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Abstract: 

Quantitative investment strategies are often selected from a broad class of candidate 

models estimated and tested on historical data. Standard statistical technique to 

prevent model overfitting such as out-sample back-testing turns out to be unreliable 

in the situation when selection is based on results of too many models tested on the 

holdout sample. There is an ongoing discussion how to estimate the probability of 

back-test overfitting and adjust the expected performance indicators like Sharpe 

ratio in order to reflect properly the effect of multiple testing. We propose a 

consistent Bayesian approach that consistently yields the desired robust estimates 

based on an MCMC simulation. The approach is tested on a class of technical trading 

strategies where a seemingly profitable strategy can be selected in the naïve 

approach. 
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1. Introduction 

According to Prado (2015) empirical finance is in crisis. The former president of the 

American Finance Association claims (Harvey et al., 2016) that “most claimed research 

findings in financial economics are likely false.” The heart of the problem is systematic or 

latent multiple testing and datamining. The issues appears mainly in two important areas: 

testing and selection of factors explaining asset returns (see e.g. Harvey and Liu, 2015 or 

2017) and selection of investment strategies (see e.g. White, 2000 or Bailey et al., 2016). Our 

focus is the investment strategy selection problem arising when many strategies are developed 

and tested on historical data in order to find a “performing” one. The selection process can be 

realized by an individual researcher or institution, or latently by a set of researchers 

investigating various strategies and publishing only the promising ones. The latter approach is 

more common for theoretical research while the former, easier to control, would be typical for 

a quantitative investment firm.   

We are going to formalize and investigate the problem of strategy selection based on a large 

set of candidates. Consider self-financing strategies          that are backtested and 

evaluated over a historical period with (e.g. daily) returns                       . Note 

that the strategies could have been developed on a preceding training period and backtested or 

validated on the *     + period. Another possibility that we use in the empirical study is that 

one considers a number of expertly proposed, e.g. technical, strategies that are evaluated on 

the backtest period. Based on the historical data we estimate the (annualized) sample means  

  , standard deviations   , or Sharpe ratios     , and given a criterion select the “best” 

strategy   . Of course, the key question is what can be realistically expected from the best 

strategy if implemented in the future (see Figure 1) 

 

Figure 1. Future performance of the best strategy selected based on the past data 

Specifically, the questions usually asked include:  

- First, is it sufficient to apply the standard single p-test to the best strategy? 

- If not, how should we modify the test to incorporate the multiple test effects? 

- What is the expected future, i.e. true out-of-sample (OOS) performance (return, SR, 

etc.) of the best strategy selected on the in-sample (IS), i.e. historical dataset? 

- What is the haircut, that is percentage reduction of the expected OOS performance 

compared to the IS performance? 

- What is the probability of loss if the strategy is implemented over a future period? 

- What is expected OOS rank of the IS best strategy among the candidate strategies? 

-  What is the probability that the selected model will in fact underperform most of the 

candidate models? 



2 
 

- What is the probability that we have selected a false model (FDR)? 

We are going propose a Bayesian methodology that allows us to simulate many times the IS 

selection and OOS realization process (Figure 1) in order to address the questions formulated 

above. We consider the method consistent since it repeats, in a Monte Carlo simulation, the 

process of strategy selection and ex post performance realization based on Bayesian 

parameters extracted from given data, of course conditional on a data generating model. We 

will provide an overview of several methods proposed in literature that will be compared with 

our proposed strategy in an empirical study. 

2. An Overview of the Existing Approaches 

There are several relatively simple classical methods how to adjust p-values in order to 

accommodate the multiple test. More advanced and computationally demanding methods are 

based on various approaches to bootstrapping and simulation of the past and future data. 

Classical approaches 

To test significance of a single strategy (for example   ), the classical approach is to calculate 

the t-ratio 

   
  

   √  
 

and the one-sided or two-sided
1
 p-value  

       ,| |    - 

 

(1) 

where   is a random variable following the t-distribution with     degrees of freedom. The 

implicit assumption is that the returns are i.i.d. normal. If    happens to be small enough, e.g. 

below 5% or 1%, then one tends to jump to the conclusion that a strategy with significantly 

positive returns has been discovered. 

The problem of the process of selecting the best strategy, or alternatively testing a number of 

strategies until we find a significant one, is that the correct p-value in fact should be (Harvey, 

Liu, 2015) reflecting the fact that we are selecting the strategy with the best t-ratio: 

      ,    *|  |        +    - 

where    are   random variables following the t-distribution with     degrees of freedom. 

It is noted (Harvey, Liu, 2015) that if the variables were independent then we could find a 

simple relationship (also called Šidák’s adjustment) between the single and multiple test p-

values: 

     ∏   ,|  |    -
 

   (    )      .
 
 
/ (  )    

                                                           
1
 A strategy with a significant negative t-ratio can be considered as a discovery as well since we can revert it in 

order to achieve systematic positive returns. 
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(Harvey, Liu, 2015) provide an overview of simple adjustment methods, as Bonferroni’s 

adjustment        *     +, Holm’s  or Benjamini, Hochberg, Zekutieli (BHY) 

adjustments based on the ordered sequence of the single test p-values   
      

  for all the 

strategies. The disadvantage of all those methods is the assumption of independence since the 

generated strategies are often closely related (e.g. of the same type with varying parameters). 

We are also proposing and will test a numerically relatively simple and efficient method 

based on an estimation of the covariance matrix   of the returns and numerically generating 

the distribution of     *|  |        +  conditional on the null hypothesis      for all 

  where    are   random variables following the t-distribution with     degrees of 

freedom (or alternatively standard normal for a large  ) and with covariances given by  . 

Note that the classical (corresponding to the basic period, e.g. daily) Sharp ratio can be easily 

calculated given the t-ratio and vice-versa 

   
  

  
 

  

√ 
. 

The ratio is usually annualized as follows 

    
  

  
√     √

  
 

 

where    is the number of observation periods in a year, e.g. 252 in case of daily returns. 

According to (1) the maximal acceptable p-value level can be easily translated to a minimum 

required Sharp ratio.     

Generally, given a selected strategy with in-sample (based on the backtest data) Sharp ratio 

     the question what is the expected (out-of-sample) Sharp ratio   ,     - on a future, e.g. 

one year period. Here,   , - denotes the expectation given all the information available today, 

in particular given he in-sample performance like     , the number of strategies from which 

the best one was selected, the relationship between the strategies, the underlying asset return 

process properties, etc. The Sharp ratio haircut is the defined as the percentage we need 

deduct from the in-sample Sharp ration to get a realistic estimate of the future performance, 

      
  ,     -

    
. 

 

(2) 

Harvey and Liu (2015) note that the rule-of-thumb haircut used by the investment industry is 

50% but that, according to their analysis it significantly depends on the level of the in-sample 

Sharp ratio and the number of strategies. They propose to use the relationship between the 

single and multiple test p-values in order to estimate the haircut Sharp ratio. Their estimate of 

the annualized expected Sharp ratio       is based on the idea that its corresponding single 

test p-value should be equal to the adjusted multiple test p-value     i.e. 

      [| |       √
 

  
]  ,          (    )√

  

 
 , 
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where   is a random variable following the t-distribution with     degrees of freedom and 

  is its cumulative distribution function. The haircut is then calculated by (2). The haircut 

estimation, of course depends, on the p-value adjustment method as Bonferroni, Holm’s, 

BHY, or the general one we have suggested above. Although the estimation is obviously 

directionally correct, it is not obvious why this approach should yield a consistent estimate of 

  , - and the corresponding haircut. We are going to compare the different haircut estimates 

in the simulation study outlined below. 

Stationary Bootstrap 

In order to simulate the past and future returns we are going to consider a bootstrapping and a 

cross-validation approach. The stationary bootstrap proposed and analyzed in White (2000), 

Sullivan et al. (1999) and Politis, Romano (1994) is applied to the underlying asset returns 

assumed to be strictly stationary and weakly dependent time-series to generate a pseudo time 

series that is again stationary (Figure 2).  

 

Figure 2. Stationary Bootstrap Process 

 

Formally, we generate new sequences of the underlying asset returns *  ( )         ̃ + 

where         is the original series of returns and  ( )  *     +. In order to implement 

the bootstrap we need to select a smoothing parameter          , where   

corresponds to the mean length of the bootstrapped blocks, for example       proposed by 

Sullivan et al. (1999). A bootstrapped sequence is obtained by drawing randomly  ( )  

*     +, and for        ̃  setting  ( )   (   )    with probability     or 

randomly drawing a new block starting position  ( )  *     + with probability  . If it 

happens that  ( )    then we draw random  ( )  *     +. 

Next, given a bootstrapped sequence of the underlying asset returns we need to apply 

strategies          to get the strategies’ bootstrapped returns   ̃                     . 

Note that since the strategies’ decision are often built  based on the past we generally need to 

have a longer series of the bootstrapped asset returns,  ̃      Then we evaluate our desired 

performance indicator values (mean, Sharp ratio, etc.)  ̃  . Let   
  denote the performance 

indicators of the original series of returns. According to White (2000), under certain mild 

theoretical assumptions, the bootstrapped values  ̃            (  
   ̃ ) asymptotically 

converge to the distribution of the best strategy performance indicator under the null 

hypothesis    that all the strategies have zero performance. I.e., obtaining   bootstrapped 

values * ̃         + we can test     by calculating the empirical p-value    [| ̃|    
 ]. 
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The bootstrapping technique can be also used to analyze the relationship between IS and OOS 

Sharpe ratio (or another indicator) generating series of strategy returns over a time period 

       selecting the best strategy    with in-sample performance      and then looking on 

its out-of-sample performance       over the following period             . Note that 

the original bootstrapping has to be done over a period of length  ̃       . We can then 

compare the mean       against the mean     , or conditional on certain level of     . We 

may also bootstrap the OOS returns for the actually selected strategy    (based on the real 

dataset). However, particularly in this case, it is obvious that even a truly positive strategy that 

is using medium-term or long-term trends to make good predictions does not have to work on 

the bootstrapped series of returns where the future and past returns of the original series are to 

large extent mixed up. Therefore, the estimated conditional       may easily lead to a false 

rejection of a good strategy. 

Combinatorial Symmetric Cross-Validation 

A disadvantage of the stationary bootstrap technique is that it cannot be applied if we are 

given only the strategy returns but not details on the strategies themselves. The stationary 

bootstrap is also problematic if the strategies are not technical ones and use a number of 

additional, possibly lagged, explanatory factors. This is not the case of the combinatorial 

symmetric cross-validation (CSCV) (Bailley et al., 2014, 2016) utilizing only the matrix of 

the strategies’ returns   *                    +. The idea is to split the time 

window of length      into   blocks of length   where   is even and draw combinations 

of     blocks (Figure 3). The submatrix   formed by joining     rows of   corresponding to 

the selected time indices in the original order then represents an in-sample dataset of returns 

where the best performing strategy can be selected while the complementary       

submatrix   ̅represents the out-of-sample returns. The sampling can be done with or without 

replacement. Since there are .  
   
/  combinations we can form sufficiently many different 

combinations with replacement as long as   is sufficiently large, e.g. at least 16.  

 

 

Figure 3. An example of the CSCV combination for     

 

Bailley et al. (2014, 2016) propose to use the technique to estimate specifically the Probability 

of Backtest Overfitting (PBO) defined as the probability that the best IS selected strategy 

performs below the average OOS. More precisely, for   strategies        , 

       ,       ( )     |      ( )   -  

The PBO indicator as well as the Sharp ratio haircut can be estimated using sufficiently many 

cross-validation pairs of the IS/OOS datasets 〈   〉̅. However, it is obvious that the estimates 

are biased introducing a negative drift into the OOS order of the strategies. For example, if all 

the strategies represented just pure noise with mean returns over the full time interval  
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*     + close to zero, then for an IS/OOS combination 〈   〉̅ the best strategy IS return  ̅    

implies that the complementary OOS return  ̅   ̅    ̅     would be probably the worst on  .̅ 

We will demonstrate the effect in the empirical part. The cross-validation technique also 

cannot be used, due to this property, to estimate the OOS Sharp ratio or mean for a particular 

selected strategy. We can just estimate the overall     or Sharp ratio haircut keeping in mind 

that the estimations incorporate a conservative bias. The cross-validation as well as the 

bootstrapping approach cannot be easily used to estimate the False Discovery Rate (or 

equivalently FWER if the best IS strategy is automatically declared to be a discovery) since it 

is not clear how to identify true and false discoveries given a CSCV simulation. This could be 

possibly done by testing significance of OOS performance involving an ad hoc probability 

level. We are going to show that all the indicators of interest can be consistently estimated in 

a Bayesian set up we are going to outline below.  

3. Bayesian Simulation Approach 

The Bayesian approach will be based on the following the scheme given in Figure 4.  

 

Figure 4. Two step Bayesian simulation (MCMC parameter estimation and MC data simulation) 

 

First, a model defining the return generating process with unknown parameters   for the 

observed strategy returns *                    + needs to be specified. Then the plan 

is to use a Bayesian technique, in particular the Markov Chain Monte Carlo (MCMC) 

simulation in order to extract the posterior distribution of the model parameters  . Finally, 

simulate matrices of IS and OOS returns over desired time intervals        and    

         . The Monte Carlo (MC) is done in two steps always selecting the parameters   

from the posterior distribution and then generating   series of       returns according to 

the model. The simulated IS returns can be used to select the best strategy and the OOS 

returns to measure its future performance. The average haircut or average relative rank can be 

easily estimated as in case of the stationary bootstrap.  

We are going to consider two models, the simple one assumes that the returns are multivariate 

normal with unknown covariance matrix and means while the second incorporates unknown 

indicators of truly profitable strategies allowing us to estimate consistently the false discovery 

rate (FDR) etc. The second model follows an idea of Scott and Berger (2006), also mentioned 

in Harvey (2016), nevertheless, in both cases the model is formulated only for observed mean 

returns and without considering a correlation structure of returns. It should be emphasized that 

our focus is to analyze the impact of backtest overfitting assuming that the strategies’ cross-
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sectional returns behave in a relatively simple and stable way over time similarly to the 

classical, bootstrapping or cross-validation approaches. One could certainly come up with 

state-of-the art models incorporating jumps, switching regimes, stochastic variances or even 

dynamic correlations. These improvements would make the methodology computationally 

difficult to manage with results probably even more conservative compared to the approaches 

we are going to consider below.  

The Naïve Model 1 

To set up the naïve model we assume that the cross sectional strategy returns are multivariate 

normal 

    〈           〉   (   ) 

and that the observations over time are independent. 

Given       〈  〉, i.e. the matrix of back test returns, and possibly some priors for   and  , 

we can find the posterior distribution  (   |    ) using the standard Gibbs MCMC sampler. 

Specifically, the iterative sampling is given by 

  ( |      )   .  
 

 
∑    

 

 
  

   / and 

  ( |      )    (     ) , 

where   ∑ (    ) 
 
   (    ) is the scale matrix (i.e. the covariance matrix times  ) and 

   is the Inverse Wishart distribution.  For example, Matlab allows to sample from the 

distributions and the posterior distribution may be obtained quite efficiently (e.g. 10 000 runs 

of the sampler). 

Remark: The sampler above assumes the non-informative prior on the means,  ( )   , and 

the standard improper prior on the covariance matrix  ( )  | | 
   

 .  

Given the extracted posterior distribution  (   |    ) the parameters     can be now easily 

sampled in order to get the empirical distribution of the selected strategy performance. 

However, in the process of selecting the best strategy we do not know     but only a time 

series of the back tested returns with cross sections from  (   ). Based on the time-series the 

“best” strategy    is selected. Our key question is about its expected forward looking 

performance, e.g.    or     . Therefore, we need to run the following Monte Carlo simulation 

in order to sample faithfully the empirical distribution of the performance indicators: 

1. Sample 〈   〉 from   (   |    ). 

2. Sample independently       cross sections     (   ). 

3. Determine the index of the best strategy   based on the back-test statistics calculated 

from the matrix of back-tested returns    〈  〉 for          . 

4. Calculate and store the performance indicators,  ̂       ̂, on the OOS period    

        Alternatively, store the selected strategy “true” performance indicators, i.e. 

        . 



8 
 

The simulated posterior distribution of the desired performance indicators then tells us what 

are the mean, median, confidence intervals, or Bayesian probabilities that the true 

performance is positive or above any given minimum threshold. The ratio between the ex post 

and ex ante performance indicators also give us an estimate of the “backtest overfitting 

haircut.” 

Model 2 – Bimodal Means Distribution 

In order to capture the situation when most strategies are random and only some positive 

(non-zero) assume that there are in addition latent indicators    *   + so that the mean of 

strategy   is   
      . Therefore, the row vector of returns has the distribution 

    [           ]   (    ). 

Here we need to assume a prior distribution for         (    ) and     (     ). It 

means that the Bayesian distribution of the means is bimodal with a large probability mass on 

0 and the other mode being normal with prior mean      and variance   . The Gibb’s 

sampler can be modified as follows: 

1. Given     , set   
      , and estimate   as above, i.e.  

 ( |        )    (     ), where   ∑ (    
 )  

   (    
 ). 

2. Given    , estimate  . Set   
 

 
 ,       ( ),   

 

 
∑   
 
   ,    ,       -, 

      (,       -), where      creates a matrix with diagonal elements given by 

the vector in the argument, and sample 

 ( |        )   (  (         )(           ) (  
       )  ). 

 

3. Given   and  , estimate   . For         set    equal to   with the exception of the 

diagonal element   (   )   , and    setting   (   )   . Let 

      (
  

 
((     )  

  (     ) )) (    ), 

      (
  

 
((     )  

  (     ) ))   ,  

 ̃  
  

     
, and finally sample        ( ̃). 

Proofs of the formulas used in steps 2 and 3 can be found in Appendix. 

Remark: There are certain possible extensions: 

- We may allow    *      + encoding negative significant mean return, zero return, 

or significant positive return. In this case, the mean parameter of the prior distribution 

    (     ) must be strictly positive. In the Gibb’s sampler above, we just need to 

modify step 3 in a straightforward manner. 

- The hyper-parameters          for         (    ) and     (     ) might 

be estimated within the MCMC procedure. In this case the Gibb’s sampler can be 

extended as follows: 
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4. Sample    given  : 

 (  | )    
  (    )

     (  )      (                    ),  

where     *      + and  (  )      (            ) is a conjugate prior 

distribution (e.g.        ). 

5. Sample,       given   and   . Here we just use the means *  |    + where the 

signal is positive and the normal Gibb’s sampler. Since the set may be empty we need 

to use proper conjugate priors, e.g.  (  )   (       ) and 

(  )    .   
  

 
 
    

 
/ . 

For  ̃   *  |    +    set  ̃  ∑*  |    +   ̃  and  ̃  ∑*(     )
 |   

 +   ̃. Then 

 (  |      )   (    ̃      ̃)  (       )    .   
 ̃ ̃  

 ̃     
  

    

 ̃     
/ and 

 (  |      )    .  
 ̃

 
 
 ̃ ̃

 
/    .   

  

 
 
    

 
/    .   

 ̃     

 
 
 ̃ ̃     

 
/. 

If  ̃    then we have to sample based on the conjugate priors  (  ) and  (  ) only. 

 

4. Numerical Study 

Following Sullivan et al. (1999) and other studies we are going to compare and illustrate the 

proposed Bayesian methods on a set of technical strategies returns. We are also going to 

modify artificially the mean returns of the strategies in order to test the methods if there is, on 

one hand side, a clearly extraordinary strategy or, on the other hand, if the returns of the 

returns of all the strategies are very low.  

Technical Strategies Selection 

We have used 1000 daily S&P 500 values and returns for the period 5.6.2009 – 24.5.2013. 

The period has been selected with the purpose to find at least one strategy with a higher mean 

return. As in Sullivan et al. (1999) we have applied the filter, moving average, support and 

resistance rules with varying parameters. We have selected randomly 200 strategies with the 

condition that the daily profit series are not collinear (it may even happen that the series are 

identical if the parameters do not differ too much).  

The means and Sharp ratios of the individual strategies and their densities are shown in Figure 

5. It should not be surprising that the strategies’ returns are mostly positively correlated with 

the average pairwise correlation 23.32%. Note that the strategy 7 is apparently the best with 

annualized (      ) mean return over 21% p.a. and Sharp ratio approximately 1.2 (it is a 

filter strategy with x=y=1%, i.e. long or short position is taken if the previous daily return is 

over 1% or below -1%, respectively, minimum number of days to stay in a position = 20). The 

strategy returns look attractive, nevertheless, looking forward, it turns out that the mean return 

of the strategy in the following 1000 days period is negative (-5.21%). 
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Figure 5. Annualized means and Sharp ratios of the selected strategies 

 

Single and multiple p-value testing  

The single test annualized t-ratio and the p-value of the best strategy 7 with           are 

     √
    

  
               and          . 

The multiple test p-value after Bonferroni adjustment is simply       *    

         +   , and so the adjusted expected Sharp ratio is 0 and the haircut 100%. Šidák’s 

adjustment yields only slightly more optimistic result with          , adjusted expected 

        and the haircut 98.3%. Similar adjustments can be obtained by the Holm or 

Benjamini, Hochberg, Yekutieli (BHY) methods using for example the package provided by 

Harvey, Liu (2015). The simple adjustment methods allow to estimate easily the minimum 

return of the best strategy (keeping the same covariance structure) in order to get the multiple 

test p-value at most 5%. The estimated minimum return using the same package is around 

36%.  
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Multivariate Normal Simulation and the Stationary Bootstrap Based on the Null 

Hypothesis 

Another relatively simple possibility is to estimate the return covariance matrix and simulate 

the future multivariate returns based the return covariance matrix and conditional on zero 

means. The figure below shows the density of 1000 simulated annualized SR based on 1000-

day period. The adjusted p-value of the best strategy with           is then relatively 

optimistic 0.352 and the adjusted expected SR is 0.4683 (i.e. the implied haircut is just 61%). 

  

Figure 6. Sharp ratio density based on the null hypothesis and the multivariate normal MC simulation 

Analogous distribution can be obtained by the much more computationally demanding 

stationary bootstrap (White´s reality check). The p-value based on 1000 bootstrap simulations 

for a 1000-day time period and with       turns out to be 0.728, the corresponding adjusted 

expected SR at 0.175, and the SR haircut 85.4%. 

 

Figure 7. Sharp ratio density based on the White´s reality check 

Stationary Bootstrap two-stage simulation 

The stationary bootstrap method can be also used to simulate the backtest period of length 

        as well as the future period with        . Number of stationary bootstrap 

iterations will be again 1000 based on the 5.6.2009 – 24.5.2013 window of S&P returns, and 

the parameter is set to       with the corresponding average length of the bootstrapped 

blocks 10. The results however show that the best IS selected strategy performs poorly OOS 
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with 32.8% probability of loss, PBO around 0.44 (see also Figure 9), and the SR haircut over 

73%. For detailed results including the ex ante and ex post SR or mean return values see the 

summary Table 1. Note that the row “Stationary bootstrap” shows values obtained by the two-

stage simulation except the p-value estimated by the White’s reality check. Figure 9 shows the 

typical strong shift of the ex ante performance density to the left hand side and the wider ex 

post performance density. 

 Adjusted 

p-value 

(FDR) 

Ex ante 

av. 

SR/mean 

Adjusted 

expected 

SR/mean 

SR/mean 

hair cut 

Probability 

of loss 

Mean 

OOS 

rank 

PBO 

Boferroni 

method 

1.00 1.199 0 100% - -  

Šidák’s 

correction 

0.968 1.199 0.02 98.3% - -  

Mult- norm. 

MC adj. 

0.352 1.199 0.4668 61% - -  

Stationary 

bootstrap 

0.728 1.110 / 

0.194 

0.297 / 

0.051 

73.2% / 

74% 

0.328 55% 0.444 

CSCV - 1.382 / 

0.244 

0.336 / 

0.058 

75.7% / 

76.4% 

0.371 66.8% 0.323 

Bayes mod. 1 - 1.771 / 

0.314 

1.142 / 

0.203 

35.5% / 

35.4% 

0.052 89.2% 0.036 

Bayes mod. 2 0.589 1.213 / 

0.215 

0.212 / 

0.038 

82.5% / 

82.5% 

0.397 61% 0.36 

Table 1. Summary of the backtest overfitting tests 

 

Figure 8. Sharp ratio and the mean return ex ante and ex post densities 
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Figure 9. Histogram of the out-of-sample relative rank of the best IS strategy 

 

Combinatorial Symmetric Cross-Validation 

In order implement the CSCV algorithm we have chosen the number of blocks 20 

corresponding up to (  
  
)          combinations of 10 blocks of length 50. However, we 

have sampled only 1000 combinations. In this case we always split the 1000-day time into the 

IS and OOS parts on the same length, i.e.         and       . The results shown in 

Table 1 are quite similar to the Stationary bootstrap only with PBO being slightly lower 

0.323. Figure 11 indicates that in case, compared to Figure 9, the best IS strategy remains the 

best OOS quite often. This is also reflected in the bimodal ex post densities in Figure 10 

where the right hand side positive mode corresponds to the selected strategy that performs 

well IS as well as OOS. 

 

Figure 10. CSCV simulation of the ex-ante and ex post densities 
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Figure 11. CSCV histogram of the out-of-sample relative rank of the best IS strategy 

The Naïve Bayes Model 1 

In the Bayesian approach we firstly extract the multivariate normal model means and 

covariance given the observed data. This can be done in 1000 iterations using of the standard 

Gibbs sampler.  In the MC simulation we can choose the length of the backtest (IS) period 

         and the OOS forward looking period        . We have then generated 1000 

scenarios sampling the parameters, the cross sectional returns, selecting the best IS strategy 

and measuring its OOS performance. We have to keep in mind that the sampled posterior 

means may differ quite significantly from the observed mean returns due to the high return 

volatility
2
 and so the observed best strategy 7 may look weak in the simulations while other 

strategies are selected as the best. However, the best IS strategy will remain the best quiet 

often as shown in Figure 13 and the low PBO = 0.036. This can be explained by the simple 

multivariate normal model and relatively long IS window allowing to identify the truly 

positive strategy. The detailed results given in Table 1 and Figure 12 confirm that the naïve 

multivariate normal model indeed appears too optimistic. 

 

Figure 12. Bayes model 1 simulation of the ex-ante and ex post densities 

                                                           
2
 For example, 18% annualized volatility of returns is translated to    √           volatility of the 

posterior annualized mean return. 
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Figure 13. Bayes model 1 histogram of the out-of-sample relative rank of the best IS strategy 

In reality, if we generate a large number of models and the best model performance is still 

poor, e.g. negative or close to zero, then, probably, we are not going to enroll it for real 

trading. Therefore, we might also consider a minimum hurdle at which we choose or reject the 

best selected model. This is quite easy given the simulation outputs. For example, if we set the 

minimum SR to 1.2 then the condition will be satisfied in 91.3% of the simulations with 

average ex ante SR 1.84 and ex post SR 1.18, i.e. again with the haircut slightly over 35%. It 

is interesting that the haircut is not much sensitive to the hurdle, e.g. if the minimum SR was 2 

then the corresponding average haircut would be even higher 37%.  Nevertheless, the 

probability of loss can be reduced by setting the minimum SR higher, e.g. if set the hurdle to 2 

then the conditional probability of loss would decline to 1.4% (conditional on model 

selection) and the unconditional to 0.4% since 71.5% of the proposed models would be 

rejected in the simulation.  

Bayes Bimodal Mean Returns Model 2 

In this case, besides the multivariate normal distribution with unknown parameters, we also 

consider latent indicators of zero and nonzero model. In order to extract the posterior 

distribution of the parameters and the latent indicators we gain run 1000 iterations of the 

Gibbs sampler outlined in Section 3 and as well as 1000 the MC simulations with           

and        . Since in this case the Bayesian model incorporates the uncertainty whether 

the model is a true discovery or not the results should be more conservative compared to the 

naïve model. Indeed the PBO turns out to be 0.36, much lower compared to model 1, the SR 

haircut 82.5% or the probability of loss 39.7% (see Table 1, Figure 14, and Figure 15). 
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Figure 14. Bayes model 2 simulation of the ex-ante and ex post densities 

 

Figure 15. Bayes model 2 histogram of the out-of-sample relative rank of the best IS strategy 

The model also provides posterior averages of     for each individual model   (see Figure 16). 

The averages can be interpreted as Bayesian probabilities that the models are true discoveries. 

There are a few models with the averages over 80% including the model 7 with the value over 

86%. The complements of these Bayesian probabilities to 100% can be in certain sense 

compared to the frequentist single test p-values. However, the Bayesian model also allows us 

to answer the key question we are asking: giving the observed data and the general model 

assumptions what is the probability that the best model   selected based on the observed data 

is a true discovery, i.e.     . This can be estimated as the mean of    which turns out to be 

only 0.419. It means that, applying the selection process, only in 41.9% of cases we identify 

the true discovery and in 58.1% we make a false discovery, i.e.           shown instead 

the adjusted p-value in Table 1. 
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Figure 16. Posterior gamma average values for the 200 strategies 

We may again test whether a higher SR hurdle reduces the high SR haircut. The results are 

similar for the Naïve model 1, i.e. the SR haircut turns to stay around 82% more-or-less 

independently on the hurdle. The unconditional probability of loss can be reduced only 

slightly, e.g. for the hurdle of 1.5, the conditional probability of loss declines to 37%, but the 

unconditional goes significantly down to 6.1% as 83.5% of best models are rejected in the 

simulation. 

It is also interesting to look at the dependence of the average posterior gamma depending on 

the number of strategies tested, e.g. 10, 20,…,200 (with      ,                  ). 

Note that the best observed strategy is include in the first ten but, as expected, the posterior 

expected gamma, mean, or SR do decline with the number of strategies tested (Figure 17).  
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Figure 17. Estimated values the average ex post gamma, mean return and SR depending on the 

number of strategies tested 

Testing with Modified Mean Returns 

In order to better compare the methods we are going to modify the vector of returns of the 

strategies while keeping the “natural” correlation structure. Firstly, we increase the strategy 7 

return by 19% p.s. while keeping the other returns unchanged so that the strategy 7 with mean 

over 40% and SR 2.27 stands out among the others (Figure 18) and one expects that it should 

be identifiable as significant by the various methods. 

 

Figure 18. The modified annualized mean returns and Sharp ratios 

Table 2 shows the results (for simplicity focusing only on SR values). Note that we are not 

able to implement the stationary bootstrap since there is no real strategy behind the modified 

returns of “strategy” 7 and so the row is missing. 

 All methods confirm that a positive strategy can be selected with CSCV being the most 

optimistic in terms of SR haircut or probability of loss. Figure 19 indicates that in this case 

there is a fairly good coincidence between the ex-ante and ex post SR distributions for all the 

methods with CSCV again looking the best. The Bayes model 2 provides a reasonable 

estimate of the haircut and the probability of loss, but the estimated “p-value”, i.e. the 

probability that the selected model is a true discovery is surprisingly low 88.7%. 
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Nevertheless, it should be noted that in the MC simulations based on o Bayesian posterior 

parameters the SR of the strategy 7 might be quite lower than the “observed” value of 40% 

due to the high return volatility as already mentioned above.  

 

 Adjusted 

p-value 

(FDR) 

Ex ante 

av. SR 

Adjusted 

expected 

SR 

Hair cut Probability 

of loss 

Mean 

rank 

PBO 

Boferroni 

method 

0.0014 2.2707 1.6121 29% - -  

Šidák’s 

correction 

0.0014 2.2707 1.6122 29% - -  

Multivariate 

norm. MC 

adj. 

0.0004 2.2707 1.783 21.5% - -  

CSCV - 2.257 2.196 2.7% 0.014 98.5% 0.01 

Bayes mod. 1 - 2.354 2.087 11.3% 0.014 96.4% 0.011 

Bayes mod. 2 0.887 1.752 1.439 17.8% 0.067 91.8% 0.067 

Table 2. Summary of the tests’ results 

 

 

 
Figure 19. The simulations of the ex-ante and ex post SR densities 
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Finally, we will modify the returns of the strategies by deducting the observed mean returns 

(from the daily strategy returns) and adding random noise means with standard deviation 1% 

p.a. (Figure 20). Therefore, in this case we expect that the methods to reject existence of a 

positive strategy.  

 
Figure 20. The modified annualized mean returns and Sharp ratios 

 

 Adjusted 

p-value 

(FDR) 

Ex ante 

av. SR 

Adjusted 

expected 

SR 

Hair cut Probability 

of loss 

Mean 

rank 

PBO 

Boferroni 

method 

1 0.1536 0 100% - -  

Šidák’s 

correction 

1 0.1536 0 100% - -  

Multivariate 

norm. MC 

adj. 

0.997 0.1536 0.002 98.7% - -  

CSCV - 1.027 -0.960 193.5% 1.00 1.2% 1 

Bayes mod. 1 - 1.596 0.825 48.3% 0.084 80.5% 0.121 

Bayes mod. 2 0.314 1.139 0.057 95% 0.452 53.5% 0.465 

Table 3. Summary of the tests’ results 
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Figure 21. The simulations of the ex-ante and ex post SR densities 

 

All the methods, with the exception of the Bayes Model 2, clearly refute existence of a 

positive strategy (Table 3). The surprisingly optimistic results of the Bayes Model 1 can be 

again explained by the volatility incorporated into the Bayes parameter MCMC estimation 

leading to sampling of models with higher positive means in the MC part of the simulations. 

The first graph in Figure 21 also clearly demonstrates the strong negative bias of the CSCV 

method where the best IS model tends to the worst OOS not because of the models but due to 

the design of the method. See also IS/OOS the scatter plots in Figure 22.  

 

 

 
Figure 22. Scatter plots of IS versus OOS Sharp ratios generated by the three models 
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5. Conclusions 

 

The classical methods to adjust single test p-value for the effect of multiple testing when 

selecting a trading strategy out of many possibilities like Bonferroni, Holms, or BHY work 

relatively well but provide very conservative estimations due to their approximate nature. 

Certain improvement can be achieved applying the independence based multiple test p-value 

(Šidák’s) adjustment or the proposed multivariate normal MC simulation method. The derived 

expected SR and the related haircut proposed by Harvey, Liu (2015) are rather heuristic and 

in our view not theoretically founded. The stationary bootstrap method proposed by Sullivan 

et al. (1999) provides a consistent p-value adjustment. However, if used in a two stage 

simulation it may damage functionality of a positive strategy depending on medium/long term 

trends due to the mixing bootstrap algorithm. It also turns out to be computational the most 

demanding since all strategies must be replicated for each sequence of bootstrapped asset 

prices. Moreover, it cannot be used of the strategies are not known or depend on other 

economic series. The CSCV method (Bailey et al., 2016) is relatively computational efficient 

and provides good results if the mean returns of the strategies are well diversified. However, 

if the strategies’ mean returns are all close to zero then the method gives negatively biased 

results. On the other hand, it appears overoptimistic if one strategy stands high above the 

others. Finally, we have proposed and investigated two Bayesian methods, the naïve one 

based on the simple assumption that the returns are multivariate normal, and the second 

extended with latent variables indicating zero and nonzero mean return strategies. While the 

naïve model gives mixed results, the second provides in our view the most consistent results 

and a useful tool to analyze properly the issue of backtest overfitting. Besides the probability 

of loss and backtest overfitting (PBO) it estimates the posterior probabilities whether each 

individual model is a true discovery and at the same time the probability making a true 

discovery (and the complementary FDR). It should be emphasized that the goal of the 

investigated methods is to analyze the effect of the backtest overfitting keeping relatively 

parsimonious assumptions on the underlying data generating model. 
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Appendix 

The following are proofs of the formulas used for Model 2 in Section 3: 

Proof of step 2: 

   ( |        )   (      ) (      )    

    (
  

 
(  (         )      (           )))   

  (  (         )(           ) (  
       )  )    

Proof of step 3: Again 

  ( |        )   (      ) ( ), where       ( ) and  ( )  ∏   
  (   

  )
    . 

Since we can sample    *   + step by step given   , for     it is enough to calculate 

  (    | )   (       ) ( )     (
  

 
((     )  

  (     ) )) (    ) 

and similarly for   (    | ). We prefer the expression on the right hand side of the 

relation above in order to avoid a numerical underflow problem that appears for a higher 

dimension if the full multivariate density function is used.   
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