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Abstract: 

In this paper, we perform analysis of systemic risk in the financial and energy sector 

in Europe. In our investigation, we work with daily time series of CDS spreads. We 

employ factor copula model with GAS dynamics of Oh and Patton (2016) for 

estimation purposes of dependency structures between market participants. Based 

on the estimated models, we perform Monte Carlo simulations in order to obtain 

future values of CDS spreads, and then we measure probability of systemic events in 

given time points. We conclude that substantially higher systemic risk is present 

within the financial sector than in the energy sector. We also find that the most 

systemic vulnerable financial and energy companies come from Spain. 
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1. Introduction

The aim of this paper is to investigate and compare systemic risk within
the European financial and energy sectors. Because of the growing intercon-
nection of economic markets caused by the globalization process, and recently,
because of the global financial crisis, systemic risk is currently highly discussed
topic, and these new challenges call for modern approaches to measuring and
understanding its nature. Studying systemic risk and connections between mar-
ket participants is important for various reasons. For example, it may serve as
an input for regulatory purposes, portfolio theory, risk management, and many
others. Universally acceptable definition of systemic risk does not exist, so there
exist various possibilities how to approach this phenomenon. We may distin-
guish literature focusing on various sources of systemic risk and its causal effects,
and literature aiming to provide comprehensive measures of systemic risk. In
this paper, we strive to deliver answers to the latter using non-conventional
econometric tools. It is well known fact that covariance-based methods assum-
ing gaussianity of data do not adequately characterize nature of the connections
present in the real world, such as asymmetry and tail dependence, and thus
another tools must be employed in order to capture true dependence relations.
In our investigation, we make use of methods that can work with large sets
of data, which is essential for the topic, and capture both asymmetry and tail
dependencies. We argue that financial and energy sector play an important role
in the health of European economy and this paper is the first which investigates
and compares their systemic risk using factor copulas and CDS data.

Investigation of systemic risk has been an important topic in economic lit-
erature for a long time. Modern econometric approaches and various sources of
economic and financial data enables to investigate this research topic from var-
ious points of view. In our case, time-varying factor copula functions constitute
as the main econometric tool for the investigation of systemic risk in European
financial and energy sectors. Copulas have found many applications in finance
and economics since their introduction by Sklar (1959). One of the reasons
for that is the fact that using cornerstone of copulas theory, Sklar’s theorem,
copulas allow us to model marginal distributions and the dependence structure
separately and thus provide a great flexibility for modeling purposes. Litera-
ture that concerns with copula functions in application to the multivariate time
series is quite new but rapidly growing. These methods are being used in wide
variety of financial and economic problems. For general overview of these mod-
els see (Patton, 2012a). As it is expected, if we model time series, we work with
conditional expectations, this is formally described in Patton (2006). Very fruit-
ful results are being obtained using copulas particularly in the application to
financial time series, which we do in this paper, too. General overview of copula
based models for financial time series gives Patton (2009) and Patton (2012b).
Estimation procedure of copula models is not straightforward in many cases.
For general overview of the estimation strategies of both parametric and semi-
parametric copula models see Choroś et al. (2010). Copulas are also widely used
in many other fields of finance. For applications in risk management see McNeil
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et al. (2015). Wide range of applications in mathematical finance is discussed
in Cherubini et al. (2004). For more information about time-varying copula
models (including estimations, simulations, etc.) see Manner and Reznikova
(2012).

For our investigation purposes, we make use of factor copula model with GAS
dynamics suggested by Oh and Patton (2016). This model is a combination of
Generalized Autoregressive Score (GAS) model of Creal et al. (2013), and factor
copula model of Oh and Patton (2012). Copula model of Oh and Patton (2012)
facilitates work with high-dimensional data, and model of Creal et al. (2013)
allows us to impose dynamic properties to the model. Obtained model is both
flexible and parsimonious at the same time. As mentioned in Oh and Patton
(2016), there is a wide range of methods for studying risk and dependence among
small number of subjects but substantially less methods for assessing risk and
dependence among large number of subjects. Similar econometric approach as
the one employed in this paper is suggested by Creal and Tsay (2015). They
propose a new class of time-varying copula models that nest many widely used
models. They also introduce time-varying factor structure to the model in
order to enable to work with large sets of data, and they apply the methods
to the CDS time-series of 100 U.S. corporations. Pourkhanali et al. (2016)
use vine copulas to investigate systemic risk among 60 international financial
institutions classified into 5 rating classes. Work that utilizes sovereign debt
CDS data for assessing joint conditional probability of sovereign default in the
euro area is Lucas et al. (2014). Authors propose a new methodology, which
employs dynamic Generalized Hyperbolic skewed-t conditional density for their
analysis, combine it with GAS dynamics, and they find strong time variation
in risk dependence and strong impact of important policy announcements on
joint and conditional sovereign risk in the Eurozone. Another work that utilizes
dynamic copula models for assessing corporate credit is Christoffersen et al.
(2014). Work of Kleinow and Moreira (2015) investigates systemic risk in the
Eurozone using CDS spreads of European banks. They also strive to explain
why some banks are expected to negatively affect systemic risk in the area.

Despite numerous advantages of copula functions, they are not the only
econometric tool for estimating and measuring systemic risk. In their influen-
tial work of methodological approaches to measuring systemic risk and spillover
effects, Adrian and Brunnermeier (2009) propose to use quantile regression for
measuring systemic risk. For another modern econometric approaches to the
measuring systemic risk, see marginal expected shortfall approach in Brownlees
and Engle (2015). More recently, Liu (2016) proposes to use regime switch-
ing model for capturing non-linearities in tails of contributions of individual
institutions to the systemic risk.

As a data source for the research purposes of assessing and comparing sys-
temic risk in financial and energy sector in Europe, we use daily CDS spreads
data between January 2008 and September 2015. Increasing attention paid to
the CDS data in general is mainly caused by the fact that CDS spreads can
quite well mirror health of the underlying company. Our approach based on
these data is to our best knowledge novel and shed light on the differences be-
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tween financial and energy sector in this area from a different perspective. We
also perform analysis in terms of nationality of the companies and investigate
from which European countries come the most systemic vulnerable companies.
We estimate two versions of the dynamic factor copula model, one that assumes
heterogeneous dependence on the systemic events across companies, and second
that assume homogeneous dependence among companies from the same coun-
try. Differences of the results obtained from these two models can provide some
measure of dependence homogeneity of the companies from the same country.

Computations concerning with dynamic factor copula model were done using
Matlab toolbox which accompanied work of Oh and Patton (2016). Other cal-
culations were performed using RStudio with rugarch, tseries, and forecast

packages.

2. Dynamic Factor Copula for CDS Spreads

2.1. Data

In our empirical investigation, we will focus on examining daily credit default
swap (CDS) spreads of financial and energy companies in the Europe. CDS is
a financial derivative dependent on creditworthiness of one or more reference
entities. There are two main participants in the CDS contract: protection buyer
and protection seller. Protection buyers protect themselves against potential
default of the reference entity or entities in a given time horizon, and protection
sellers offer to cover the potential losses arising from the default. Protection
buyer pays some premium in order to be protected. This premium is called CDS
spread. Usually, CDS spreads are set in the basis points of the protected nominal
value. As stated in many works (for example,Christoffersen et al. (2014)), CDS
spreads very well reflect market perception of the default probability of the
reference entity. If there is a notion that reference entity is more likely to
default, related CDS spread is likely to increase, and vice versa. CDS spreads
thus contain information about implied default probabilities also called risk
neutral probability of default.

It can be simply shown that under some simplifying conditions (constant
risk free rate and constant default hazard rate, see Carr and Wu (2010)), CDS
spread of reference entity i at time t in basis points in terms of real world
probability of default is given by

Sit = 1002P P
itMitLGDit, (1)

where P P
it is real world probability of default, Mit is stochastic discount rate

also called market price of risk, and LGDit is loss given default (in many cases
LGD is assumed to be constant and equal to 0.6).

From the previous equations for credit spreads, it is obvious that increase
of the CDS spread is caused either by increase of the objective probability of
default, increase of the loss given default, or by increase of market price of default
risk. It is expected that raw CDS spreads show some heavy autoregressive
persistence with near unit root. In order to eliminate this feature, we work
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with the log-differences of CDS spreads. We may also assume that LGDit and
Mit are constant through time, implying that changes in CDS spreads directly
reflect changes in objective probabilities of default. This approach is then used
in the interpretation of the results in the paper, but as an increase of any of the
three terms represents negative impact on the given firm, this separation of the
objective probability of default is not necessary for interpretation of the results.

Data are taken between January 2008 and September 2015 yielding totally
2011 observations. Number of companies from the financial sector is equal to 27
and number of companies from the energy sector is equal to 18. List of all com-
panies along with basic descriptive statistics of their CDS spreads can be found
in Appendix A in Tables A.13 and A.16. All the companies are constituents of
iTraxx Europe CDS index with 5 year maturity. Data were obtained from the
Bloomberg Terminal. We will separately estimate dynamic factor copula models
for both sectors and discuss the systemic risk and the differences between those
two sectors. Both sectors will be compared with respect to the connectedness
and its evolution through time, and with respect to the related risk and its
evolution.

Figure 1: Time series of CDS spreads of financial and energy companies.

From Figure 1, we observe that spreads in the financial sector move slightly
more jointly together than spreads within the energy sector, especially during
the sovereign debt crisis in the year 2012 with confidence bands and mean value
of the spreads reacting more dramatically within the periods of crisis in this
sector. This is natural as connectedness among the financial subjects is expected
to be higher than connectedness within energy sector participants. Spreads in
the Figure 2 are averaged with respect to nationality of the companies. We
see that since the 2010 the highest average CDS spreads are observed within
companies from Italy and Spain in both financial and energy sector. From both
Figures we notice two peaks of CDS spreads, at the turn of years 2008 and 2009
at the peak of the financial crisis, and in year 2012 when sovereign debt crisis
was at the highest level.

Figure 3 depicts average log-differences among financial and energy sector.
We observe volatility clusters, so in order to properly model the time series we
will have to employ some conditional volatility model, such as GARCH model,
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Figure 2: Time series of average CDS spreads of financial and energy companies according to
their nationality.

in order to obtain valid models.

Figure 3: Average log-differences of CDS spreads of financial and energy companies.

From the Figure 2, we observe that average spreads of financial companies
from different European countries move more jointly together than the average
spreads of energy companies. This also suggests that the financial sector is more
connected than the energy sector.

Naive analysis of connectedness within the financial and energy sector gives
Table 1, which contains average rank correlation among all pairs of time series
of log-differences of CDS spreads within the sectors (702 pairs in the financial
sector and 306 pairs in energy sector). We can see that average rank correla-
tion during the whole observed time period among financial sector is equal to
0.703 against 0.542 within the energy sector. This supports our hypothesis that
financial sector is more connected with higher potential systemic risk arising
from this sector. Figure 4 depicts rolling window of length 40 days of average
rank correlation between pairs of subjects within the financial and energy sector
along with their empirical quantiles. We do not observe any steep peaks of the
correlations, only 2 major slumps at the turn of years 2008 and 2009, and at the
turn of years 2014 and 2015 within the financial sector. In the energy sector we
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observe decrease of correlations since the end of year 2013. But in both sectors,
we also observe a rapid increase of correlations in year 2015.

Table 1: Rank correlations among financial and energy sector.

Mean 5% 25% Median 75% 95%
Financial sector 0.703 0.523 0.670 0.707 0.759 0.814

Energy sector 0.542 0.299 0.484 0.577 0.626 0.690

Figure 4: Moving rank correlation over last 40 days among financial and energy companies.

Now, we have to choose proper modeling approach and estimate its param-
eters. This will be crucial for our analysis of systemic risk as we will employ
simulation approach to the estimation of the systemic risk. When we are es-
timating models for time series data, we assume that type of the underlying
process is the same for all the subjects within given sector, but the parameters
for each subject are estimated separately.

2.2. Financial Sector

When analyzing financial sector, we take into consideration 27 time series of
major financial institutions from the Europe. As discussed earlier, time series
of CDS spreads are non-stationary although they do not exactly follow random
walk as they are bounded by 0 from below and by 1 (100%) from above. Table
A.11 describes cross distribution of the series in levels. The whole list of financial
companies that are included in our analysis is featured in Appendix A in Table
A.13. From Table A.11 in Appendix A, we see that average value of CDS spreads
across the companies during the period was 130.65 bps. Non-stationarity of the
series is supported by the estimated first order autocorrelation coefficients, the
smallest value of the coefficient across the spreads is 0.985. The mean of 1st

order autocorrelation coefficient is equal to 0.995. This also supports Augmented
Dickey-Fuller test which rejects unit-root in only 6 cases and KPSS test rejects
stationarity in every case. In order to properly model the series we have to
stationarize them. In order to do so, we take log-differences of the series.
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Cross-sectional distribution of the log-differences is characterized by the Ta-
ble A.12 in Appendix A. One of the interesting observations is very high excess
kurtosis across financial companies, which is equal to 11.31. We also see that
average skewness across the financial sector is slightly positive, but estimates
across the companies lie in a wide range between -2.12 and 3.71.

In order to model the series, we employ ARMA-GARCH models. As a
conditional mean model we use the following adjusted AR(1) model given by
the following specification

Xi,t = φ0,i + φ1,iXi,t−1 + φm,iXm,t−1 + ei,t (2)

where Xi,t is log return of company i on day t and Xm,t−1 is average return
among financial companies from the previous day, this should capture the spill-
over effect within the sector. For the conditional variance model we use modified
GJR-GARCH model

σ2
i,t = ωi + βiσ

2
i,t−1 + αie

2
i,t−1 + δie

2
i,t−1I{ei,t−1 > 0} (3)

and
ei,t = σi,tεi,t, εi,t ∼ iid skew t(ν, ψ). (4)

The modification of the GJR-GARCH model lies in changing the inequality sign
in the indicator variable as an increase of the CDS spreads (positive return)
represents a bad news and higher variance is expected after this positive return.
Standardized residuals are modeled as random variables from skewed student’s
t distribution of Hansen (1994). Skewed student’s t distribution is more flexible
distribution than, for example, normal distribution because it enables to mirror
some of the prominent features of the financial data, such as skewness and fat
tails. Even if the standardized residuals are not significantly skewed or do not
poses fat tails, student’s t distribution mirror that by estimating appropriate
values of asymmetry and kurtosis parameters.

Summary of the estimated models can be found in Table 2 and complete
description of the estimated models for every company is included in Appendix
A in Table B.17. From the Table 2 we see that the coefficient for lagged mar-
ket return is positive and its mean value is significantly different from 0. This
supports our hypothesis of the spill-over effect within the sector. Another no-
ticeable feature of the estimated models is slightly negative value of average of
skewness parameters of the skewed student’s t distribution.

In order to test goodness-of-fit of the models, we firstly verify if there is no
significant autocorrelation among the residuals. We use standardized residuals
and perform Ljung-Box (LB) test to verify that. We do not reject the null
hypothesis of no autocorrelation among the residuals up to the 10th lag in any
case. The adequacy of the variance model is tested using LB test for squared
standardized residuals up to the 10th lag and we also do not reject the null
hypothesis in any case.
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Table 2: Results of the estimated ARMA-GARCH models among financial companies.

Mean Min 25% Median 75% Max
φ0 × 104 2.047 -2.119 0.736 1.947 3.728 5.726
φ1 -0.004 -0.251 -0.055 -0.001 0.039 0.156
φm 0.248 0.094 0.218 0.259 0.298 0.350
ω × 104 0.686 0.318 0.487 0.592 0.871 1.218
α 0.113 0.064 0.093 0.112 0.124 0.222
β 0.828 0.733 0.808 0.838 0.847 0.882
δ 0.043 -0.005 0.029 0.035 0.058 0.088
ν 5.035 3.696 4.660 5.023 5.238 6.485
ψ -0.026 -0.055 -0.038 -0.023 -0.016 0.017

2.3. Energy Sector

We consider 18 energy companies from the Europe when assessing systemic
risk in the energy sector. Same as in the case of financial companies, list of
all energy companies taken into consideration in our analysis along with basic
descriptive statistics of their CDS spreads is included in Appendix A in Table
A.16. First, we test the series for stationarity. Augmented Dickey-Fuller rejects
the null hypothesis that series has unit root in only 3 cases. KPSS test rejects the
null hypothesis that the series is stationary in every case. Descriptive statistics
concerning with levels of CDS spreads can be found in Table A.14 in Appendix
A. We observe smaller value of average CDS spreads across energy companies
than across financial companies with value 94.36 bps, which is approximately
40 bps less then in the case of financial companies.

Descriptive statistics on log-differences summarizes Table A.15 in Appendix
A. We also observe a large value of average kurtosis of log-differences, even
higher than within financial sector, which equals to 17.08. Average skewness of
log-differences in the energy sector is substantially higher than in the financial
sector with average value being equal to 0.82.

In case of energy companies, we follow the same procedure as in the case of
financial companies. Given the fact of non-stationary character of time series
of CDS spreads, we take logarithm of the series and difference them. Then, we
model the obtained stationary series as ARMA-GARCH processes. In case of
energy firms, we use modified AR(3) model of the following form

Xi,t = φ0,i +

3∑
j=1

φj,iXi,t−j + φm,iXm,t−1 + ei,t, (5)

in which we also include market return Xm,t−1 from the previous period. Higher
order of the AR process is used for modeling log-differences of CDS spreads
within the energy sector than in the case of financial companies. This need of
higher order of AR process for modeling purposes can be caused, for example,
by the lower liquidity of CDS spreads of the energy companies. Conditional
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variance is modeled by the same GJR-GARCH model as in the case of the
financial companies. This model is of the following form

σ2
i,t = ωi + βiσ

2
i,t−1 + αie

2
i,t−1 + δie

2
i,t−1I{ei,t−1 > 0}. (6)

and
ei,t = σi,tεi,t, εi,t ∼ iid skew t(ν, ψ). (7)

Summary of the estimation results is captured in Table 3 and the whole set of
estimated parameters can be found in Appendix B in Table B.18. Estimated pa-
rameter of the lagged market return is significantly different from 0 and positive
supporting our hypothesis of presence of spill-over effect in the energy sector.
Average value of GJR-GARCH parameter δ is estimated to be significant and
higher than in the financial sector with average values being equal to 0.070
and 0.043 in the financial and energy sector, respectively. This suggests that
volatility reacts more strongly on the previous day residual in case of the energy
companies.

Table 3: Results of the estimated ARMA-GARCH models among energy companies.

Mean Min 25% Median 75% Max
φ0 × 104 2.591 -1.333 1.550 2.417 3.745 6.385
φ1 -0.065 -0.466 -0.158 -0.075 0.032 0.230
φ2 -0.031 -0.232 -0.045 -0.027 -0.001 0.055
φ3 -0.050 -0.121 -0.075 -0.044 -0.030 0.022
φm 0.283 -0.030 0.212 0.325 0.373 0.497
ω × 104 0.444 0.010 0.255 0.352 0.558 1.341
α 0.127 0.047 0.106 0.123 0.138 0.214
β 0.810 0.729 0.794 0.807 0.824 0.937
δ 0.070 -0.010 0.044 0.068 0.093 0.203
ν 3.972 2.312 3.774 4.060 4.348 4.889
ψ -0.044 -0.086 -0.048 -0.043 -0.036 0.010

We follow the same procedure as in the case of financial companies and per-
form goodness-of-fit tests of the estimated models. We reject the null hypothesis
of no autocorrelation among standardized residuals up to 10 lag in 2 cases, which
gives us a satisfactory result. Adequacy of the variance model tested by the LB
test for the squared standardized residuals is not rejected in any case.

Now, when we have estimated both conditional mean and variance models
for both sectors, we can compare the sectors with respect to their estimated
volatility. Average estimated volatility during the observed period was 0.039 and
0.030 within the financial and energy sector, respectively. GARCH processes are
mean-reverting so we can also calculate estimated unconditional values of the
variance implied by the volatility model for each series according to the formula

σ2
i =

ωi

1− αi − βi − δi
2

. (8)
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Median value of the unconditional volatility (square root of variance) is then
equal to 0.043 within the financial sector and 0.040 within the energy sector.
Both these results suggest slightly higher degree of uncertainty within the finan-
cial sector than in the energy sector. Table 4 summarizes average volatility with
respect to nationality of the companies. We observe that volatility in the finan-
cial sector is higher for every country than in the energy sector. The highest
average volatility in both sectors is observed within Spanish companies.

Table 4: Average estimated volatility within financial and energy sector averaged with respect
to nationality.

Financial Energy
Nationality Volatility Nationality Volatility
Germany 0.041 Germany 0.029
France 0.040 France 0.031

UK 0.038 UK 0.025
Italy 0.040 Italy 0.036
Spain 0.042 Spain 0.039

Switzerland 0.037 Northern Europe 0.027
Netherlands 0.034

Figure 5 depicts average estimated volatility among European financial and
energy sectors with respect to the nationality of the companies. In both sectors
we observe 2 main peaks of volatility. One at the end of 2008 and one in the
middle of 2010.

Figure 5: Average estimated volatility among countries within financial and energy sector.

2.4. Dependence Structure

For modeling purposes of dependence structure, we use copula models. From
mean-variance equations, we obtain estimated residuals and these are then
transformed into uniformly distributed random variables using probability inte-
gral transform as
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Ui,t ≡ Fi,t
(Xi,t − µi,t(φi,0)

σi,t(φi,0)
;φi,0

)
, i = 1, 2, . . . , n (9)

where µi,t is estimated conditional mean of Xi,t, σi,t is its estimated con-
ditional standard deviation, and Fi,t is marginal distribution function of given
time series. As stated earlier, in our case the residuals are assumed to have
skewed Student’s t distribution.

Then, the conditional distribution of Ut|Ft−1 is the conditional copula of
Xt|Ft−1, i.e.

Ut|Ft−1 ∼ Ct(γ) (10)

where γ is a vector of copula parameters. Because of the high dimensionality
of the data, we have to employ some sort of dimension-reduction tool. In this
paper, we follow model of Oh and Patton (2016). Their methods impose factor
structure for dependence modeling purposes in order to obtain feasible models.
This modeling procedure allows us to use copula models in the cases where large
collection of data are analyzed. Besides that, it serves very well for our purpose
of investigation systemic risk as we can interpret dependence on the common
factor as a vulnerability to the systemic events.

We use two different dynamic factor copula models. The first one is charac-
terized by the heterogeneous dependence on the common factor for time series
of latent variables Yt ≡ (Y1,t, . . . , Yn,t)

T , and posses the following form

Yi,t = λi,t(γλ)Zt + εi,t, i = 1, 2, . . . , n

Zt ∼FZ(γz), εt ∼ iid Fε(γε), Zt ⊥ εi,t,
(11)

and the second one where we group the companies according to their nationality
and assume homogeneous dependence on the common factor among them, so
the block equidependence model is

Yi,t = λg(i),tZt + εi,t, i = 1, . . . , N

Zt ∼ FZ(γz), εt ∼ iid Fε(γε), Zt ⊥ εi,t, g = 1, 2, . . . , G,
(12)

where g(i) is the group in which variable i belongs to and G is a number of the
groups. Rest of the variables are defined as follows: FZ(γz) is the univariate
distribution for the common factor and Fε(γε) are univariate distributions for
the idyosyncratic variables. Both these distributions are parametric. Weights
on the common factor λi,t(γλ) are time-varying and by increasing factor loading,
ceteris paribus, we obtain increase of dependence rate among variables. Set of
the copula parameters is denoted γ = (γTz , γ

T
ε , γ

T
λ )T . In our case, distribution

for the common factor is skewed student’s t distribution with parameter ν gov-
erning the shape of the distribution and parameter ψ governing the skewness
of the distribution, and distribution for the idiosyncratic factors is student’s t
distribution, thus we call this model skew t − t copula. This allows to model
both asymmetrical and heavy-tailed dependencies across the variables.

The time-varying structure of the models employed in this paper follows
specification of the GAS types models proposed by Creal et al. (2013). These
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models are general type of models with time-varying parameters and encompass,
for example, GARCH type models or autoregressive conditional duration mod-
els. Various other dynamic structures are proposed in the literature. In case of
GARCH-type volatility models, time-varying parameter evolves as a function of
lagged values of residuals. In stochastic volatility models parameter evolves as
a latent time series process. The GARCH-type models are more favorable from
estimation complexity point of view. In case of our factor model we do not have
any obvious choice how to specify the evolution of the time varying parameter
and which function of lagged observables to use. The GAS model enables to
overcame this obstacle. GAS model for some copula model as proposed in Oh
and Patton (2016) may be defined by the following specification

Ut|Ft−1 ∼ C(δt(γ))

δt = ω +Bδt−1 +Ast−1

st−1 = St−15t−1

5t−1 =
∂ log c(ut−1; δt−1)

∂δt−1
,

(13)

where δt is a time-varying parameter dependent on fixed parameter γ and St is
a scaling matrix, e.g. the inverse Hessian or its square root. As it is the case
that in most of the factor copula applications, the likelihood function is not
known, we must calculate the vector 5t via numerical integration.

We employ model of Oh and Patton (2016), which is a combination of factor
copula model proposed in Oh and Patton (2012) and GAS model of Creal et al.
(2013). Model employs GAS dynamics in the factor copula model to allow for
time-varying factor loading parameters. On the other hand, in order to make the
model parsimonious we assume constant values of parameters of the common
and idiosyncratic variables distributions, i.e. γz and γε does not vary through
the time. For modeling purposes of idiosyncratic variable we use standardized
student’s t distribution.

We apply general framework from equation 13 to the factor loading param-
eter λi,t. But by simply applying that, we would have to estimate N + 2N2

parameters. In order to make the model feasible, we adopt principles from DCC
model of Engle (2002) and set matrices of βi,j and αi,j , i, j = 1, 2, . . . , N to be
diagonal matrices with constant scalars, α and β, respectively, on the diago-
nal. Scale matrix is then set to be identity matrix, St = It. This finally yields
the following equation for development of parameter λi,t for the heterogeneous
dependence model in log terms

log λi,t = ωi+β log λi,t−1 + αsi,t−1, i = 1, 2, . . . , N

si,t ≡
∂ log c(ut,λt, νz, φz, νε)

∂ log λi,t

λt ≡ [λ1,t, . . . , λN,t].

(14)
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and for the block equidependence model we obtain following specification

log λg(i),t = ωg(i)+β log λg(i),t−1 + αsg(i),t−1, g(i) = 1, 2, . . . , G

sg(i),t ≡
∂ log c(ut,λt, νz, φz, νε)

∂ log λg(i),t

λt ≡ [λ1,t, . . . , λG,t].

(15)

Dynamics for the heterogeneous dependence model implied by the equations
14 demands estimation of N+2 parameters for the GAS dynamics and 3 param-
eters in total for the shape of the common and idiosyncratic variables, yielding
N+5 parameters to be estimated. In case of block equidependence model, num-
ber of parameters to be estimated is G+5. It is obvious that for G = 1 we obtain
homogeneous dependence and for G = N we obtain heterogeneous dependence.
In order to overcome the numerical challenge of optimizing for N ≥ 50 Oh and
Patton (2016) proposed method from DCC model of Engle (2002) called ”vari-
ance targeting” which has to be modified for our purposes. We may rewrite the
evolution of the parameter λi,t from the heterogeneous dependence model as

log λi,t = E[log λi,t](1− β) + β log λi,t−1 + αsi,t−1 (16)

using the result from Creal et al. (2013) that Et−1[si,t] = 0, and so E[log λi,t] =
ωi/(1− β).

As stated in Oh and Patton (2016), factor copula arising from equations 11
and 12 is known in analytic form only for a few choices of FZ and Fε, for example
if both distributions are normally distributed then the implied copula is also
normal. In general, implied copula is not known in closed form, thus likelihood
function is not known in closed form, either. For estimation purposes specific
numerical procedures must be employed in order to overcome this problem.
Oh and Patton (2013) proposed estimation methods for copulas which do not
poses closed-form likelihood function based on simulations - simulated method
of moments estimation. Unfortunately, their approach do not allow for time-
varying conditional copula. To overcome this obstacle Oh and Patton (2016)
propose a new approach in order to overcome this obstacle. This approach
is based on numerical integration and it exploits the fact that we need only
integrate out the one-dimensional common factor despite the fact that copula
is n-dimensional.

Oh and Patton (2016) state the assumptions which provide a method for
using sample rank correlations to obtain an estimate of E[log λi,t], which elimi-
nates the need to numerically optimize over the intercept parameters, ωi or ωg(i).
These assumptions enable us to treat the estimation procedure of the vector of
parameters as multi-stage GMM and thus yielding consistent and asymptoti-
cally normal parameter estimates. For more details on the estimation of this
model, see Oh and Patton (2016).

2.4.1. Heterogeneous Dependence Model

In this section, we apply our proposed dynamic factor copula model with
heterogeneous GAS dynamics (i.e. heterogeneous dependence structure) defined

14



earlier in equation 11. Estimated parameters of the distributions of common
and idiosyncratic factors for financial and energy companies are described in
Table 5. We observe higher level of persistence within the financial sector than
within the energy sector with β parameter for financial companies being equal
to 0.970 and β for energy companies being equal to 0.902 (see Creal et al. (2013)
for explanation of the fact that β parameter in GAS model plays the same role
α + β in GARCH model). Inverse of degrees-of-freedom parameters for the
common factor for the energy sector is smaller than for the financial sector sug-
gesting greater departure from normality and thus higher tail dependence in the
financial sector. Inverse of degrees of freedom parameter for idiosyncratic factor
is slightly smaller for the financial sector than for the energy and both these val-
ues suggests non-normality of the idiosyncratic factor. This we may interpret
as that in the financial sector the extreme events across companies are more
driven by the common influences and in the energy sector by the idiosyncratic
effects. Thus this suggest higher connectedness and potential systemic risk in
the financial sector. Asymmetry parameter ψz for the financial sector is very
close to zero, which supports hypothesis of symmetrically distributed common
factor. On the other hand, asymmetry parameter within the energy sector is
slightly positive suggesting positive skewness of the distribution of the common
factor. That implicates that the energy companies are slightly more correlated
during the bad periods as the bad periods are characterized by increase of CDS
spreads. From Table 5 we also observe that νz > νε suggesting 0 tail depen-
dence, for more on this topic see Oh and Patton (2012). This only means that
the limit correlation of the extreme events is zero and does not say anything
about ”near extreme” events as discussed in Oh and Patton (2016).

Table 5: Estimated parameters from heterogeneous dependence model.

Financial Energy
ω 0.014 0.010
α 0.040 0.103
β 0.970 0.902
ν−1
z 0.054 0.023
ν−1
ε 0.177 0.191
ψz -0.009 0.016

Figure 6 depicts estimated factor loadings of the model. We observe that
factor loadings within the financial sector evolve ”more non-stationary” than
in the energy sector. Also average factor loadings is higher in the financial
sector than in the energy sector suggesting higher connectedness within this
sector. Joint probability of distress is then expected to be higher within the
financial sector. We see that factor loadings do not dramatically spike during
any period, not even in the beginning of the sovereign debt crisis in 2012. On
the other hand, during this crisis 5% and 95% quantiles of the distribution of the
λ across financial companies dramatically widened. In the energy sector we do
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not observe any medium-term widening like this. In both sectors factor loadings
in the end of 2014 dramatically fell down but quickly went back to the previous
level and also exceeded it at the end of year 2015, which is especially present
within the financial sector. This observations is in agreement with our naive
analysis of the connectedness within the sectors based on the rolling window of
rank correlations.

Figure 6: Estimated factor loadings from heterogeneous dependence dynamic factor copula
model with GAS dynamics.

Figure 7 depicts the evolution of factor loadings from the heterogeneous
dependence model averaged with respect to the nationalities of the companies,
average values are then summarized in Table 6. Average factor loading within
financial and energy companies is equal to 1.587 and 1.155, respectively. This
clearly suggests higher rate of connectedness within the financial sector.

Figure 7: Estimated factor loadings from heterogeneous dependence dynamic factor copula
model with GAS dynamics averaged across the companies from the same country.

From 6, we conclude that in both financial and energy sector the highest
values of average factor loadings can be found within the Spanish companies.
This suggest high vulnerability to the systemic events within these companies.
We may also notice that average factor loadings averaged with respect to the
nationality is higher within the financial sector than within the energy sector
for every country . On the other hand, the lowest average factor loadings can
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be found within companies from Netherlands in financial sector, and within
companies from Northern Europe in energy sector.

Table 6: Average estimated factor loadings from heterogeneous dependence model within
financial and energy sector averaged with respect to nationality.

Financial Energy
Nationality Factor loading Nationality Factor loading
Germany 1.550 Germany 1.202
France 1.739 France 1.200

UK 1.608 UK 0.838
Italy 1.533 Italy 1.272
Spain 1.761 Spain 1.419

Switzerland 1.531 Northern Europe 1.002
Netherlands 1.386

2.4.2. Block Equidependence Model

We also perform our analysis of systemic risk using block equidependence
model. One of the main advantages of this model is a lower computational bur-
den of the estimation process. In this paper, we employ this model mainly in
order to compare the estimated results from heterogeneous dependence model,
i.e. we use heterogeneous dependence model as a benchmark model. A good
a priori grouping can yield a good performance along with the economic in-
terpretation of the model. In this model, we group the companies according
to their nationality (home of registered office). This model is defined by the
equation 12. We may also set the grouping criterion in some different way. For
purposes of our analysis, we do not aim to come up with the best one as we try
to analyze differences of systemic risk within sectors and countries. Although
this grouping might not be the best one from the point of view of performance
of the model, it is probably the most natural one with a satisfactory economic
intuition behind it. One the the reasons might be that interbank market on a
country level is expected to be very contagious. Another thing is that financial
institution from the same country are expected to have in some degree homoge-
neous structure of their portfolios. This grouping scheme may be less intuitive
for the energy sector. But both the previous arguments can be partially trans-
ferred to the energy sector, too. Energy companies are as any other company
vulnerable to the economic fluctuations within the country, such as aggregate
demand, political instabilities and other, so this grouping scheme can be also
naturally implemented.

When employing this model, we utilize a bit different approach. As we sim-
ulate future values of the CDS spreads only every 20 days (will be explained
more thoroughly later), we do not generally take into consideration development
within the previous 19 days, only current state at the the staring point of the
simulation. On the other hand, when we run simulation based on this equide-
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pendence model, we try to compensate it by averaging λi,t parameter over the
last 20 days and this value set as an initial value in the simulation process.

Table 7 summarizes estimated parameters from the block equidepedence
model. Same as in the case of the heterogeneous dependence model, level of
persistence is higher within the financial sector. Also degrees of freedom pa-
rameter of common factor is lower in case of financial companies than among
energy sector suggesting heavier tails of the distribution of the common factor
within financial sector and related higher probability of joint extreme events.
Estimated degrees of freedom of idiosyncratic factor is same as in the case of
heterogeneous dependence model slightly lower across the energy sector. On the
other hand, different result of block equidependence model brings estimated pa-
rameter of asymmetry of the common factor within the energy sector, which is in
case of block equidependence estimated as to be negative. This can be partially
compensated by the thickening the tails of the distribution of the idiosyncratic
factor.

Table 7: Estimated parameters from block equidependence model.

Financial Energy
ω 0.035 0.003
α 0.033 0.098
β 0.907 0.758
ν−1
z 0.045 0.019
ν−1
ε 0.215 0.232
ψz -0.008 -0.014

Development of estimated factor loadings along with the 20-day rolling win-
dow of the average values for the financial and energy sector depict Figures 8
and 9. The highest number of spikes of the factor loadings greater than 2 is
observed within the factor loadings for companies from France in the financial
sector with 185 values exceeding this threshold (average value of the crossings
within this sector is 64).

The highest number of values of the factor loadings greater than 2 in the
energy sector is observed in the time series of the factor loadings for the Spain
companies with total number equal to 38 (mean across the sector is equal to 9).

Table 8 summarizes average values of the factor loadings for countries within
the financial and energy sector. We observe overall decrease of factor loadings
estimated by the block equidependence model compared to the factor loadings
estimated by heterogeneous dependence model. Another noticeable difference is
that the highest average factor loadings was estimated for the companies from
France within the financial sector with companies from Spain having the second
highest average value. This is only a slight departure from the results estimated
by heterogeneous dependence model with Spain having the highest average value
of factor loadings and France having the second highest values. But differences
of average factor loadings of French companies and Spanish companies is rather
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Figure 8: Financial sector: estimated factor loadings from dynamic factor copula model with
GAS dynamics with equidependence structure among companies from the same country. Red
line represents exponentially weighted average over last 20 days.

small in both estimation cases.
As the average values of the factor loadings estimated by block equidepen-

dence model went down in comparison with heterogeneous dependence model,
we should expect that our measures of systemic risk will also go down. This
is confirmed by the results summarized in Tables 10 and 10 later in the paper,
but we do not observe any rapid drop in estimated values. Except this slight
drop of the estimated values the results are in line with results obtained from
heterogeneous dependence model. These similar results may suggest that there
exists a high degree of homogeneity across companies from the same country.

2.5. Systemic Risk

Our estimated models for financial and energy sector enable to perform anal-
ysis of the systemic risk within the sectors based on Monte Carlo simulations.
Notion of systemic risk can be described by the risk of a large proportion of
market participants being in distress. Distress can be generally characterized
by large negative stock return or by large positive CDS return. In the paper, we
work with 2 measures of systemic risk as they are proposed in Oh and Patton
(2016).

We may realize that good indicator of a firm being in distress is given by
its CDS spread being very high. This implies that protection buyer has to pay
more for their protection against the exposure against given firm. We define
firm being in distress in the 5-months (100-days) horizon as a dummy variable
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Figure 9: Energy sector: estimated factor loadings from dynamic factor copula model with
GAS dynamics with equidependence structure among companies from the same country. Red
line represents exponentially weighted average over last 20 days.

that assigns 1 when CDS spread in 100 days is higher than some threshold and
0 otherwise, formally

Di,t+1000 ≡ I{Si,t+100 > c∗i,t+100}. (17)

We utilize this definition for both measures of systemic risk.
Now, we define our first measure of systemic risk. We define joint probability

of distress (JPD) as a probability that number of firms in distress is greater than
some limit, which is formally given by

JPDt,k ≡ Pt

[ n∑
i=1

Di,t+100 ≥ k
]
, (18)

where k is some predefined number of firms standing for the notion of ”large
number of firms”. In our empirical investigation we work with k such that
k = 1

3N , where N is number of all market participants within a given sector
(9 within financial sector, and 6 within energy sector). Our empirical analysis
also contains brief summary of the results for different values of k. Thus joint
distress occurs when at least one third of the companies from the sector is in
distress in 100-days ahead horizon.

Another measure utilized in the exploring the systemic risk is expected pro-
portion firms in distress (EPD) conditioned on a given firm being in distress,
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Table 8: Average estimated factor loadings from block equidependence model within financial
and energy sector.

Financial Energy
Nationality Factor loading Nationality Factor loading
Germany 1.471 Germany 1.053
France 1.607 France 1.109

UK 1.535 UK 0.679
Italy 1.425 Italy 1.228
Spain 1.587 Spain 1.260

Switzerland 1.446 Northern Europe 0.978
Netherlands 1.368

i.e.

EPDi,t ≡ Et
[ 1

n

n∑
j=1

Dj,t+100

∣∣Di,t+100 = 1
]
. (19)

This measure captures very well the severity of possible contagion among sub-
jects and serves as a complement to the first systemic risk measure.

As the threshold value, c∗i,t+100, we choose 95% conditional quantile of the
distribution of 100-days ahead future values of CDS spreads obtained via the
simulation process. Formally, it is defined as

c∗i,t+100 ≡ qα
(
Si,t+100|Ft

)
, (20)

where we set α = 0.95 if not stated otherwise. Higher values of α does not bring
any qualitatively different results of our analysis. Brief summary of the results
for α = 0.99 is also featured. This definition of threshold value captures the
time-varying character of the dependence structure between the subjects.

Future values are obtained via numerical simulation following the specifi-
cation of conditional mean and variance models and also factor copula models
with GAS dynamics defined earlier. Because of the computational complexity
of these simulations, we simulate future values every 20 days (approximately 1
time every month). Number of simulations that we perform in these days is set
equal to 500.

Unconditional average 95% quantile among financial companies is 281 bps
and average 95% quantile among energy companies is 185 bps. If not stated
otherwise, we work with k such that proportion of firms in distress must be at
least one third, that implies that k = 9 for the financial sector, and k = 6 for
the energy sector.

2.5.1. Results from the Heterogeneous Dependence Model

Figure 10 depicts development of JPD in both examined sectors. We observe
that both series seem to be stationary suggesting that the series oscillate around
some long-term mean value. Mean value of JPD for financial sector is 0.0323
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and 0.021 for energy sector corresponding to the average 3.23% chance of at
least one third of the companies being in distress in future 100-days ahead time
point in financial sector and average 2.08% chance in the energy sector. This
implies about 46% higher probability of the occurrence of the systemic event
in the financial sector than in the energy sector. We observe one peak of the
JPD within the financial sector in year 2012 when the JPD was equal to 4.2%,
energy sector reaches its peaks during the years 2008, 2009, and 2012 when JPD
reaches value equal to 3.4%. This peaks may be also partially caused by the
overall increase of the volatility in these time points.

From Table 9, we see that when we tighten the criteria of the definition of
JPD (increase of α and k), probabilities go substantially lower and differences
between JPD within financial sector and energy sector further widens. For
example, average probability that at least half of the companies within the
sector will be in distress is more than twice as large across the financial sector
than in the energy sector.

Table 9: Simulated values of JPD from heterogeneous dependence model within financial and
energy sectors for various values of α and k.

α = 0.95 α = 0.99
Financial sector k = 5 k = 9 k = 13 k = 5 k = 9 k = 13
Mean JPD 7.509% 3.228% 1.378% 0.925% 0.214% 0.061%

Energy sector k = 3 k = 6 k = 9 k = 3 k = 6 k = 9
Mean JPD 7.372% 2.083% 0.529% 0.691% 0.091% 0.012%

Figure 10: Simulated JPD from heterogeneous dependence model, distress defined as 95%
conditional quantile and proportion of firms in distress is 1/3.

Figure 11 plots evolution of average EPD with 5%-95% and 25%-75% confi-
dence bands in both sectors. Same as in the case of JPD, series are stationary
oscillating around some constant value. For financial sector, mean value during
the observation period is 0.288, and 0.229 within the energy sector meaning that
the average proportion of companies being in distress given one company being
in distress is 29% for financial sector and 23% for energy sector, which means
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approximately 26% higher risk in the financial sector. Unlike in the case of JPD,
we do not observe any steep peaks of the average EPD, neither widening the
confidence bands. The series of EPD within both sectors oscillates around their
mean values in quite narrow areas. In Appendix B in Table B.21 and B.22 can
be found average and basic descriptive statistics of EPD for every company we
have taken into consideration from both financial and energy sector. Company
with high EPD is expected to be more dependent on the systemic events in the
market and conversely the market environment is more dependent on financial
health of this company. On the other hand, company with a low EPD is more
likely to be dependent on its idiosyncratic component of the risk and market is
not so strongly correlated with this company, i.e. distress of this company is
not an indicator of market distress. Company with the highest average EPD
within the financial sector is Unicredit SpA (Italy) with average EPD being
equal to 0.310, closely followed by Intesa Sanpaolo (Italy) with average EPD
0.309, and then by Credit Agricole SA (France) with average EPD 0.305, and
BNP Paribas SA (France) and Banco Bilbao Vizcaya Argentaria (Spain) both
with average EPD 0.304. On the other side of the spectrum is Mediobanca SpA
(Italy) with by far the lowest average JPD equal to 0.196. The second lowest
EPD poses Rabobank (Netherlands) with average EPD 0.266. Notice that com-
pany with the lowest and the highest EPD are from the same country, Italy.
This may undermine our assumption from the next section when we estimate
block equidependence model and we group the companies according to their
nationality. On the other hand, in the rest of the cases variances of the average
EPD within the companies from the same country are pretty low. In the energy
sector company with the lowest average EPD is Royal Dutch Shell PLC (UK)
with average EPD 0.154 and Statoil ASA (Northern Europe) with 0.188. The
highest average value of EPD within energy sector has Iberdrola SA (Spain)
with value 0.252 and Enel SpA (Italy) with value 0.250.

Figure 11: Simulated EPD from heterogeneous dependence model, distress defined as 95%
conditional quantile.

So, to conclude, results from the heterogeneous dependence model strongly
suggest higher degree of systemic risk in the financial sector than in the energy
sector. This statement is supported by the average estimated values of the factor
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loadings and by the estimated risk measures. Another result from this model
is that companies from the Spain are the most systemic in both financial and
energy sector, which is based on the the estimated factor loadings and estimated
values of EPD.

2.5.2. Results from the Block Equidependence Model

Table 10 contains estimated values of JPD for various values of α and k. The
main departure from the results obtained from the block equidependence model
against the results from the heterogeneous dependence model is substantially
lower estimated probability of JPD in the energy sector for α = 0.99 and k = 9,
which is equal to 0.012% from heterogeneous dependence model and 0.004%
from block equidependence model. Probability of the equivalent event in the
financial sector estimated by the block equidependence model is 10 times greater.

Table 10: Simulated values of JPD from block equidependence model within financial and
energy sectors for various values of α and k.

α = 0.95 α = 0.99
Financial sector k = 5 k = 9 k = 13 k = 5 k = 9 k = 13
Mean JPD 7.313% 2.927% 1.109% 0.838% 0.176% 0.042%

Energy sector k = 3 k = 6 k = 9 k = 3 k = 6 k = 9
Mean JPD 7.194% 1.770% 0.370% 0.610% 0.075% 0.004%

Figure 12 depicts evolution of JPD for both examined sectors. Same as in the
case of heterogeneous dependence model, we observe one peak during the year
2012 within the financial sector, moreover we also observe 2 other peaks in year
2014 and 2015, which are less noticeable from the heterogeneous dependence
model. Within the energy sector, the results from block equidependence model
differ more than in the case of financial sector. We observe one peak during year
2011 and few other peaks which were more noticeable from heterogeneous de-
pendence model. This differences may be caused by the different methodology
of the simulation process (averaging starting value of λ) or by greater hetero-
geneity across the energy companies from the same country. On the other hand,
these differences are overall not so significant and we can conclude that grouping
with respect to the nationality of the companies delivers reasonable results.

Series of EPD among both sectors depicts Figure 13. Series are also sta-
tionary. Overall, we observe that EPD systemic risk measure in both cases
(heterogeneous and block equidependence model) does not posses any notice-
able peaks.

To summarize the results from the block equidependence model, we should
point out that the results are qualitatively similar to the results obtained from
the heterogeneous dependence model. Estimated dependencies and related sys-
temic risk for both sectors are slightly smaller but not considerable different.
These results support the proposed grouping according to the company’s na-
tionality suggesting substantial dependence homogeneity across the companies
from the same country.
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Figure 12: Simulated JPD from block equidependence model, distress defined as 95% condi-
tional quantile and proportion of firms in distress is 1/3.

Figure 13: Simulated EPD from block equidependence model, distress defined as 95% condi-
tional quantile.

3. Conclusion

In this paper, we investigated and compared systemic risk within European
financial and energy sector using factor copula model and CDS daily time series
data between January 2008 and September 2015, which has not been done yet
before to the best of our knowledge. Our results aim to enrich ongoing empirical
discussion about systemic risk in the Europe, and provide some background for
regulatory purposes, portfolio selection, and others. Model that we employ is
capable of capturing various important features present in the data, such as
asymmetric and tail dependence among subjects, which is essential for studying
dependencies during extreme events. The main reason for choosing CDS data
for purposes of our analysis is the fact that CDS spreads contain information
about the probability of default of the reference entity perceived by the market
participants, and thus they are appropriate for investigating systemic risk.

We compared financial and energy sectors with respect to their connected-
ness and measures of systemic risk. We made use of two different measures of
systemic risk that can fully exploit possibilities of the proposed models. One of
them is the joint probability of distress (JPD), and the second measure is the
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expected proportion of firms in distress conditioned on a given firm being in
distress (EPD)

We estimated 2 specifications of the dynamic factor copula model. First, we
estimated heterogeneous dependence version of the model. Then, we utilized
Monte Carlo simulations to obtain estimates of the systemic risk. We conclude
that systemic risk within the financial sector is noticeable higher than within
the energy sector as the average values of JPD are about 50% higher within
the financial sector. The main peak of the systemic risk estimated from the
heterogeneous dependence model is in year 2012 with estimated value of prob-
ability of at least one third of companies being in distress equal to 4.2% within
the financial sector, and within the energy sector we observe 3 main peaks in
years 2008, 2009, and 2012 with estimated probability equal to 3.4%. We also
estimated average values of EPD for financial and energy sector. Beside that,
we include in Appendix B descriptive statistics of EPD for every company from
both sectors that we took into consideration in the analysis. We also conclude
that the most systemic companies from both sectors are companies from Spain.

Second, we estimated block equidependence version of the model, which
groups the companies according to their nationality and model dependence on
the common factor homogeneously for all the subjects within the same group.
Results from the block equidependence model are qualitatively the same as
the results from the heterogeneous dependence model. Dependencies, and thus
systemic risk estimated by this model, are only slightly smaller. These results
support our notion of high degree of homogeneity across the companies from
the same country and validates our grouping scheme.
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Appendix A. CDS Spreads

Appendix A.1. CDS Spreads of Financial Companies

Table A.11: Cross-sectional distributuin of CDS spreads of financial companies.

Mean Min 25% Median 75% Max%
Mean 130.65 58.40 106.04 132.38 159.46 202.38
Std. dev 70.17 16.95 39.97 64.67 92.69 134.49
1st order autocorr. 0.995 0.985 0.993 0.995 0.997 0.998
Skewness 1.05 0.03 0.79 1.03 1.29 2.76
Kurtosis 0.92 -0.97 -0.15 0.30 1.29 7.70
Min 38.25 24.52 31.90 39.59 43.55 59.50
25% 77.62 43.70 69.41 77.54 86.05 110.45
Median 111.50 56.51 95.34 109.71 130.95 167.57
75% 167.19 70.94 124.57 161.54 207.92 296.49
Max 390.80 128.24 266.53 378.89 488.69 841.62
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Table A.12: Cross-sectional distribution of log-differences of CDS spreads of financial compa-
nies in basis points.

Mean Min 25% Median 75% Max%
Mean 3.03 -0.99 1.82 3.14 4.61 6.80
Std. dev 421.26 309.23 389.51 428.17 448.57 476.01
1st order autocorr. 0.157 -0.063 0.149 0.162 0.196 0.224
Skewness 0.05 -2.12 -0.22 0.02 0.20 3.71
Kurtosis 11.31 3.67 5.66 6.60 9.93 86.22
Min -3295 -7238 -3693 -3130 -2664 -2076
25% -192.67 -233.44 -210.57 -197.53 -182.57 -57.13
Median -1.89 -9.08 -2.61 -1.19 -0.05 1.83
75% 195.30 59.06 183.34 199.94 213.41 241.59
Max 3246 2223 2818 3119 3579 6177

Table A.13: Financial companies and descriptive statistics of their CDS spreads in basis
points.

Company Nationality Mean 5% 25% Median 75% 95%
Allianz SE Germany 77.34 34.11 52.31 76.00 95.68 133.31
Commerzbank AG Germany 132.38 65.25 83.25 109.71 165.74 274.78
Deutsche Bank AG Germany 108.97 64.33 81.87 98.20 122.74 193.61
Hannover Rueck SE Germany 84.57 44.19 57.26 85.41 106.54 136.20
Munich Re Germany 58.40 35.83 43.70 56.51 70.94 86.76
AXA SA France 140.94 56.09 77.11 126.26 176.29 319.70
BNP Paribas SA France 110.24 52.16 65.28 86.46 129.75 259.13
Credit Agricole SA France 134.52 62.47 78.58 110.66 165.15 289.42
Societe Generale SA France 141.59 70.06 84.59 108.61 166.86 332.95
Aviva PLC UK 131.75 62.24 87.52 123.89 161.54 223.32
Barclays Bank PLC UK 124.23 54.58 81.76 119.35 153.30 226.50
HSBC Bank PLC UK 84.87 45.75 62.73 77.89 103.30 143.74
Lloyds Bank PLC UK 147.61 50.90 75.83 137.43 188.76 321.65
The Royal Bank of Scotland PLC UK 163.08 63.66 105.35 152.67 201.50 331.01
Assicurazioni Generali SpA Italy 155.84 58.92 77.54 120.95 224.53 365.65
Intesa Sanpaolo SpA Italy 176.24 50.16 80.45 124.52 271.63 464.83
Mediobanca SpA Italy 171.84 52.96 93.75 135.80 214.35 427.77
UniCredit SpA Italy 202.38 69.72 105.06 144.52 296.49 502.34
Banco Bilbao Vizcaya Argentaria SA Spain 184.76 69.33 89.29 138.35 267.97 408.52
Banco Santander SA Spain 176.34 69.91 88.07 135.64 253.49 387.57
Credit Suisse Group AG Switzerland 103.11 54.10 72.93 92.94 126.40 184.36
Swiss Reinsurance Co Ltd Switzerland 138.02 38.03 71.49 107.87 137.27 490.43
UBS AG Switzerland 112.30 45.52 71.03 97.73 144.06 213.15
Zurich Insurance Co Ltd Switzerland 95.61 41.74 68.91 98.48 118.52 149.59
Aegon NV Netherlands 176.35 70.08 110.45 167.57 214.51 354.35
Rabobank Netherlands 82.33 43.30 59.67 73.89 99.57 146.66
ING Bank NV Netherlands 112.05 52.59 69.92 103.16 137.41 220.80
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Table A.14: Cross-sectional distribution of CDS spreads of energy companies.

Mean Min 25% Median 75% Max
Mean 94.36 55.84 65.98 78.24 108.43 179.19
Std. dev 45.30 13.55 21.51 30.82 59.42 113.11
1st order autocorr. 0.995 0.991 0.995 0.996 0.996 0.997
Skewness 1.42 0.67 0.99 1.12 1.52 4.52
Kurtosis 3.08 -0.20 0.44 1.34 2.78 26.59
Min 34.48 20.76 23.74 31.59 40.64 60.80
25% 61.06 41.28 50.64 54.94 71.10 100.06
Median 83.52 50.27 60.60 69.50 94.28 161.31
75% 114.52 63.19 74.68 88.80 140.03 241.42
Max 293.84 109.89 156.51 190.67 480.21 637.90

Table A.15: Cross-sectional distribution of log-differences of CDS spreads of energy companies
in basis points.

Mean Min 25% Median 75% Max
Mean 3.57 0.04 2.03 3.99 4.45 7.24
Std. dev 346.22 282.71 313.64 333.05 377.44 434.03
1st order autocorr. 0.098 -0.209 0.065 0.113 0.153 0.210
Skewness 0.82 -0.12 0.29 0.47 0.74 3.55
Kurtosis 17.08 5.52 7.99 11.02 16.83 70.24
Min -2676 -3926 -3030 -2548 -2324 -1717
25% -136.60 -199.45 -153.65 -134.88 -121.01 -0.47
Median -2.87 -9.91 -5.19 -1.51 -0.18 0.00
75% 125.87 0.00 114.56 125.56 138.13 182.19
Max 3287 1907 2570 2890 3567 6638
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Appendix A.2. Energy Companies

Table A.16: Energy companies and descriptive statistics of their CDS spreads in basis points.
Company Nationality Mean 5% 25% Median 75% 95%
E.ON SE Germany 75.72 52.54 60.44 72.32 83.38 125.82
EnBW Germany 70.64 40.30 54.37 66.05 84.29 125.46
RWE AG Germany 78.55 43.31 61.76 76.44 92.10 130.61
Electricite de France SA France 77.94 39.50 55.48 68.00 95.63 147.05
Engie France 72.61 39.69 50.31 61.43 91.83 134.05
TOTAL SA France 55.84 30.39 41.28 50.27 66.42 93.44
Veolia Environnement SA France 114.24 54.90 74.21 99.34 148.43 204.97
BP PLC UK 80.50 35.17 49.99 68.08 85.76 146.29
National Grid PLC UK 80.61 43.93 54.62 70.93 85.59 192.80
Royal Dutch Shell PLC UK 56.43 31.48 43.47 56.91 63.19 92.75
Enel SpA Italy 179.19 74.23 88.50 140.29 241.42 411.02
Eni SpA Italy 91.00 40.80 55.26 79.10 114.86 190.79
Gas Natural SDG SA Spain 170.20 51.92 81.46 161.31 223.65 354.60
Iberdrola SA Spain 151.96 66.52 81.86 128.15 196.35 312.43
Repsol SA Spain 158.64 71.48 100.06 129.23 180.58 373.40
Fortum OYJ Northern Europe 64.42 46.24 53.04 59.57 69.71 103.80
Statoil ASA Northern Europe 59.24 30.76 41.31 55.61 71.78 102.81
Vattenfall AB Northern Europe 60.83 40.48 51.63 60.33 66.31 89.96
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Appendix B. Estimation Results

Appendix B.1. ARMA-GARCH models

Table B.17: Estimated ARMA-GARCH models of financial companies.
Company Nationality φ0 × 104 φ1 φm ω × 104 α β δ ν ψ
Allianz SE Germany -2.110 -0.051 0.326 1.218 0.222 0.733 -0.005 5.038 -0.044

(9.035) (0.032) (0.037) (0.215) (0.037) (0.028) (0.042)
Commerzbank AG Germany 3.695 0.087 0.168 0.451 0.075 0.870 0.060 5.212 -0.051

(10.520) (0.037) (0.045) (0.138) (0.024) (0.026) (0.021)
Deutsche Bank AG Germany 3.469 0.078 0.189 0.383 0.091 0.872 0.038 5.185 -0.023

(10.476) (0.037) (0.045) (0.093) (0.019) (0.017) (0.021)
Hannover Rueck SE Germany 1.413 -0.001 0.259 0.816 0.124 0.799 0.088 4.772 -0.043

(9.284) (0.032) (0.037) (0.176) (0.023) (0.026) (0.035)
Munich Re Germany -0.264 -0.120 0.339 1.030 0.123 0.821 0.025 4.418 -0.052

(9.061) (0.028) (0.035) (0.203) (0.023) (0.021) (0.028)
AXA SA France -0.171 0.000 0.275 0.985 0.100 0.796 0.062 4.558 -0.028

(8.175) (0.033) (0.034) (0.176) (0.020) (0.024) (0.028)
BNP Paribas SA France 3.760 0.019 0.219 0.479 0.069 0.882 0.055 5.634 -0.021

(10.587) (0.035) (0.045) (0.154) (0.020) (0.024) (0.020)
Credit Agricole SA France 1.947 0.044 0.233 0.500 0.064 0.877 0.064 5.193 -0.038

(9.940) (0.037) (0.044) (0.159) (0.019) (0.025) (0.020)
Societe Generale SA France 4.164 0.023 0.248 0.592 0.067 0.858 0.085 5.686 -0.034

(9.905) (0.036) (0.044) (0.200) (0.019) (0.030) (0.023)
Aviva PLC UK 0.753 -0.052 0.291 0.654 0.129 0.818 0.022 4.904 -0.022

(7.897) (0.032) (0.032) (0.134) (0.023) (0.022) (0.027)
Barclays Bank PLC UK 1.018 0.033 0.217 0.581 0.116 0.841 0.025 5.473 0.001

(10.116) (0.038) (0.047) (0.132) (0.022) (0.020) (0.025)
HSBC Bank PLC UK 2.376 -0.081 0.301 0.613 0.106 0.834 0.050 4.985 -0.029

(8.467) (0.031) (0.034) (0.142) (0.020) (0.023) (0.027)
Lloyds Bank PLC UK 2.520 -0.059 0.318 0.475 0.113 0.838 0.046 5.787 0.017

(8.760) (0.033) (0.038) (0.111) (0.022) (0.022) (0.026)
The Royal Bank of Scotland PLC UK 0.719 -0.005 0.262 0.496 0.145 0.817 0.034 5.052 0.001

(9.799) (0.034) (0.042) (0.105) (0.026) (0.021) (0.028)
Assicurazioni Generali SpA Italy 2.816 0.015 0.295 0.793 0.139 0.810 0.033 4.505 -0.055

(9.388) (0.036) (0.041) (0.159) (0.026) (0.021) (0.030)
Intesa Sanpaolo SpA Italy 4.367 0.146 0.130 0.968 0.095 0.840 0.034 5.023 -0.033

(12.099) (0.038) (0.051) (0.282) (0.022) (0.034) (0.024)
Mediobanca SpA Italy 5.726 -0.251 0.329 0.318 0.114 0.847 0.035 3.696 -0.037

(6.539) (0.024) (0.023) (0.066) (0.018) (0.017) (0.023)
UniCredit SpA Italy 4.587 0.031 0.244 0.926 0.137 0.807 0.024 5.265 -0.017

(10.550) (0.038) (0.049) (0.197) (0.023) (0.025) (0.026)
Banco Bilbao Vizcaya Argentaria SA Spain 4.912 0.149 0.117 0.639 0.109 0.843 0.032 6.298 -0.016

(11.694) (0.037) (0.048) (0.159) (0.021) (0.023) (0.022)
Banco Santander SA Spain 4.641 0.113 0.116 0.692 0.112 0.838 0.033 6.485 -0.007

(11.548) (0.039) (0.052) (0.164) (0.020) (0.020) (0.023)
Credit Suisse Group AG Switzerland 1.804 -0.056 0.248 0.467 0.197 0.790 0.001 4.269 -0.018

(8.575) (0.031) (0.035) (0.087) (0.029) (0.020) (0.031)
Swiss Reinsurance Co Ltd Switzerland -2.119 -0.025 0.248 1.169 0.117 0.774 0.069 4.333 -0.020

(8.247) (0.033) (0.034) (0.234) (0.025) (0.033) (0.032)
UBS AG Switzerland 0.242 -0.054 0.293 0.569 0.075 0.846 0.088 4.763 -0.013

(8.640) (0.033) (0.037) (0.124) (0.020) (0.023) (0.024)
Zurich Insurance Co Ltd Switzerland -0.972 -0.018 0.271 1.207 0.103 0.800 0.027 4.834 -0.022

(8.308) (0.034) (0.036) (0.269) (0.025) (0.034) (0.029)
Aegon NV Netherlands 1.546 0.156 0.094 0.581 0.123 0.808 0.052 5.053 -0.011

(9.267) (0.032) (0.032) (0.112) (0.024) (0.022) (0.027)
Rabobank Netherlands 3.356 -0.136 0.327 0.496 0.098 0.841 0.038 4.980 -0.047

(6.848) (0.028) (0.026) (0.117) (0.022) (0.026) (0.024)
ING Bank NV Netherlands 1.080 -0.105 0.350 0.434 0.088 0.867 0.032 4.532 -0.031

(7.681) (0.030) (0.031) (0.108) (0.019) (0.022) (0.020)
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Table B.18: Estimated ARMA-GARCH models of energy companies.

Company Nationality φ0 × 104 φ1 φ2 φ3 φm ω × 104 α β δ ν ψ
E.ON.SE Germany 3.130 -0.059 -0.047 -0.042 0.320 0.236 0.134 0.825 0.043 4.559 -0.086

(5.817) (0.035) (0.024) (0.023) (0.040) (0.048) (0.022) (0.019) (0.025)
EnBW Germany 1.863 -0.111 -0.034 -0.121 0.337 0.010 0.051 0.922 0.008 3.277 -0.026

(5.616) (0.029) (0.024) (0.022) (0.036) (0.003) (0.000) (0.000) (0.000)
RWE AG Germany 6.385 -0.016 0.006 -0.087 0.277 0.334 0.113 0.816 0.090 4.156 -0.046

(6.499) (0.034) (0.023) (0.022) (0.043) (0.066) (0.021) (0.021) (0.027)
Electricite de France SA France 2.778 -0.208 -0.056 -0.033 0.457 0.486 0.099 0.808 0.104 4.056 -0.048

(5.855) (0.030) (0.026) (0.023) (0.039) (0.083) (0.022) (0.023) (0.028)
Engie France 0.413 -0.164 0.027 -0.018 0.385 0.521 0.114 0.796 0.075 3.900 -0.035

(6.106) (0.031) (0.025) (0.022) (0.038) (0.078) (0.021) (0.022) (0.027)
TOTAL SA France 3.274 -0.162 -0.024 -0.047 0.377 0.249 0.133 0.848 0.035 3.379 -0.048

(5.696) (0.028) (0.025) (0.023) (0.034) (0.053) (0.026) (0.015) (0.028)
Veolia Environnement SA France -0.782 -0.069 0.040 -0.041 0.329 0.434 0.115 0.805 0.094 4.236 -0.041

(6.876) (0.033) (0.024) (0.022) (0.043) (0.091) (0.023) (0.027) (0.032)
BP PLC UK 6.258 0.074 -0.030 -0.003 0.235 0.364 0.139 0.814 0.045 4.065 -0.078

(8.799) (0.027) (0.022) (0.022) (0.041) (0.079) (0.028) (0.026) (0.028)
National Grid PLC UK -1.333 -0.147 -0.037 -0.062 0.360 0.127 0.128 0.831 0.075 4.528 0.010

(4.916) (0.033) (0.025) (0.023) (0.034) (0.044) (0.036) (0.013) (0.029)
Royal Dutch Shell PLC UK 5.411 -0.036 0.007 0.022 0.153 0.010 0.047 0.937 -0.010 2.312 -0.044

(6.818) (0.024) (0.023) (0.022) (0.029) (0.003) (0.000) (0.000) (0.000)
Enel SpA Italy 1.066 0.230 -0.023 -0.050 -0.030 0.840 0.103 0.796 0.111 4.459 -0.036

(10.646) (0.038) (0.023) (0.022) (0.062) (0.151) (0.020) (0.022) (0.027)
Eni SpA Italy 2.505 -0.231 -0.075 -0.067 0.497 0.571 0.131 0.793 0.085 3.555 -0.032

(5.401) (0.030) (0.026) (0.023) (0.038) (0.100) (0.023) (0.022) (0.030)
Gas Natural SDG SA Spain 3.902 0.144 -0.027 -0.034 0.114 1.341 0.102 0.796 0.050 3.755 -0.039

(10.337) (0.036) (0.023) (0.022) (0.061) (0.236) (0.021) (0.028) (0.024)
Iberdrola SA Spain 1.481 0.220 -0.028 -0.078 -0.018 0.655 0.118 0.818 0.048 4.889 -0.045

(9.826) (0.041) (0.023) (0.022) (0.065) (0.137) (0.022) (0.023) (0.025)
Repsol SA Spain 3.990 0.048 0.055 -0.029 0.204 0.878 0.183 0.729 0.106 4.361 -0.055

(9.617) (0.035) (0.023) (0.022) (0.055) (0.185) (0.031) (0.030) (0.037)
Fortum OYJ Northern Europe 1.757 -0.082 -0.019 -0.020 0.300 0.271 0.214 0.764 0.042 3.861 -0.028

(5.934) (0.032) (0.024) (0.023) (0.037) (0.046) (0.030) (0.019) (0.036)
Statoil ASA Northern Europe 2.330 -0.466 -0.232 -0.100 0.456 0.320 0.200 0.751 0.060 4.309 -0.071

(4.004) (0.025) (0.026) (0.023) (0.026) (0.070) (0.034) (0.031) (0.037)
Vattenfall AB Northern Europe 2.212 -0.131 -0.060 -0.093 0.342 0.341 0.161 0.736 0.203 3.831 -0.041

(5.146) (0.031) (0.024) (0.022) (0.035) (0.060) (0.024) (0.022) (0.038)
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Appendix B.2. Estimation results - Heterogeneous dependence model

Table B.19: Estimated λ parameters from heterogeneous dependence model for financial com-
panies.

Company Nationality Mean 5% 25% Median 75% 95%
Allianz SE Germany 1.60 1.19 1.46 1.61 1.75 1.96
Commerzbank AG Germany 1.71 1.34 1.54 1.68 1.85 2.15
Deutsche Bank AG Germany 1.65 1.29 1.52 1.66 1.78 2.01
Hannover Rueck SE Germany 1.38 1.02 1.20 1.37 1.54 1.79
Munich Re Germany 1.40 1.01 1.24 1.40 1.54 1.85
AXA SA France 1.61 1.16 1.42 1.61 1.79 2.07
BNP Paribas SA France 1.79 1.42 1.61 1.77 1.94 2.18
Credit Agricole SA France 1.80 1.39 1.63 1.80 1.96 2.22
Societe Generale SA France 1.76 1.38 1.59 1.74 1.91 2.22
Aviva PLC UK 1.61 1.22 1.44 1.61 1.77 2.02
Barclays Bank PLC UK 1.73 1.32 1.58 1.72 1.88 2.15
HSBC Bank PLC UK 1.39 1.04 1.25 1.39 1.53 1.75
Lloyds Bank PLC UK 1.63 1.24 1.50 1.63 1.78 2.01
The Royal Bank of Scotland PLC UK 1.67 1.25 1.53 1.68 1.82 2.05
Assicurazioni Generali SpA Italy 1.68 1.27 1.50 1.67 1.85 2.14
Intesa Sanpaolo SpA Italy 1.85 1.40 1.60 1.79 2.03 2.50
Mediobanca SpA Italy 0.72 0.56 0.63 0.69 0.78 0.96
UniCredit SpA Italy 1.88 1.43 1.63 1.82 2.07 2.50
Banco Bilbao Vizcaya Argentaria.SA Spain 1.76 1.39 1.59 1.75 1.92 2.14
Banco Santander SA Spain 1.77 1.38 1.62 1.76 1.93 2.16
Credit Suisse Group AG Switzerland 1.42 1.10 1.29 1.42 1.56 1.72
Swiss Reinsurance Co Ltd Switzerland 1.57 1.13 1.42 1.58 1.72 1.96
UBS AG Switzerland 1.54 1.14 1.39 1.56 1.70 1.88
Zurich Insurance Co Ltd Switzerland 1.59 1.14 1.43 1.62 1.75 1.99
Aegon NV Netherlands 1.64 1.22 1.43 1.62 1.85 2.10
Rabobank Netherlands 1.21 0.94 1.11 1.20 1.31 1.49
ING Bank NV Netherlands 1.31 1.03 1.20 1.31 1.42 1.58
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Table B.20: Estimated λ parameters from heterogeneous dependence model for energy com-
panies.

Company Nationality Mean 5% 25% Median 75% 95%
E.ON SE Germany 1.37 0.97 1.18 1.35 1.53 1.85
EnBW Energie Baden Wuerttemberg AG Germany 1.01 0.75 0.89 1.00 1.13 1.33
RWE AG Germany 1.22 0.91 1.07 1.21 1.36 1.55
Electricite de France.SA France 1.29 0.92 1.11 1.28 1.44 1.69
Engie France 1.31 0.97 1.14 1.28 1.45 1.73
TOTAL SA France 0.83 0.64 0.74 0.83 0.92 1.04
Veolia Environnement SA France 1.37 0.98 1.18 1.35 1.53 1.82
BP PLC UK 0.83 0.63 0.73 0.82 0.92 1.06
National Grid PLC UK 1.30 0.97 1.12 1.27 1.44 1.71
Royal Dutch Shell PLC UK 0.39 0.31 0.35 0.39 0.42 0.47
Enel SpA Italy 1.47 1.06 1.27 1.44 1.65 1.97
Eni SpA Italy 1.07 0.80 0.94 1.06 1.19 1.42
Gas Natural SDG SA Spain 1.40 0.99 1.19 1.36 1.57 1.91
Iberdrola SA Spain 1.52 1.08 1.29 1.49 1.71 2.05
Repsol SA Spain 1.34 0.98 1.17 1.32 1.50 1.77
Fortum OYJ Northern Europe 1.20 0.88 1.06 1.19 1.33 1.56
Statoil ASA Northern Europe 0.64 0.49 0.57 0.64 0.70 0.78
Vattenfall AB Northern Europe 1.17 0.87 1.03 1.15 1.29 1.52

Table B.21: Estimated EPD for every financial company from heterogeneous dependence
model.

α = 0.95 α = 0.99
Company Nationality Mean 25% Median 75% Mean 25% Median 75%
Allianz SE Germany 0.284 0.250 0.289 0.310 0.159 0.111 0.148 0.200
Commerzbank AG Germany 0.295 0.274 0.296 0.319 0.172 0.119 0.163 0.215
Deutsche Bank AG Germany 0.285 0.256 0.281 0.314 0.169 0.126 0.156 0.207
Hannover Rueck SE Germany 0.274 0.246 0.276 0.302 0.163 0.111 0.148 0.200
Munich Re Germany 0.273 0.247 0.277 0.301 0.154 0.111 0.141 0.193
AXA SA France 0.290 0.262 0.293 0.314 0.159 0.111 0.148 0.200
BNP Paribas SA France 0.304 0.277 0.305 0.329 0.171 0.133 0.156 0.207
Credit Agricole SA France 0.305 0.279 0.310 0.329 0.174 0.133 0.170 0.207
Societe Generale SA France 0.302 0.279 0.298 0.329 0.175 0.133 0.170 0.215
Aviva PLC UK 0.295 0.264 0.295 0.321 0.162 0.111 0.156 0.200
Barclays Bank PLC UK 0.299 0.265 0.305 0.329 0.173 0.133 0.170 0.207
HSBC Bank PLC UK 0.281 0.250 0.277 0.310 0.161 0.119 0.156 0.200
Lloyds Bank PLC UK 0.296 0.267 0.295 0.324 0.159 0.119 0.148 0.193
The Royal Bank of Scotland PLC UK 0.295 0.270 0.292 0.320 0.168 0.126 0.163 0.207
Assicurazioni Generali SpA Italy 0.293 0.262 0.299 0.321 0.165 0.126 0.163 0.200
Intesa Sanpaolo SpA Italy 0.309 0.284 0.302 0.338 0.180 0.133 0.170 0.215
Mediobanca SpA Italy 0.196 0.173 0.197 0.215 0.108 0.067 0.096 0.141
UniCredit SpA Italy 0.310 0.279 0.304 0.336 0.185 0.148 0.178 0.237
Banco Bilbao Vizcaya Argentaria SA Spain 0.304 0.277 0.304 0.327 0.174 0.133 0.163 0.215
Banco Santander SA Spain 0.302 0.273 0.301 0.332 0.176 0.126 0.178 0.215
Credit Suisse Group AG Switzerland 0.275 0.252 0.274 0.301 0.149 0.104 0.141 0.178
Swiss Reinsurance Co Ltd Switzerland 0.290 0.264 0.292 0.316 0.164 0.104 0.156 0.215
UBS AG Switzerland 0.284 0.255 0.283 0.316 0.161 0.111 0.141 0.207
Zurich Insurance Co Ltd Switzerland 0.293 0.268 0.290 0.324 0.166 0.119 0.156 0.200
Aegon NV Netherlands 0.293 0.267 0.293 0.323 0.165 0.126 0.156 0.207
Rabobank Netherlands 0.266 0.240 0.273 0.298 0.136 0.096 0.133 0.170
ING Bank NV Netherlands 0.273 0.241 0.273 0.298 0.153 0.111 0.141 0.185
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Table B.22: Estimated EPD for every energy company from heterogeneous dependence model.

α = 0.95 α = 0.99
Company Nationality Mean 25% Median 75% Mean 25% Median 75%
E.ON SE Germany 0.245 0.224 0.242 0.269 0.143 0.111 0.133 0.178
EnBW Energie Baden Wuerttemberg AG Germany 0.226 0.200 0.224 0.253 0.129 0.100 0.122 0.156
RWE AG Germany 0.235 0.213 0.236 0.258 0.137 0.100 0.133 0.167
Electricite de France SA France 0.241 0.220 0.236 0.264 0.138 0.100 0.133 0.167
Engie France 0.244 0.222 0.244 0.267 0.139 0.111 0.133 0.167
TOTAL SA France 0.208 0.187 0.204 0.229 0.115 0.089 0.100 0.144
Veolia Environnement SA France 0.245 0.220 0.247 0.273 0.149 0.111 0.144 0.178
BP PLC UK 0.206 0.182 0.204 0.229 0.116 0.089 0.111 0.144
National Grid PLC UK 0.245 0.220 0.242 0.271 0.134 0.100 0.133 0.167
Royal Dutch Shell PLC UK 0.154 0.136 0.153 0.169 0.090 0.067 0.078 0.100
Enel SpA Italy 0.250 0.227 0.249 0.271 0.144 0.111 0.133 0.178
Eni SpA Italy 0.228 0.209 0.229 0.247 0.129 0.089 0.122 0.156
Gas Natural SDG SA Spain 0.248 0.227 0.247 0.271 0.145 0.111 0.133 0.178
Iberdrola SA Spain 0.252 0.231 0.253 0.267 0.145 0.111 0.144 0.167
Repsol SA Spain 0.242 0.222 0.240 0.262 0.138 0.100 0.144 0.167
Fortum OYJ Northern Europe 0.232 0.204 0.231 0.258 0.130 0.100 0.122 0.156
Statoil ASA Northern Europe 0.188 0.164 0.187 0.207 0.101 0.067 0.089 0.122
Vattenfall AB Northern Europe 0.227 0.204 0.227 0.244 0.126 0.089 0.122 0.144

Appendix B.3. Estimation results - Block equidependence model

Table B.23: Estimated λ parameters from block equidependence model in financial sector

Nationality Mean 5% 25% Median 75% 95%
Germany 1.47 1.04 1.28 1.47 1.65 1.92
France 1.61 1.18 1.41 1.59 1.77 2.11
UK 1.54 1.12 1.36 1.52 1.70 2.01
Italy 1.42 1.06 1.23 1.40 1.59 1.87
Spain 1.59 1.29 1.45 1.59 1.72 1.89
Switzerland 1.45 1.05 1.29 1.44 1.59 1.84
Netherlands 1.37 1.05 1.24 1.36 1.49 1.69

Table B.24: Estimated λ parameters from block equidependence model in energy sector

Nationality Mean 5% 25% Median 75% 95%
Germany 1.05 0.77 0.90 1.03 1.18 1.43
France 1.11 0.75 0.93 1.08 1.25 1.56
UK 0.68 0.54 0.61 0.67 0.73 0.86
Italy 1.23 0.91 1.08 1.20 1.35 1.62
Spain 1.26 0.83 1.04 1.23 1.43 1.82
Northern Europe 0.98 0.72 0.85 0.95 1.08 1.32

36



 

IES Working Paper Series 

 

2017  
1. Petra Lunackova, Jan Prusa, Karel Janda: The Merit Order Effect of Czech Photovoltaic 

Plants  

2. Tomas Havranek, Zuzana Irsova, Tomas Vlach: Measuring the Income Elasticity of 
Water Demand: The Importance of Publication and Endogeneity Biases 

3. Diana Zigraiova, Petr Jakubik: Updating the Long Term Rate in Time: A Possible 
Approach 

4. Vaclav Korbel, Michal Paulus: Do Teaching Practices Impact Socio-emotional 
Skills? 

5. Karel Janda, Jan Malek, Lukas Recka: Influence of Renewable Energy Sources on 
Electricity Transmission Networks in Central Europe  

6. Karel Janda, Jan Malek, Lukas Recka: The Influence of Renewable Energy Sources 
on the Czech Electricity Transmission System  

7. Ondrej Filip, Karel Janda, Ladislav Kristoufek: Prices of Biofuels and Related 
Commodities: An Example of Combined Economics and Graph Theory Approach 

8. Adam Kucera: Interest Rates Modeling and Forecasting: Do Macroeconomic 
Factors Matter? 

9. Arshad Hayat: Foreign Direct Investments, Institutional Framework and Economic 
Growth 

10. Jana Votapkova, Pavlina Zilova: Health Status as a Determinant for Pre-Retirement 
Savings 

11. Matej Nevrla: Systemic Risk in the European Financial and Energy Sector: 
Dynamic Factor Copula Approach 

 

 

 

 

 

 

 

All papers can be downloaded at: http://ies.fsv.cuni.cz 
                                                           

 

    Univerzita Karlova v Praze, Fakulta sociálních věd 

Institut ekonomických studií [UK FSV – IES]  Praha 1, Opletalova 26 

E-mail : ies@fsv.cuni.cz             http://ies.fsv.cuni.cz 

http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ

