual UQR-BPV estimates are

ploted in boxplots

6.2 Out-of-Sample Performance

After discussion results of the in-sample analysis we now turn to description of the out-of-
sample forecasting exercises. Similarly to simulation study we are analyzing Value–at–Risk
performance of the equally weighted portfolio. Results of our analysis are presented in the
following way: firstly we shortly comment on the absolute performance of the PQR models,
secondly absolute performance of the benchmark models is discussed and lastly we concentrate
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on the most interesting relative performance comparison of the PQR models with respect to
the benchmark models. All the results are summarized in the Table 4.

Unconditional coverage τ̂ shown in Panel A.1 and Panel A.2 of the Table 4 reveals that
almost all models underestimate risk as values of unconditional coverage are higher than cor-
responding quantiles τ , with few exceptions. Median quantiles as well as 5% quantile of the
Portfolio UQR and 90% quantile of the PQR-RSV overestimate risk although unconditional
coverage of 89.9% might be better described as perfect fit for PQR-RSV. We must also stress
here that deviation from nominal quantile rates is generally lower than 1% and we can not
reject hypothesis of correct unconditional coverage.

If we turn to median performance we can see that all the models overestimate the risk.
Moreover we can see that deviations from the nominal quantiles are higher compared to off-
median quantiles. We address this finding to the nature of financial time series especially to
stylized fact about the unpredictability of the returns. More important, this result corresponds
to our motivation of explaining quantiles of the cross-section of market returns instead of
expected value. Further more this is in line with our previous results presented in the in-sample
section where median estimates where not statistically significant.

If we concentrate on the correct dynamic specification of the models represented by CAViaR
test in the second and third line of the Panel A.1 and A.2 we see that all the models in all
quantiles are dynamically correctly specified except median of RiskMetrics. In this case we
strongly reject null hypothesis of proper dynamic specification given p-value<0.01. We attribute
poor median RiskMetrics performance to the construction of Equation 13 where cut-off point
at 50% quantile, γ50%, is 010.

Relative performance of the PQR models is summarized in the Panel B11. Results of our
analysis indicate good relative performance of PQR models. All three Panel Quantile model
specifications (PQR-RV, PQR-RSV and PQR-BPV) significantly outperform RiskMetrics in all
studied quantiles. Moreover, all PQR specifications consistently outperformed Portfolio UQR
in upper quantiles and UQR in several quantiles i.e. PQR-RV outperform individual UQR
estimates in 10% quantile, however performance of PQR-RSV is significantly better in 95%
quantile and PQR-BPV delivers significantly more accurate forecasts than individual UQR in
5% and 10% quantiles. If we concentrate on the full pair-wise comparison, the most important
is the performance of the UQR as the main competitor of the PQR specifications. In all of
the studied quantiles UQR is not able to outperform any of the PQR specification. This fact
highlights the importance to control for unobserved heterogeneity among the assets. If we
move from comparison of PQR and UQR models interesting is the relative performance of
the Portfolio UQR which outperform RiskMetrics only at 5% and 10% quantiles. In contrast,
UQR similarly to PQR outperform RiskMetrics in all studied quantiles. These results reveal
the importance of the asset specific contribution to overall future portfolio risk as approach of
firstly aggregating data and secondly modeling them is not able to capture dynamics creating
variation in distribution of future portfolio returns.

10Median of standard normal distribution is 0.
11For brevity we report in Table 4 only pair-wise comparison against benchmark models, full matrix of pairwise

comparison is available from authors upon request.
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6.3 Economic Evaluation

In the last section of the empirical data analysis we would like to see if statistical gains also
translate to economic value. We concentrate on the comparison of 3 models – PQR-RV, UQR
and RiskMetrics, and refrain from presenting results for PQR-RSV and PQR-BPV for brevity.
The construction of the Portfolio UQR rule out economic evaluation in our set-up because asset
weights will be set before applying quantile regression and therefore results will be driven by
covariance structure only.

We start description of the results by Global Minimum Value-at-Risk Portfolio followed
by Markowitz like optimization where we show Value-at-Risk – Return relationship. In both
approaches we use annualized portfolio returns and annualized portfolio Value-at-Risks. In the
GMVaRP comparison we focus on both left and right tail together with median because we do
not set any constraints regarding asset weights - according to Equation 17 GMVaRP has closed
form solution. On the contrary Markowitz like optimization is purely numeric and does not
offer closed form solution therefore we restrict our analysis on long only positions. As a result
we concentrate on the left tail of the return distribution only which shows us potential loss of
the investor.

Results of the GMVaRP analysis are displayed in Table 5. For all studied quantiles but
median model with the best performance is PQR-RV followed by UQR. RiskMetrics ended last
and we must note that for median quantile we were not able to calculate value of GMVaRP
due to problem with singularity of the correlated Value-at-Risk matrix12

Table 5: Global Minimum Value-at-Risk Portfolio

τ 5% 10% 50% 90% 95%

PQR-RV 11.76 8.69 0.02 9.46 12.37
UQR 11.85 8.79 0.01 9.52 12.43
RiskMetrics 12.77 9.95 NaN 9.95 12.77

Note: Table displays absolute percentage values of Global Minimum Value-at-Risk Portfolio for given
quantile τ . Best model for given quantiles is reported in bold.

Efficient frontiers of Value-at-Risk – return trade-off are plotted in Figure 4a for 5% and
Figure 4b for 10% quantile. In both quantiles the model with the best performance is PQR-
RV. Similarly to GMVaRP analysis second best performance is achieved by UQR and the
model with the worst VaR–return trade–off is RiskMetrics. In Figure 4b we can also see that
benefits from using PQR are greater for lower values of Value-at-Risk. Overall we can say that
Panel Quantile Regression Model for Returns generates better economic performance than the
remaining benchmark models.

12If we set cut-off point in Equation 13 to zero we get singular matrix of zeros that is not invertible.
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Figure 4: Value-at-Risk – Return efficient frontiers
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Note: Percentage values of portfolio VaR and returns are displayed.

7 Conclusion

In this paper, we propose to employ panel quantile regression together with non-parametric
measures of quadratic return variation to model conditional quantiles of financial assets return
series. For estimation purposes we use penalized fixed effects estimator as introduced in Koenker
(2004). Resulting Panel Quantile Regression Model for Returns inherit all favorable properties
offered by panel data and quantile regression. A key attraction of the proposed methodology
is the ability to control for otherwise unobserved heterogeneity among financial assets so it is
possible to disentangle overall market risk into its systemic and idiosyncratic parts. Another
attraction is the dimensionality reduction because the number of estimated parameters is always
less than or equal to k + n, where k is the number of regressors and n number of assets.
Last but not least, to the best of our knowledge this is one of the first applications of the
panel quantile regression using dataset where T >> N . As a result we are able to obtain
estimates of quantile specific individual fixed effects that accounts for unobserved heterogeneity
and represents idiosyncratic part of the market risk. Moreover these estimates translates into
better forecasting performance of newly proposed model compared to traditional benchmarks.
Overall we test accuracy and performance of the Panel Quantile Regression Model for Returns in
the simple portfolio Value-at-Risk forecasting exercise using simulated and also empirical data.
The Monte-Carlo experiment shows that the newly proposed model is dynamically well specified.
Moreover when we use heterogeneous data it is able to outperform benchmark models in direct
statistical comparison. In the empirical application in-sample model fit highlights importance
of the different components of the quadratic variation for the various quantiles of return series.
Out-of-sample statistical comparison shows superiority of the new approach. Better statistical
performance moreover translates directly into economic gains as shown by Global Minimum
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Value-at-Risk Portfolio set-up and efficient frontiers of the Value–at–Risk - Return trade-off.
Our results make the model attractive not only from academic but also from the practitioners

point of view. In particular it is highly attractive for portfolio and risk management because
of its ability to handle high-dimensional problems. Importantly it can be easily used to obtain
widely used Value-at-Risk measures of portfolios consisting of high number of assets.
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Appendix

Table 6: Descriptive statistics of daily returns

Mean Max Min St. Dev. Skewness Kurtosis

AAPL -0.05 10.62 -12.29 1.72 -0.14 7.09

AMZN 0.09 12.32 -12.96 1.95 0.33 8.27

BAC -0.17 19.09 -25.09 2.77 -0.20 20.64

CMCSA 0.03 12.77 -13.63 1.57 -0.33 12.09

CSCO -0.02 7.26 -8.69 1.35 -0.14 7.34

CVX 0.02 11.01 -10.50 1.31 -0.08 11.29

C -0.27 19.92 -40.33 2.93 -2.48 38.66

DIS 0.06 11.03 -10.29 1.36 0.34 11.11

GE -0.03 10.96 -10.52 1.51 -0.36 14.16

HD 0.03 11.03 -7.68 1.47 0.62 9.40

IBM 0.05 6.19 -5.93 1.06 -0.10 7.36

INTC 0.01 9.20 -9.43 1.42 0.13 7.41

JNJ 0.01 11.19 -7.77 0.85 0.75 21.90

JPM 0.01 13.85 -19.75 2.08 0.15 16.17

KO 0.02 7.14 -7.37 0.93 -0.08 11.52

MCD 0.03 8.76 -7.53 1.02 0.17 9.26

MRK 0.00 9.75 -8.09 1.29 -0.08 9.72

MSFT 0.02 9.96 -7.01 1.28 0.06 7.88

ORCL 0.04 7.56 -8.90 1.36 -0.09 6.85

PEP 0.04 8.44 -6.27 0.90 0.32 10.24

PFE -0.03 6.49 -7.46 1.14 -0.07 7.02

PG 0.05 7.07 -5.62 0.86 0.00 9.50

QCOM -0.01 9.04 -8.15 1.45 -0.10 6.31

SLB 0.00 11.34 -15.62 1.85 -0.33 9.57

T -0.01 11.42 -6.56 1.11 0.50 13.58

VZ 0.01 8.62 -7.72 1.12 0.40 10.41

WFC 0.00 18.29 -18.73 2.23 0.45 18.50

WMT 0.00 7.71 -10.60 0.97 -0.08 14.66

XOM 0.03 8.90 -11.76 1.22 -0.11 13.33

Note: Values for Mean, Max, Min and St. Dev are displayed in %.

29



Table 7: Univariate Normal Distribution – Mean of coefficients estimates from Monte-Carlo
simulations

τ 5% 10% 25% 50% 75% 90% 95%

PQR-RV

β̂RV 1/2 -1.56 -1.22 -0.64 -0.01 0.62 1.2 1.54
(-44.19) (-43.75) (-30.85) (-0.6) (30.86) (44.63) (46.36)

PQR-RSV

β̂RS+1/2 -1.12 -0.87 -0.46 -0.01 0.45 0.84 1.07
(-5.38) (-6.06) (-5.34) (-0.12) (5.55) (5.66) (5.28)

β̂RS−1/2 -1.09 -0.86 -0.46 -0.01 0.45 0.86 1.11
(-5.29) (-6.07) (-5.44) (-0.18) (5.58) (5.78) (5.5)

PQR-BPV

β̂BPV 1/2 -1.58 -1.25 -0.67 -0.01 0.65 1.23 1.56
(-45.75) (-45.44) (-31.71) (-0.6) (32.26) (46.06) (47.31)

β̂Jumps1/2 0.08 0.06 0.03 0 -0.03 -0.06 -0.08
(1.1) (1.14) (0.74) (-0.03) (-0.83) (-1.1) (-1.05)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. Individual
fixed effects αi(τ) are not reported for brevity.

Table 8: Multivariate Student-t Distribution – Mean of coefficients estimates from Monte-Carlo
simulations

τ 5% 10% 25% 50% 75% 90% 95%

PQR-RV

β̂RV 1/2 -1.56 -1.16 -0.58 -0.01 0.57 1.15 1.55
(-18.43) (-19.14) (-13.3) (-0.17) (12.9) (18.73) (19.43)

PQR-RSV

β̂RS+1/2 -1.12 -0.83 -0.42 -0.01 0.39 0.82 1.09
(-2.55) (-2.66) (-2.2) (-0.12) (2.05) (2.55) (2.43)

β̂RS−1/2 -1.09 -0.82 -0.4 0 0.41 0.81 1.1
(-2.48) (-2.62) (-2.13) (0.04) (2.15) (2.52) (2.42)

PQR-BPV

β̂BPV 1/2 -1.62 -1.21 -0.6 -0.01 0.59 1.19 1.6
(-18.27) (-19) (-13.14) (-0.17) (12.64) (18.41) (19.05)

β̂Jumps1/2 -0.06 -0.04 -0.02 0 0.02 0.05 0.06
(-0.45) (-0.45) (-0.29) (0.04) (0.29) (0.47) (0.45)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. Individual
fixed effects αi(τ) are not reported for brevity.
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Table 9: Univariate Student-t Distribution – Mean of coefficients estimates from Monte-Carlo
simulations

τ 5% 10% 25% 50% 75% 90% 95%

PQR-RV

β̂RV 1/2 -1.56 -1.23 -0.65 -0.01 0.63 1.21 1.54
(-52.18) (-52.37) (-36.12) (-0.53) (35.09) (55.55) (52.99)

PQR-RSV

β̂RS+1/2 -1.12 -0.89 -0.47 -0.01 0.44 0.85 1.08
(-6.47) (-6.84) (-5.75) (-0.25) (5.48) (6.39) (6.13)

β̂RS−1/2 -1.09 -0.86 -0.45 0 0.46 0.87 1.12
(-6.23) (-6.57) (-5.65) (0.01) (5.84) (6.55) (6.39)

PQR-BPV

β̂BPV 1/2 -1.64 -1.29 -0.69 -0.01 0.67 1.27 1.62
(-51.41) (-52.71) (-36.1) (-0.52) (35.3) (55.28) (52.55)

β̂Jumps1/2 -0.02 -0.01 0 0 0 0.01 0.02
(-0.3) (-0.21) (-0.11) (-0.02) (0.01) (0.16) (0.24)

Note: Table displays mean of coefficient estimates with corresponding t-statistics in parentheses. Individual
fixed effects αi(τ) are not reported for brevity.
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Table 13: Coefficient estimates of Panel Quantile Regressions: λ = 1

τ 5% 10% 25% 50% 75% 90% 95%

PQR-RV

const 0 0 0 0 0 0 0
(-1.47) (-1.27) (-0.61) (-0.58) (0.9) (1.64) (2.08)

β̂RV 1/2 -1.51 -1.16 -0.6 -0.01 0.56 1.11 1.42
(-24.24) (-21.41) (-16.36) (-0.24) (20.15) (24.62) (21.11)

PQR-RSV

const 0 0 0 0 0 0 0
(-1.6) (-1.21) (-0.63) (-0.44) (0.97) (2.07) (2.41)

β̂RS+1/2 -0.97 -0.74 -0.44 -0.15 0.18 0.41 0.54
(-12.92) (-13.02) (-8.54) (-2.9) (2.82) (4.39) (4.3)

β̂RS−1/2 -1.18 -0.91 -0.41 0.14 0.62 1.15 1.49
(-11.14) (-14.29) (-10.12) (2.78) (9.23) (13.91) (10.06)

PQR-BPV

const 0 0 0 0 0 0 0
(-1.4) (-1.36) (-0.6) (-0.67) (0.77) (1.86) (2.67)

β̂BPV 1/2 -1.55 -1.18 -0.62 0 0.59 1.15 1.44
(-20.25) (-17.58) (-16.49) (-0.15) (24.16) (22.79) (25.91)

β̂Jumps1/2 -0.24 -0.2 -0.14 -0.03 0.06 0.21 0.44
(-3.2) (-3.41) (-3.41) (-0.62) (1.03) (1.88) (2.73)

Note: Table displays coefficient estimates with bootstraped t-statistics in parentheses. Individual fixed
effects αi(τ) are not reported for brevity - they are available from authors upon request
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Figure 5: PQR-RV parameter estimates: λ = 1
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Note: Parameter estimates with corresponding 95% confidence intervals from the PQR-RV specification are
ploted by solid and dashed lines respectively. Individual UQR-RV estimates are ploted in boxplots.

Figure 6: PQR-RSV parameter estimates: λ = 1
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(b) RS−1/2
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Note: For both realized upside and downside semivariance parameters estimates with corresponding 95%
confidence intervals are ploted by solid and dashed lines respectively. Individual UQR-RSV estimates are

ploted in boxplots.
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Figure 7: PQR-BPV parameter estimates: λ = 1

(a) BPV 1/2
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(b) Jumps1/2
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Note: For both realized bi-power variation and jump component parameters estimates with corresponding 95%
confidence intervals are ploted by solid and dashed lines respectively. Individual UQR-BPV estimates are

ploted in boxplots
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