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Abstract: 

We examine co-movements between biofuels (ethanol and biodiesel) and a wide 

range of commodities and assets in the USA, Europe, and Brazil. The main 

contributions are twofold. First, we analyze a unique dataset of 32 commodities and 

relevant assets (between 2003 and 2015) which is unprecedented in the biofuels 

literature. And second, we combine the minimum spanning trees correlation 

filtration to detect the most important connections of the broad analyzed system 

with continuous wavelet analysis which allows for studying dynamic connections 

between biofuels and relevant commodities and assets and their frequency 

characteristics as well. We confirm that for the Brazilian and US ethanol, their 

respective feedstock commodities lead the prices of biofuels, and not vice versa. This 

dynamics remains qualitatively unchanged when controlling for the influence of 

crude oil prices. As opposed to the Brazilian and US ethanol, European biodiesel 

exhibits only moderate ties to its production factors. 
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1 Introduction

Biofuels have become a solid part of the climate change as well as the food and energy
security discussion leading to crucial policies and political decisions worldwide. The
current social and economic research has moved from the early engineering-based analyses
of transformation ratios of the biofuels feedstock food commodities and the greenhouse
gas emission comparisons (Rajagopal & Zilberman 2007) towards analyses of the place
of biofuels in the broad system of various commodities and assets with a special focus on
the interactions among them (Cha & Bae 2011; Janda et al. 2012; Zilberman et al. 2013;
Serra & Zilberman 2013; Kristoufek et al. 2014).

Among various studies of connections between biofuels (mostly ethanol and biodiesel)
and related commodities, the analyses usually suffer from an arbitrarily selected set of
impulse variables, which might lead to spurious results caused by the aforementioned
selection bias. However, as argued by Savaşsçin (2011), Serra & Zilberman (2013) and
Rezitis (2015), it is possible and likely that the interconnections between biofuels and
other-than-feedstock commodities as well as other economic and financial variables may
play an important role as well. Even though there are several studies investigating the
relationship between specific exchange rates and the system including oil and agricultural
commodities (Nazlioglu & Soytas 2011a;b; Rezitis 2015), the inclusion of stock indices,
bond rates and interbank interest rates is rare. Also the existing studies considering finan-
cial variables (exchange rates) did not explicitly include biofuels (ethanol or biodiesel)
into the analysed system. An important motivation behind utilizing a wide portfolio
of assets (regardless the theoretical existence or non-existence of links and connections
among them) is the empirically found growing correlation among all types of assets with
different fundamentals, which has become even more pronounced after the financial crises
of the past decade, mainly due to financialization of commodities (Tang & Xiong 2012;
Büyükşahin & Robe 2014; Avdulaj & Barunik 2015). Investigating the dynamics and
evolution of connections among biofuels and a wide range of other assets (both related
and unrelated to biofuels) is thus novel and it is one of our main contributions.

Even though such a broad approach to studying relationships between relevant factors
is very appealing, it brings at least two serious methodological complications. First and
likely foremost, the data availability is already an issue for studying even quite narrow
datasets. For a wide system of commodities, assets and other economic and financial
variables, the complication could become even more severe. And second, the final model
can easily become over-specified if too many variables are included. Here, we provide a
coherent study of a wide portfolio of biofuels-related assets as well as other important
variables suggested in the literature (Serra & Zilberman 2013; Rezitis 2015). To touch
the first of the above mentioned issues, we have collected a wide system of 32 biofuels-
related commodities and assets at weekly frequency between 2003 and 2015, which is
significantly large and more comprehensive set of variables as compared to the previous
biofuels literature. For the latter issue, we implement a two-step approach to the problem.
We initially identify the most relevant connections in the studied system and then we
focus only on these to uncover the specifics of the relationship between biofuels (namely
the US and Brazilian ethanol, and German biodiesel) and these relevant factors.

In the first step of our approach, we examine the whole portfolio of assets suggested
in the literature (Serra & Zilberman 2013) as potentially related to biofuels and we apply
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the method of minimal spanning trees (MST), introduced to the biofuels literature by
Kristoufek et al. (2012), to identify the most relevant connections and co-movements
between the factors during three major periods of the recent biofuels developments. We
separately consider the 2003-2008 period leading to the global food crisis, the 2008-2011
period between the 2008 and 2011 global food prices peaks, and finally the 2011-2015
aftermath of the global food price crises. Our MST analysis supports the intuitive result
that for each biofuel, the closest price co-movement exists between its major feedstock
and the particular biofuel. We also show that the financial factors suggested in the
literature on co-movement between oil and exchange rates (Reboredo 2012b; Reboredo
& Rivera-Castro 2013; Reboredo et al. 2014), oil and stock market (Bastianin & Manera
2015; Jammazi & Reboredo 2015; Reboredo & Rivera-Castro 2014), and oil, agricultural
commodities and exchange rate (Rezitis 2015) do not significantly interact with biofuels
prices.

While the MST approach easily allows for considering co-movements among essentially
unlimited number of possible factors, it does not provide information on the direction
of these co-movements. Therefore, as the second step of our analysis, we take the most
relevant pairs identified by MST and we conduct an in-depth investigation of their mutual
co-movements using an extended wavelet coherence framework introduced to the biofuels
literature by Vacha et al. (2013). This way, we are able to comment on the directionality
of the relationship as well as its scale effect and its evolution in time. The results bring
a substantial contribution to the important policy debate on impact of biofuels on food
security (Searchinger et al. 2015).

Our paper is an integral part of the wide literature on biofuels related price trans-
mission. The most comprehensive recent treatment and literature overview of this topic
is provided in the book by de Gorter et al. (2015) which is complemented by a series of
related papers (Drabik et al. 2015; 2014a;b; Rajcaniova et al. 2013; de Gorter et al. 2013)
focused mainly on biofuels policies and prices. While an introduction to the conceptual
issues of modeling the impact of biofuels on commodity food prices is outlined by Zilber-
man et al. (2013), the technical issues and extensions to other related prices, including
the environmental impacts, are covered by more recent papers by Jianxu et al. (2015),
Piroli et al. (2015), Bastianin et al. (2014a), Bastianin et al. (2014b) and Hochman et al.
(2014).

2 Methodology

2.1 Minimal Spanning Trees

The minimal spanning trees (MST) provide a metrics to measure the interconnections
within a group of commodities and assets. The construction of MST builds on a sample
pairwise Pearson correlation coefficient ρ̂ij between assets i and j. Following Mantegna
(1999), the correlation coefficients are transformed into a distance measure

dij =
√

2(1− ρ̂ij). (1)

Unlike ρ̂ij, the distance measure dij is a true distance measure fulfilling the axioms of
Euclidean metrics and it ranges between 0 and 2. Specifically, the corner cases of the cor-
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relation coefficient can be translated into the distance measure language in the following
manner:

dij =


0 perfect positive correlation;√

2 no correlation;

2 perfect negative correlation.

Each correlation coefficient ρ̂ij is transformed into a distance measure dij so that the
correlation matrix C can be transformed into a distance matrix D1:

C =


ρ̂11 ρ̂12 . . . ρ̂1n
ρ̂21 ρ̂22 . . . ρ̂2n
...

...
. . .

...
ρ̂n1 ρ̂n2 . . . ρ̂nn

 ⇒ D =


0 d12 . . . d1n
d21 0 . . . d2n
...

...
. . .

...
dn1 dn2 . . . 0

 (2)

Using the values of D, we find the most important connections within a group of com-
modities and assets according to the MST concept using the Kruskal’s algorithm (Kruskal
1956). The technical details of forming the minimal spanning tree with applications to
the biofuels network are covered in Kristoufek et al. (2012) and the interested reader is
thus referred there. In short, the tree of the most important connections of the system are
formed by systematically eliminating the weakest links (the longest distances) between
nodes (commodities and assets) as long as the tree is not torn between more trees, i.e. as
long as it is possible to connect any two nodes using the remaining links. The resulting
tree is best understood from its graphical representation, which is done in the Results
section in detail. Note that the elimination of the less relevant connections leads to a
decreased number of links and thus also a lowered risk of over-specification. Namely, the
number of links decreases from k(k − 1)/2 for the correlation matrix to k − 1 for the
final minimal spanning tree, where k is the number of variables. Such correlation matrix
filtration has proved its worth in various applications across disciplines (Song et al. 2012;
Gramatica et al. 2014; Musmeci et al. 2015).

A potential issue of the MST analysis lays in a possible link instability, i.e. whether
the detected relevant link is in fact relevant or is present due to statistical noise. This
is usually an issue for systems with overall weak connections. In order to assess stability
(importance) of individual links, we employ the bootstrapping technique proposed by
Tumminello et al. (2007). In the procedure, the time series are resampled with repetition
from the original series while the variable of resampling is time, i.e. we resample from the
time index and reconstruct the analyzed series according to the new time structure. This
way, the pairwise correlation core is not distorted. The MST procedure is then applied on
the bootstrapped series and the relevant links are recorded. This is repeated 1000 times.
Resulting bootstrap values are reported for each link in form of bij which is defined as
a ratio between the number of occurrences by the total of bootstrapped realizations so

1Note that the diagonal elements of the distance matrix are equal to zero corresponding to the unit
value of ρ̂ii.
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that bij ∈ [0; 1]2. As argued by Tumminello et al. (2007) and Tumminello et al. (2010),
the bootstrapping testing procedure is connected to the link strength but rather weakly
so that it in fact provides additional information about the connection between variables.
In the empirical application, we set b∗ji = 0.5 as a threshold for a stable link3. As stressed
by Tumminello et al. (2007), the procedure has no strict assumptions about multivariate
distribution of the analyzed processes and it implicitly takes into account the time series
length.

2.2 Wavelet Coherence

The most important connections in the analyzed system of commodities and assets iden-
tified through MST are further investigated in more detail using the wavelet coherence
framework, which is a significant generalization of the simple correlation analysis as it
allows for examination of the time evolution of the relationship between series as well
as its scale structure, i.e. whether the connection are important from different temporal
perspectives.

Wavelet analysis decomposes a time series into several components according to their
time and scale properties. Generally, a signal (time series) may be composed of individual
waves cycling at different speed, i.e. with different frequencies. Individual components of
the signal get separated in the frequency domain. A central feature of wavelet analysis
is that it captures both time and frequency characteristics, i.e. it decomposes the series
in both domains.

A wavelet ψu,s(t) is a real or complex-valued function given as

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
, (3)

with a scale parameter s and a location parameter u. Under certain conditions, in detail
discussed by Daubechies (2004), the original series {xt} can be fully reconstructed from
its wavelet transform Wx(u, s) defined as

Wx(u, s) =

∫ +∞

−∞
x(t)

1√
s
ψ∗
(
t− u
s

)
dt, (4)

where ∗ represents a complex conjugate operator preventing an information loss during
the transformation. The degree of similarity between the wavelet shape and {xt} is
measured by the integral above. Frequently, multivariate economic applications of wavelet
analysis use the Morlet wavelet which, as a complex wavelet, enables studying multivariate
relationships between series4. As an example of different wavelet used in energy economics
we may consider Haar a Trous wavelet (Jammazi & Reboredo 2015).

2Computations associated with the construction of MST are processed in R software. Visualizations
are conducted using the igraph package.

3Note that setting b∗ji = 0.5 is rather arbitrary but we follow Tumminello et al. (2007) and Tumminello
et al. (2010) where links with even bji > 0.4 are considered stable enough. There is no specific ideal
threshold that would be agreed on in the topical literature.

4The Morlet wavelet is specified as ψM (t) = 1
π1/4 e

iω0te−t
2/2 where ω0 denotes the central frequency

of the wavelet. We set ω0 = 6 as it provides an optimal balance between time and frequency components
(Aguiar-Conraria et al. 2008; Rua 2010; Vacha et al. 2013; Vacha & Barunik 2012).
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The wavelet framework can be generalized into a bivariate setting which is essential
for studying connections between various series. In the bivariate setting, the cross wavelet
spectrum is given by

Wxy(u, s) = Wx(u, s)W ∗
y (u, s), (5)

where Wxy(u, s) stands for the continuous wavelet transform of series {xt} and W ∗
y (u, s)

marks a complex conjugate of the continuous wavelet transform (Torrence & Compo
1998). As the cross wavelet spectrum is generally complex, the cross wavelet power is
given by |Wxy(u, s)|. It is usually understood to be a measure of local covariance between
two series at a given frequency. Nonetheless, we cannot easily assess the strength of
the detected co-movement as the cross-wavelet power is not bounded (in the same logic
as standard covariance). To overcome such limitation, the squared wavelet coherence is
introduced as

R2
xy(u, s) =

|S
(
1
s
Wxy(u, s)

)
|2

S
(
1
s
|Wx(u, s)|2

)
S
(
1
s
|Wy(u, s)|2

) , (6)

with S being a smoothing operator (Torrence & Webster 1998). By definition, the value
of the squared coherence varies between 0 and 1. Moreover, the squared wavelet coherence
corresponds to the usual squared correlation coefficient for specific time and frequency. As
the cross-wavelet spectrum translates into the squared coherence, the information about
the direction of the relationship is lost. However, this information can be recovered from
its phase difference specified as

ϕxy(u, s) = tan−1

(
I
[
S
(
1
s
Wxy(u, s)

)]
R
[
S
(
1
s
Wxy(u, s)

)]) , (7)

with R and I representing the real and imaginary part operators, respectively. Further-
more, we test statistical significance of the coherence using the Monte Carlo simulation
method. For technical details, please refer to Grinsted et al. (2004).

As pointed out by Kristoufek et al. (2016), wavelet coherence is limited by the same
technical constraint as usual correlation – it may suffer from the omitted variable bias
as it does not control for a possible influence of other variables. Thus, we may observe a
(seemingly) high coherence between two variables while the observed relationship can in
fact be caused by their mutual ties to another variable. To overcome this issue, we follow
Kristoufek et al. (2016) in using the partial wavelet squared coherence, an analogy of the
partial correlation, defined as

RP 2
y,x1,x2

=
|Ryx1 −Ryx2R

∗
yx1|2(

1−R2
yx2

)2 (
1−R2

x2x1

)2 . (8)

Partial wavelet coherence evaluates the relationship between {y} and {x1} while control-
ling for the effect of {x2}, see Mihanovic et al. (2009) for details.

In the same way as for the minimal spanning tree approach, an outcome of the wavelet
analysis is best understood from its graphical representation, which is discussed and
described in detail in the Results section5.

5The computational process of wavelet analysis was processed in MATLAB R2014b using packages
by Aslak Grinsted and E. K. W. Ng and T. W. Kwok.

6



3 Data

3.1 Dataset Description

In search for a system of commodities and assets that are related to biofuels, we follow
a comprehensive approach. Our dataset is gathered from various sources in order to
systematically include representative items of the following asset classes: biofuels (both
ethanol fuel and biodiesel), ethanol feedstock, biodiesel feedstock, fossil fuels (including
crude oil), food, stock indices, exchange rates, and interest rates. In contrast to previous
studies we intend to substantially increase the number of items considered in the analysis.
The final count is therefore a portfolio of 32 series ranging between 24 November 2003
and 19 January 2015, i.e. over 11 years, which is unprecedented in the biofuels literature.

Figure 1: Food Price Index
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Data Source: Food and Agricultural Organization of the United Nations

Over these 11 years, the commodity markets went through a number of structural
changes. Resulting price development exhibits several different patterns. In order to
account for various market environments, we split the whole period into three subperiods
for the initial minimal spanning tree analysis. As a benchmark for the splitting, we
use the Food Price Index6 published by the Food and Agriculture Organization of the
United Nations (FAO) providing a broader notion about the development of agricultural
commodity prices. Figure 1 shows the index development between 11/2003 and 03/2015.
One can observe an upward sloping trend culminating in the 2007-2008 world food crisis
with the index value peaking in June 2008. Subsequently, the agricultural prices fell
bottoming in September 2009 before catching up again for a new food commodity prices
rally. The index reached its new peak in February 2011 followed by a stable price decrease.

Having inspected historical behavior of the index, we assign the two aforementioned
index peaks to be the breaking points. We thus obtain three subperiods of unequal

6The FAO Food Price Index (measured in points) captures the monthly levels of international food
prices. It is a weighted average of five commodity group price indices. Weights are represented by average
export shares of each group during 2002-2004. (Detailed description together with the underlying data
can be found at www.fao.org/worldfoodsituation/foodpricesindex.

7



lengths as depicted in Figure 1. The subperiods are as follows:

• Period I: November 24, 2003 - June 30, 2008 with 241 weekly observations.

• Period II: July 7, 2008 - February 28, 2011 with 139 weekly observations.

• Period III: March 7, 2011 - January 19, 2015 with 203 weekly observations.

In the minimal spanning tree analysis, we study three subperiods to distinguish between
different development stages of the biofuel industry. Our dividing points exactly corre-
spond to the World Bank terminal points of the two global food crises in 2008 and 2011.
As summarized by Cuesta et al. (2014), the World Bank developed a methodological
approach to identify a situation leading to a potential food crisis.

We follow with a detailed description of the commodities and assets employed. The
items are grouped according to their specific type. To ensure a quick orientation in
resulting minimum spanning tree objects, individual groups are graphically differentiated
by colors.

Biofuels

Since our primary focus is on the first generation biofuels, their inclusion is clearly justi-
fied. Although the prices are not volatile enough on daily basis, studied biofuel markets
exhibit sufficient liquidity to be analyzed on weekly frequency. In the MST structure,
biofuels are colored in green. We consider biodiesel and the US as well as the Brazilian
ethanol.

As majority of the world’s ethanol is produced in the USA followed by Brazil, we
include prices of both the US ethanol and the Brazilian ethanol represented by the New
York Harbor Price and Centro de Estudos Avancados em Economica Aplicada (CEPEA)
Ethanol Index, respectively. The New York Harbor price is a spot price Free on Board
(FOB) quoted in the US cents per gallon. The data was obtained from Bloomberg
database under the ticker ETHNNYPR Index. It is a denaturated anhydrous fuel ethanol
designed for blending with gasoline as explained by Kristoufek et al. (2012). The Brazilian
ethanol price is reported by CEPEA for anhydrous fuel ethanol. The data was downloaded
from the CEPEA website (cepea.esalq.usp.br).

As opposed to ethanol which leads the biofuels production in the USA and Brazil,
biodiesel is primarily produced in Europe. Biodiesel stands for the most important biofuel
in the European Union accounting for about 80% of its biofuel used in transportation.
Therefore, we searched for suitable data which would represent the price of European
biodiesel. At this point, we had to cope with a severe data unavailability. The variety
of suitable European biodiesel tickers available from the standard Bloomberg terminal is
very limited and many of the time series are too short to be meaningfully employed. We
finally solved the issue by including the data from two different sources. Spot price of the
German consumer biodiesel (sourced from the Bloomberg terminal as BIOCEUGE ATPU
FOL Index) is used for Periods I and II. Period III is then covered by the Dutch biodiesel
data gathered and provided by Reuters. Specifically, we employ a price series labeled as
FAME 0 FOB ARA Spot. The label corresponds to FOB spot price of Fatty Acid Methyl
Ester traded OTC in harbors of Amsterdam, Rotterdam, and Antwerp. Being quoted in
USD per metric ton, this type of biodiesel conforms to EN 14214 norm set at 0°C with a
maximum water content of 350 ppm.
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Ethanol Feedstock

Ethanol is produced from crops that are rich in sugars. Most of the world’s ethanol
is obtained from corn (in the USA), followed by sugarcane (in Brazil). Other frequent
ethanol feedstock include wheat and sugar beets. Still other agricultural commodities
may be technically used to produce ethanol, for example cassava, potatoes, cotton or
sorghum. In case of the US, we consider the following American commodities: corn,
wheat, sugarcane, and sugar beets as they account for a vast majority of the American
ethanol production. The data represents USD prices and come from Bloomberg. For
Brazil, we include the price of Brazilian sugar as a proxy for local sugarcane price. The
data is provided by CEPEA. In the MST structure, the ethanol feedstock is represented
by red color.

Biodiesel Feedstock

As mentioned above, biodiesel represents the primary European biofuel. The EU is
the world’s biggest producer of biodiesel. Nonetheless, the global volume of produced
biodiesel is substantially smaller than the world’s ethanol production. Technically, biodiesel
may be produced from a variety of vegetable oils and biolipids. However, rapeseed and
soybean oils are the most frequent feedstock commodities. In addition to rapeseed and
soybean oils, we also include sunflower and palm oil in the dataset. Due to data unavail-
ability, sunflower seeds (Bloomberg ticker SU1) are used instead of sunflower oil. The
data was obtained from Bloomberg. In MST, biodiesel feedstock is visualized in pink
color.

Fossil Fuels

Biofuels represent an alternative to traditional fossil fuels as their substitutes. Our dataset
thus contains crude oil price as it is not only the main input into the other fuels’ produc-
tion but it also stands for a very actively traded commodity. As our focus is on ethanol
and biodiesel, we include such fossil fuels that compete with our biofuels from a local
perspective. Thus, German diesel and German gasoline are considered because of their
competitive relation to the European biodiesel. Similarly, we include US gasoline and
US diesel as well as Brazilian gasoline and Brazilian diesel to serve as a counter party
for the US and Brazilian ethanol, respectively. The price of (Brent) crude oil comes
from Bloomberg. Retail prices of both US/German gasoline and US/German diesel were
obtained from the website of the US Energy Information Administration (EIA). The
prices are quoted in USD per gallon excluding taxes. For the Brazilian fuel prices, we
referred to the National Agency of Petroleum, Natural Gas and Biofuels – Agencia Na-
cional do Petroleo, Gas Natural e Biocombustiveis – ANP (www.anp.gov.br). We employ
the weekly weighted average consumer prices for gasoline and diesel which we previously
converted to US dollar prices per gallon. In the MST structure, fossil fuels are shown in
gray color.

Food

In addition to agricultural commodities that are used as biofuel feedstock both in Amer-
icas and in Europe, we cover selected purely food commodities as well. Our dataset
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contains coffee, cocoa, rice, and oranges. These commodities cannot be used to pro-
duce biofuels, however all of them are frequently traded agricultural products that com-
pete with biofuel feedstock over the cultivated land. Food commodity prices come from
Bloomberg and in the MST analysis, these are visualized in purple.

A comprehensive overview of non-energy commodities by Savaşsçin (2011) serves as a
good inspiration when searching for possible other factors which may influence the dynam-
ics of biofuels prices. As proposed by Serra & Zilberman (2013), an analysis investigating
potential price links between biofuels and other commodities should not omit external
factors that might affect price links within the food–energy system. These factors include
price development of stocks or futures, policy regulations, and macroeconomic conditions,
e.g. exchange rates or interest rates. Similarly, Kristoufek et al. (2012) recommend to
extend the MST taxonomy analysis not only in terms of goods or commodities but also
by inclusion of assets such as stocks, exchange rates or interest rates. These recommen-
dations have motivated our decision to increase the complexity of our price system by
the following three groups.

Stock Indices

A national stock index may serve as a good proxy of GDP reflecting the atmosphere in a
particular market at a given point in time. The choice of stock indices is suitable because
usual GDP data is not available at a weekly frequency. We cover the major indices that
geographically correspond to the markets of our interest. Namely, we include Dow Jones
Industrial Average and S&P 500 to represent the US stock market, Financial Times
Stock Exchange 100 Index (FTSE 100) and Deutscher Aktienindex (DAX) to account
for the British and German stock markets, respectively. Moreover, due to our interest
in Brazilian ethanol, we also include the Brazilian Bolsa de Valores do Estado de Sao
Paulo (Bovespa) index. Market data for all the indices was obtained from the Bloomberg
platform. The group of stock indices is differenced by orange color in the MST analysis.

Interest Rates

From a general perspective, interest rates reflect the nature of macroeconomic conditions.
In our case though, there arises an issue with data frequency since a lot of key interest
rates are not set on a weekly basis. However, we choose two interest rates that are set
daily. The US Federal funds rate represents the base interest rate of the US Federal
Reserve. Fed funds is the interest rate a bank uses for the overnight lending to another
bank and it is set on an open market. The data was downloaded from the Fed’s website.
We consider federal funds rate available under www.federalreserve.gov.

The London Interbank Offered Rate (LIBOR) – former BBA LIBOR – is now quoted
daily by the Intercontinental Exchange. It serves as a global benchmark for short term
interest rates. Out of the variety of currencies and borrowing periods we take 3 months
USD LIBOR as it is supposed to be the most liquid one. The data was obtained from
the ECONSTATS’s website (www.econstats.com). Interest rates are visualized in blue.
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Figure 2: Selected Logarithmic Prices
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Exchange Rates

Our analysis focuses on three geographical markets where a majority of the world’s bio-
fuels are produced – the USA, the EU, and Brazil. For this reason, we consider the
USD/EUR and USD/BRL exchange rates. As stressed by Algieri (2014), international
food (as well as other commodity) prices are denominated in the US dollars. However,
since consumers pay for commodities in their local currency, changes in the USD exchange
rate affect supply and demand which translates into price changes. We may observe that
a strengthening USD means falling commodity prices. Historical data on USD/EUR was
gathered from the European Central Bank (sdw.ecb.europa.eu). The USD/BRL rate was
obtained from the US Federal Reserve (www.federalreserve.gov). In the MST charts, the
exchange rates are depicted in yellow color.

3.2 Development of Prices

For the sake of simplicity, the term price is used also in a natural reference to stock
index values, interest rates or exchange rates throughout this paper. Figure 2 presents
the development of the studied weekly logarithmic USD prices. In the price chart (a),
we observe that both the US and Brazilian ethanols follow a similar path. To ensure
legibility of the figure, crude oil price is plotted together with biofuels instead of fossil
fuels. All fossil fuels in (b) exhibit a strong co-movement. However, both Brazilian fuels
still stand a bit aside showing a relatively milder price development during the recession.
Ethanol feedstock prices are plotted in two separate graphs. In (c), corn exhibits a very
strong co-movement with wheat. Similarly, there is a natural similarity between price
movements of sugar beets and sugarcane in (d). Vegetable oils which are feedstock for
biodiesel all follow a similar path at different price levels (e). The development of stock
indices is captured in chart (f).

For the purpose of our analysis, we convert our price series Pt into logarithmic returns
rt defined as

rt = log(Pt)− log(Pt−1) = log

(
Pt

Pt−1

)
. (9)

The use of logarithmic returns is suitable due to their symmetry as discussed by Hudson
& Gregoriou (2010). We also benefit from an earlier analysis by Kristoufek et al. (2012)
who apply the same transformation. Thus, we ensure comparability of results. Moreover,
the use of logarithmic returns instead of simple prices is beneficial for a technical reason.
As will be further explained bellow, when transforming prices into returns, we technically
obtain first differences. This fact turns out to be crucial for the discussion of time series
stationarity.

Our analysis stands on a construction of MST using a distance metric. Strictly speak-
ing, our distance metric dij is a transformed correlation coefficient. As we compute corre-
lations, stationarity plays a vital role. Thus, we need to check for stationarity of our time
series. For this purpose, we will employ the Augmented Dickey-Fuller (ADF) test (Dickey
& Fuller 1979) and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski
et al. 1992). Both stationarity tests performed on the series of logarithmic returns (582
observations) yield straight and satisfactory results. All analyzed series turn out to be
stationary under both ADF and KPSS tests. Non-stationarity is strongly rejected without
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any exception. Tests’ results can be inspected in Table 1.

4 Results

4.1 Minimal Spanning Trees

This section builds and visualizes an interconnected system of biofuel-related commodities
and assets. To our knowledge, we are the first to construct a similarly complex system
of commodities and assets that are associated with the global production of biofuels.
The inclusion of purely food commodities was inspired by a recommendation of Serra
& Zilberman (2013). We also took an advice from Kristoufek et al. (2012) who had
proposed considering relevant financial series such as exchange rates, interest rates or
stocks indices.

4.1.1 Period I, 2003 – 2008

In order to explain a practical use of the MST methodology, we start with a description
of how a particular MST comes to existence. For each period, we employ logarithmic
returns on weekly frequency.

When constructing a minimal spanning tree, we are interested in visualizing the most
important connections among the vertices. The importance of an edge is determined
by the strength of correlation between the two given vertices. Simple correlation is
transformed into the distance measure, dij – the stronger the correlation, the shorter the
edge. Actual values of realized distances dij are indicated by blue bold numbers attached
to the edges.

Apart from distances between the vertices, we also test the stability of the links using
the bootstrap method. We inspect how many times out of a thousand bootstrapped
realizations a particular connection appeared in the tree. A robust link being present
more than 500 times is marked by a double asterisk sign. On the contrary, single asterisk
designates a rather unstable link.

Exploring the weekly logarithmic returns, we found the shortest edge (dij = 0.251)
between the US stock indices. Hence, Dow Jones and S&P 500 create the first pair, a
nascent MST. The second shortest link (dij = 0.482) was identified between German
gasoline and German diesel. The third strongest correlation exists between the European
stock indices, FTSE 100 and DAX, (dij = 0.517). At this point, our MST consists of
three separate pairs: Dow Jones–S&P 500, GE gasoline–GE diesel, and FTSE 100–DAX.
The next shortest distance (dij = 0.639) is then found between DAX and S&P 500 which
are both already present in the MST. By matching these vertices, we create a quadruple
through connecting the two pairs. The fifth highest correlation exists between US gasoline
and US diesel, (dij = 0.688). We add a new separate pair since neither of these fuels has
yet been present in the MST. The connection between Brazilian gasoline and Brazilian
diesel (dij = 0.708) creates a separate fuel pair. The next shortest edge (dij = 0.744)
connects Bovespa to the S&P 500 on the already existing quadruple of the remaining
stock indices.

Our MST now consists of a quintuplet of stock indices and three separate (gasoline-
diesel) retail fuel pairs. Further steps add a separate sugarcane–sugar beets pair and then
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Table 1: Stationarity Tests – Log Returns

ADF p-value KPSS p-value

Biodiesel -8.2985 < 0.01 0.1045 > 0.1

US Ethanol -9.1553 < 0.01 0.0918 > 0.1

BR Ethanol -8.2474 < 0.01 0.0797 > 0.1

Crude Oil -5.6530 < 0.01 0.3120 > 0.1

Corn -6.5972 < 0.01 0.1209 > 0.1

Wheat -8.0847 < 0.01 0.1036 > 0.1

Sugarcane -7.4650 < 0.01 0.1691 > 0.1

Sugar Beets -7.6338 < 0.01 0.2776 > 0.1

Soybeans -6.7541 < 0.01 0.0845 > 0.1

Sunflower -7.5821 < 0.01 0.0586 > 0.1

Rapeseed -6.9994 < 0.01 0.0935 > 0.1

Palm Oil -6.7438 < 0.01 0.0682 > 0.1

US Gasoline -7.2226 < 0.01 0.1795 > 0.1

US Diesel -6.3976 < 0.01 0.2315 > 0.1

DE Gasoline -6.8158 < 0.01 0.1998 > 0.1

DE Diesel -6.3632 < 0.01 0.2932 > 0.1

BR Gasoline -7.0856 < 0.01 0.1641 > 0.1

BR Diesel -7.3788 < 0.01 0.2072 > 0.1

Coffee -7.5110 < 0.01 0.1472 > 0.1

Cocoa -9.0287 < 0.01 0.0636 > 0.1

Rice -7.3896 < 0.01 0.1202 > 0.1

Oranges -6.2106 < 0.01 0.2487 > 0.1

Dow Jones -7.8402 < 0.01 0.1297 > 0.1

S&P 500 -7.5160 < 0.01 0.1452 > 0.1

FTSE 100 -8.2013 < 0.01 0.0774 > 0.1

DAX -8.2896 < 0.01 0.0791 > 0.1

Bovespa -7.8316 < 0.01 0.2887 > 0.1

Fed Funds -7.0904 < 0.01 0.1874 > 0.1

Libor -5.3280 < 0.01 0.2855 > 0.1

USD/EUR -8.3592 < 0.01 0.1674 > 0.1

USD/BRL -6.8069 < 0.01 0.3493 > 0.1
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Figure 3: Minimal spanning tree, Period I
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connect USD/BRL exchange rate to the Bovespa index. Each time, before a potential
new edge is constructed, we need to make sure it will not create an undesirable loop in the
MST. Next steps form a fuel quadruple by linking the US and German gasolines (dij =
0.924), before establishing the first vegetable oil pair, rapeseed–palm oil (dij = 0.973).
Following this logic, we eventually obtain a complete MST as shown in Figure 3.

Inspecting Figure 3, we observe the visualized characteristics of our experimental
network. A core of the MST is formed by a compact group of the stock indices. It
follows from the interconnected nature of stock markets that these indices are strongly
correlated with stable mutual links. We see that not only stock indices but also a number
of other items gather according to their type. In broader terms, there seems to be a
group of agricultural commodities — a food branch — and a fuel branch of the MST
at the opposite sides of the network. A cluster of the vegetable oils together with the
ethanol feedstock commodities constitute the food part of the tree. On the other hand,
the fossil fuels and biofuels form the fuel branch. While no other biofuel is connected to its
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feedstock, Brazilian ethanol makes a notable exception. Its robust link to Brazilian sugar
is evident already during the first studied period. The US ethanol and even biodiesel
have stable links to their US fossil substitutes and crude oil.

As opposed to the exchange rates which bridge the stock market cluster with fuel
and food parts, interest rates do not seem to interact a lot. Brazilian retail fuels are not
integrated into the fuel branch, they stand at the edge of the network being only linked to
LIBOR. The isolated position of the Brazilian fossil fuels is implied by a specific setting
of the national fuel market in Brazil(Khanna et al. 2016). Due to a decisive influence of
Petrobras on local fuel prices, Brazilian fossil fuels do not necessarily follow the global
markets’ development7. As we will see during the whole studied period, they do not
usually integrate into the fossil fuel cluster. We should not forget about the four purely
food commodities which cannot be used to produce biofuels. These items do not form
any cluster and are only individually connected to different nodes of the network.

4.1.2 Period II, 2008 – 2011

Our first period covered the era of rising food prices and an increasing global significance
of biofuels preceding the first world food crisis covered by our sample. We now continue
investigating our network’s development in a changed market environment. After several
years of accelerating agricultural and energy prices, these slumped quickly during the
second half of 2008 hand in hand with the global economic crisis. After the bottom was
reached in 2009, both energy and agricultural prices started a new rally up to a new
peak in February 2011. During this period, we expect to see signs of an established
biofuel production not only in Brazil but also in the US and Europe. Figure 4 delivers
a minimal spanning tree for this period. Compared to the previous one, the US ethanol
moved to the food branch, connecting to corn. The US ethanol–corn link is relatively
short (dij = 0.930) and stable. It reflects an important connection between the main
US biofuel and its primary feedstock. In the similar manner, biodiesel gets closer to the
vegetable oils cluster and the Brazilian ethanol remains close to the Brazilian sugar and
the USD/BRL exchange rate.

4.1.3 Period III, 2011 – 2015

During the last studied period, the values of FAO Food Price Index (Figure 1) experienced
a gradual slowdown continuing until and including January 2015. Considered food and
energy prices went through a volatile season during which they approached considerably
lower values. At the same time, stock indices grew reaching new all-time highs.

Inspecting the minimal spanning tree in Figure 5, we may draw a clear line separat-
ing the fuel from the food branch with the stock indices just in between. Now the visual
difference between fossil fuels and agricultural commodities becomes obvious. Exception-
ally, both Brazilian fossil fuels get integrated into the fuel cluster. In accordance with
the previous findings, the biofuels stay attached to their respective feedstock clusters;
however, their mutual links are rather weak. There exist very stable interconnections be-
tween palm oil, rapeseed, and soybeans with biodiesel being attached to both sunflower

7Petroleo Brasileiro S.A is the Brazilian largest energy corporation with a multinational presence. A
share of up to 64% is directly or indirectly controlled by the government.

16



Figure 4: Minimal spanning tree, Period II
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and palm oil.

4.2 Wavelet Analysis

The minimal spanning tree analysis in the previous sections has shown that there is quite
noticeable dynamics of the evolution of the MST structure over time. Given the static
nature of each MST structure depending on the chosen time window for that particular
MST, there is a clear advantage in using continuous wavelet framework capturing the
co-movement among the prices of chosen commodities at each time point and at different
scales (frequencies) without a need to specify any particular time window or choosing
a particular fixed frequency. Having identified several important links between biofuels
and their feedstock, we approach these pair connections separately.

Standard correlation coefficient is static and is characteristic to the time dimension
only. Wavelet analysis basically adds the frequency dimension into the analysis and makes

17



Figure 5: MST, Period III
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it dynamic. Therefore, wavelet framework allows for exploring the correlation relationship
in both time and frequency domains. The output for each studied biofuel–feedstock pair
is presented in form of two charts. While the horizontal axes show time (in years), there
is also the scale (in days) on the vertical axes. Coherence is indicated by color according
to a spectrum shown at the right edge. Pale colored corner areas are not of reliable
interpretation. They result from artificially adding zeros to the beginning and to the
end of analyzed series compensating for wavelet lengths. A central bright colored area
delivers reliable results. Furthermore, the regions with statistically significant coherence
are bounded with a thick black curve.

In the left panel, we preset the squared wavelet coherence between biofuel and a given
feedstock commodity. Since there is no negative wavelet coherence, phase difference be-
tween the series is indicated by directed arrows. Simply put, the arrows show in what
direction the relationship is. Rightward pointing arrows mean that biofuel is positively
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correlated with that particular feedstock while leftward pointing arrows indicate a nega-
tive relationship. If the arrows point straight down, biofuel leads the price of feedstock
by π/2. On the contrary, the upward pointing arrows imply that price of biofuel is led
by feedstock.

In the right panel, we present the partial wavelet squared coherence. In the food–fuel
system, crude oil plays a role of an important price driver affecting both fuel and food
part of the commodity system. To some extent, food, fuel, and biofuel prices can all
depend on the crude oil price. Therefore, the wavelet coherence output (left panel) is
supplemented by the partial wavelet coherence charts (right panel) where crude oil is
controlled for. The increase of the price co-movement between oil and food commodities
with the onset of the global food crises is shown by Reboredo (2012a), Rajcaniova &
Pokrivcak (2011) and Pokrivcak & Rajcaniova (2011).

4.2.1 Brazilian Ethanol

In the context of global biofuel production, Brazil represents a unique scenario. The
Brazilian ethanol is produced from sugarcane. Intuitively, its price is supposed to be
related to the price of feedstock. As documented by our previous MST analyses, the
Brazilian ethanol price is directly linked to the price of Brazilian sugar. Moreover, their
connection seems to be relatively strong and stable, since it appeared in majority of the
constructed MSTs. Hence, we are especially keen on exploring Brazilian ethanol (BR
ethanol) correlation with local sugar (BR sugar) price in more detail.

The left panel of Figure 6 shows a strong relationship apparent for scales approx-
imately between 500 and 700 days, i.e. roughly between 1.5 and 2 years. Thus, we
observe a long term relationship between the BR ethanol and BR sugar that is remark-
ably stable in time. Apart from this main relationship, we identify only several minor
coherence islands associated with relatively quick price interactions in the short term.
These could easily be due to statistical noise. The phase arrows in the main significant
region point to the right and upwards indicating a positive correlation between the prices
of ethanol and sugar with sugar leading the price of ethanol.

The right panel of Figure 6 delivers the output of the partial wavelet coherence when
the influence of crude oil has been controlled for. Apparently, crude oil consumed only
a small portion of the overall correlation. The stable long-term relationship between the
Brazilian sugar and ethanol reported in the left panel is distracted for a short period
around 2008 after controlling for the crude oil influence. This time period overlaps with
historical heights of crude oil prices when a barrel of crude oil rocketed over $140 in
July 2008. This suggests that crude oil has a stronger effect on ethanol when the prices
are high. Such claim is well in hand with the results of Chang & Su (2010), Cha &
Bae (2011), Nazlioglu (2011), Timilsina et al. (2011) and Nazlioglu et al. (2013) who
detect different non-linear relationships between crude oil, biofuels, and their feedstocks,
specifically with respect to high crude oil prices. Our results do not only support the
findings of the previously mentioned studies but also describe the dynamics in more detail.
Specifically, only the long-term relationship is torn for the crude oil highs but there are
no emerging short-term correlations as a result of the crude oil spikes. The relationship
between the Brazilian ethanol and sugar thus remains remarkably stable in time, which
has been reported in the MST analysis as the connection between the Brazilian sugar
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Figure 6: Wavelet coherence: Brazilian ethanol versus feedstock

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

and ethanol having been found strong and reliable during all three analyzed periods.
For decades now, Brazil represents an example of an active biofuel economy. During

more than forty years history, Brazilian ethanol industry has gone through numerous
changes. Owing to its geographic and weather conditions, Brazil is well predisposed to
grow sugarcane, from which ethanol fuel is produced at lower costs than from corn. Since
its early days in the 1970s, the Brazilian biofuel industry has been primarily shaped by
governmental policies. On the local retail fuel market, the Brazilian sugarcane ethanol has
always competed with conventional gasoline whose regulated price has not always followed
the world price. A single feedstock biofuel industry depends on annual harvests and crop
yields. Unfavorable season may cause high sugarcane and ethanol prices resulting in
intensified needs for foreign biofuel imports. Due to a supply shortage, Brazil imported
about 1.5 billion liters of ethanol from the USA during 2011-2012.

As a part of national energy security, the Brazilian ethanol industry is expected to
grow further. In early 2015, Brazilian government announced a new blending mandate
increasing the ethanol share in gasoline from 25% to the new level of 27%. As of late
2014, Brazil was expected to generate as much as 26.9 billion liters of ethanol in 2015, a
5% increase from actual 2014 levels. Moreover, ethanol exports are projected to increase
by 200 million liters reaching 1.8 billion liters in 2015. At present, flex fuel cars constitute
some 55% of Brazilian fleet and the percentage is rising. In particular, more than 90% of
new cars sold in Brazil are flex fuel vehicles. An 80% fleet share is expected to be reached
by 2020 (Barros 2014).

4.2.2 US Ethanol

The biofuel–feedstock relationship of the US ethanol (Figure 7) gets a little more complex
compared to the Brazilian scenario. Here, in this section, we explore the connections
between the US ethanol and corn.

About 90% of the US ethanol is made from corn. In 2014, the US ethanol industry
consumed almost 127 megatons of corn accounting for 40% of the US corn production
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(Conca 2014). Compared to the Brazilian sugarcane industry, the US ethanol production
from corn is a more technically demanding process. Simply put, corn crops first need to
be converted to sugar before ethanol fuel gets produced. This implies higher production
costs for the US ethanol.

Our results (Figure 7) show that the relationship between the US ethanol and corn
consists of two strong dependencies of different kinds. We find significant coherence areas
associated with both short term and long term horizons. First, a long term relationship
approximately at the level of 500 days (almost 1.5 years) has been steadily present since
the period following the food crisis of 2008. Second, its rightwards pointing phase arrows
tell us that the US ethanol has been positively correlated with corn throughout the second
half of the studied time frame. Third, we learn that corn leads the price of ethanol since
the arrows are also pointing slightly upwards.

The other type of dependency is a collection of short term price interactions which are,
however, much stronger compared to the Brazilian case. These time-limited episodes are
associated with very high corn prices, e.g. the first food price crisis covered by our sample.
During those events, the phase difference between the series decreases. Altogether, we
find a stable long term relationship accompanied by several short term episodes associated
with very high corn prices especially between 2010 and 2013. This supports the findings of
the MST analysis which identified a strong and stable connection between the US ethanol
and corn mainly during the later two periods, i.e. after 2008. Throughout the last decade,
the relationship has always been positive with corn leading the price of ethanol. When the
influence of crude oil is controlled for, we apparently lose a part of correlation. Especially
the long term relationship between ethanol and corn gets somewhat reduced. However,
other qualitative results do not get affected.

Since 2005, the US has maintained a position of the world’s major ethanol-producing
county, ahead of Brazil which used to be the previous leading ethanol producer for
decades. In 2014, the US produced about 54 billion liters of ethanol. On the other
hand, the US also represents the world’s biggest consumer of oil. Based on the EIA
statistics, the 2014 US consumption totaled 517 and 189 billion liters of gasoline and
diesel, respectively. With recently expired tax credits and import tariffs, the biofuel in-
dustry has to face imports from Brazil, low crude oil prices and attempts to reduce the
blending mandate.

4.2.3 European Biodiesel

The minimal spanning tree analyses indicated that biodiesel exhibited a price behavior
different from both the US and Brazilian ethanol. It was poorly integrated into either
of the constructed MST networks. Now we separately analyze biodiesel’s connection to
rapeseed. Associated wavelet coherence output is presented in Figure 8.

Unlike both major ethanol producing countries, the European biofuel industry builds
on biodiesel. On energy basis, biodiesel represents approximately 80% of the total trans-
port biofuels market. It was the first EU biofuel employed in the road transport starting
from 1990s. At that time, biofuel’s rapid expansion was driven by increasing crude oil
prices and regulations such as the Blair House Agreement and resulting provisions on the
production of oilseeds under the EU Common Agricultural Policy. Biodiesel has enjoyed
generous tax incentives, mainly in Germany and France. The EU biofuels goals set out
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Figure 7: Wavelet coherence: US ethanol versus feedstock

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

in the Directive 2003/30/EC, the subsequent Renewables Directive 2009/28/EC and the
Fuel Quality Directive 2009/30/EC further pushed the use of biodiesel. Today, the EU
is the world’s largest producer of biodiesel. With 10.9 billion liters generated in its 266
refineries during 2014, the EU itself accounts for about 45% of the world’s biodiesel pro-
duction. The EU is also a primary consumer of biodiesel. In 2014, the EU consumption
totaled 12.3 billion liters including 1.7 billion liters of imports (Flach et al. 2014).

The fact that today’s EU biofuel market is dominated by biodiesel as opposed to
ethanol is not random and it can be attributed to several government policies which
shaped the European biofuel industry. As pointed out by Kristoufek et al. (2012), the
EU and US biofuel targets follow different settings. The US requirements are set in
volumes. In this sense, a liter of ethanol is considered the same as a liter of biodiesel. On
the other hand, the EU blending rules are set in energy units. According to Hofstrand
(2008), the amount of energy available from one liter of biodiesel equals to 1.54 liters
of ethanol8. Historically, the European biofuel scheme has been designed so as to prefer
biodiesel due to its considerably higher energy density.

In accordance with our previous MST findings, wavelet analysis does not yield much
of a reliable relationship between the European biodiesel and its feedstock. However,
when an occasional correlation appears, it is positive and biodiesel is being led by the
price of feedstock. In case of rapeseed, we suspect certain dependency with a very low
frequency (high scale). Unfortunately, this thin coherence island is mainly outside the
interpretable area. Besides, we detect a few short lasting episodes of positive correlation.
Specifically, we recognize a low frequency price interaction associated with the 2007–2008
food price crisis. Once controlled for the crude oil influence, effectively all the coherence
between biodiesel and rapeseed oil disappears.

Similar results of low correlation between prices of biodiesel and prices of its feed-
stock are also characteristic for other feedstock besides rapeseed which we covered in

8According to Hofstrand (2008), 1 liter of biodiesel contains 32.6 MJ compared to 21.1 MJ in 1 liter
of ethanol, energy considered in terms of net heating value.
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Figure 8: Wavelet coherence: Biodiesel versus feedstock

Wavelet squared coherence (left) and partial wavelet coherence (right)
Coherence color spectrum shown at the right edge. Thick black curve marks
significant regions. Phase differences are indicated by the directed arrows.

our exploratory analysis (these results are available upon request) and which we do not
report in this paper. There is no significant relationship between biodiesel and palm oil
that would persist for longer than a year. Our unreported results for other feedstock
commodities show that although we see several short lived positive price interactions,
they do not allow for any strong conclusions. Exceptionally, there seems to be a positive
stable relationship between biodiesel and sunflower oil. However, it appears to have been
caused by their mutual ties to crude oil.

Compared to the results obtained for the Brazilian and US ethanol, we argue that the
price of European biodiesel is very weakly connected with prices of individual feedstock
commodities. Its price is primarily determined by a mix of factors including fossil fuels
prices and the price behaviour of the whole oilseed cluster rather than only price of a
single dominant feedstock. In this respect, the European biodiesel market substantially
differs from the analyzed ethanol markets. The difference in the terms of close connection
of EU biodiesel with fossil fuels, as compared to Brazil and US ethanol close connection to
feedstock, may be explained by a key role played by government policies in the determina-
tion of biofuel prices. In the case of Brazil and US, the fossil fuel price is not determining
ethanol prices because the well defined mandates (particularly strong in Brazil with the
ethanol content of motor vehicle fuels being mandated as high as 27 percent recently)
tend to isolate the fossil fuel markets and ethanol markets from each other. This was not
the case in the EU where especially during the first period before the global food crisis
the biodiesel tax exceptions played important role. Following the economic mechanism
described in de Gorter et al. (2015); Rajcaniova et al. (2013), the continuing importance
of co-movement of EU biodiesel and fossil fuels prices is also supported by nonexistence
of EU-wide binding mandates as opposed to the situation in the US and Brazil.

4.3 Discussion

There are certain signs of a time limited positive correlation between biodiesel and its
feedstock. During these episodes, feedstock led the price of biodiesel. Compared to the
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results obtained for the Brazilian and US ethanol, we argue that the price of European
biodiesel is very weakly connected with prices of individual feedstock commodities. In
this respect, European biodiesel market substantially differs from the analyzed ethanol
markets.

The US and Brazilian biofuel industries are dominated by corn and sugarcane, re-
spectively. A single feedstock accounts for a vast majority of local biofuel production.
In case of biodiesel, rapeseed oil represents the main feedstock from which up to 58% of
European biodiesel is made. Rapeseed is followed by palm oil, which has become more
important in recent years, especially due to large price discounts as reported by Flach
et al. (2014). Nonetheless, during the analyzed period, no more than 2/3 of the EU
biodiesel production was fed by one crop type.

In Brazil, there is effectively no possibility to switch for another feedstock. In the
US, there exists a very limited possibility to switch from corn to wheat. However, this
process is not flexible, it requires time and additional investments to technology. In
contrast, the European biofuel production facilities can switch between several feedstock
types including rapeseed, palm, soybeans or sunflower oil. These vegetable oils have
similar consistency and can even be mixed with each other within the same production
facility. In contrast to the major ethanol markets, the EU biodiesel industry enjoys a
higher short term flexibility of production factors and better operates in the environment
of fluctuating feedstock prices.

In 2015, the EU biodiesel production is expected to remain flat at about 11 billion
liters. The EU domestic biodiesel consumption will likely continue in its slightly decreas-
ing trend intensified by lower crude oil prices. In the next years, the demand for biofuels
in the EU will be primarily shaped by mandates of individual member states. The most
recent development of the EU bioenergy policies brought important changes in April 2015.
The member states are still required to supply at least 10% of energy used in transport
from renewable sources by 2020 (RED 2009/28/EC). However, the new legislation limits
the share of energy coming from the first generation biofuels at a 7% level. In other
words, the biofuels generated from crops grown on agricultural land cannot exceed 7%
of energy used in transportation by 2020. Although a political compromise was reached,
this April 2015 decision has its loud critics. Nonetheless, this political choice restores
regulatory certainty and improves investors’ understanding of the EU biofuel industry
and its development until 2020.

Having analyzed the EU biofuel industry in the context of its main regulatory drivers,
we conclude that European biodiesel plays a different role than the US and Brazilian
ethanols do in their domestic markets. The difference has been demonstrated by the re-
sults of the MST and wavelet analyses. The European biodiesel industry does not depend
on a single feedstock. In the same vein, our results show that biodiesel has been very
weakly tied to its production factors. This result contrasts with strong biofuel–feedstock
price co-movements we have found in both the US and Brazilian ethanol markets.

5 Conclusions

We have delivered an innovative research effort within the context of the biofuel eco-
nomics. Our analysis has focused on the world’s major biofuel markets – Brazil, the US,
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and the EU. Present study covers 83% of the global ethanol production and about 45% of
the biodiesel production. We have studied the relationships between ethanol, biodiesel,
associated agricultural commodities, crude oil, relevant fossil fuels, and a group of finan-
cial assets. For this purpose, we have compiled a unique dataset containing 32 weekly
price series. Compared to peer research attempts, our dataset is comprehensive and
covers the 2003–2015 time period.

We have combined two methods that are still new to the biofuels literature. First,
we have used the method of minimum spanning trees (MST) to classify and visualize
a system of potentially biofuel-related commodities and assets. Such a broad attempt
has not been undertaken in the literature before. Second, the identified biofuel–feedstock
price pairs have been followed up using the wavelet analysis. We thus present the first
attempt to combine the MST approach with the wavelet analysis within a single research
application. The MST and wavelet analyses present a very suitable complementary pair
of techniques. Given the technical possibility to include essentially an unlimited number
of time series into the analysis, MST is very suitable as a first step of analysis. The
wavelet approach used as the second step of analysis provides a more detailed description
of the co-movement for the chosen pair of commodities with an advantage of localization
of its time and scale characteristics.

In our MST structures, we have used several minor presentation innovations that were
employed for the first time in the biofuel context. First, vertices of MSTs have been color-
coded to allow for better legibility. Second, the length of constructed edges reflects their
weight. Finally, our non-rectangular MST arrangement allows for visualizing complicated
systems with a high number of items.

In accordance with our initial hypothesis, the resulting commodity systems get mean-
ingfully structured. The interconnected networks consist of fuel and food branches. Gen-
erally, the food part includes clusters of vegetable oils, sugars, and cereals, while retail
fuels and crude oil belong consistently to the fuel part of the system9. Our results show
several crucial patterns.

We have demonstrated an important phase shift between Brazilian and the US/EU
biofuel producing sectors. The Brazilian mature ethanol industry is characterized by a
stable link between ethanol and sugar since the beginning of the studied time frame. The
US ethanol market established a similar link between ethanol and corn with certain delay.
In the same vein, a rise of the European biodiesel industry becomes visible in the late
2000s. While both the Brazilian and US ethanols have developed stable links to their
primary feedstock commodities, biodiesel has reflected a different production logic. It has
not become particularly tied to either of the relevant feedstock crops. Biodiesel’s unstable
links confirmed it is not dependent on a single feedstock. On the contrary, biodiesel lively
interacted with several commodities.

The subsequent wavelet analysis has reported a strong long term relationship between
Brazilian ethanol and its feedstock. We have showed that the price of Brazilian ethanol
was positively correlated with local sugar price and their relationship has been stable in
time. Importantly, sugar led the price of ethanol throughout the period. The dynamics
remained qualitatively unchanged when the influence of crude oil has been controlled for.

9Fundamental connections emerge already for weekly frequency presented in this paper. In the
medium term (covered only in the exploratory part of our research and not presented in this paper)
the networks get more structured as individual links shorten, the connections become closer.
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We have found a similarly strong relationship between the US ethanol and its main
production factor – corn. Their price co-movement consists of two positive dependencies.
A long term stable relationship is accompanied by several coherence episodes at higher
frequencies. These short run events coincide with periods of very high corn prices. We
have found that corn led the price of ethanol across the frequencies. Moreover, the
ethanol–corn relationship has proved to be robust to removing the influence of crude oil.

Finally, we have showed that the behavior of biodiesel contrasts with both major
ethanol markets. In accordance with the previous MST taxonomy structures, we conclude
that biodiesel and ethanol have different positions in the food-fuel system. Over the course
of the last decade, we have seen a few short-lived price interactions between biodiesel and
the analyzed feedstock crops. However, major European biofuel has not exhibited any
strong co-movement with feedstock.

In summary, we have succeeded in confirming our initial hypotheses. First, we have
described an interconnected system of the biofuel-related commodities. Moreover, we
have commented on its evolution over the course of eleven-year period. Second, we
have documented a phase shift that initially occurred between the mature Brazilian and
belated US/European biofuel industries. Third, we have demonstrated a positive price co-
movement of ethanol and its respective production factors. We have further showed that
this relationship is stable in time with feedstock leading the price of ethanol. Finally, we
have explained that the price of biodiesel did not depend on a single feedstock commodity.
Biodiesel weakly interacted with several crops through more random price adjustments.
Thus, the European biofuel industry substantially differs from both the Brazilian and the
US establishments.

The decoupling of US ethanol from the fuels cluster as observed in our MST analysis
illustrates an important role played by government policies in influencing biofuels prices.
In agreement with biofuels policy theoretical models of de Gorter et al. (2015); Rajcaniova
et al. (2013), the firm establishment of US ethanol mandates and suppression of tax
incentives led to closer ties between US ethanol and its feedstock prices. Similar policy
argument of gradual shift from tax incentives to mandates also explains the price co-
movements of EU biodiesel. The results of our MST and wavelet coherence therefore
show a significant impact of government policy decisions (in our case the choice of biofuels
support instruments) on market transmitted price behavior.

The main contribution of this paper lies in its innovative and comprehensive approach
and its policy relevance for the biofuels related policies of state and national government
and major international bodies, including European Union. Employed methods make as
few ex ante assumptions as possible. In particular, the wavelet coherence methodology
represents a widely applicable model-free toolbox. Our findings contribute to the cur-
rent biofuel policy discussion. Specifically, we stress the difference between ethanol and
biodiesel production processes. Eventually, we shed some light on the biofuel–feedstock
connections on the leading global markets.
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