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Abstract: 

Using the Heterogeneous Agent Model framework, we incorporate an extension 

based on Prospect Theory into a popular agent-based asset pricing model. The 

extension covers the phenomenon of loss aversion manifested in risk aversion and 

asymmetric treatment of gains and losses. Using Monte Carlo methods, we 

investigate behavior and statistical properties of the extended model and assess its 

relevance with respect to financial data and stylized facts. We show that the 

Prospect Theory extension keeps the essential underlying mechanics of the model 

intact, however, that it changes the model dynamics considerably. Stability of the 

model increases but the occurrence of the fundamental strategy is more extreme. 

Moreover, the extension shifts the model closer to the behavior of real-world stock 

markets. 
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1. Introduction

This paper introduces the phenomena of loss aversion and gain–loss asymmetry into the popu-
lar Brock and Hommes (1998a) asset pricing model. Our work is based on findings of the iconic
Prospect Theory (PT) of Kahneman and Tversky (1979) which describes the way people choose
between probabilistic alternatives which involve risk and is per se a critique of other, rather pre-
scriptive decision-making economic theories. Already in 1979, Kahneman and Tversky found that
the actual behavior of human beings might be very dissimilar to what major economic theories
assumed, namely in terms of risk and attitude towards losses. According to PT, people decide
in terms of gains and losses rather than of the final outcome. The extension that we develop
therefore aims to account for these empirically observed irrationalities. Throughout the years, PT
has become one of the most influential works, merging psychology with economics. As Belsky and
Gilovich (2010, p. 52) aptly remark, “If Richard Thaler’s concept of mental accounting is one of
two pillars upon which the whole of behavioral economics rests, then Prospect Theory is the other”.
The Kahneman & Tversky’s (1979) paper is the most cited paper ever to appear in Econometrica
(Chang et al, 2011, p. 30).

In contemporary economic theory, there is little doubt that economic agents are heterogeneous
to some extent. Turning almost three decades back, yet in late 1980s and early 1990s empirical
micro studies reported heterogeneity as an empirically significant phenomenon. Frankel and Froot
(1990) attribute the apparent divergence of US dollar interest rate from the then macroeconomic
fundamentals at the beginning of the 1980s to the existence of speculative traders; Hansen and
Heckman (1996, pg. 101) indicate a “considerable interest in heterogeneous agent models in the
real business cycle literature research”; and Brock and Hommes (1997a, 1998b) theoretically prove
that it may be individually ‘rational’ for agents not to follow rational expectations and instead to
behave according to simple predictors. Evans and Honkapohja (2001) explain that agents lack the
required sophistication to form expectations rationally; Mankiw et al (2004) draw attention to sta-
tistically significant disagreement in survey data on inflation expectation even among professional
economists; Branch (2004) summarises studies documenting “failure of the Rational Expectations
Hypothesis to account for survey data on inflationary expectations”; and Vissing-Jorgensen (2004)
conducts a thorough analysis of chiefly qualitative telephone surveys data on US stock markets
from 1998 to 2002 in which he concludes that there is significant disagreement among the investors
regarding expected profits. As an important experimental contribution to the hypothesis of het-
erogeneity of market participants, Hommes (2011) provides ‘evidence from the lab’ of presence of
heterogeneous expectations in an experimental financial market.

The primary objective of this paper is thus to extend the original Brock and Hommes (1998a)
model with features of the PT and, at the same time, keep the intrinsic mechanics of the model
intact in order to preserve the stylized nature of the model. The original Brock and Hommes
(1998a) Adaptive Belief System (ABS) is a financial market application of the evolutionary selection
system proposed by Brock and Hommes (1997b) in which agents switch among different forecasting
strategies according to the past relative profitability of these strategies. Essentially, the ABS is
a discounted value asset pricing model—extended to heterogeneous beliefs—in which the agents
have the possibility to invest in either a risk-free or a risky asset. Our analysis consists in using
Monte Carlo methods to investigate behavior and statistical properties of the extended versions of
the model and assess relevance of the extensions with respect to empirical data and stylized facts
of financial time series.

One of the most important stimuli which induced development of Agent-based Models (ABMs)
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in economics was certainly an erosion of trust in the Efficient Market Hypothesis (EMH)—the EMH
asserts, in Eugene Fama’s words, that “. . . security prices at any time ‘fully reflect’ all available
information . . . ” (Fama, 1970, p. 383)—and in the Rational Expectations Theory in the late 1970s
and early 1980s which was largely due to increased focus on study of several stylized empirical
facts—according to Cont (2001, p. 224), “The seemingly random variations of asset prices do
share some quite non-trivial statistical properties. Such properties, common across a wide range
of instruments, markets and time periods are called stylized empirical facts”. The most essential
difference between natural sciences and economics is arguably the fact that decisions of economic
agents are determined by their expectations of the future and contingent on them—hence, the
study of how these beliefs are formed plays a vital part of any economic theory.

Several scholars have published papers which confront the EMH with empirical data mainly
from the perspective of non-normal returns,1 systematic deviations of asset prices from their fun-
damental value, and presumably excessive amount of stock price volatility—it was impossible to
attribute these phenomena to the EMH or explain them within the Rational Expectations frame-
work. Offering an insightful survey on the volatility issue at that time, West (1988) summarizes
and interprets literature related to this field. The author finds out that neither rational bubbles nor
any standard models for expected returns adequately explain stock price volatility and emphasizes
the necessity to introduce alternative models which would offer better explanation of the apparent
contradiction between the EMH, the Rational Expectations Theory, and empirical findings.

The paper is structured as follows: following the Introduction, Section 2 summarizes main
features of the Prospect Theory and Section 3 describes mathematical structure and underlying
mechanics of the original Brock and Hommes (1998a) model. Section 4 develops the behavioral
extension based on Prospect Theory while Section 5 describes the numerical simulations using
Monte Carlo methods. Section 6 compares the model behavior with empirical data and Section 7
highlights main results of the simulations. Finally, Section 8 concludes.

2. Prospect Theory

Proposed in the seminal paper of Kahneman and Tversky (1979), PT is a critique of then-
mainstream expected utility theory. Using convincing evidence obtained from questionnaires,
Kahneman and Tversky (1979) illustrate several issues with the concept of expected utility and
its applicability to real-life human decision making. The most critical objection consists in inca-
pacity of the expected utility theory to explain certain ‘irrational’2 choices of people. As a result,
Kahneman and Tversky (1979)—and later Tversky and Kahneman (1992)—propose a brand new
descriptive3 theory which takes all such ‘irrational’ choices into account and explains them rigor-
ously using so-called weighting function and value function. Three major features of PT are:

1. Existence of a reference point. PT suggests that people make decisions in terms of gains and
losses with respect to some reference point, rather than in terms of final wealth.

2. Differences in treatment of gains and losses. While most people are risk-seeking towards
losses, they are, at the same time, risk-averse towards gains. Moreover, most people are

1According to Ehrentreich (2007, p. 56), at the time when the foundations of the EMH were laid, logarithmic
asset returns were thought to be distributed normally and the prices therefore lognormally.

2The ‘irrationality’ is meant within the expected utility theory.
3PT is descriptive in a sense that it tries to capture the real-world decision making whereas the expected utility

theory is de facto prescriptive—it models how people are supposed to decide.
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Figure 1: Estimates of the weighting function π (p) using results of Camerer and Ho (1994) in red, Tversky and
Kahneman (1992) in blue, and Wu and Gonzalez (1996) in green.

generally loss-averse which explains why the value function is steeper for losses than for
gains. Figure 2 shows some notable estimates of the value function.

3. Distorted understanding of probability. According to PT, average person underweights large
probabilities and overweights small probabilities. Given the proposed specification and shape
of the weighting function, weighting is not linear in probability.

2.1. Weighting and value functions

According to PT, selection process consists of two parts: editing and evaluation. In the former,
the individual conducts a preliminary analysis of the available prospects in order to facilitate the
selection, and in the latter, the individual evaluates the edited prospects, assigns a value to each
of them, and makes the final decision. The interested reader might find details about the editing
phase in Kahneman and Tversky (1979, pp. 274–275), here we present the most essential properties
of the evaluation phase.

The overall value V of an edited prospect is formulated in terms of the weighting function π (•)
and the value function v (•). π (•) expresses probabilities of the prospect’s respective outcomes,
while v (•) assigns a specific value to each outcome. Letting (x, p; y, q) denote a prospect which
pays x, y, or 0 with probability p, q, and 1− p− q, respectively, the basic equation which assigns
value to a regular prospect4 is then given as follows:

V (x, p; y, q) = π (p) · v (x) + π (q) · v (y) , (1)

where it is assumed that v (0) = 0, π (0) = 0, and π (1) = 1. It is important to note that the
weighting function is not a probability measure and typical properties of probability need not be
valid here, and that the value function is defined with respect to a reference point which is usually
given as x = 0, that is, the point in which a gain changes to a loss and vice versa.

4Regular prospect is a prospect such that either p + q < 1, x > 0 > y, or x 6 0 6 y. Evaluation of prospects
which are not regular follows a different rule—details are provided in Kahneman and Tversky (1979, p. 276).
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Figure 2: Estimates of the value function v (x) using results of Harrison and Rutström (2009) in orange, Tversky
and Kahneman (1992) in blue, and Tu (2005) in magenta.

Kahneman and Tversky (1979) define the weighting function π (p) relatively vaguely as an
increasing function of p that overweights ‘small’ probabilities and underweights ‘large’ ones. More-
over, the function is discontinuous near p = 0 and p = 1 to reflect the limit to how little a decision
weight can be associated with an event. Several attempts have been made to estimate the weighting
function—Tversky and Kahneman (1992) fit a model of the form

pγ

(pγ + (1− p)γ)1/γ
, (2)

where γ is a parameter that controls for curvature of the weighting function, and obtain γ̂ = 0.61.
Camerer and Ho (1994) use the same framework and report γ̂ = 0.56, and Wu and Gonzalez
(1996) give γ̂ = 0.71, using again the model specified in Equation 2. The behavior of the weighting
function with the parameter γ specified by these three results is plotted in Figure 1.

The value function v (x) satisfies the following properties: it is increasing ∀x, i.e. v′ (x) > 0
always holds, convex below the reference point, i.e. v′′ (x) > 0 for x < 0, and concave above it,
i.e. v′′ (x) < 0 for x > 0. Additionally, the value function is usually thought to be steeper for
losses than for gains. Several scholars have estimated the value function, too, most often using
a piecewise power function proposed by Tversky and Kahneman (1992). The function is of the
following form:

v (x) =

{
xα x > 0

−λ · (−x)β x < 0,
(3)

where the parameters α and β determine curvature of the value function for gains and for losses,
respectively, relative to the reference point of x = 0, and λ is a parameter understood as loss
aversion characterization.

Estimating the Equation 3, Tversky and Kahneman (1992) report α̂ = 0.88, β̂ = 0.88, and
λ̂ = 2.25, Harrison and Rutström (2009) α̂ = 0.71, β̂ = 0.72, and λ̂ = 1.38, and, e.g., Tu (2005)
α̂ = 0.68, β̂ = 0.74, and λ̂ = 3.2. All versions are plotted in Figure 2.
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2.2. Relevance for financial markets

Since the formulation of PT, several scholars have confirmed its significant relevance for financial
markets. One of the most cited applications of PT is an aid in explanation of so-called disposition
effect. The term was first coined by Shefrin and Statman (1985) and refers to a tendency to “. . . sell
winners too early and ride losers too long,” (Shefrin and Statman, 1985, p. 778) essentially meaning
that traders tend to hold value-loosing assets too long and value-gaining assets too short. Using
the PT value function, the authors explain the disposition effect for an investor who owns a loosing
stock as a gamble between selling the stock now and thereby realizing a loss, or holding the stock
for another period given, say, 50–50 chance between loosing further value or breaking even. As
the investor finds himself in the ‘negative domain’ with respect to the reference point given here
as the break even point (that is, x 6 0), the choice between the two above-mentioned options is
associated with the convex part of the value function. This fact implies that the investor selects
the second option and thus ‘rides the loser too long’.

Li and Yang (2013) also attempt to explain the disposition effect using findings of PT. The
authors build a general equilibrium model and, besides the disposition effect, also focus on trading
volume and asset prices. The results suggest that loss aversion implied by PT tends to predict
a reversed disposition effect and price reversal for stocks with non-skewed dividends. Yao and Li
(2013), on the other hand, investigate trading patterns in the market with Prospect-theoretical
investors who base their choices on the value and weighting functions and related features of PT.
The authors find that the three main features of PT can be regarded as behavioral causes of
negative-feedback trading. The authors subsequently construct a market populated by the PT
traders and traders who maximize Constant Relative Risk Aversion (CRRA) utility function and
discover that individual PT preferences might cause contrarian noise trading.

Some other research efforts related to the study of PT traits in financial markets are made
by Grüne and Semmler (2008) who try to attribute some of the most frequently observed asset
price characteristics—yet unexplainable by ‘standard’ preferences—to the loss aversion feature of
traders. Giorgi and Legg (2012) make use of the weighting function and show that dynamic models
of portfolio choice might be consistently and meaningfully extended by the probability weighting.
Zhang and Semmler (2009) further investigate properties of the model proposed by Barberis et al
(2001) using time series data and conclude that models with PT features are able to better explain
some financial ‘puzzles’, such as the equity premium puzzle.5 Finally, for instance, Giorgi et al
(2010) explore aspects of Cumulative Prospect Theory—a modification of the original PT developed
by Tversky and Kahneman (1992)—and find that financial markets’ equilibria need not exist under
assumptions of PT.

3. Heterogeneous agent modelling framework

Our modelling framework follows the Brock and Hommes (1998a) Heterogeneous Agent Model
(HAM) approach, slightly reformulated in Hommes (2006). We consider a risk-free asset that pays
a fixed rate of return r and is perfectly elastically supplied while the risky asset pays an uncertain
dividend. Letting pt and yt denote the ex-dividend price of the risky asset and its random dividend

5The equity premium puzzle is a phenomenon that the average return on equity is far greater than return on a
risk-free asset. Such a characteristic has been observed in many markets. The term was first coined by Mehra and
Prescott (1985).
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process, respectively, and zt the amount of risky asset the agent purchases at time t, each agent’s
wealth dynamics is of the following form:

Wt+1 = R ·Wt + zt · (pt+1 + yt+1 −R · pt) , (4)

where R is the gross risk-free return rate equal to 1 + r. There are H forecasting strategies—this
fact implies existence of H different strategies or, equivalently, H distinct classes of agents. Let
Eh,t and Vh,t, respectively, denote the belief of an agent who uses forecasting strategy h about
conditional mean and conditional variance of wealth, 1 6 h 6 H. It is assumed that all agents
maximize the same, exponential-type Constant Absolute Risk Aversion (CARA) utility function
of wealth of the form U (W ) = − exp (−a ·W ), where a is a risk aversion parameter. Given the
mean-variance maximization, the optimal demand z∗h,t for the risky asset of agents of type h then
solves the following maximization problem:

max
zh,t

{
Eh,t (Wt+1)−

a

2
· Vh,t (Wt+1)

}
. (5)

The demand z∗h,t is then

z∗h,t =
Eh,t (pt+1 + yt+1 −R · pt)
a · Vh,t (pt+1 + yt+1 −R · pt)

, (6)

which, assuming that Vh,t ≡ σ2 ∀h, t, simplifies to

z∗h,t =
Eh,t (pt+1 + yt+1 −R · pt)

a · σ2
. (7)

Denoting zs the supply of outside risky shares per trader, and nh,t the fraction of agents using
forecasting strategy h, the demand-supply equilibrium is

H∑
h=1

nh,t ·
Eh,t (pt+1 + yt+1 −R · pt)

a · σ2
= zs, (8)

where, again, H is the total number of forecasting strategies. In case of zero supply of outside
shares, i.e. zs = 0, Equation 8 becomes

R · pt =
H∑
h=1

nh,t · Eh,t (pt+1 + yt+1). (9)

Now, should all traders be identical and their expectations homogeneous, we would obtain a
simplified version of Equation 9 called arbitrage market equilibrium of the form

R · pt = Eh,t (pt+1 + yt+1) . (10)

Equation 10 asserts that the price of the risky asset in this period is equal to the sum of next period’s
expected price and dividend, discounted by the gross risk-free interest rate. In this homogeneous-
expectations case, provided that the transversality condition

lim
t→∞

Et (pt+k)

(1 + r)k
= 0 (11)
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holds,6 the fundamental price of the risky asset is given as

p∗t =
∞∑
k=1

Et (yt+k)

(1 + r)k
, (12)

where Et is the conditional expectation operator. The price p∗t is the equilibrium price of the risky
asset in a perfectly efficient market with fully rational traders and, as can be seen directly from
Equation 12, it depends on the expectation of the stochastic dividend process yt, Et (yt). Assuming
the dividend process yt is independent, identically distributed with mean ȳ, the fundamental price
p∗t becomes constant ∀t and is given by

p∗ =
∞∑
k=1

ȳ

(1 + r)k
=
ȳ

r
. (13)

The deviation from the fundamental price is defined as follows:

xt = pt − p∗t . (14)

There are now two additional assumptions Brock and Hommes (1998a) make:

1. Expectations about future dividends yt+1 are the same for all agents, regardless of the specific
forecasting strategy they use, and equal to the true conditional expectation. In other words,
Eh,t (yt+1) = Et (yt+1) ∀h, t.

2. Agents believe that the stock price might deviate from the fundamental price p∗t by some
function fh which depends on previous deviations from the fundamental price, i.e. on
xt−1, . . . , xt−K . This assumption might be stated as

Eh,t (pt+1) = Et
(
p∗t+1

)
+ fh (xt−1, . . . , xt−K) ∀h, t. (15)

It is now important to note two crucial facts: firstly, the assumption number one above implies
that all agents have homogeneous expectations about future dividends, i.e. the heterogeneity of
the model lies in the assumption number two. Secondly, the asset price in period t + 1, pt+1, is
predicted using price realized in period t − 1—not in period t—as the agents are yet unaware of
the price pt when they make the prediction. This fact follows directly from Equation 8.

Next, Brock and Hommes (1998a) define realized excess return as Rt+1 = pt+1 + yt+1 −R · pt.
The realized excess return over period t to period t+ 1 might be expressed in deviations from the
fundamental value as follows:

Rt+1 = pt+1 + yt+1 −R · pt = xt+1 + p∗t+1 + yt+1 −R · xt −R · p∗t
= xt+1 −R · xt + p∗t+1 + yt+1 − Et

(
p∗t+1 + yt+1

)︸ ︷︷ ︸
δt+1

+ Et
(
p∗t+1 + yt+1

)
−R · p∗t︸ ︷︷ ︸

=0

= xt+1 −R · xt + δt+1,

(16)

where the latter underbrace holds because Equation 13 is satisfied. The term δt+1 is a Martingale
Difference Sequence with respect to some information set Ft, that is, we have E (δt+1|Ft) = 0 ∀t.

6Hommes (2013, p. 162) remarks that the Equation 10 is also satisfied by the so-called rational bubble solution
of the form pt = p∗t + (1 + r)t · (p0 − p∗0). However, this solution does not satisfy the transversality (or ‘no-bubbles’)
condition

8



3.1. Fitness measure

The fitness measure of strategy h, Uh,t, depends upon stochastic dividend process of the risky
asset and is defined as

Uh,t = Rt+1 · z∗h,t = (xt+1 −R · xt + δt+1) · z∗h,t. (17)

Two cases might now be distinguished:

1. The case of δt+1 = 0 corresponds to a deterministic nonlinear pricing dynamics with constant
dividend ȳ. According to Hommes (2006, pg. 1168) who uses slightly modified understanding
of the time notation,7 Equation 17, written in deviations, reduces to

Uh,t = (xt −R · xt−1) ·
fh,t−1 −R · xt−1

a · σ2
, (18)

where fh,t−1 is the forecasting function of type h.

2. The case in which dividend is given by a stochastic process yt = ȳ+εt where εt is independent,
identically distributed random variable with uniform distribution. In these circumstances,
δt+1 = εt+1.

3.2. Market fractions

Equation 9 can be reformulated in deviations from the fundamental price by a substitution
using Equation 15 as

R · xt =
H∑
h=1

nh,t · Eh,t (xt+1) ≡
H∑
h=1

nh,t · fh (xt−1, . . . , xt−K), (19)

where nh,t denotes the fraction of agents using the forecasting function h for prediction. These
fractions are modeled using the multinomial logit model:

nh,t =
exp (β · Uh,t−1)

Zt−1
, (20)

where Zt−1 ≡
∑H

h=1 exp (β · Uh,t−1) is a normalization factor such that the fractions nh,t add up to
1, and β, β > 0, is a parameter called intensity of choice which measures the agents’ ‘sensitivity’ to
the selection of the best-performing forecasting strategy. Two extreme cases may be distinguished—
if β = ∞, all agents unerringly choose the best strategy, while if β = 0, the fractions nh,t remain
constant over time and fixed to 1/H, i.e. nh,t = 1/H ∀h, t. The former extreme case corresponds
to the situation in which there is no noise and thus all agents select the optimal strategy while the
latter extreme case implies presence of noise with infinite variance and inability of agents to switch
strategies at all.

For the formation of expectations, the functions fh,t are crucial. Brock and Hommes (1998a)
propose simple forecasting rules of the form

fh,t = gh · xt−1 + bh. (21)

7The notation difference consists in ‘shifting’ time subscripts of realized excess return by one period—for this
reason, Equation 17 reduces to Equation 18 only after this shift.
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The term gh is a trend parameter indicating the trend following (or possibly reverting) strength
of the particular strategy, and the term bh is a bias parameter. For gh = bh = 0, the function fh,t
reduces to fh,t ≡ 0 and corresponds to the fundamentalist belief of no price deviations from the
fundamental value. Additionally, if gh 6= 0, then such a trader type is called a chartist. This class
of traders can be further divided into four categories: the type is called a pure trend chaser if
0 < gh 6 R, a strong trend chaser if gh > R, a contrarian if −R 6 gh < 0, and a strong contrarian
if gh < −R. Finally, the term bh determines the nature (if bh 6= 0) of each agent class’ bias—if
bh < 0, the bias is downward, while if bh > 0, the bias is upward.

4. Prospect Theory extension

Although the indisputable relevance of findings of PT for study of human decision making is
highly topical, there are apparently no PT extensions of the Brock and Hommes (1998a) HAM
framework. The plausible reason for the absence of such ABM designs is relatively self-evident: the
HAM developed by Brock and Hommes (1998a) is populated with agents with CARA utility func-
tion and demand for the risky asset is derived by maximization of expected utility. As the origins
of PT are based on critique of the expected utility theory and subsequent development of diamet-
rically different approach to decisions under risk, the very basic component of the ABS—CARA
utility function—seems incompatible with PT. Yet, although the authors do not use the original
Brock and Hommes (1998a) model, Shimokawa et al (2007) propose a relatively straightforward
method to implement PT features into ABMs in which the agents have CARA preferences.

4.1. Loss aversion inclusion

The basic structure of the model remains identical, however, extending the original Brock
and Hommes (1998a) model, we introduce features of PT into the model as follows: PT traders
maximize utility function of the general form

Ul (W ) = − exp (−a ·B ·W ) , (22)

where we denote B the loss aversion parameter. Generally, the loss aversion parameter may differ
for each agent class and time period, therefore we denote it as Bh,t from now on. Furthermore, the
subscript l distinguishes the utility function of these PT traders from that of ‘standard’ traders
specified in the original model—we refer to the PT traders as loss-averse traders since this charac-
teristic is the main feature of PT which is possible to incorporate into the model using the utility
function defined in Equation 22. Other notations in Equation 22 have their usual meaning as given
in Section 3. We assume that the wealth dynamics is of the same form as in Equation 4.

The crucial aspect of the utility function given in Equation 22 is the loss aversion parameter
Bh,t and its specification. Following the general idea proposed by Shimokawa et al (2007, p. 211),
we define the parameter as follows:

Bh,t =

{
cg, Eh,t (pt+1) > p̃t = p̃t (pt−1, . . . , pt−K)
cl, Eh,t (pt+1) 6 p̃t = p̃t (pt−1, . . . , pt−K),

(23)

where cg and cl are gain and loss parameters, respectively, 0 < cg < cl, and p̃t = p̃t (pt−1, . . . , pt−K)
is a reference point as defined by PT. It is important to emphasize that each agent might maximize
either the original utility function U (W ) = − exp (−a ·W ) or the ‘augmented’ utility function Ul
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with the loss aversion parameter given in Equation 22, however, the term Eh,t (pt+1), i.e. a (loss-
averse) agent’s forecast about the price in next period, is constructed essentially in the same way
as in Equation 15 whether the agent is loss-averse or not.

Optimal demand z∗l,t of the loss-averse traders for the risky asset then solves the familiar max-
imization problem

max
zl,t

{
Eh,t (Wt+1)−

a ·Bh,t
2

· Vh,t (Wt+1)

}
, (24)

where Vh,t (Wt+1) is the (loss-averse) traders’ belief about next period conditional variance of
wealth, and is thus given by

z∗l,t =
Eh,t (pt+1 + yt+1 −R · pt)

a ·Bh,t · σ2
. (25)

The basic structure of the model remains the same: there are H distinct trading strategies or
classes of agents and each agent class maximizes a CARA utility function. Certain number of the H
classes, say first L classes, 0 6 L 6 H, are endowed with the above-specified PT feature—optimal
demand of agents of these L classes for the risky asset is given by Equation 25—while the agents
of the H − L remaining classes are ‘standard’ in terms of the original model construction and do
not exhibit PT behavior. The general specification of the optimal demand for the risky asset, z∗h,t,

1 6 h 6 H, thus remains the same and is given by Equation 7 where, if hth class of agents has the
PT feature (i.e. for h 6 L, 1 6 h 6 H), we use z∗l,t given by Equation 25 instead of z∗h,t.

The definition of the parameter Bh,t given in Equation 23 essentially enables us to mimic the
first two of the three major features of PT listed in the beginning of Section 2, i.e., the loss aversion
and biased treatment of gains and losses, and relation of decisions under risk to a reference point,
by using an ‘imitation’ of the value function. In this application, however, we omit the third major
feature of PT, the probability weighting and the weighting function, to keep the model within the
stylized, simple framework proposed by Brock and Hommes (1998a). Also the curvature of the
value function per se is not studied and incorporated into the model as it is well approximated by
a linear function (see Figure 2).

4.2. Reference point

The choice of specific numerical values of the gain and loss parameters cg and cl is relatively
unfettered—the only condition that must always hold in order to capture the loss aversion feature
properly is the inequality 0 < cg < cl. The choice of the reference point p̃t has more implications.
The reference point is updated in each time period to properly reflect the contradictory treatment
of gains and losses of PT traders. Generally, the reference point is given by a deterministic function
of past performance of the model—one might make use of K previous realized prices of the risky
asset, i.e., pt−1, pt−2 . . . , pt−K , and define the reference point—as suggested by Shimokawa et al
(2007)—as the moving average of the form

p̃t =
a1 · pt−1 + a2 · pt−2 + . . .+ aK · pt−K

a1 + a2 + . . .+ aK
, (26)

where a1, a2, . . . , aK are constants ∈ R such that a1 > a2 > . . . > aK > 0 which allow for a
stronger, more significant effect of the most recent prices of the risky asset. The interpretation of
the definition of the parameter Bh,t is straightforward in such a case: if the traders with the PT
feature expect the next period price to be higher than the moving average of previous K prices,
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they find themselves in the positive domain in terms of the gain–loss gamble and set the value Bh,t
to cg. If, on the other hand, they expect the next period price to be lower than the moving average,
i.e. they expect a loss, the loss aversion of PT manifests itself by the parameter Bh,t which is set
to cl.

To summarize, the ABS extended with the PT loss aversion becomes

R · xt =

H∑
h=1

nh,t · (gh · xt−1 + bh) + εt,

nh,t =
exp (β · Uh,t−1)
H∑
h=1

exp (β · Uh,t−1)
,

Uh,t−1 =

{
(xt−1 −R · xt−2) gh·xt−3+bh−R·xt−2

a·σ2 , h > L

(xt−1 −R · xt−2) gh·xt−3+bh−R·xt−2

a·Bh,t−2·σ2 , h 6 L,

(27)

where first L of the H agent classes are endowed with the PT feature; gl and bl indicate the
trend and bias parameters of the strategies with the PT feature, and εt is a (small) noise term which
represents natural uncertainty about the performance of economic fundamentals and which replaces
the term δt = εt defined in Section 3. The system of Equations 27 is in essence a generalization of
the original ABS—for L = 0, one obtains the ‘benchmark’ case used for the PT extension impact
evaluation in Section 5.

5. Monte Carlo Analysis

5.1. General model setup

The inevitable ‘downside’ of the ABS is somewhat excessive leeway in choice of the parameters
of the model, especially of β, gh, bh, and the distribution of the noise term εt. We follow a number
of previous studies—e.g. Barunik et al (2009); Vacha et al (2012); Kukacka and Barunik (2013,
2016)—and adopt the following settings:

1. Trend and bias parameters gh and bh are drawn from the normal distributions with means of
0 and variances of 0.16 and 0.09, respectively, unless we state otherwise. Should we ex ante
indicate presence of fundamentalists in the model, the fundamentalist strategy is always the
first of the H strategies: the algorithm sets both of the parameters g1 and b1 to 0 and the
term n1,t corresponds to the fraction of fundamentalists in the market.

2. The noise term for each time period, εt, are drawn from the uniform distribution U (−0.05, 0.05).
Kukacka and Barunik (2013) investigate behavior of the model with the noise term drawn
from several different uniform distributions and conclude that the behavior is largely similar.

3. Other parameters are set as follows: the gross risk-free return rate, R = 1 + r, to 1.0001 and
the term 1

a·σ2 to 1. Note that a and σ2 are only scale factors for the fitness measure U that do
not influence the dynamics of the model. The choice of the gross risk-free return rate allows
us to compare results of the simulations with real-world market data since 1.0001250 ≈ 1.025.
Annual interest rate of 2.5% can be normally considered a realistic risk-free rate.

Each simulation consists of 11 runs characterized by a distinct intensity of choice parameter
β which gradually takes values from 5 to 505 in increments of 50. Additionally, there are 1000
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Table 1: Benchmark simulation summary statistics and p-values of J-B test for normality of distribution for xt in 11
runs with different βs. There are fundamentalists and three other strategies in the model, i.e. H = 4.

β Mean Var. Skew. Kurt. Min Max Med. J-B

5 0.0018 0.0217 -0.3078 5.7899 -1.1917 0.8840 0.0038 0.000
55 -0.0003 0.1055 0.2154 5.7642 -1.8428 2.2034 -0.0002 0.000

105 0.0178 0.1110 0.1909 4.1024 -1.3687 1.6141 0.0072 0.000
155 0.0089 0.1021 0.1227 3.6513 -1.1697 1.3446 0.0013 0.000
205 0.0134 0.0933 0.1648 3.5670 -0.9777 1.3224 0.0059 0.000
255 0.0223 0.0839 0.1290 3.2261 -0.9403 1.2590 0.0057 0.000
305 0.0066 0.0702 0.1117 3.0573 -0.8636 1.0706 0.0002 0.000
355 0.0125 0.0678 0.1428 2.9966 -0.7873 0.9447 0.0022 0.000
405 0.0114 0.0606 0.1210 3.1229 -0.8931 0.9014 0.0037 0.000
455 0.0145 0.0566 0.0938 3.0043 -0.7716 0.8360 0.0050 0.000
505 0.0105 0.0530 0.0358 2.9581 -0.8095 0.7888 0.0053 0.000

repeat cycles in each run. For each cycle, the parameters gh and bh are randomly drawn from the
aforementioned distributions to guarantee robust simulation results. Finally, there are 500 ticks in
each cycle representing trading days.

5.2. Criteria for evaluation

Cont (2001) lists the following phenomena as the most frequent financial time series stylized
facts: absence of autocorrelations, heavy or fat tails, volatility clustering, intermittency, gain–loss
asymmetry, and several others. We focus on the first three stylized facts as the original Brock and
Hommes (1998a) model has been found capable of explaining them soundly (Chen et al, 2012).

1. Absence of autocorrelations. Autocorrelations of returns of an asset are insignificant at most
times and for most time scales, except for very small time scales of approximately 20 minutes
in which micro structures may have an effect on the autocorrelations (Cont, 2001).

2. Fat tails. Probability distributions of many assets’ returns have large skewness or kurtosis
relative to the normal distribution. Additionally, the distributions exhibit a power-law or
Pareto-like tails, with a tail index 2 6 α 6 5 (Cont, 2001), i.e. the (upper) tail P (X > x) =
F̄ (x) = x−α ·G (x), where G (x) is a slowly varying function (Haas and Pigorsch, 2009).

3. Volatility clustering. Absolute or squared returns of an asset are characterized by a significant,
slowly decaying autocorrelation function, that is, corr (|rt| , |rt+τ |) > 0 or corr

(
r2t , r

2
t+τ

)
> 0,

where the time span τ ranges from minutes to weeks or months (Cont, 2007).

5.3. Benchmark simulation

We run a benchmark simulation of the original model specified by the system of Equations 27
without the PT feature, that is, we set L = 0. Number of total strategies H = 4 and fundamen-
talists are present in the model. In each repeat cycle, first 5 % of realizations of xt are discarded
as the model needs some initial time to ‘stabilize’.

Table 1 shows selected descriptive statistics of the xt time series obtained from the benchmark
simulation. Clearly, the distributions of the deviations from the fundamental price are statistically
different from the normal distribution, as indicated by small p-values of the Jarque–Berra (J-B)
test for all βs. For increasing values of β, the distributions exhibit sample kurtosis closer to

13



that of the normal distribution. Apparently, the behavior of the model is most dramatic for
β ∈ {55, 105, 155}—values of sample variance are highest, the same is true for minima and maxima
of xt.

Figure 6 in Appendix A shows, on a log-log scale, the Cumulative Distribution Functions
(CDFs) F̄|xt| (y), F̄|xt| (y) = P (|xt| > y), for the 150 largest absolute deviations |xt| corresponding
to four randomly selected illustrative sample time series generated with different βs, along with a
regression-based linear fit. Although not rigorously, the slopes of the regression lines are, in absolute
values, estimates of the respective tail indices. These are equal to 4.19 for β = 5 (R2 = 0.879),
4.43 for β = 105 (R2 = 0.909), 11.03 for β = 305 (R2 = 0.754), and 12.1 for β = 505 (R2 = 0.908).
Having only an informative character, the plots in Figure 6 nonetheless show possible existence of a
power law in tails of the sample distribution of |xt|. It is important to emphasize, however, that the
power law apparently does not hold universally for the whole tail. Most extreme observations—for
which the imaginary curvature is relatively significant and the realizations clearly do not follow
the linear pattern estimated for the complete collection of the 150 observations—might exhibit
a different tail index than the remaining observations do; the ‘break point’ is evidently around
F̄|xt| (y) = 0.05.

5.4. Employment of Prospect Theory

The simulation with PT traders is run together with the benchmark case from Subsection 5.3
meaning that for each repeat cycle, exactly the same setting and randomly generated parameters
are used. Therefore any differences between the benchmark and the PT simulations can be at-
tributed to the PT feature completely and unreservedly. Important parameters, exclusive for the
PT simulation, are given as follows:

1. The gain and loss parameters cg and cl are set to 4/7 and 10/7, respectively, to properly
account for the gain–loss asymmetry. These particular numerical values are chosen based
on the facts that “. . . the disutility of giving something up is twice great as the utility of
acquiring it,” (Benartzi and Thaler, 1993), and that “. . . losses hurt more than equal gains
please; typically two to two-and-a-half times more.” (van Kersbergen and Vis, 2014, p. 163).
Moreover, this setting is well justified by Figure 2 which shows estimates of the PT value
function and is also comparable to the benchmark simulation since the average of cg and cl
is equal to 1, the value of the loss aversion parameter of the traders that do not have the
PT feature. Initially, all strategies exhibit the PT feature, i.e. L = 4, and we compare the
results to the benchmark simulation with only non-PT traders.

2. Value of the ‘memory’ parameter used for the calculation of moving average of past prices,
K, essential for determination of the reference point, is set to 15. Traders do not attach
greater importance to the most recent past prices relative to more distant ones—that is, the
parameters a1, a2, . . . , aK equal 1.

Table 2 summarizes descriptive statistics along with p-values of J-B and Kruskal–Wallis (K-W)
tests of the xt time series. Using the K-W method we test whether the xt time series obtained
from the PT simulation originate from the same distribution as the benchmark simulation xt
time series do (see Table 1). Addition of the PT feature clearly causes—potentially except the
case of β = 5—significant differences of the distributions with respect to those of the benchmark
simulation. Notice also the smaller variance of the time series with respect to the benchmark case
and also smaller extreme values for most values of β.
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Table 2: PT simulation summary statistics of xt and p-values of J-B and K-W tests in 11 runs with different β.
There are fundamentalists and three other strategies in the model, i.e. H = 4, and all strategies have the PT feature,
i.e. L = 4.

β Mean Var. Skew. Kurt. Min Max J-B K-W

5 0.0047 0.0239 0.2754 6.7842 -1.2085 1.1642 0.000 0.038
55 0.0067 0.1009 0.1292 5.8554 -1.8460 2.1734 0.000 0.000

105 0.0243 0.1044 0.1945 4.2614 -1.3873 1.5876 0.000 0.000
155 0.0135 0.0960 0.1193 3.7943 -1.1719 1.4445 0.000 0.000
205 0.0195 0.0881 0.1763 3.6986 -1.0022 1.3675 0.000 0.000
255 0.0258 0.0795 0.1324 3.3201 -0.9316 1.1711 0.000 0.000
305 0.0129 0.0659 0.1332 3.1813 -0.8310 1.0869 0.000 0.000
355 0.0178 0.0637 0.1605 3.1015 -0.7626 0.9204 0.000 0.000
405 0.0157 0.0572 0.1380 3.2278 -0.8909 0.9059 0.000 0.000
455 0.0191 0.0536 0.1176 3.0977 -0.7662 0.8320 0.000 0.000
505 0.0147 0.0505 0.0606 3.0262 -0.7861 0.7814 0.000 0.000

Figure 7 in Appendix B shows, on a log-log scale, the complementary CDFs F̄|xt| (y) for the 300
largest absolute deviations |xt| corresponding to four randomly selected illustrative sample time
series generated with different βs, along with a regression-based linear fit. The estimates of the
respective tail indices (i.e. the opposites of the estimated slope coefficients) are equal to 4.12 for
β = 5 (R2 = 0.896), 4.54 for β = 105 (R2 = 0.875), 5.42 for β = 305 (R2 = 0.745), and 6.44 for
β = 505 (R2 = 0.88). The OLS fits provide roughly the same R2 compared to the benchmark case,
although the most extreme observations do, again, exhibit considerable curvature and departure
from any power law, mainly in the region for which F̄|xt| (y) < 0.05.

These findings are summarized in Figure 3 which merges Figure 6 and Figure 7 and shows, on
a log-log scale, the complementary CDFs for largest 150 xt observations for one repeat cycle with
and without the PT feature. One might notice the similarity of the tails for the lowest value of
β = 5 and various patterns of departure of the tails as the value of β increases.

5.5. Aggregate characteristics

This subsection summarizes aggregate qualitative characteristics of the price deviations time
series, xt, obtained from the simulations. We compare the model without the PT feature (L = 0)
and the one in which all trading strategies have the feature (L = 4) namely in terms of time
dependence in the xt time series and x2t time series, and incidence of fat tails.

5.5.1. Time dependence of xt and x2t
We use the following method for assessment of time dependence using aggregate data. In

each repeat cycle and for all values of β, we fit a time series model to the simulated xt (or x2t )
data, save the respective coefficients, and using the kernel density estimation8 we construct an
empirical distribution of these coefficients. The optimal model is selected based on the Akaike
Information Criterion—the simulations show that the data generally fit an Autoregressive Moving

8We employ the Epanechnikov kernel function and Silverman’s rule (Silverman, 1986) for bandwidth selection.
Epanechnikov kernel function is used as it is the most efficient kernel function (Wand and Jones, 1994, p. 31).
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Figure 3: Plots of the tails of sample xt time series’ empirical distributions with the PT feature (red squares) and
without it (blue circles).

Average (ARMA) model best. Therefore the coefficients saved are α1, α2, . . . , αp, µ1, µ2, . . . , µq if
the model is specified as

xt = c+

p∑
i=1

αi · xt−i +

q∑
i=1

βi · εt−i + εt, (28)

or, for the squared deviations series x2t , as

x2t = c+

p∑
i=1

αi · x2t−i +

q∑
i=1

βi · εt−i + εt. (29)

Note that, for different repeat cycles and different values of β, the optimal models naturally ex-
hibited different orders p and q—yet, the α1 coefficient always corresponds to the autoregressive
relationship of the first lag, regardless of the value of p. The same is true for the MA(1) coef-
ficient µ1 and the value of q. Finally, we compare Probability Density Functions (PDFs) of the
distributions using the K-W test.

Table 3 summarizes expected values of the estimated distributions of the AR(1) coefficient α1

and MA(1) coefficient µ1 and p-values of the K-W test applied to the xt time series obtained from
models with and without the PT feature (columns ‘MAKW ’ and ‘ARKW ’). The distributions of the
AR(1) coefficient with and without the PT feature are statistically different in 5 out of 11 cases.
This fact supports the finding that the PT extensions changes the behavior of the HAM. On the
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Table 3: Expected value of the empirical distributions of α1 (AR) and µ1 (MA) coefficients and p-value of the K-W
test applied to xt with and without the PT feature.

β MA MAPT MAKW AR ARPT ARKW

5 0.2008 0.1923 0.4062 0.3013 0.3434 0.0194
55 0.2048 0.2273 0.1581 0.2647 0.3062 0.0549

105 0.1816 0.1846 0.7496 0.2132 0.2694 0.0025
155 0.1552 0.1535 0.9017 0.2025 0.2594 0.0049
205 0.1396 0.1418 0.7446 0.2085 0.2270 0.3686
255 0.1345 0.1382 0.9731 0.1962 0.2524 0.0032
305 0.1476 0.1354 0.4314 0.1965 0.2675 0.0004
355 0.1326 0.1275 0.9993 0.2287 0.2612 0.1419
405 0.1208 0.1479 0.0885 0.2239 0.2550 0.2059
455 0.1119 0.1289 0.3136 0.2131 0.2642 0.0110
505 0.0976 0.1146 0.1754 0.2339 0.2622 0.1988

other hand, p-values of the test applied to the MA(1) coefficient fail to reject the null hypothesis
of equal distributions at a reasonable significance level. This fact indicates that the PT extensions
affects only the autoregressive structure of the xt time series. Notice that, for all values of β, the
AR(1) coefficient is larger for the PT extended model, and for most values of β the same is true
for the MA(1) coefficient. The realizations of xt seem to be slightly more dependent on previous
realizations xt−1.

Figure 8 in Appendix C shows estimated PDFs of the MA(1) coefficient µ1 from the model
specified in Equation 28 for the xt time series. The figure suggests that overall, the behavior of both
models is relatively similar—yet, for β ∈ {5, 505}, the series exhibit somewhat less moving average
dependence which is depicted by the higher peaks of the respective PDFs and higher expected
values.

Table 4 summarizes expected values of the estimated distributions of the AR(1) coefficient α1

and MA(1) coefficient µ1 and p-values of the K-W test applied to the x2t time series obtained
from models with and without the PT feature. The empirical distributions of µ1 are, again, not
statistically different. Moreover, the p-values of the K-W test are even higher. On the other
hand, the distributions of α1 obtained from the PT extended model are statistically different from
their non-PT counterparts and their expected values are greater than those obtained from the
non-PT model. This fact implies that the phenomenon of volatility clustering is more significant
and recognizable in our extended version of the HAM. Such a finding is consistent with real-world
market data (Cont, 2001).

5.5.2. Aggregate tails

Table 5 shows estimated tail indices of the xt time series for 500 repeat cycles with the PT
feature and for the benchmark model without the feature. 500 different repeat cycle setups for gh,
bh, and εt are used, therefore, the estimates are considerably more robust than those for only one
repeat cycle (shown, e.g., in Figure 3). The values of R2 can be considered relatively satisfactory
for the power law fit. Moreover, the PT extended model tail indices are in most cases smaller than
those of the non-extended model and thus closer to the real-world ones (consult Section 6) and
the coefficient of determination is higher. Also note the relatively high difference between the tail
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Table 4: Expected value of the empirical distributions of α1 (AR) and µ1 (MA) coefficients and p-value of the K-W
test applied to x2t with and without the PT feature.

β MA MAPT MAKW AR ARPT ARKW

5 0.1022 0.0988 0.7853 0.1655 0.1866 0.3086
55 0.1680 0.1627 0.6906 0.1808 0.2136 0.2654

105 0.1493 0.1522 0.9705 0.1282 0.1809 0.1017
155 0.1528 0.1276 0.2712 0.0946 0.1920 0.0000
205 0.1151 0.1149 0.9451 0.1034 0.1810 0.0051
255 0.1111 0.1288 0.6033 0.1151 0.1606 0.0977
305 0.0971 0.1135 0.4396 0.0866 0.1719 0.0008
355 0.1097 0.0932 0.4303 0.0708 0.1745 0.0000
405 0.0987 0.0899 0.5089 0.0956 0.1601 0.0134
455 0.0907 0.0819 0.8224 0.0859 0.1714 0.0002
505 0.0875 0.0899 0.9472 0.0704 0.1797 0.0000

Table 5: Estimated tail indices of the xt time series along with R2 for the original and PT extended versions of the
model.

β PT tail R2 Bench. tail R2

5 5.661 0.961 8.676 0.863
105 6.081 0.967 6.183 0.968
205 9.889 0.980 9.034 0.977
305 12.733 0.934 13.592 0.951
405 12.914 0.961 13.311 0.956
505 10.728 0.941 11.161 0.930

indices for β = 5. Nonetheless, it is not clear whether the power law is really the ideal model for
this type of HAM as the R2s are lower than those of the real-world indices.9

5.5.3. PT vs. non-PT traders

We may now relax the assumption that all trading strategies are endowed with the PT feature
and examine behavior of the model by running additional simulations in which some of the trading
strategies exhibit loss aversion and gain–loss asymmetry, and some do not, i.e. L 6 H = 4.
Additionally, more values of the parameter K, length of the moving average considered for the
reference point p̃t, can be inspected. Table 6 summarizes simulations with L = 1, L = 2, L = 3,
and different values of K. Fundamentalist strategy is present in the model as the first strategy, i.e.
L = 1 corresponds to a situation in the market in which there are PT fundamentalists and three
other non-PT chartist strategies. The K-W test compares, in this case, the distributions obtained
from the simulations with the PT feature with those obtained from a simulation without it, i.e.
the one for which L = 0.10 To maintain mutual comparability, the same parameters gh, bh, and εt
are used for each value of L 6= 0 and for L = 0.

9Consult e.g. Cont (2001) for a discussion of real-world tail indices.
10We run another ‘benchmark’ simulation of the model without the proposed extensions, that is, for the K-W test,

we use different benchmark than that examined in Subsection 5.3.
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Table 6: P-value of the K-W test for different L, K and β.

K = 1 K = 5
β L = 1 L = 2 L = 3 β L = 1 L = 2 L = 3
5 0.7712 0.2445 0.3411 5 0.8873 0.4452 0.0208

55 0.0000 0.9472 0.0002 55 0.0000 0.0010 0.0000
105 0.0000 0.0000 0.0006 105 0.0081 0.0070 0.0000
155 0.0000 0.0000 0.1889 155 0.0002 0.9968 0.0000
205 0.0000 0.0000 0.1008 205 0.9385 0.0252 0.0000
255 0.0000 0.0000 0.0012 255 0.0018 0.7323 0.0000
305 0.0000 0.0002 0.0016 305 0.3060 0.4525 0.0005
355 0.0000 0.0000 0.0000 355 0.1485 0.6247 0.0000
405 0.0000 0.0000 0.0000 405 0.2347 0.0057 0.0000
455 0.0000 0.0002 0.0099 455 0.9653 0.0130 0.0000
505 0.0000 0.0000 0.1265 505 0.0190 0.0000 0.0000

K = 10 K = 15
β L = 1 L = 2 L = 3 β L = 1 L = 2 L = 3
5 0.8446 0.2684 0.1740 5 0.9625 0.2119 0.1093

55 0.0001 0.0010 0.0000 55 0.0000 0.2536 0.0000
105 0.0000 0.9361 0.1050 105 0.0000 0.0636 0.3886
155 0.0056 0.6602 0.0003 155 0.0008 0.4517 0.0000
205 0.3724 0.9778 0.0000 205 0.0000 0.1529 0.0001
255 0.0021 0.3581 0.0000 255 0.0000 0.2606 0.0000
305 0.3592 0.6284 0.0002 305 0.0044 0.0187 0.0288
355 0.5432 0.7398 0.0017 355 0.1630 0.0002 0.0000
405 0.6784 0.6527 0.0111 405 0.7526 0.0305 0.0000
455 0.0082 0.0060 0.0000 455 0.0347 0.6479 0.0000
505 0.0176 0.6428 0.0000 505 0.0117 0.0000 0.0004

Figure 4 further examines, for β = 405 and K = 15, the cases in which L = 1 and L = 4, i.e.,
the situation in which only the fundamentalist strategy has the PT feature versus the one in which
all strategies have the PT feature, respectively. These situations are compared to the benchmark
case of L = 0. Estimated densities of the xt time series are plotted in the left-hand side of the
figure while the right-hand side of the figure shows estimated densities of the n1,t time series, i.e.
of the fraction of traders using the fundamentalist strategy. The estimated densities are to a large
extent similar, however, the K-W test rejects the null hypothesis that both samples come from the
same distribution for the case of L = 4 (p-value = 0.0111). Yet, PT fundamentalists are driven out
of the market less strongly for L = 1 then they are for L = 4 in comparison to the benchmark case.
This finding can be inferred by comparing the ‘peakedness’ of respective distributions in Figure 4
around the point 0. This is generally an interesting result—the PT feature seems to be a ‘heavier
burden’ for fundamentalists when they have to face chartists who are also loss-averse. On the
other hand, the PT feature makes the fundamentalists better off relative to the benchmark case in
a situation when other chartistic strategies do not have this feature.

Generally, the distributions of xt tend to be more dissimilar as L increases—the PT feature
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Figure 4: Behavior of the model for different L versus the benchmark case of L = 0 (depicted by dashed lines),
β = 405 and K = 15.

stabilizes the market and rules out a fraction of extreme price deviations which are present in the
benchmark case.

Figure 5 shows estimated densities of n1,t and n4,t for L = 3 and K = 15, i.e. fractions of PT
fundamentalists and non-PT chartists in a model in which one chartist trading strategy does not
have the PT feature, for different values of β. Notice that, as β gets smaller, the non-PT chartist
strategy becomes increasingly popular and dominates the market (i.e. n4,t = 1) at non-negligible
amount of time. Moreover, fundamentalists are less likely to survive in the market than they are
when they face only PT traders—this effect can be best inferred from the case in which β = 405
(see Figure 4). While for L = 4, p (n1,t) = 11.5 for n1,t → 0 [panel (d) of Figure 4], for L = 3 we
have p (n1,t) = 12.2 for n1,t → 0 [panel (b) of Figure 5] and the relatively frequent disappearance
of fundamentalists can thus be attributed to the presence of non-PT chartists.

6. Stylized facts

We assess the explanatory power of the extended model chiefly with respect to the three stylized
facts specified at the beginning of Subsection 5.2, i.e., absence of autocorrelation of returns, fat
tails, and volatility clustering. The analysis is based on comparison with real-world market data,
namely with four stock market indices—S&P 500 (NY), FTSE 100 (London), HSI (Hong Kong),
and Nikkei 225 (Tokyo)—covering the period from January 1, 2009 to May 1, 2015. Contrarily to
most research in the field, daily closing price differences rt are studied as these better mimic the
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Figure 5: Estimated densities of n1,t (orange solid line) and n4,t (dashed magenta line) for L = 3 and K = 15.

‘deviation’ nature of the xt time series from the HAM.
Table 7 summarizes the most important statistics of the price differences times series of the

four indices and the best-fit time series model from the ARMA model family determined by the
Akaike Information Criterion. The ‘*’ symbol indicates that the particular statistic refers to a
standardized time series to establish better mutual comparability among the indices:

rt =
pt − pt−1

p̄
, (30)

where pt is (daily) close price of the respective index, and p̄ is the arithmetic mean of daily
closing prices of the index for the entire period. The time series models in Table 7 are fitted to
nonstandardized price differences.

Table 7: Summary statistics of real-world indices price differences and best-fit time series model.

Index Mean Mean* Var. Var.* Skew. Kurt. Model

S&P 0.739 0.00052 194 0.00010 -0.336 5.029 AR(1)
FTSE 1.555 0.00027 3240 0.00010 -0.203 4.489 MA(0)
HSI 8.238 0.00039 67835 0.00015 -0.092 4.187 MA(0)

N225 6.706 0.00058 26923 0.00020 -0.555 6.967 AR(2)

Apparently, two of the indices’ price differences time series are best characterized by an autore-
gressive model. Such a finding is in accordance with the best-fit models from our simulations. On
the other hand, FTSE 100 and HSI are best described by a MA(0) process—the time series are
essentially white noise processes. Figure 8 reveals that also the HAM simulations produced MA(1)
coefficient equal to 0 at non-negligible amount of times, although expected value of this coefficient
is higher than 0 (see Table 3). By contrast, the estimated autoregressive coefficients for S&P 500
and Nikkei 225 are, respectively, equal to −0.068 and {−0.04, 0.04}. Table 3 reveals that neither
of our simulations are able to replicate this finding with sufficient accuracy.

Table 8 shows best-fit models for squared price differences along with estimated AR(1) α1 and
MA(1) µ1 coefficients, and arithmetic averages of all autoregressive and moving average coefficients.
Clearly, our simulations are able to replicate these findings in terms of the optimal model (consult
Table 4)—both non-PT and PT x2t time series are best characterized by the same model family.
Table 4 also reveals that the PT extended model α1 coefficient is—for β = 105—very close to
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Table 8: Best-fit models of real-world indices squared price differences.

Index Model α1 µ1 ∅α ∅µ
S&P ARMA(2,1) 0.329 -0.260 0.303 —

FTSE AR(6) 0.042 — 0.079 —
HSI ARMA(6,4) 0.182 -0.161 0.097 -0.079

N225 AR(6) 0.104 — 0.075 —

the HSI estimated α1 coefficient, and for β = 55 relatively close to the S&P 500 estimated α1

coefficient. On the other hand, the moving average component of the real-world indices exhibits
considerably lower expected values than our simulated distributions of the µ1 coefficients do.

Figure 9 in Appendix D shows, on a log-log scale, tail plots of 10 % of largest absolute price
differences of the four aforementioned indices. The estimated tail indices are 4.488 (S&P 500,
R2 = 0.89), 4.456 (FTSE 100, R2 = 0.961), 4.241 (HSI, R2 = 0.983), and 3.669 (Nikkei 225,
R2 = 0.991). To the eye, the data fit the power law well, and the tails of Nikkei 225 are almost
perfect power law fit, as documented by extremely high value of R2. A comparison with Table 5
shows that, in most cases, the tail indices are lower than those of the simulated xt time series.
However, the same table provides evidence that the PT extension actually moves the model closer
to reality in terms of the tail indices’ magnitude for most values of β.

7. Results

Implementation of the PT feature into the model changes the behavior of the model consider-
ably. Nonetheless, some of the key characteristics remain the same as the underlying mathematical
structure of model is intact—the generated time series of the deviations from the fundamental price
of the asset, xt, exhibit decreased variance as the intensity of choice parameter β increases, extreme
price deviations are less ‘extreme’ for larger β, and the deviations are still far from being normally
distributed. However—and most importantly—the differences are considerable and non-negligible
as indicated by very low p-values of the K-W tests as well. The main conclusions arising from the
PT extension can be summarized as follows:

1. Stability. Probably the most noticeable change evident from the PT extended model sim-
ulations is the overall increased stability. Summarized in Table 2, the sample variance is
generally lower than it is in the benchmark case. We remind that the same random seed is
used for both versions of the model. The difference in stability can therefore be attributed
to the PT extension completely.

2. Loss aversion matters. Number of strategies endowed with the PT feature, L, affects the
performance of the model significantly. Summarizing the K-W tests for different L, Table 6
shows that if only the fundamentalist strategy is loss-averse (i.e. L = 1), the empirical
distributions of xt are statistically different at a reasonable significance level from those
obtained from the model with L = 0 only for higher values of β. On the other hand, for
L > 1 the distributions are statistically (and also usually visually) different from those of the
benchmark, L = 0 case.

3. Occurrence of fundamentalists is more extreme. Not as striking as the previous two findings—
yet probably of the strongest economic relevance—is the ambiguous status of the fundamen-
talist strategy. In the original model, fundamentalists are, with increasing β, less likely to
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survive in the market than they are for low values of β. However, surprisingly, the PT fea-
ture increases the chances of fundamentalists to survive in the market more often relatively
to the benchmark case. This effect is, interestingly, most pronounced for L = 1, rather than
for higher values of L. The ‘burden’ of loss aversion thus presents significant hindrance for
fundamentalists when all strategies are loss-averse. On the other hand, for L = 1 (i.e. when
they have to face a number of non-PT strategies), fundamentalists are able to survive in the
market more easily.

4. PT helps better explain some classical financial stylized facts. The models with proposed PT
features replicates the empirical findings more accurately than models without them. The
three stylized facts explored are weak autocorrelations of deviations from the fundamental
price, volatility clustering, and fat tails. Results of Section 6 indicate that the PT extended
model is able to better replicate the latter two facts and slightly worse the first fact. It is
however important to emphasize that these differences in replication of empirical findings are
not dramatically large.

8. Conclusion

Using a general idea proposed by Shimokawa et al (2007), we extend the popular Brock and
Hommes (1998a) agent-based asset pricing model and include the most important features of the
PT into the framework, namely the loss aversion with reference point dependence and distorted
treatment of gains and losses. The main contribution of this paper is the finding that the original
model can be consistently and meaningfully extended with the most relevant features of the PT
and—at the same time—its intrinsic ‘stylized’ structure kept essentially intact. Using Monte Carlo
simulations, we find that distributions of the main variables are statistically different from those
obtained from the original version of model, and stability of the model increases as a fraction of
extreme price deviations is ruled out. Furthermore, the occurrence of the fundamental strategy
is more extreme, e.g. the PT feature increases the chances of fundamental traders to survive in
the market relatively to the benchmark simulation. Finally, the extension based on the PT shifts
the original framework closer to real-world market dynamics in terms of two of the three stylized
empirical facts that the analysis focuses on.

As the Brock and Hommes (1998a) model is per se characterized by ‘many degrees of freedom’
and the extensions bring even more options in this regard, future research might concentrate on
exploration of other possible combinations of the parameters. Additionally, the extended model
could be estimated using real-world empirical data to reveal the natural values of some parameters,
e.g. of degree of loss aversion present in the markets. Other field that could be explored with respect
to the extended version of the model is a more in-depth analysis of volatility structure of the xt
time series.
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Figure 6: Plots of the tails of sample xt time series’ empirical distributions and OLS fit. Benchmark case without
the PT feature.

26



Appendix B

(a) β = 5

●

●●●
●●●●●

●●
●

●●●
●●●●

●●●
●●●●●●●

●
●●●●●●●

●●●●●●●●●●
●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

0.04 0.05 0.06 0.07
k

0.005

0.010

0.050

0.100

P(Abs(xt)>k)

(b) β = 105

●

●

●●●
●

●●
●●●●

●●●●●●
●●

●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●

0.04 0.05 0.06 0.07
k

0.001

0.005

0.010

0.050

0.100

P(Abs(xt)>k)

(c) β = 305

●

●

●●

●●
●●

●●●●●●
●●●●●

●●●
●●●●●●
●●

●●●●●●
●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

0.6 0.7 0.8 0.9
k

0.005

0.010

0.050

0.100

P(Abs(xt)>k)

(d) β = 505

●●●
●●●●●
●●●●

●●
●●●●

●●
●●

●●●
●●●●●

●●●
●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●

●●●●●
●●●●●●

●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

0.38 0.40 0.42 0.44
k

0.05

0.10

0.20

P(Abs(xt)>k)

Figure 7: Plots of the tails of sample xt time series’ empirical distributions with the PT feature employed and OLS
fit.
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Appendix C

(a) β = 5
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(c) β = 405
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(d) β = 505
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Figure 8: Plots of PDFs of the MA(1) coefficient µ1 of optimal ARMA models fitted to xt time series with (blue
line) and without (red dashed line) the PT feature.
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Appendix D

(a) S&P 500
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(d) Nikkei 225
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Figure 9: Tails of real stock market indices close price differences distributions; log-log scale; data retrieved form
Yahoo Finance.
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