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Abstract

I study a sequential first-price auction where two items are sold
to two bidders with private binary valuations. A seller, prior to the
second auction, can publicly disclose some information about the out-
come of the first auction. I characterize equilibrium strategies for vari-
ous disclosure rules when the valuations of bidders are either perfectly
positively or perfectly negatively correlated across items. I establish
outcome equivalence between different disclosure rules. I find that it is
optimal for the seller to disclose some information when the valuations
are negatively correlated, whereas it is optimal not to disclose any in-
formation when the valuations are positively correlated. For most of
the parameter values, the seller’s revenue is higher if the losing bid
is disclosed. When only the winner’s identity is disclosed, the equi-
librium is efficient whether the valuations are positively or negatively
correlated.
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1 Introduction

Auction houses like Sotheby’s and Christie’s usually sell multiple items in a

sequence on the same auction day. At the Aalsmeer Flower Auction in the

Netherlands, many lots of flowers are sold continuously each day. Govern-

ments across the world procure goods and services through auctions. Even

though a single procurement contract might be awarded in a particular auc-

tion, these auctions are often recurring events with the same set of bidders.

Because of the sequential nature of auctions in these examples, the auction-

eers have a choice how much information to disclose about the outcomes of

earlier auctions prior to the start of next auction. I study this question in

a setup where an auctioneer sells two items sequentially using a first-price

auction to two bidders, whose valuations for each item can take one of two

possible values. I consider the following disclosure rules by the seller: 1)

disclose both the winning and losing bids of the first auction, 2) only the

winning bid, 3) only the losing bid, 4) only the winner’s identity, or 5) do

not disclose anything. The objective is to identify the disclosure rule that

maximizes the seller’s revenue and to see how this optimal disclosure rule

varies with the prior distribution of valuations.

Although the bidders’ valuations of the items are assumed to be indepen-

dent across bidders, they are correlated across items. Specifically, I consider

two extreme cases. The first case considered is when the item valuations

are perfectly negatively correlated, meaning, if a bidder has a high value for

one item, then he has a low value for the other item and vice versa. The

second case considered is when the item valuations are perfectly positively

correlated, meaning, a bidder has either high or low values for both items.
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By considering these two extreme cases, one can verify how robust are the

conclusions about the seller’s optimal disclosure rule. The assumption of

valuations being perfectly positively correlated is standard in the literature.

To justify the case of negative correlation, suppose two paintings, say, one by

Rembrandt and the other by Picasso, are auctioned. One can imagine that

each participating bidder has strong interest in one of the paintings because

it would better complement his collection, but the other bidders are unsure

which painting it is.

I establish a set of results. First of all, I find equilibrium bidding strategies

in the sequential first-price auction for each combination of disclosure rule

and the correlation of valuations (that is, 10 different cases in total). Once

the equilibrium strategies are found, I compare the seller’s revenue from

different information disclosure rules to find the following. If the valuations

of items are negatively correlated, then it is beneficial for the seller to disclose

some information, whereas if the valuations are positively correlated than

any information disclosure harms the seller. The intuition for this result is

as follows. If the seller discloses some information from the first auction, it

allows the bidders to update their beliefs about the opponent. This, in turn,

gives incentives to the bidders to conceal information about their valuations

in the first auction. In particular, a bidder who has high value for the second

item, benefits if he is perceived by the opponent as someone who has low

value for that item because then the bidding in the second auction will be less

aggressive. The consequences from concealing their true valuations depend

on the correlation of valuations across items. If the valuations are perfectly

negatively correlated, then type (0, 1) bidder (that is, low value for the first
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item and high value for the second item) tries to disguise himself as type (1, 0)

bidder. Because the latter type bids aggressively for the first item, it means

that type (0, 1) bidder must also bid relatively aggressively for that item even

though his valuation is low for that item. In equilibrium, he even bids above

his valuation of the first item with a positive probability. Therefore, the seller

benefits from disclosing information from the first auction as it encourages

such concealment of valuations by the bidders. On the other hand, when the

valuations are perfectly positively correlated, then type (1, 1) bidder tries

to disguise himself as type (0, 0) bidder. Because the latter type does not

bid aggressively for the first item, it means that type (1, 1) bidder also does

not bid too aggressively for that item even though his valuation is high for

that item. Consequently, the seller does not benefit from the information

disclosure.

I also establish outcome equivalence between various disclosure rules. In-

terestingly, which rules are outcome equivalent again depends on the corre-

lation between valuations. Thus, if the valuations are negatively correlated,

I find that, on one hand, auctions in which either both bids or only the

winning bid is disclosed will result in the same equilibrium distribution over

outcomes. On the other hand, auctions in which either the winner’s identity

or the losing bid is disclosed will also lead to the identical equilibrium dis-

tribution over outcomes. If, in turn, the valuations are positively correlated,

the equivalence classes change. Now I find that, on one hand, auctions in

which either both bids or only the losing bid is disclosed are outcome equiv-

alent and, on the other hand, auctions in which either the winner’s identity

or the winning bid is disclosed are outcome equivalent.
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These results can also be related back to the information updating be-

tween the first and second auctions and to the properties of the equilibrium

in the second auction. At the start of the second auction, each bidder assigns

some probability that the opponent has low value for the second item. Lets

refer to the bidder who has higher probability of having low value as the

weak bidder. Roughly, all that matters for the equilibrium payoffs in the

second auction is the probability with which the weak bidder has low value.

Next, one can ask which of the two bidders - the winner or the loser of the

first auction - is more likely to be the weak bidder. When the valuations are

negatively correlated, then between the types (1, 0) and (0, 1), it is likelier

that the former type will win the first auction. Therefore, the winner of

the first auction will be perceived as the weak bidder in the second auction.

This intuitively explains why those disclosure rules that reveal the winner’s

bid of the first auction are outcome equivalent, on one hand, and why those

disclosure rules that do not reveal the winner’s bid are outcome equivalent,

on the other hand: within each equivalence class, the bidders face identical

incentives to conceal their valuations. When the valuations are positively

correlated, then between the types (0, 0) and (1, 1), it is likelier that the lat-

ter type will win the first auction. Therefore, the loser of the first auction will

be perceived as the weak bidder in the second auction. This again explains

why those disclosure rules that reveal the loser’s bid in the first auction are

outcome equivalent, on one hand, and why those disclosure rules that do not

reveal the loser’s bid are outcome equivalent, on the other hand.

One can also be more specific on the revenue ranking of the disclosure

rules. Note that given the equivalence between different disclosure rules, it is
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enough to compare the revenues from disclosing the winning bid against the

revenues from disclosing the losing bid. In the case of negative correlation of

valuations, I find that disclosing the winning bid is only optimal when the

bidders are of type (0, 1) with a relatively high probability. Disclosing the

losing bid is always optimal if this probability is less than 71.53%, whereas

disclosing the winning bid is always optimal only if this probability is above

93.64%. For the rest of the probability values, the optimal disclosure rule

depends on the ratio of marginal valuation (that is, the difference between

high and low values) for the second item over the marginal valuation for

the first item. The higher is this ratio (which is denoted by v), the more

likely it is that the seller will find it optimal to disclose the losing bid. If the

valuations are positively correlated, then disclosing the winning bid is only

optimal when the bidders are of type (0, 0) with a relatively low probability.

If this probability exceeds 23.25%, it is always optimal to disclose the los-

ing bid. Though, as already argued before, if the valuations are positively

correlated, then any information disclosure is dominated by the information

non-disclosure. The ranking of revenues is closely related to the ranking

of bidder’s payoffs, although the efficiency of the equilibrium outcomes also

matters. The results suggest that for most of the parameter values, the bid-

ders bid more aggressively when the losing bid is announced, leading to lower

payoffs to the bidders and higher revenue to the seller.

For the case of negatively correlated valuations, I also provide an example

of more complicated information disclosure rule that outperforms the disclo-

sure rules considered so far. Specifically, I assume that the seller announces

the winning bid if it is below some threshold value, otherwise she announces
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the losing bid. The equilibrium bidding strategies of the first auction are

similar to those when only the losing bid is disclosed, except that the distri-

bution of bids is shifted further to the right. When the seller always discloses

the losing bid, there is still uncertainty about the winner’s type, even if the

loser is perceived as type (0, 1) bidder for sure, and this uncertainty relaxes

the competition in the second auction. But now the seller commits to dis-

closing the winning bid if both bids are relatively low. This reveals that both

bidders are likely to be of type (0, 1), resulting in aggressive bidding in the

second auction. To avoid it, the bidders bid more aggressively already in the

first auction.

There also exists a close relationship between the disclosure rule and the

efficiency of the equilibrium outcome in the first auction.1 I find that the

equilibrium is inefficient (resp., efficient) when the bid of the weak bidder

is disclosed (resp., not disclosed). Therefore, if the objective of the seller

is to implement an efficient outcome irrespective of the sign of correlation

between the valuations of the items, she should only announce the winner’s

identity. If, for example, the seller instead announced the winning bid, then

the equilibrium would be inefficient when the valuations are negatively cor-

related (because the bid of the weak bidder is disclosed), but it would be

efficient when the valuations are positively correlated (because the bid of the

weak bidder is not disclosed).

To understand this connection between the disclosure rule and efficiency,

consider, for example, the case of negatively correlated valuations. Suppose

there is an efficient and, consequently, separating equilibrium in the first

1The equilibrium outcome of the second auction is always efficient.
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auction and both bidders are of type (0, 1). When the winning bid (that

is, the bid of the weak bidder) is disclosed, it becomes common knowledge

that both bidders are of type (0, 1) and they bid aggressively in the second

auction. To avoid it, type (0, 1) wants to pool with the other type and, as a

result, the equilibrium is inefficient. On the other hand, when only the losing

bid is disclosed, the loser still faces uncertainty about the type of the winner

and the bidding in the second auction is not so aggressive. This removes the

need for type (0, 1) to pool with the other type. Similar intuition applies to

the case with positively correlated valuations.

1.1 Related Literature

I am not the first to study information disclosure in sequential auctions when

bidders have multi-unit demand and they know their valuations for all items

before any bidding takes place. To the best of my knowledge, however, all

the existing studies assume that the valuations across items are perfectly

positively correlated. I am the first to explore how the equilibrium strategies

and the equilibrium outcomes depend on the sign of correlation between

the valuations of the items. This, for example, has allowed to identify the

disclosure rule that guarantees the efficiency of the equilibrium whatever is

the correlation between the valuations of the items.

The studies closest to this one are Thomas (2010); Cason, Kannan, and

Siebert (2011); Kannan (2012) that also investigate the effects of information

disclosure in a sequential auction setup with two items and binary valua-

tions.2 They all, however, assume that the bidders have the same valuations

2All these studies consider procurement auctions, but it is inconsequential for the re-
sults.
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for both items, that is, the valuations are perfectly positively correlated and

v = 1. Apart from covering the case of negatively correlated valuations, I

also contribute to this literature when the valuations are perfectly positively

correlated, by allowing v to differ from 1. Thus, for some priors, I find that

the revenue is higher if the losing bid is disclosed when v is either close to

0 or 1, but the revenue is higher if the winning bid is disclosed for the in-

termediate values of v (see Figure 3). Additionally, I consider a wider range

of disclosure rules. There are also other studies that use the same setup

as the aforementioned studies to explore issues other than information dis-

closure. Thus, Ding, Jeitschko, and Wolfstetter (2010) study the dynamics

of equilibrium prices when both bids are announced; Yao and Xiao (2013)

compare the revenues from the simultaneous and sequential auctions when

only the winning bid is announced in the latter auctions; Āzacis and Vida

(2012) illustrate how the announcement of the winning bid naturally leads

to the information exchange between the bidders about their valuations.

Almost all studies that analyse the effects of information disclosure in

sequential auctions with multi-unit demand assume binary valuations. Two

exceptions are Février (2003) and Tu (2005), which assume that the valua-

tions are drawn from a continuous distribution. Similar to my results, Février

(2003) finds that when the valuations are positively correlated, the seller is

better off by not disclosing any information than announcing the winner’s

identity. Tu (2005), similar to this study, considers a range of disclosure

rules, but additionally he requires the equilibrium strategies to be monoton-

ically increasing in valuations. This requirement rules out pooling equilibria

and even leads to the non-existence of equilibrium for some disclosure rules.
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All studies that are cited above, assume a sequence of two auctions. Berge-

mann and Hörner (2014) depart from this assumption and instead consider

an infinite sequence of auctions, but still assume binary and constant valu-

ations. To rule out explicit collusion by bidders, they look for equilibria in

Markov strategies and establish that more information hurts both revenue

and efficiency. Similar to this study, Bergemann and Hörner (2014) find that

the only disclosure rule that ensures that an inefficient equilibrium does not

exist is the one when only the winner’s identity is disclosed.

Finally, there exists a related literature that compares various disclosure

rules in a single-item auction when bidders interact post auction. I mention

only few examples. Information disclosure about bids matters in Lebrun

(2010) because bidders can engage in resale after the auction; in Giovannoni

and Makris (2014) because bidders have reputational concerns; and in Fan,

Jun, and Wolfstetter (2016) because bidders engage in oligopolistic compe-

tition after a cost-reducing patent has been auctioned to one of them.

The rest of the article is organised as follows. Section 2 sets out the

model. Sections 3 and 4 analyse the cases with negative and positive corre-

lations between the valuations of the items, respectively. Section 5 contains

concluding discussion. There I show that the equilibrium prices decline in

expectation when the valuations are negatively correlated, thus providing

another possible explanation for the so-called afternoon effect. Finally, most

of the proofs are relegated to the Appendix.
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2 The Model

Two bidders are competing for two items in a sequential first-price auction.

I assume that each bidder attaches to each item either a low value or a high

value. The valuations of one bidder are independent of the valuations of the

other bidder. However, bidder’s valuations can be correlated across items.

The (bivariate Bernoulli) distribution of valuations, which is the same for

both bidders, is summarized in the following table:

Item 2
0 v

Item 1 0 p00 p01

1 p10 p11

Without loss of generality, the low value is normalized to 0 for both items,

and the high value for the first item is normalized to 1. I assume that bidders’

payoffs are additive in the two items and money, as well as linear in money.

The items are sold in a sequential first-price auction. The bidders submit

sealed bids for the first item and the outcome of this auction is determined.

At this point, the seller might disclose some information about the outcome

of the first auction. Next, the procedure is repeated for the second item.

The bidder who submits the highest bid for an item, obtains it and pays

his bid for that item. If there is a tie in either auction, I assume that it is

broken randomly, except in the second auction when bidders have different

valuations. In that case, I assume that the second item is assigned to the

bidder with higher valuation.3 Finally, I do not require the bids to be non-

3Alternatively, given that I will only consider the cases when the valuations are either
perfectly positively or perfectly negatively correlated, one can assume that the priority in
the second auction is given to the winner of the first auction in the former case, that is,
when the valuations are positively correlated, whereas the priority is given to the loser of
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negative.

Before the start of the second auction, an auctioneer has a choice how

much information to release about the outcome of the first auction. The

auctioneer can choose to disclose both the winning and losing bids, only

the winning bid, only the losing bid, only the winner’s identity, or she can

choose not to disclose anything.4 The objective is to derive equilibrium

strategies and to compare the seller’s revenue from the sequential auction

under different disclosure rules. I adopt the perfect Bayesian equilibrium

as the solution concept, but additionally I also require that no bidder uses

dominated strategies in the equilibrium.5 The out-of-equilibrium beliefs will

be specified as follows: if the equilibrium bid of a bidder in the first auction

must belong to an interval
[
b, b
]
, but instead it is below b (resp., above b),

then the beliefs about this bidder will be exactly the same as the ones if he

had bid b (resp., b).

Rather than solving for the equilibrium strategies for all possible dis-

tributions of valuations, in the continuation, I consider two extreme cases:

when the valuations are perfectly negatively correlated, and when they are

perfectly positively correlated. These cases correspond to p00 = p11 = 0 and

p01 = p10 = 0, respectively.

the first auction in the latter case. Intuitively, in both cases, the priority is given to the
bidder who is more likely to have the high value for the second item.

4More precisely, when either or both bids are disclosed, I additionally assume that each
bidder also learns whether or not he has won the first auction. This additional assumption
is only needed when ties arise with a strictly positive probability in the equilibrium of the
first auction.

5As a result of information disclosure, it can become common knowledge that one of
the bidders has high value for the second item. Then, there exists an equilibrium in the
second auction, in which both bidders submit bids equal to the high value even if one of
them has low value. I rule out such equilibria.
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3 Perfectly Negatively Correlated Valuations

I first consider the case when p00 = p11 = 0. To simplify notation, let us

denote p01 by p, and p10 by 1− p. I also assume that p ∈ (0, 1).

I start by stating the equilibrium strategies in the second auction. Let

w and l denote the winner and the loser of the first auction, respectively.

For i = w, l, let qi be the probability that bidder i is of type (1, 0). As

mentioned in the Introduction, when the valuations are negatively correlated,

the winner of the first auction is perceived to be type (1, 0) bidder with higher

probability. Therefore, I assume that qw ≥ ql. Later I will verify that this

assumption is indeed satisfied.

The following lemma describes the equilibrium strategies of the second

auction whenever the probabilities qi for i = w, l are common knowledge

between the opponents and qw ≥ ql.

Lemma 1 Type (1, 0) bids 0. Type (0, 1) bids v if qw = 0, and bids 0 if

qw = 1. If 0 < qw < 1, then

1. Bidder w of type (0, 1) draws a bid c according to the distribution func-

tion

Gw (c) =
qw

1− qw
c

v − c
(1)

on the interval [0, (1− qw)v],

2. Bidder l of type (0, 1) draws a bid c according to the distribution func-

tion

Gl (c) =
qw

1− ql
v

v − c
− ql

1− ql
(2)
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on the interval [0, (1− qw)v], and puts a mass Gl(0) > 0 on bid 0 if

qw > ql.

The equilibrium payoffs of types (1, 0) and (0, 1) are, respectively, 0 and

qwv in the second auction.

Because versions of this lemma have already been derived in the literature

(see, for example, Maskin and Riley (1985)), the proof of Lemma 1 is omitted.

Let F01 (b) and F10 (b) denote the equilibrium strategies of types (0, 1)

and (1, 0), respectively, in the auction for the first item.

3.1 When No Information Is Disclosed

I start by characterizing the equilibrium strategies when no information is

disclosed. This case will serve as a benchmark.

Proposition 2 Item 1: Type (0, 1) bids 0 and type (1, 0) draws a bid ac-

cording to F10 : [0, 1− p]→ [0, 1], where

F10 (b) =
p

1− p
b

1− b
.

Item 2: The bidders bid as specified in Lemma 1, where qw = ql = 1− p.6

The equilibrium payoffs of types (1, 0) and (0, 1) are, respectively, π10 = p

and π01 = (1− p) v.

Because no information is disclosed between the two auctions, they can

be treated as two independent auctions. As a result, the equilibrium bidding

6Because qw = ql, it does not matter that the bidder does not know whether he is the
winner or the loser of the first auction.
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in the first auction is similar to the one described in Lemma 1 (with the

strategies of types (1, 0) and (0, 1) exchanged, and setting v = 1 and qw =

ql = p).

The equilibrium of the sequential auction is efficient with the surplus

equal to (1− p)2 + p2v + 2p (1− p) (1 + v), the ex ante payoff of a bidder is

p(1−p)(1+v), and the equilibrium revenue of the seller is equal to (1− p)2 +

p2v.

3.2 Only The Winning Bid Is Disclosed

Before stating the equilibrium strategies of the first auction formally, I de-

scribe them in words. The equilibrium strategies are also illustrated for

specific parameter values in Figure 1. Type (0, 1) bidder bids 0 with a pos-

itive probability, which is less than 1. With the remaining probability, he

bids above 0, i.e., above his valuation of the first item. Type (1, 0) bids

above 0 with probability 1. Depending on the parameter values, either both

types randomize on the same interval or the support of type (0, 1) bids is a

strict subset of the support of type (1, 0) bids. Because type (0, 1) can win

the first auction against type (1, 0) with a strictly positive probability, the

equilibrium is inefficient.

Proposition 3 Item 1: F01 :
[
0, b̄
]
→ [0, 1], where

F01 (b) = F01 (0)
v + b+ ln (1− b)

v(1− b)
.

If pv ≥ 1− e−v, then F10 :
[
0, b̄
]
→ [0, 1], where

F10 (b) = −F01 (0)
p

1− p
b+ ln (1− b)
v(1− b)

, (3)
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F01 (0) = 1−b̄
p

and b̄ is given by v(1− p) + b̄+ ln
(
1− b̄

)
= 0.

If pv < 1−e−v, then F10 :
[
0, 1− pv

ev−1

]
→ [0, 1], where F10(b) is defined

in (3) for b ∈
[
0, b̄
]
, and it is

F10 (b) = F01 (0)
p

1− p
1

1− b
− p

1− p
(4)

for b ∈
(
b̄, 1− pv

ev−1

]
, F01 (0) = v

ev−1
< 1 and b̄ = 1− e−v.

Item 2: The bidders bid as specified in Lemma 1, where for 0 ≤ bw ≤ b̄,7

qw =
(1− p) f10 (bw)

pf01 (bw) + (1− p) f10 (bw)
= − ln (1− bw)

v
,

ql =
(1− p)F10 (bw)

pF01 (bw) + (1− p)F10 (bw)
= −bw + ln (1− bw)

v
.

The equilibrium payoffs of types (1, 0) and (0, 1) are, respectively, π10 =

pF01 (0) and π01 = (1− p) v.

The proof of this and other propositions that are omitted from the main

text, can be found in the Appendix.

The ex ante payoff of a bidder is

pπ01 + (1− p) π10 = p (1− p) (v + F01 (0)) .

Thus, the payoff is lower compared with the situation when no information

is released. The expected surplus from the auction is

(1− p)2 × 1 + p2 × 0 + 2p (1− p)×
∫ b̄10

0

F01 (b) f10 (b) db

+ (1− p)2 × 0 + p2 × v + 2p (1− p)× v,
7When bw = 0, qw = (1−p)f10(0)

pF01(0)+(1−p)f10(0) = 0. If bw > b̄, then set qw =

(1−p)f10(b̄)
pf01(b̄)+(1−p)f10(b̄)

.
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where the first line is the surplus from the first auction and the second line

is the surplus from the second auction. Clearly, because the equilibrium is

inefficient, the surplus of the first auction is not maximized. The expected

revenue of the seller is the difference between the surplus and the bidders’

payoffs, and is given by

Rw
n = (1− p)2 + p2v + 2p (1− p)

(∫ b̄10

0

F01 (b) f10 (b) db− F01 (0)

)
.

Because F01 (b) ≥ F01 (0) for all b, the expected revenue exceeds the one

under no disclosure.

3.3 The Winning and Losing Bids Are Disclosed

It turns out that in this case, the equilibrium payoffs of the bidders and the

equilibrium revenue of the seller are the same as in the case when only the

winning bid is disclosed. Even more, the equilibrium strategies of both types

in the first auction are exactly the same for both disclosure rules. The only

change in the strategy is for type (0, 1) bidder in the second auction after

he has lost the first auction. The intuition for this result is simple. The

expected payoff of type (0, 1) bidder in the second auction only depends on

the value of qw. Whether or not the losing bid of the first auction is also

disclosed does not affect this value. Therefore, the first auction’s strategies

are unaffected by the decision to disclose the losing bid in addition to the

winning bid.

Proposition 4 The equilibrium strategies are the same as in Proposition 3,
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except that for 0 ≤ bl ≤ b̄,8

ql =
(1− p) f10 (bl)

pf01 (bl) + (1− p) f10 (bl)
= − ln (1− bl)

v
.

Proof. One only needs to verify two things. First, the winner’s belief about

the opponent’s type at the start of the second auction, as described by ql, is

indeed derived from the strategies of the first auction using Bayes’ formula.

Second, the requirement that ql ≤ qw is also satisfied.

3.4 Only The Losing Bid Is Disclosed

The equilibrium bidding strategies in this and next section are only valid

for v ≤ 1. Given this restriction, one can verify that − ln (1− p) 1−p
p
v <

(1− p) (1− ln (1− p) v) or, equivalently, p + (1− p) ln (1− p) v > 0 holds.

Likewise, (1 − p)v < − ln (1− p) 1−p
p
v or, equivalently, p + ln (1− p) < 0

holds. Therefore, the supports of the equilibrium strategies in the following

proposition are well-defined.

Proposition 5 Suppose v ≤ 1.

Item 1: F01 :
[
(1− p)v,− ln (1− p) 1−p

p
v
]
→ [0, 1], where F01 is implicitly

defined by

pF01 (b) (−b) = (1− p) ln (1− pF01 (b)) v. (5)

F10 :
[
− ln (1− p) 1−p

p
v, (1− p) (1− ln (1− p) v)

]
→ [0, 1], where

F10 (b) =
p

1− p
b+ ln (1− p) 1−p

p
v

1− b
.

8If bl > b̄, then ql =
(1−p)f10(b̄)

pf01(b̄)+(1−p)f10(b̄)
.
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Item 2: The bidders bid as specified in Lemma 1, where ql = 0 if bl ≤

− ln (1− p) 1−p
p
v and ql = 1 if bl > − ln (1− p) 1−p

p
v, whereas

qw =
1− p

1− p+ p (1− F01 (bl))
. (6)

The equilibrium payoffs of types (1, 0) and (0, 1) are, respectively, π10 =

p+ (1− p) ln (1− p) v and π01 = (1− p)v.

In words, in the first auction, types (0, 1) and (1, 0) randomize on adjacent

intervals. Therefore, the type of the loser of the first auction (and sometimes

the type of the winner) is fully revealed prior to the second auction.9 Also

note that the lowest possible equilibrium bid in the first auction is (1− p)v.

Thus, type (0, 1) bids strictly above his valuation for the first item.

Given the equilibrium strategies, the ex ante payoff of a bidder is

pπ01 + (1− p) π10 = p (1− p) (1 + v) + (1− p)2 ln (1− p) v.

Because the equilibrium of the auction is efficient, the surplus from the auc-

tion is (1− p)2 + p2v + 2p (1− p) (1 + v). The expected revenue of the seller

is

Rl
n = (1− p)2 + p2v − 2 (1− p)2 ln (1− p) v.

3.5 Only The Winner’s Identity Is Disclosed

Now, when deriving the equilibrium strategies, one cannot apply the results

of Lemma 1 to the second auction because the values of qw and ql will not be

9If type (0, 1) is the loser of the first auction, then there exists an equilibrium in the
second auction, where both bidders submit a bid equal to v irrespective of the type of
the winner of the auction. As mentioned before, I rule out such equilibria as they involve
using weakly dominated strategies. I do it by requiring type (1, 0) to bid 0 in Lemma 1.
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common knowledge between the bidders. For example, the belief of the loser

of the first item that the opponent has low valuation for the second item

will depend on the loser’s bid, which is known to him but unknown to the

opponent. In order to define the equilibrium strategies of the second auction

in the proposition below, I introduce the following function:

c (b) =
p (1− F01 (b))

1− p+ p (1− F01 (b))
v, (7)

where F01(b) is defined in (5) and b takes values in the interval
[
(1− p)v,− ln (1− p) 1−p

p
v
]
.

This function will define a mapping from the bids b of the first auction into

the bids c of the second auction. To understand its properties, let Hw (c) ≡
1−p
p

c
v−c for c ∈ [0, pv]. Then, one can verify that 1 − F01 (b) = Hw (c (b))

holds. Further, because H ′w (c) > 0 and F ′01 (b) > 0, it follows that c′ (b) < 0.

Thus, c (b) is monotonically decreasing in b, and takes values in the interval

[0, pv].10

Proposition 6 Suppose v ≤ 1.

Item 1: The bidders bid as in Proposition 5.

Item 2: Type (1, 0) bids 0. Bidder w of type (0, 1) bids cw which is defined

by (7) for b = bw. Bidder l of type (0, 1) draws a bid c from the interval

[0, (1− qw)v] according to

Hl (c) =
qwv

v − c
10Also, the inverse of function c (b) is

b (c) = − ln

(
(1− p)v

1− c

)
(1− p) (v − c)

pv − c
v.
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where qw is defined in (6).11 The equilibrium payoffs of types (1, 0) and

(0, 1) are, respectively, 0 and qwv in the second auction.

Thus, in the equilibrium of the second auction, type (0, 1) loser of the first

auction draws a random bid from an interval (as is usual in the first-price

auction with binary valuations), but type (0, 1) winner of the first auction

submits a bid, which is a monotone transformation of his bid in the first

auction. Though, as shown in the proof, from the perspective of type (0, 1)

loser, it is as if type (0, 1) winner is randomizing on the interval [0, (1− qw)v]

according to Hw(c)
Hw((1−qw)v)

in the second auction. As a result, type (0, 1) bidder,

either he wins or loses the first auction, expects the same payoff of qwv in the

second auction (which he could guarantee by submitting a bid of (1− qw)v).

Interestingly, the winner of the first auction does not know the value of qw.

However, his strategy in the second auction does not depend on this value.

Furthermore, because the expression for qw is the same as the one when

only the losing bid is disclosed, the equilibrium strategies of the first auction

are also the same under both disclosure rules. As a result, the equilibrium

outcome of the sequential auction when only the winner’s identity is disclosed,

is also equivalent to the one when only the losing bid is disclosed.12

11If type (0, 1) submitted a bid b 6∈
[
(1− p)v,− ln (1− p) 1−p

p v
]

in the first auction, then

he bids in the second auction as if he had submitted b = (1− p)v or b = − ln (1− p) 1−p
p v,

whichever is closer to his actual bid in the first auction.
12One can also note that Hw(c)

Hw((1−qw)v) = Gw (c), which is given in (1), and Hl (c) = Gl (c),

which is given in (2) when ql = 0. Thus, the equilibrium distribution of bids in the second
auction is the same as the one implied by Lemma 1.
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3.6 The Ranking of Revenues

Given the outcome equivalence between various disclosure rules, it is enough

to compare the cases when only the winner’s bid or only the loser’s bid is

disclosed (when v ≤ 1). The revenue from the auction when the winner’s bid

is disclosed is higher than the revenue when only the loser’s bid is disclosed,

Rw
n ≥ Rl

n if

∆n = p

(∫ b̄10

0

F01 (b) f10 (b) db− F01 (0)

)
+ (1− p) ln (1− p) v ≥ 0.

When pv ≥ 1− e−v, the integral in the above expression is given by

− (1− b̄)2

p(1− p)v2

∫ b̄

0

(v + b+ ln (1− b)) ln (1− b)
(1− b)3

db =
b̄2 + 2p (1− p) v

4p (1− p) v
,

where I have used the relationship ln
(
1− b̄

)
= −b̄− (1− p) v. Hence,

∆n =
b̄2 + 2p (1− p) v

4 (1− p) v
−
(
1− b̄

)
+ (1− p) ln (1− p) v,

and b̄ is given by v(1− p) + b̄+ ln
(
1− b̄

)
= 0.

When pv < 1− e−v, the integral is given by

1− F10

(
1− e−v

)
+

∫ 1−e−v

0

F01 (b) f10 (b) db

= 1 +
p

1− p
1− v − e−v

1− e−v
− p

1− p
1

(ev − 1)2

∫ 1−e−v

0

(v + b+ ln (1− b)) ln (1− b)
(1− b)3

db

= 1 +
p

1− p
ev − vev − 1

ev − 1
− 1

4

p

1− p
−v − 4ev + 2e2v − 3ve2v + 4vev + 2

(ev − 1)2
.

Hence,

∆n = p

(
1 +

3pv − 4v − 2p+ 2pev − pvev

4 (ev − 1) (1− p)

)
+ (1− p) ln (1− p) v.
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∆n = 0 is plotted in Figure 2. For the (p, v) pairs to the right of ∆n = 0

curve, it is optimal for the seller to disclose the winning bid, and for the (p, v)

pairs to the left of ∆n = 0 curve, it is optimal to disclose the losing bid. Fur-

ther, if p ≤ p∗ ≈ 0.7153, then it is not optimal to disclose the winning bid for

any value of v ≤ 1. The reason why Rl
n is higher for most of the parameter

values, can be partly attributed to the inefficiency of the equilibrium when the

winning bid is disclosed. The main reason, however, is that for most param-

eter values, the bidders appear to bid more aggressively and, consequently,

expect a lower payoff when the losing bid is disclosed. This is shown in Fig-

ure 2 by δn = 0, where δn = −
(
p (1− p) (1− F01 (0)) + (1− p)2 ln (1− p) v

)
measures the difference in ex ante payoffs of a bidder when the winning bid

and the losing bid are, respectively, disclosed. For the (p, v) pairs to the left

of δn = 0 curve, bidder’s payoff is higher when the seller discloses the winning

bid.

3.7 Other Disclosure Rules

So far I have studied simple, “natural” disclosure rules but, in principle, the

seller could also adopt a more sophisticated policy. Namely, she could disclose

whether or not the submitted bids (bw, bl) belong to some set. I now provide

an example that shows that the seller can increase her revenue even further

by adopting such more sophisticated disclosure rule. The disclosure rule that

I consider is as follows. The seller announces that the winning bid of the first

auction is bw if bw < k, but she announces that the losing bid is bl if bw ≥ k.

To emphasize, the seller does not just announce a number. She also reveals

whether she announces the winning or losing bid. Said differently, she reveals
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whether or not the bids (bw, bl) belong to the set B = {(bw, bl)|bw < k}.

To simplify the exposition, here I set v = 1.

Proposition 7 Suppose k is such that 1− p ∈
[

k2

1+k ln(k)
, k
]

holds.

Item 1: F01 :
[
0, b̄01

]
→ [0, 1], where F01(b) = k+p−1

kp
for b ∈ [0, k], and

F01(b) for b ∈
(
k, b̄01

]
is implicitly defined by

pF01 (b) (−b)+pF01(k)k = (1−p) (ln (1− pF01 (b))− ln (1− pF01(k))) .

F10 :
[
b̄01, b̄10

]
→ [0, 1], where

F10 (b) =
p

1− p
b− b̄01

1− b
,

and b̄01 = k+p−1−(1−p) ln(k)
p

and b̄10 = 1− p+ pb̄01.

Item 2: The bidders bid as specified in Lemma 1, where ql = qw = 0 if

(bw, bl) ∈ B, otherwise ql = 0 if bl ≤ b̄01 and ql = 1 if bl > b̄01, and qw

is defined as in (6).

The equilibrium payoffs of types (1, 0) and (0, 1) are, respectively, π10 =

p(1− b̄01) and π01 = 1− p.

In words, type (0, 1) bidder bids either 0 with a positive probability,13 or

randomizes on the interval [k, b̄01], and type (1, 0) randomizes on the adjacent

interval [b̄01, b̄10]. Thus, interestingly, none of the types bids in (0, k). The

bidding strategies are similar to the ones when only the losing bid is disclosed.

In fact, if one assumed that k < 1−p, then the equilibrium would be exactly

the same as the one derived in Proposition 5. In that proposition, type (0, 1)

13Therefore, to ensure that F01(0) ≥ 0, I require that k ≥ 1− p.
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randomizes on the interval [1− p, b̄01]. Roughly speaking, under the current

disclosure rule, the original probability that the bid of type (0, 1) lies in the

interval [1−p, k] is being shifted to bid 0. However, additionally, higher values

of k push b̄01 to the right. Although type (0, 1) still expects the same payoff

as before, type (1, 0) must now bid more aggressively because of higher b̄01

and, as a result, expects smaller payoff. This, in turn, means higher revenue

for the seller.

Given the equilibrium strategies, the ex ante payoff of a bidder is

pπ01 + (1− p) π10 = p (1− p) (2− b̄01).

Because the expected surplus is (1− p)2 + p2 + 4p (1− p), the expected rev-

enue of the seller is

Rk
n = (1− p)2 + p2 + 2p (1− p) b̄01,

which is clearly increasing in b̄01. On the other hand, b̄01 is increasing in k

(when k ≥ 1− p). Thus, higher values of k result in higher revenues for the

seller. Note that for k = 1 − p, the seller’s revenue is exactly Rl
n. Hence,

by setting k such that k > 1 − p ≥ k2

1+k ln(k)
holds, it is true that Rk

n > Rl
n.

For p < 0.9364 (see Figure 2), this disclosure rule also dominates the one in

which only the winning bid is announced, Rk
n > Rw

n .

4 Perfectly Positively Correlated Valuations

I now consider the case when p01 = p10 = 0. As noted in the Introduction,

this case has already been studied in the literature for some disclosure rules

although assuming v = 1. To simplify notation, let us now denote p00 by
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p, and p11 by 1 − p. I again assume that p ∈ (0, 1). Below I am going to

establish a similar set of results as in the case of negatively correlated values.

As before, let w and l be the winner and the loser of the first auction,

respectively. For i = w, l, let qi now be the probability that bidder i is of

type (0, 0). Next, I restate Lemma 1 but now I assume that qw ≤ ql. That

is, I assume that the loser of the first auction is perceived to be type (0, 0)

bidder with higher probability. I will verify it once the strategies for the first

auction are stated.

Lemma 8 Type (0, 0) bids 0. Type (1, 1) bids v if ql = 0, and bids 0 if ql = 1.

If 0 < ql < 1, then

1. Bidder w of type (1, 1) draws a bid c according to the distribution func-

tion

Gw (c) =
ql

1− qw
v

v − c
− qw

1− qw
(8)

on the interval [0, (1− ql)v], and puts a mass Gw(0) > 0 on bid 0 if

qw < ql.

2. Bidder l of type (1, 1) draws a bid c according to the distribution func-

tion

Gl (c) =
ql

1− ql
c

v − c
(9)

on the interval [0, (1− ql)v].

The equilibrium payoffs of types (0, 0) and (1, 1) are, respectively, 0 and

qlv in the second auction.

For all the disclosure rules that I am going to consider, it is true that type

(0, 0) bids 0 in the equilibrium of the first auction.14 That it is indeed an

14Note that I allow the bids to be negative.
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equilibrium strategy will follow from the fact that the lowest bid that type

(1, 1) submits in equilibrium, is more or equal to 0. Therefore, I will omit

the strategy of type (0, 0) bidder from the propositions that follow. I also

denote the equilibrium strategy of type (1, 1) in the first auction by F (b).

4.1 When No Information Is Disclosed

The equilibrium strategies are exactly the same as in Proposition 2 with types

(0, 1) and (1, 0) replaced by types (0, 0) and (1, 1), respectively, and ql = qw =

p. The equilibrium is efficient, the expected surplus is (1− p2)(1 + v), the ex

ante payoff of a bidder is p(1− p)(1 + v), and the equilibrium revenue of the

seller is equal to (1− p)2(1 + v).

4.2 Only The Winning Bid Is Disclosed

Here I assume that v ≤ 1.

Proposition 9 Suppose v ≤ 1.

Item 1: F : [0, 1− p+ vp ln p]→ [0, 1], where F is implicitly defined by15

(p+ (1− p)F (b)) (1− b)− vp ln (p+ (1− p)F (b)) = p (1− v ln p) .

(10)

Item 2: The bidders bid as specified in Lemma 8, where ql = qw = 1 if

bw = 0, otherwise qw = 0, and16

ql =
p

p+ (1− p)F (bw)
. (11)

15That F is monotonically increasing is verified in the next subsection. There I need
the assumption that v ≤ 1.

16If bw > 1− p + vp ln p, then ql = p.
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The equilibrium payoff of type (1, 1) is p(1 + v (1− ln p)).

One can verify that F (0) = 0, which means that the equilibrium is effi-

cient and the surplus is (1− p2)(1 + v). The ex ante equilibrium payoff of a

bidder is p (1− p) (1 + v (1− ln p)). Hence, the seller’s revenue is given by

Rw
p = (1− p)2(1 + v) + 2p(1− p)v ln p.

It follows that the bidders gain and the seller loses compared to the case

when no information is revealed.

4.3 Only The Winner’s Identity Is Disclosed

Because the values of qi for i = w, l are not common knowledge between the

bidders when only the winner’s identity is disclosed, one cannot apply the

results of Lemma 8 to the second auction. In order to define the equilibrium

strategies of the second auction, I introduce the following function:

b (c) =
c

v
+ (v − c) ln

(
1− c

v

)
(12)

for c ∈ [0, (1− p)v]. It will define an implicit mapping from the bids b of the

first auction into the bids c of the second auction. First, observe that the

function in (12) is monotonically increasing,

db

dc
=

1− v
v
− ln

(
1− c

v

)
> 0

given that 0 ≤ c < v ≤ 1, and b takes values in [0, 1− p+ vp ln p]. Second,

if one defines a distribution function Hl (c) ≡ p
1−p

c
v−c for c ∈ [0, (1− p)v],

then one can verify that F (b(c)) = Hl(c) holds for F defined in (10). (Also,
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F ′ (b) b′ (c) = H ′l (c). Because b′ (c) > 0 andH ′l (c) > 0, then indeed F ′ (b) > 0

in (10) as required.) From F (b) = p
1−p

c
v−c , one can rewrite (12) as

c =
(1− p)F (b)

p+ (1− p)F (b)
v. (13)

Proposition 10 Suppose v ≤ 1.

Item 1: The bidders bid as in Proposition 9.

Item 2: Type (0, 0) bids 0. Bidder l of type (1, 1) bids cl, which is defined by

(13) for b = bl. Bidder w of type (1, 1) draws a bid c from the interval

[0, cw] according to

Hw (c) =
v − cw
v − c

where cw is defined by (13) for b = bw.17 The equilibrium payoffs of

types (0, 0) and (1, 1) are, respectively, 0 and v−cw = qlv in the second

auction where ql is given by (11).

Note that the winner of the first auction does not know what cl is, but

he knows that it is less than cw and that the distribution of cl is Hl(cl)
Hl(cw)

,

provided that the opponent’s type is (1, 1). Therefore, from the perspective

of the winner, type (1, 1) loser effectively randomizes as specified in Lemma

8. Because type (1, 1) winner also randomizes as specified in Lemma 8 (where

qw = 0), the strategies in the second auction form an equilibrium, in which

both expect a payoff of v − cw = qlv. Further, conditional on the bids of

the first auction, the value of ql is the same whether the winning bid or the

17If type (1, 1) submitted a bid b 6∈ [0, 1− p + vp ln p] in the first auction, then he bids
in the second auction as if he had submitted b = 0 or b = 1 − p + vp ln p, whichever is
closer to his actual bid in the first auction.
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winner’s identity are disclosed. This implies that the equilibrium strategies

in the first auction are also the same for both disclosure rules. Thus, one can

conclude that disclosing only the winning bid and disclosing only the winner’s

identity are outcome equivalent. Note, though, that the equivalence result

was different when the valuations were negatively correlated. In that case,

disclosing the winner’s identity was equivalent to disclosing only the losing

bid.

4.4 Only The Losing Bid Is Disclosed

Here and in the next subsection, I do not require that v ≤ 1.

Proposition 11 Item 1: If p < 2v
1+2v

, then F :
[
0, 1 + pv −

√
pv (2 + pv)

]
→

[0, 1], where

F (b) =
p

1− p
b

1− b
+

√
pv (2 + pv)− p(1 + v)

1− p
1

1− b
. (14)

If 2v
1+2v

≤ p < 1, then F : [0, 1− p]→ [0, 1], where

F (b) =
p

1− p
b

1− b
.

Item 2: The bidders bid as specified in Lemma 8, where qw = ql = 0 if

bl > 0; otherwise

qw =
1
2
p

1
2

(p+ (1− p)F (0)) + (1− p) (1− F (0))
,

ql =
p

p+ (1− p)F (0)
.

The equilibrium payoff of type (1, 1) is
√
pv (2 + pv) when p < 2v

1+2v
and

it is p(1 + v) when 2v
1+2v

≤ p < 1.
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Note that F (0) = 0 in (14) when p = 2v
1+2v

. Therefore, the first expression

for F only applies when p < 2v
1+2v

. In this case, type (1, 1) bids 0 with a

strictly positive probability and, as a result, can lose to type (0, 0) opponent.

Therefore, the equilibrium is inefficient when p < 2v
1+2v

.

When 2v
1+2v

≤ p < 1, the bidders’ payoffs and the seller’s revenue in the

equilibrium are the same as in the case of no information disclosure. That

is, the ex ante payoff of a bidder is given by p(1− p)(1 + v) and the seller’s

revenue is given by

Rl
p = (1− p)2(1 + v).

When p < 2v
1+2v

, the ex ante equilibrium payoff of a bidder is (1 −

p)
√
pv (2 + pv). The surplus in the first auction will be 0 if a bidder with 0

valuation wins that auction. This happens with a probability of

p2 + 2p(1− p)F (0)× 1

2
= p(

√
pv (2 + pv)− pv).

The surplus in the second auction is 0 if both bidders have 0 valuations,

which happens with a probability of p2. Hence, the expected surplus from

the sequential auction is

1− p(
√
pv (2 + pv)− pv) + (1− p2)v = 1 + v − p

√
pv (2 + pv).

Finally, the seller’s revenue is given by

Rl
p = 1 + v − p

√
pv (2 + pv)− 2(1− p)

√
pv (2 + pv)

= 1 + v − (2− p)
√
pv (2 + pv).

4.5 The Winning and Losing Bids Are Disclosed

It turns out that the equilibrium outcome is equivalent to the one found in

the case when only the losing bid is disclosed, again, because the formula for
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ql remains unchanged.

Proposition 12 The equilibrium strategies are the same as in Proposition

11, except that

qi =

{ p
p+(1−p)F (0)

if bw = 0,

0 if bl > 0,

for i = w, l, and qw = 0 and ql = p
p+(1−p)F (0)

if 0 = bl < bw.

Proof. It is easy to verify that the beliefs qi for i = w, l are consistent with

the strategies in the first auction, and that qw ≤ ql indeed holds. The only

difference from Proposition 11 is in the value of qw, but it does not affect the

expected payoffs in the second auction. Therefore, the equilibrium strategies

in the first auction are exactly the same as in Proposition 11.

4.6 The Ranking of Revenues

Again, given the outcome equivalence between several disclosure rules, it is

enough to consider the seller’s revenue for the following cases: no information

is disclosed, only the winning bid is disclosed, and only the losing bid is

disclosed. First of all, one can verify that the seller’s revenue under non-

disclosure, (1 − p)2(1 + v), (weakly) exceeds both Rw
p and Rl

p. Thus, if the

valuations are perfectly positively correlated, the best that the seller can

do, is not to disclose any information between the first and second auctions.

Alternatively, she can sell both objects in a simultaneous auction, in which

the bidders either submit separate bids for each object, or they each submit

a single bid for the bundle of both objects.

One may also want to compare Rw
p and Rl

p. Here I assume that v ≤ 1.
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Let ∆p = Rw
p −Rl

p. Then, ∆p is given by

∆p =

{
(2− p)

(√
pv (2 + pv)− p(1 + v)

)
+ 2p (1− p) v ln p if p < 2v

1+2v
,

2p (1− p) v ln p if 2v
1+2v

≤ p < 1.

It immediately follows that ∆p < 0 when 2v
1+2v

≤ p < 1. ∆p = 0 is plotted

in Figure 3. For the values of p and v to the left of ∆p = 0 disclosing

the winning bid is better, otherwise disclosing the losing bid is better. In

particular, if p exceeds p∗ ≈ 0.2325, disclosing the losing bid is better for

all values of v. The intuition for the ranking of revenues is simple when

2v
1+2v

≤ p < 1: although the surplus under both disclosure rules is the same,

the bidders expect higher payoff when the winning bid is disclosed. On the

other hand, if p < 2v
1+2v

, the surplus is not maximized when the losing bid is

disclosed. This should work in favour of disclosing the winning bid. However,

for many parameter values, this effect is reversed by the fact that the bidders

also bid more aggressively and, consequently, expect lower payoffs when the

losing bid is disclosed. This is illustrated in Figure 3 by δp = 0 where

δp = p (1 + v (1− ln p))−
√
pv (2 + pv) is the difference in a bidder’s payoff

when the winning bid and the losing bid, respectively, are disclosed.

5 Discussion

I have characterized equilibria and compared the corresponding equilibrium

outcomes across different disclosure rules when the valuations are perfectly

correlated. One may ask how the results will change once we depart from

the assumption of perfect correlation. Note that if the valuations are not

correlated across items, then the disclosure rule is irrelevant. That is, the

no-correlation case seems to act as a dividing line and I expect that the
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results that I have established for perfect positive or negative correlation, will

continue to hold for imperfect correlation as long as the sign of correlation

does not change. For example, I expect that disclosing the information about

bids will raise seller’s revenues as long as the valuations are negatively, even

if imperfectly, correlated, but will lower the revenue as long as the valuations

are positively, even if imperfectly, correlated.

I have shown for negatively correlated valuations that a more elaborate

disclosure rule can lead to even higher revenue for the seller. It would be

interesting to characterize what is the optimal disclosure rule in this case.

As a first step, one could identify the optimal (static) mechanism (subject

to the constraint that both items must be sold) and then check whether or

not the sequential first-price auction with the disclosure rule of Section 3.7

replicates this optimal mechanism. Further, besides studying the effects of

information disclosure, the model of sequential first-price auction can be used

to analyze other issues. Thus, when v 6= 1, the items are heterogenous and

the order, in which the items are sold, becomes important. One may ask

how the optimal order of sales depends on the parameters of the model for a

given disclosure rule, or even how the optimal order of sales changes with the

disclosure rule. To do that, one first needs to characterize the equilibrium

strategies for some of the disclosure rules when v > 1. I leave these questions

for the future research.

I finish by briefly analysing another issue that has received attention in

the literature, namely, dynamics of equilibrium prices. It has been noted in

the empirical literature that the prices tend to decline for the items that are

sold later in a sequential auction even if all items are identical. (References
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to this literature can be found, for example, in Section 4.5 and Table 7 of

the survey by Ashenfelter and Graddy (2003).) This phenomenon is known

as the declining price anomaly. I show next that the expected equilibrium

prices decline when the valuations are negatively correlated, thus providing

another possible explanation to this phenomenon.

5.1 Dynamics of Equilibrium Prices

I consider the case when the seller only announces the winning bid, which is

studied in Section 3.2.

The distribution of the winning bid, bw, in the first auction is given by

(pF01 (bw) + (1− p)F10 (bw))2 =

(
pF01(0)

1− bw

)2

.

The expected value of the winning bid in the first auction is

E[bw] =

∫ b̄10

0

bwd

(
pF01(0)

1− bw

)2

= (1− pF01(0))2,

where I have used that b̄10 = 1−pF01(0). Conditional on bw, the distribution

of the winning bid in the second auction, which is denoted as cw, is

(qw + (1− qw)Gw(cw))(ql + (1− ql)Gl(cw)) =

(
qwv

v − cw

)2

.

The expected value of cw, conditional on bw, is∫ (1−qw)v

0

cwd

(
qwv

v − cw

)2

= (1− qw)2v.

Finally, we integrate out bw to obtain the expected value of cw,

E[cw] = (pF01(0))2v +

∫ b̄

0

(1− qw)2vd

(
pF01(0)

1− bw

)2

,
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where the first term captures the fact that cw = v if both bidders are of type

(0, 1) and both bid 0 in the first auction. Substituting the expression for qw,

one arrives at

E[cw] = (pF01(0))2

(
v +

1

v

∫ b̄

0

2(v + ln(1− bw))2

(1− bw)3
dbw

)
.

To simplify the calculations, I now assume that v = 1 and p = 0.5. With

these parameter values, the expected equilibrium price in both auctions is

0.25 if the seller does not disclose any information between the two auctions.

I now show that the prices are declining if the seller discloses the winning

bid. For v = 1 and p = 0.5, F01(0) = 1
e−1

and b̄ = 1 − e−1. Using these

values, one finds that

E[bw] =

(
2e− 3

2e− 2

)2

≈ 0.5027

and

E[cw] =
e2 − 3

8 (e− 1)2 ≈ 0.1858.

To summarize,

Lemma 13 Assume that v = 1, p00 = p11 = 0, and p01 = p10 = 0.5. Then

the expected equilibrium prices are declining, E[bw] > E[cw], if the seller

discloses the winning bid of the first auction before the start of the second

auction.

Appendix

Proof of Proposition 3. First of all, one can verify that the bidders’

beliefs at the start of the second auction, as described by the first expression
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for each qi for i = w, l, are consistent with the strategies of the first auction.

(Although, bidder l additionally knows his losing bid, it does not provide

any additional information about the opponent’s type.) Further, the density

functions for 0 ≤ b ≤ b̄ are given by

f01 (b) = F01 (0)
v + ln (1− b)
v (1− b)2 ,

f10 (b) = F01 (0)
p

1− p
− ln (1− b)
v (1− b)2 .

One can verify that f01 (b) > 0 and f10 (b) > 0 for all 0 < b < b̄ as required.

Using these expressions for f01 (b) and f10 (b), one can simplify the expressions

for qw and ql when 0 ≤ bw ≤ b̄:

qw = − ln (1− bw)

v
,

ql = −bw + ln (1− bw)

v
.

Hence, ql ≤ qw clearly holds, therefore one can apply Lemma 1. Finally, one

can also verify that f01 (1− e−v) = 0. This is important because it ensures

that there is no discrete jump in qw at bw = b̄ = 1− e−v when pv < 1− e−v.

Consequently, qw = 1 for all b ≥ b̄ when pv < 1− e−v.

Next, we consider the bidders’ behaviour in the first auction. Consider

type (0, 1). If he bids in the interval
[
0, b̄
]
, his joint payoff from both auctions
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is18

π01 = (pF01 (b) + (1− p)F10 (b))× (−b)

+ (pF01 (b) + (1− p)F10 (b))× (1− p) f10 (b)

pf01 (b) + (1− p) f10 (b)
× v

+ (p (1− F01 (b)) + (1− p) (1− F10 (b)))

×
∫ b̄10

b

v × (1− p) f10 (s)

pf01 (s) + (1− p) f10 (s)
× pf01 (s) + (1− p) f10 (s)

p (1− F01 (b)) + (1− p) (1− F10 (b))
ds,

where the first term is the bidder’s payoff from the first auction, the second

and third terms are his payoff from the second auction if he has, respectively,

won and lost the first auction,19 and b̄10 = b̄ if pv ≥ 1−e−v, and b̄10 = 1− pv
ev−1

otherwise. If we simplify the above expression, we obtain that

π01 = − (pF01 (b) + (1− p)F10 (b)) (b+ ln (1− b)) + (1− p) (1− F10 (b)) v

= (1− p)v,

where the last equality follows from substituting the expressions for F01 (b)

and F10 (b).

If he bids above b̄, the expression for the payoff depends on whether

pv < 1 − e−v or pv ≥ 1 − e−v. If pv < 1 − e−v, then qw = 1 and for

b ∈
(
b̄, 1− pv

ev−1

]
, the payoff is

(p+ (1− p)F10 (b)) (v − b) + (1− p) (1− F10 (b)) v = v

(
1− p

ev − 1

b

1− b

)
,

where I have used (4). Because b > b̄ = 1 − e−v, this payoff is less than

(1− p)v. For b > 1− pv
ev−1

, the payoff is

v − b < v − 1 +
pv

ev − 1
< v − 1 + e−v < (1− p)v.

18If b = 0, we need to consider ties. However, the first two terms in the payoff expression
will be zero for any tie-breaking rule.

19Recall that the payoff of type (0, 1) from the second auction is given by qwv, where
qw depends on the winning bid of the first auction.
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If pv ≥ 1− e−v, then for b > b̄ the payoff is

−b+
(1− p) f10

(
b̄
)

pf01

(
b̄
)

+ (1− p) f10

(
b̄
)v = −b−ln

(
1− b̄

)
< −b̄−ln

(
1− b̄

)
= (1−p)v.

It follows that the payoff of type (0, 1) is maximized for b ∈
[
0, b̄
]
. Thus, it

is indeed optimal for this type to randomize on this interval.

Consider type (1, 0). If he bids in the interval
(
0, b̄
]
, his expected payoff

is

π10 = (pF01 (b) + (1− p)F10 (b)) (1− b) = pF01 (0) ,

where the last equality follows from substituting the expressions for F01 (b)

and F10 (b). If pv < 1 − e−v, then for any b ∈
(
b̄, 1− pv

ev−1

]
, the expected

payoff is

(p+ (1− p)F10 (b)) (1− b) = pF01 (0) ,

where I have used (4). If he bids 0, then his expected payoff is 1
2
pF01 (0),

given the tie-breaking rule. If he bids above b̄10, his expected payoff is 1−b <

1− b̄10 = pF01 (0). Thus, this type is indifferent between all bids
(
0, b̄10

]
and,

hence, is indeed willing to randomize according to F10 (b).

Proof of Proposition 5. First, the bidders’ beliefs at the start of the

second auction, as described by qw and ql, are derived from the strategies

of the first auction using Bayes’ rule whenever possible. Second, because

ql ≤ qw holds, one can apply Lemma 1 to the second auction.

We now turn to the first auction. First, however, note that given the

specified strategies, ties will arise with zero probability. (In particular,

limb→((1−p)v)+ F01 (b) = 0.) Consider type (0, 1). If he bids in the interval
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[
(1− p)v,− ln (1− p) 1−p

p
v
]
, his expected payoff from both auctions is

π01 = pF01 (b) (−b) + (1− p+ p (1− F01 (b)))
1− p

1− p+ p (1− F01 (b))
v

+pF01 (b)

∫ b

(1−p)v

1− p
1− p+ p (1− F01 (s))

v
f01 (s)

F01 (b)
ds

= pF01 (b) (−b) + (1− p)v − (1− p) v
∫ b

(1−p)v

d (1− pF01 (s))

1− pF01 (s)

= pF01 (b) (−b) + (1− p)v − (1− p) ln (1− pF01 (b)) v

= (1− p)v,

where the last equality follows from the definition of F01 (b) in (5). Thus, type

(0, 1) is indifferent between all bids in the interval
[
(1− p)v,− ln (1− p) 1−p

p
v
]
.

If this type bids below (1− p)v, he expects the same payoff as when bidding

(1− p)v. If he bids above − ln (1− p) 1−p
p
v, he expects a payoff of

(p+ (1− p)F10 (b)) (−b) + (1− p)v − (1− p) ln (1− p) v

= (p+ (1− p) ln (1− p) v)
−b

1− b
+ (1− p)(1− ln (1− p))v,

which is decreasing in b because p + (1− p) ln (1− p) v > 0. It follows that

it is indeed optimal for type (0, 1) to randomize according to F01 (b) in the

first auction.

Consider type (1, 0). If he bids in the interval
[
− ln (1− p) 1−p

p
v, (1− p) (1− ln (1− p) v)

]
,

his expected payoff is

π10 = (p+ (1− p)F10 (b)) (1− b)

=

(
p+ (1− p) p

1− p
b+ ln (1− p) 1−p

p
v

1− b

)
(1− b)

= p+ (1− p) ln (1− p) v.
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If he bids above (1− p) (1− ln (1− p) v), he clearly expects less. If he bids

below − ln (1− p) 1−p
p

, his payoff is

pF01 (b) (1− b) = pF01 (b) + (1− p) ln (1− pF01 (b)) v,

where I have used (5). One can verify that the last expression is increasing

in b for v ≤ 1. Thus, it follows that it is indeed optimal for type (1, 0) to

randomize according to F10 (b) in the first auction.

Proof of Proposition 6. We solve for the equilibrium strategies back-

wards, starting with the second auction. Given the specified strategies, it is

clear that type (1, 0) finds it optimal to bid 0 for any beliefs about the type

of the opponent. It remains to check the optimality of type (0, 1) strategies.

At the beginning of second auction, bidder w of type (0, 1) believes that the

opponent is of type (1, 0) with probability ql = 0. His expected payoff at the

start of the second auction is

Hl (c) (v − c) = qwv

for all c ∈ [0, (1− qw)v] and it is v − c < qwv for c > (1 − qw)v. Thus, this

bidder is willing to bid cw as long as cw ≤ (1 − qw)v = p(1−F01(bl))
1−p+p(1−F01(bl))

v = cl

where the first equality follows from (6) and the second equality is simply

a definition (cl ≡ c(bl)). Because c (b) is decreasing in b and bw ≥ bl, it is

indeed true that cw ≤ cl.

On the other hand, bidder l of type (0, 1) believes that the opponent is

of type (1, 0) with probability qw, which is given in (6). Furthermore, condi-

tional on his first auction losing bid bl and conditional on the opponent being

of type (0, 1), bidder l believes that the opponent’s bid in the first auction

exceeds b with probability 1−F01(b)
1−F01(bl)

, or equivalently that the opponent’s bid in
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the second auction is less than c with probability Hw(c)
Hw(cl)

where cl = (1−qw)v.

Therefore, the expected payoff of this type at the start of the second auction

is (
qw + (1− qw)

Hw (c)

Hw (cl)

)
(v − c) .

Substituting the expressions for qw and Hw (c), we obtain that(
1− p+ p (1− F01 (bl))

Hw(c)
Hw(cl)

1− p+ p (1− F01 (bl))

)
(v − c) =

1− p
1− p+ p (1− F01 (bl))

v = qwv

for all c ∈ [0, (1− qw)v]. If he bids above (1− qw)v, his payoff is clearly less

than qwv. Because this type of bidder is indifferent between all bids in the

interval [0, (1− qw)v], it is indeed optimal to randomize according to Hl (c).

Hence, type (0, 1) expects a payoff of qwv, which depends on bl, in the

second auction whether or not he has won the first auction. It immediately

follows that the equilibrium strategies in the first auction are exactly the

same as the ones in Proposition 5.

Proof of Proposition 7. First, the bidders’ beliefs at the start of the

second auction, as described by qw and ql, are derived from the strategies

of the first auction using Bayes’ rule whenever possible. In particular, one

cannot apply Bayes’ rule to determine qw if bw ∈ (0, k) is announced, or ql

if bl ∈ (0, k) is announced, because no bids are submitted in this region in

the equilibrium. It is assumed in this case that the deviator is type (0, 1)

bidder. Second, because ql ≤ qw holds, one can apply Lemma 1 to the second

auction.

We now turn to the first auction. Consider type (0, 1). Suppose he bids

0. Then the announcement by the seller will be either that the winning bid

is 0, in which case it will be common knowledge that ql = qw = 0 and the
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bidders will expect a payoff of 0 in the second auction, or that the losing bid

is 0, in which case type (0, 1) bidder expects a payoff of 1−p
1−p+p(1−F01(0))

from

the second action. Hence, the expected payoff is

pF01(0)× 0 + (1− p+ p(1− F01(0))× 1− p
1− p+ p(1− F01(0))

= 1− p.

If he bids in the interval
[
k, b̄01

]
, his expected payoff from both auctions

is

pF01 (b) (−b) + pF01(0)
1− p

1− p+ p(1− F01(0))

+p(F01 (b)− F01(k))

∫ b

k

1− p
1− p+ p (1− F01 (s))

f01 (s)

F01 (b)− F01(k)
ds

+ (1− p+ p (1− F01 (b)))
1− p

1− p+ p (1− F01 (b))

= pF01 (b) (−b) + pF01(0)k

− (1− p) (ln (1− pF01 (b))− ln (1− pF01 (k))) + 1− p

= (1− p),

where I have used that 1−p
1−p+p(1−F01(0))

= k, and the last equality follows from

the definition of F01 (b). Thus, type (0, 1) is indifferent between all bids in

{0} ∪
[
k, b̄01

]
, and he expects a payoff π01 = 1− p.

If this type bids in (0, k), he expects a payoff of

pF01(b)(−b+ 0) + (1− p+ p(1− F01(b))× 1− p
1− p+ p(1− F01(b))

< 1− p.
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If he bids above b̄01, he expects a payoff of

(p+ (1− p)F10 (b)) (−b) + pF01(0)k

− (1− p) (ln (1− p)− ln (1− pF01 (k))) + 1− p

= p
1− b̄01

1− b
(−b) + pb̄01 + 1− p

= p
b̄01 − b
1− b

+ 1− p < 1− p,

where I have used the definition of F10 (b) and the fact that

p
(
−b̄01

)
+ pF01(0)k = (1− p) (ln (1− p)− ln (1− pF01(k))) . (15)

It follows that it is indeed optimal for type (0, 1) to randomize according to

F01 (b) in the first auction.

Consider now type (1, 0). If he bids in the interval [b̄01, b̄10], his expected

payoff is

π10 = (p+ (1− p)F10 (b)) (1− b) = p(1− b̄01).

He has no incentives to bid above b̄10. If he bids in the interval
[
k, b̄01

]
, his

expected payoff is

pF01 (b) (1− b)

= pF01 (b)− pF01(k)k + (1− p) (ln (1− pF01 (b))− ln (1− pF01(k))) ,

which is increasing in b.

Finally, because the probability of winning the auction is the same for all

bids in (0, k), it is enough to consider type (1, 0) bidding “just above 0”. This

deviation is also better than bidding exactly 0 as it avoids possible ties with

the opponent. The payoff from bidding just above 0 is pF01(0). It remains to
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check when pF01(0) ≤ p(1 − b̄01) holds. Using b̄01 = k+p−1−(1−p) ln(k)
p

, which

follows from (15), and F01(0) = k+p−1
kp

, we find that type (1, 0) will not want

to deviate if 1 − p ≥ k2

1+k ln(k)
, which is indeed satisfied. Thus, it is optimal

for type (1, 0) to randomize according to F10 (b) in the first auction.

Proof of Proposition 9. First, the beliefs at the start of the second

auction round are consistent with the first round strategies. Second, qw ≤ ql

holds. Third, the lowest bid that type (1, 1) submits in the first auction is 0,

therefore it is indeed optimal for type (0, 0) to bid 0 in that auction.

The expected payoff of type (1, 1) bidder at the start of the first auction

is

(p+ (1− p)F (b)) (1− b) + (p+ (1− p)F (b))
pv

p+ (1− p)F (b)

+ (1− p) (1− F (b))

∫ b̄

b

pv

p+ (1− p)F (s)

f (s)

1− F (b)
ds

where the first term is the bidder’s payoff from the first auction, the second

and third terms are his payoff from the second auction if he has, respectively,

won and lost the first auction,20 and b̄ ≡ 1− p+ vp ln p. After simplification,

we obtain

(p+ (1− p)F (b)) (1− b) + vp− vp ln (p+ (1− p)F (b)) .

Substituting the expression for F (b) from (10) implies that the payoff is equal

to p(1 + v (1− ln p)) for all b ∈
[
0, b̄
]
. Clearly, the payoff is strictly lower

if the bidder bids above b̄. Hence, a bidder with the valuation profile (1, 1)

is indeed willing to randomize according to F (b) in the first auction. This

completes the proof.

20Recall that the payoff of type (1, 1) from the second auction is given by qlv, where ql
depends on the winning bid of the first auction according to (11).
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Proof of Proposition 10. It is trivial to see that it is optimal for type

(0, 0) to bid 0 in both auctions, given the strategy of the opponent. Consider

type (1, 1). We start with the second auction. Prior to the second auction,

bidder l (of type (1, 1)) believes that the opponent’s type is (0, 0) with prob-

ability qw = 0, while bidder w believes that his opponent’s type is (0, 0) with

probability ql, which is given in (11).

The expected payoff of bidder l, conditional on cw, is

Hw (c) (v − c) = v − cw

for c ≤ cw and it is v − c < v − cw for any c > cw. Thus, even if bidder l

does not know what cw is, he knows that his payoff is maximized at c = cl

(because cl ≤ cw).

The expected payoff of bidder w is(
ql + (1− ql)

Hl (c)

Hl (cw)

)
(v − c) .

Substituting the expressions for ql andHl (c) in the payoff function and noting

that F (bw) = Hl (cw), we obtain that the payoff is v − cw for c ≤ cw, but

the payoff is v − c < v − cw for c > cw. Thus, bidder w is indeed willing to

randomize according to Hw (c).

Note that from (11) and (13), cw = (1 − ql)v. It follows that type (1, 1)

expects a payoff of qlv in the second auction whether he wins or loses the

first auction. From this and the fact that the relationship between ql and bw

is the same as when the winning bid is disclosed, it immediately follows that

the equilibrium strategy of type (1, 1) in the first auction is exactly the same

as the one given in Proposition 9. This completes the proof.
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Proof of Proposition 11. The beliefs prior to the second auction are

indeed consistent with the bidding strategies of the first auction; qw ≤ ql

holds; type (0, 0) bidder finds it optimal to bid 0 in the first auction.

Consider type (1, 1) in the first auction when p < 2v
1+2v

. If he bids b > 0,

then his expected payoff is

(p+ (1− p)F (b)) (1− b) + (p+ (1− p)F (0))× pv

p+ (1− p)F (0)

+ (1− p) (1− F (0))× 0.

If he bids b = 0, then the payoff is

(p+ (1− p)F (0))× 1

2
× 1 +

pv

p+ (1− p)F (0)
.

Substituting the expression for F (b), it follows that the expected payoff

both from bidding b > 0 and from bidding b = 0 is the same and equal

to
√
pv (2 + pv). Obviously, the bidder has no incentives to bid above b̄ =

1 + pv −
√
pv (2 + pv) as it is dominated by bidding b̄.

When 2v
1+2v

≤ p < 1, type (1, 1) expects

(p+ (1− p)F (b)) (1− b) + p× v + (1− p)× 0 = p(1 + v)

for 0 < b ≤ 1− p. If he bids b = 0, his expected payoff is

p× 1

2
× 1 + v,

which is (weakly) less than p(1+v) when 2v
1+2v

≤ p < 1. He has no incentives

to bid above 1 − p either. We conclude that F is indeed the equilibrium

strategy of type (1, 1) bidder in the first auction.

47



References

Ashenfelter, O., and K. Graddy (2003): “Auctions and the price of

art,” Journal of Economic Literature, 41(3), 763–787.
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