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Abstract

In this paper we review and generalize results on the derivation of tractable non-negativity (nec-
essary and su¢ cient) conditions for N -dimensional asymmetric power GARCH/HEAVY models and
MEM. We show that these non-negativity constraints are translated into simple matrix inequalities,
which are easily handled. One main concern is that the existence of such conditions is often ignored
by researchers. We hope that our paper will create more awareness of the presence of these non-
negativity conditions and increase their usage. In practice these constraints may not be ful�lled.
To handle these cases we propose a new mixture formulation in order to eliminate some of these
constraints. By using the exponential speci�cation for some (but not all) of the conditional variables
in the system we considerably reduce the dimensions of them. We also obtain new theoretical results
about the second moment structure and the optimal forecasts of such multivariate processes. Four
empirical examples are included to show the e¤ectiveness of the proposed method.
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1 Introduction

Multivariate GARCH/HEAVY1 models, and MEM (multiplicative error models) have found considerable
empirical success (see, for example, Nakatani and Teräsvirta, 2009, Shephard and Sheppard, 2010, Conrad
and Karanasos, 2010, Noureldin et al., 2012, and Cipollini et al., 2013).
As was indicated at the outset of the research by Conrad and Karanasos (2010) the standard restricted

extended multivariate GARCH model although allowing for spillovers requires all the parameters to
be non-negative. As noted by Rabemananjara and Zakoian (1993) and Knight and Satchell (2007),
parameters that take only non-negative values may be a source of important di¢ culties in running
estimation procedures. If a shock in the past, regardless of the sign, always has a positive e¤ect on the
current conditional volatility, then the impact increases with the magnitude of the shock. Therefore,
cyclical or any non-linear behavior in volatility cannot be taken into account. Equally important, and as
pointed out by Cipollini and Gallo (2010), in our semi-unrestricted models, since they allow for negative
conditional spillovers, the speed of absorption of a shock can be higher than in the restricted speci�cation.
In addition, the more parameters there are in the system (that is the higher its dimension) the more likely
it is that one or more of them will take negative values (see, for example, in the empirical Section the
estimation of high-low range volatilities in four equity markets). Thus, we need a mechanism to ensure
that the conditional covariance matrix is positive de�nite almost surely at all points in time. Conrad and
Karanasos (2010) obtained such a mechanism, but they presented explicit formulas only for the bivariate
case of order (1; 1).
In this paper, �rst, for the N -dimensional system of order (1; q) we present a useful method for

constructing tractable counterparts of the non-negativity constraints derived in Conrad and Karana-
sos (2010). The non-negativity (necessary and su¢ cient) conditions are easily modi�ed, that is they
are expressed in terms of matrix inequalities which can be solved easily. The research by Nelson and
Cao (1992), He and Teräsvirta (1999), Gourieroux (2007), Tsai and Chan (2007, 2008), Nakatani and
Teräsvirta (2008, 2009), Conrad (2010) and Conrad and Karanasos (2010), underlines the theoretical in-
terest in the derivation of such necessary and su¢ cient conditions (this strand of the literature originated
with the seminal work of Nelson, 1991). For example, one of our �ndings, that the jumps in realized
volatility- as proxied by the high-low range volatility- have a negative impact on the realized volatility,
is consistent with that in Andersen et al. (2007).
Our methodology is applicable to all three types of N -dimensional systems, that is GARCH/HEAVY

models, and MEM. It is of considerable interest to investigate whether or not a number of reported
estimated multivariate models satisfy these matrix inequality constraints. Indeed we �nd that an alarming
number of seminar papers report estimated coe¢ cients whose values violate the non-negativity conditions
(see Section I of the supplementary Appendix).
Second, we also derive new tractable constraints for the asymmetric power versions of these N -

dimensional systems. These allow new matrix inequalities to be constructed for the asymmetric power
multivariate process and thus we extend the results in Conrad and Karanasos (2010). For example, our
estimation of a trivariate HEAVY model produced four (out of nine) signi�cant asymmetric parameters.
In practice, these constraints are di¢ cult to be satis�ed. In other words, and as already noted earlier, they
are commonly violated. Researchers should recognize that their existence might impose severe limitations
on the parameter space. Thus, a critical question is: "If these non-negativity conditions are not ful�lled,
is there an alternative multivariate model that allows for negative parameter values, which satisfy such
constraints?". The answer is yes. One possibility is to employ an (unrestricted, since no constraints
are imposed) multivariate exponential speci�cation (see for example, Hautsch, 2008, and Taylor and Xu,
2017). However, it might be rather restrictive to use logs in all N cases.
Therefore, thirdly, and most importantly, we propose a new mixture formulation, which is an e¤ective

way to relax some of these constraints. In particular, we use the exponential function in some but not all
of the N equations. By replacing power transformations with logarithmic ones we are cutting down the
dimensions of the non-negativity conditions. These matrix inequality constraints are tractable in theory
and practice. This general mixture formulation system includes the multivariate log-GARCH model (see
Francq and Sucarrat, 2017, Francq et al., 2017) and exponential MEM (see, Hautsch, 2008) as special
cases. For other recent developments in multivariate GARCH models see, for example, Pedersen and

1The acronym HEAVY (High frEquency bAsed VolatilitY) was introduced by Shephard and Sheppard (2010).
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Rahbek (2014), Nielsen and Rahbek (2014), Morana (2015), and de Almeida et al. (2018).
Apart from conditions on multivariate GARCH/HEAVY models and MEM, which ensure the non-

negativity of the conditional variables, we also derive (our fourth contribution) new theoretical results
on the optimal forecasts and on the second order moments of such models, and, therefore, we extent the
results in He and Teräsvirta (2004). He and Teräsvirta (1999), in the context of a univariate GARCH
model and Conrad and Karanasos (2010) for a bivariate GARCH(1; 1) process, show that the less severe
non-negativity conditions allow more �exibility in the shape of autocorrelation function than the con-
straints restricting the parameters to be non-negative. Similarly, allowing for negative values in some of
the parameters should also improve the forecasting ability of the multivariate models. A Monte Carlo
simulation forecasting exercise con�rms this conjecture.
The relevance and the importance of the proposed method is demonstrated with four empirical exam-

ples on four di¤erent real datasets. Our matrix inequalities can be practically checked with ease and some
of these even e¤ortlessly enforced in estimation. A �nal contribution is the consistent estimation of the
multivariate MEM by quasi maximum likelihood estimation instead of the e¢ cient generalized method of
moments estimation used in Cipollini et al. (2013). As an example, our conclusion that the conditional
mean of stock volume has a negative impact on that of volatility (for two out of the �ve datasets used in
the �rst empirical example; see Section 7), is in line with the theory by Wang (2007). According to Wang
foreign purchases tend to lower volatility by increasing the investor base in emerging markets, since the
broadening of the investor base improves the accuracy of market information and stabilizes stock prices.
The outline of the paper is as follows. Section 2 summarizes some basics concerning the notation

used throughout the paper and introduces the vector asymmetric power speci�cation. Section 3 reviews
the symmetric model, and tractable expressions for the non-negativity constraints are presented together
with some numerical examples. The next Section presents the Monte Carlo simulation. The main results
in terms of matrix inequalities are stated in Sections 5 and 6. Section 7 contains the empirical examples,
and the conclusions can be found in Section 8. The Appendix brie�y discusses the optimal forecasts and
the second moment structure of our proposed mixture formulation. A supplementary Appendix (available
online) contains the proofs. Table 4 presents a summary of the various models. For a summary of our
notation, see Table E.1 in Section E of the supplementary Appendix.

2 The Model

2.1 Notation

Throughout the paper we will adhere to the following notation. F (XF )t�1 is the �ltration generated by all

available information through time t� 1. We will use F (HF )t�1 (X = H) for the high frequency past data,

i.e., for the case of the realized measure, or F (LoF )t�1 (X = Lo) for the low frequency past data, i.e., for the
case of the close-to-close returns. Hereafter, for notational convenience we will drop the superscript XF .
We will use upper(lower) case boldface symbols to refer to square matrices(vectors). That is, y =

[yi]i=1;:::;N is an N � 1 column vector, Y = [yij ]i;j=1;:::;N is a square matrix of order N (hereafter we will
drop the subscript for notational simplicity), and diag[y] denotes a diagonal matrix with elements yi.
Let also Yij(L) be a polynomial of order N where L is the lag operator. Then Y(L) = [Yij(L)] indicates
a matrix polynomial in the lag operator.
The identity matrix of order N is denoted by IN and 0N is the null matrix (hereafter, we will drop

the subscript if the order is N). J[d], 0 � d � N , is a binary matrix that has ones in its �rst d rows
and zeros elsewhere. Thus J[N ] or for notational convenience just J is the the unit matrix, that is a
matrix with all its N2 elements equal to 1. Alternatively, we can write it as J = jj0 where j is a vector
of ones. Similarly, I[d] = IJ[d] is a diagonal matrix with ones in the �rst d diagonal elements and zeros
elsewhere. Thus I(d) = I� I[d] is a diagonal matrix with ones in the last N � d diagonal elements and
zeros elsewhere. Clearly, J[0] = I[0] = I(N) = 0, and I[N ] = I(0) = I.
Further, using standard notation, Y0 and Y�1 are the transpose and the inverse of the square matrix

Y. The determinant and the adjoint of Y are denoted by det[Y] and adj[Y], respectively. That is,
adj[Y] = [Y

fag
ij ] with Y fagij = (�1)i+j det[Yfjig] where Yfjig is the Y matrix without its jth row and ith

column. In other words, Y fagij is the cofactor of the jith element of Y.
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In addition, the elementwise expectation operator is denoted by E, i.e., E(Y) = [E(yij)] (similarly,
E(Y jFt�1 ) denotes the elementwise, conditional on time t�1, expectation operator), whereasY^k = [ykij ]
is the elementwise exponentiation. We will refer to the elementwise absolute value ofY as abs[Y] = [jyij j].
The inequality Y � 0 means that all elements of Y are non-negative real numbers.

Moreover, max[Y] indicates the largest element of the matrix Y and Yk =
Yk

i=1
Y means that the

matrix Y is raised to the power of k. Finally, let Y
2 = Y 
Y, Y
I = Y 
 I, I
Y = I 
Y where 

is the Kronecker product of two matrices, vec(Y) is a vector in which the columns of the matrix Y are
stacked one underneath the other, and � is the Hadamard or elementwise product of matrices.

2.2 The Asymmetric Power Speci�cation

In this Section we introduce the asymmetric power speci�cation. Consider the N -dimensional vector
process, "t = [j"itj�i ] where �i 2 R+. We assume that the vector "t is characterized by the relation

"t = Zt�t, (1)

where Zt = diag[zt], zt = [jeitj�i ], and �t = [��iit ] is Ft�1 measurable with Ft�1 = �("t�1; "t�2; : : :).
That is, "t = [jeitj�i ��iit ].
Let also e�t = [�it], in other words, e�t is equal to �t when �i = 1 for all i. Further, let Et = diag[et]

where the stochastic vector et = [eit] is independent and identically distributed (i.i.d). In addition, lete"t = Ete�t = [eit�it].
In the N -dimensional GARCH model et has zero mean zero, unit variance, and positive de�nite time

invariant correlation matrix R = [�ij ] with �ii = 1- notice that in this case the ith element of et is
equal to the corresponding element of zt; when �i = 1 for all i, multiplied by sign(eit)- therefore, e"t is a
vector with zero conditional mean: E(e"t jFt�1 ) = 0. The conditional covariance matrix of e"t is given by
�t = E(e"te"t0 jFt�1 ) = diag[e�t]Rdiag[e�t].
In the N -dimensional MEM et > 0, with E(et) = j, and positive de�nite covariance matrix Q = [qij ],

with q = diag[Q]. That is, E(e"t jFt�1 ) = e�t. In this case �t = E(e"te"t0 jFt�1 ) = diag[e�t]Qdiag[e�t].
As pointed out by Conrad and Karanasos (2010) a major problem in specifying a valid multivariate

GARCH process or MEM lies in choosing appropriate parametric speci�cations for e�^2t such that �t is
positive de�nite almost surely for all t. Positive de�niteness of �t (for all t) follows if, in addition to the
correlation matrix R being positive de�nite, the conditional variances of "it or their power transforma-
tions, ��iit , are positive (for all t) as well. Similarly, for the MEM we need in addition to the covariance
matrix Q being positive de�nite, the conditional means of "it or their power transformations, �

�i
it , to be

positive for all t.
The N -dimensional semi-unrestricted extended asymmetric power (SUE-AP) model of order (1; 1) -in

what follows for notational simplicity we will drop the order of the model if it is (1; 1)- consists of the
following equations:

��iit = !i +
XN

j=1
(�ij + ijsj;t�1) j"j;t�1j

�j +
XN

j=1
�ij�

�j
j;t�1,

where sjt is a dummy variable that; i) in the case of the GARCH model takes the value 1 if ejt < 0,
0 otherwise, that is sjt = 1=2[1 � sign(ejt)1], and ii) takes the value 1 if a signed variable (i.e., stock
returns) xjt < 0, 0 otherwise.2

This can be either a multivariate GARCH or HEAVY model or a MEM. For example, in the bivariate
context the two GARCH variables, "it, i = 1; 2, can be the stock returns and the signed square rooted
(SSR) realized measure (i.e., realized variance), and �it = E("2it jFt�1 ) their conditional variances. The
HEAVY formulation parallels the GARCH one. It is also very similar to the bivariate MEM. In the latter
model the two variables ("it) can be the squared returns and the realized measure, and �it = E("it jFt�1 )
their conditional means. Therefore we will use the three terms, GARCH, HEAVY, MEM, interchangeably.

2This type of asymmetry was introduced by Glosten et. al. (1993). In Section B of the supplementary Appendix we
will consider a second type of asymmetry, which was introduced by Ding et. al. (1993), and we will refer to it as SUE-AP
model 2.
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The SUE-AP model can be expressed/interpreted as an N -dimensional system with shock (uncondi-
tional) and conditional spillovers:

(I�BL)�t = !+LAt"t; (2)

(recall that "t and �t have been de�ned in eq. (1))where B = [�ij ] is a full matrix (of order N) that its
cross diagonal elements capture the conditional spillovers; ! = [!i] is a vector that contains the drifts;
At= A+ �t, where A = [�ij ] and �t= [ijsjt], are full matrices as well. Note that �t can be written
as �t= �diag[st] where � = [ij ] and st = [sit]. The cross diagonal elements of (�t)A capture the
(asymmetric) shock (or unconditional) spillovers.
The above model is termed extended since the square matrices are full, and semi-unrestricted because

as we will see below some of the elements of the B matrix (including some of the o¤-diagonal ones but not
all) are allowed to take not only positive but negative values as well. That is, as in Conrad and Karanasos
(2010) we consider a SUE formulation that allows for feedback e¤ects between the conditional variances (or
means in the case of the MEM), which can be of either sign, positive or negative.3 However, on the other
hand all the elements of the A and � matrices are restricted to be non-negative (see Theorem 2 below).
Therefore, in Section 5 we will also introduce another model which allows for negative (asymmetric as
well) unconditional spillovers either own or cross ones. Note that, if there are no asymmetries, that is
� = 0, then the model reduces to the symmetric power one:

(I�BL)�t = ! +AL"t; (3)

which is further reduced to the benchmark GARCH/HEAVY model examined in Conrad and Karanasos
(2010) if �i = 2 for all i:

(I�BL)e�^2t = ! +ALe"^2t ;

or the benchmark MEM if �i = 1 for all i:

(I�BL)e�t = ! +ALe"t:
As already noted above a crucial problem concerns the identi�cation of necessary and su¢ cient con-

ditions for the SUE model to have positive �t for all t. This will be the topic of analysis in the rest of
the paper.

3 Matrix Inequality Constraints

To keep this article relatively self-contained we brie�y review the main theoretical results of Conrad and
Karanasos (2010) on the derivation of necessary and su¢ cient conditions, which ensure that �t in an N -
dimensional symmetric GARCH/HEAVY system (or MEM as well) is positive almost surely for all t. In
this Section we give an outline of the second main step in the derivation of such (necessary and su¢ cient)
conditions. The �rst step, that is the �univariate�representations, which each conditional variance (or
mean in the case of the MEM) admits, is given in Section A of the supplementary Appendix as Lemma
A1. The second step is the in�nite expansions, in terms of convolutions of in�nite-order kernels and
corresponding power transformed errors, of the aforementioned �univariate�representations. The latter
two steps constitute the main steps in the derivation of Theorem 1 in Conrad and Karanasos (2010),
which we state as Proposition A1 in Section A of the supplementary Appendix.
After the two main steps in the derivation of the aforementioned proposition, which are presented

for completeness, then our more general result follows on formal grounds. That is we express the non-
negativity constraints for the symmetric system as matrix inequalities (Theorem 1 below). A natural
extension of this theorem is the generalization of the results to the asymmetric case. This is developed
in Section 5.

3 In the symmetric restricted extended formulation (see Jeantheau, 1998 and Ling and McAleer, 2003) the A and B are
full matrices but all their elements are allowed to take only non-negative values. As pointed out by Conrad and Karanasos
(2010) the assumption that only positive feedback is allowed for is tempting because positive constants and parameter
matrices with non-negative coe¢ cients are a su¢ cient condition for the positive de�niteness of the conditional covariance
matrix in the extendend formulation.

5



3.1 Wold Decompositions

In this Section we will introduce a useful lemma. In particular, we obtain the SUE-P in�nite-order expan-
sion of each power transformed conditional variable in terms of convolutions of GARCH/HEAVY/MEM
kernels and corresponding power transformed errors.
First, some additional notation is needed. Set � = [�i] as

� =adj[I�B]!: (4)

To ease the following explanations let �(L) = 1�
XN

i=1
�iL

i =
YN

i=1
(1� �iL) be

�(L) = det[I�BL]; (5)

which, since under the assumptions in Appendix A: �N 6= 0, is a scalar polynomial of order N ; �i are
the roots of �(z�1). In what follows, without loss of generality, we will assume that they are distinct and
they satisfy the inequalities: j�1j > j�2j > � � � > j�N j; see also Assumption A2 in Appendix A. Next we
de�ne the square matrix polynomial �(L) = [aij(L)] with aij(L) =

PN
n=1 a

(n)
ij L

n (where the superscript
with parenthesis denotes an index):

�(L) = adj[I�BL]AL: (6)

Similarly to �(L), since under the assumptions in Appendix A: a(N)ij 6= 0 for all i; j, the scalar polynomials
aij(L) are of order N .
Next, set 	(L) = [	ij(L)]; where 	ij(L) =

P1
k=1  

(k)
ij L

k, as

	(L) = �(L)=�(L); (7)

and thus
	ij(L) = �ij(L)=�(L): (7a)

Equivalently 	(L) can be written as

	(L) =
X1

k=1
	kL

k; (7b)

with 	k = [ 
(k)
ij ].

The following corollary gives the one-sided representation of the SUE-P model. The proof is trivial
(the result is obtained from eq. (3) by inverting the matrix polynomial I�BL using eq. (5)).

Corollary 1 Let Assumptions (A1) and (A2) in Appendix A be satis�ed. Then the SUE-P model in eq.
(3) admits the multivariate Wold decomposition:

�t =
�

�(1)
+
�(L)

�(L)
"t; (8)

with the corresponding �univariate�one-sided representations given by

��iit =
�i
�(1)

+
XN

j=1
	ij(L) j"jtj�j : (8a)

(see also Lemma 2 in Conrad and Karanasos, 2010).

Here, each 	ij(L) (see eq. (7a)) can be thought of as an in�nite-order kernel of a univariate SUE-
P(N;N) model. Clearly, for the N -dimensional process in eq. (3) to be well-de�ned and the N (powered
transformed) conditional variables to be positive almost surely for all t, all the constants �i (see eq. (4))
must be positive and all the  (k)ij coe¢ cients in the �univariate�Wold decompositions, that is eq. (8a),

must be non-negative:  (k)ij � 0, i; j = 1; : : : ; N for k = 1; 2; : : :

6



In other words, the non-negativity of the (powered transformed) conditional variables is guaranteed
if and only if all the kernels are non-negative, i.e., if the in�nite number of coe¢ cients in the one-sided
expansions of the N2 kernels are non-negative. For this, one should express these coe¢ cients as functions
of the parameters of the original process. It can then be shown that checking a �nite number of inequality
constraints on these parameters ensures the non-negativity of all GARCH/HEAVY/MEM/ kernels of the
SUE-P model (see either Conrad and Karanasos, 2010, who paid special attention only to the bivariate
case of order (1; 1), or Proposition A1 in Section A of the supplementary Appendix).

Alternative One-Sided Representation

In this Section we make a general observation that will be applied tactically later on. That is, we
shall make use of the following corollary. The multivariate Wold decomposition has been presented above.
Here we present an alternative form for such an in�nite-order expansion.

Corollary 2 Let Assumptions (A1) and (A2) in the Appendix A be satis�ed. Then eq. (8) can be
rewritten in an alternative form as:

�t =
�

�(1)
+
X1

k=1
Bk�1ALk"t:

The above corollary follows directly from Corollary 1 since (I � BL)�1! = adj[I�B]!
det[I�B] = �

�(1) and

	(L) = �(L)
�(L) =

adj[I�BL]AL
�(L) = [I�BL]�1AL=

P1
k=1B

k�1ALk and hence 	k = B
k�1A.

3.2 Tractable Expressions

In this Section we will show that the non-negativity conditions in Proposition (A1) in the supplementary
Appendix (or in Theorem 1 in Conrad and Karanasos, 2010) can be expressed as simple inequalities
involving square matrices. Our constraints in terms of these inequalities are algorithmically solvable
fast enough to be practically relevant. In other words, the result of this Section makes the problem of
non-negativity conditions for N -dimensional SUE-P systems easily solvable and downright tractable.
Next we will present in the following theorem our tractable non-negativity constraints. As we have

just noted they are expressed in terms of matrix inequalities, which can be easily computed fast enough
to make them practical. But before we do that we will introduce some further notation.
If Y(n) = [y

(n)
ij ], n = 1; : : : ; N (recall that the superscript with parenthesis denotes an index), then

max[Y(n)] = max(y
(n)
ij ) for i; j = 1; : : : ; N . In other words, max[Y

(n)] is the largest element of all the N2

elements of Y(n). In addition, Y(n)
max=[ max

1�n�N
y
(n)
ij ] is a matrix whose ijth element is the largest of the N

y
(n)
ij elements. The following theorem holds (below log[X] means that we take the log of each element of
X).

Theorem 1 Consider the N -dimensional vector SUE-P model in eq. (3) and let Assumptions (A1)-(A2)
in Appendix A be satis�ed. Then, the necessary and su¢ cient conditions for ��iit > 0, i = 1; : : : ; N , for
all t given in Proposition A1 in Section A of the supplementary Appendix can be expressed as:
(a) � = adj[I�B]! > 0

(b)

8><>:
�1 is real, and �1 > 0, (C1)
adj[I�1 �B]A > 0; (C2)

Bk�1A
(k��ij)
� 0, for k = 1; : : : ; �; (C3)

(the symbol
(k��ij)
� means that if k > �ij then the ijth scalar inequality of the matrix inequality Bk�1A � 0

should be disregarded)4

4Let the ijth element of Bkij be denoted by �
[kij ]

ij , i; j = 1; : : : ; N , and construct the matrix B[kij ] = [�
[kij ]

ij ]. Then

condition (C3***) in Proposition A1 in the supplementary Appendix for kij = 1; : : : ; �ij amounts to: B[kij ]A > 0 for all

i; j = 1; : : : ; N . For notational convenience we write it instead as in Condition (C3): Bk�1A
(k��ij)
� 0.
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(b*) The �ij and � in Condition (C3) are obtained as follows. Let � = max[K], K = [�ij ], and �ij is the
smallest integer greater than or equal to maxf0; 'ijg with � = ['ij ], given by

� = [log[H(1)]� log[(N � 1)]H(n)
max][log(j�2j)� log(j�1j)]�1;

where H(n)
max=[ max

2�n�N
�
(n)
ij ] and H

(n) = [�
(n)
ij ], 1 � n � N , is given by

H(n) = abs

"
adj[I�n �B]APN
j=1 j�j�

N�(j�1)
n

#
:

Theorem 1 follows directly from Proposition A1 in Section A of the supplementary Appendix (see
also Theorem 1 in Conrad and Karanasos, 2010) and Corollary 2. Interestingly, we only have to check:
i) from condition (a) if all the N elements of the vector adj[I�B]! are positive, ii) from Condition (C2)
if all the N2 elements of the matrix adj[I�1 � B]A are positive, and iii) from Condition (C3) if all the
N2 elements of each of the k matrices, Bk�1A, are non-negative (clearly, the latter condition, for k = 1,
implies that A � 0).
In other words, we replace �ij(�

�1
1 ) > 0, for i; j = 1; : : : ; N , in Proposition A1 by its equivalent

matrix expression adj[I�1 �B]A > 0, and likewise  (k)ij � 0, for i; j = 1; : : : ; N by its equivalent matrix
expressions, 	k = B

k�1A � 0 for all k (see Condition (C3) in part (b) of the above Theorem and also
its part (b*).
However, in practice one should just check the su¢ cient conditions: Bk�1A � 0 for all k from 1 up to a

large enough k, i.e., k = N . In other words, in practice part (b*) of the above theorem can be disregarded
and Condition (C3) simpli�es considerably since it reduces to: Bk�1A � 0, for k = 1; : : : ; � with �, for
example, equal to N . This simpli�cation of the above Theorem is another important consequence of our
matrix inequality constraints. Therefore, our conditions are algorithmically solvable fast enough to be
practically relevant. It is very easy for the practitioner to check if these matrix inequality constraints are
satis�ed.
Next we show that the matrix inequalities are easily represented in terms of scalar inequalities as

well. As a last stage before we do that, however, we will introduce some additional notation. First, let
B? = [�?ij ] be given by B

? = I�B, then condition (a) in Theorem 1 implies that:XN

m=1
�
?fag
im !m > 0; for all i = 1; : : : ; N; (a0)

where �?fagim = (�1)i+m det[B?fmig], and the latter matrix is obtained by deleting the mth row and the
ith column from B?. Similarly, let B� = [��ij ] be given by I�1 �B, then Condition (C2) in Theorem 1 is
equivalent to: XN

m=1
�
�fag
im �mj > 0; for all i; j = 1; : : : ; N (C20),

where ��fagim = (�1)i+m det[B�fmig]. Next, let � =[�i] be the vector of the N distinct roots (see eq. (5)).
Then there is a nonsingular matrix � = [�ij ] (the matrix with the N eigenvectors of B) such that

Bk = �diag[�^k]��1.

Denote the ijth element of ��1 by ��ij , that is �
�1 = [��ij ]. Then, for each k, Condition (C3) in Theorem

1, that the ijth element of 	(k) = Bk�1A must be non-negative for all i; j, amounts to:

 
(k)
ij =

XN

m=1

XN

l=1
�il�

�
lm�

k�1
l �mj > 0, for all i; j = 1; : : : ; N , (C3

0).

The above inequalities when k = 1 reduce to: �ij > 0, since
PN

l=1 �il�
�
lm = 1 if i = m, and zero otherwise.
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3.3 Trivariate System and Numerical Examples

In this Section numerical examples are included to show the e¤ectiveness of the proposed method. These
may be helpful to the researcher who wishes to skip theoretical derivations and is mainly interested in the
application of these constraints to a given N -dimensional system at hand. Next we will discuss a speci�c
model in order to make our analysis more concise. That is, for illustrative purposes, we will consider the
trivariate case.

Lemma 1 Let Assumptions (A1) and (A2) in Appendix A be satis�ed. The following conditions are
necessary and su¢ cient for ��iit > 0, i = 1; 2; 3, for all t, in the trivariate SUE-P model (with � = 3):
(a) For the three constants we requireX3

m=1
�
?fag
im !m > 0; for all i = 1; 2; 3 where

�
?fag
im =

�
(1� �ll)(1� �nn)� �ln�nl if i = m; l 6= n 6= i;

(�1)i+m+1[�im(1� �ll) + �il�lm] if i 6= m 6= l

(b)

8>>>>>><>>>>>>:

�1 is real, and �1 > 0, (C1)X3

m=1
�
�fag
im �mj > 0; for all i; j = 1; 2; 3, where

�
�fag
im =

�
(�1 � �ll)(�1 � �nn)� �ln�nl if i = m; l 6= n 6= i;

(�1)i+m+1[�im(�1 � �ll)� �il�lm] if i 6= m 6= l;

(C20)

aij � 0;
X3

m=1
�im�mj � 0, and

X3

m=1

X3

l=1
�il�lm�mj > 0; for all i; j = 1; 2; 3. (C30)

In what follows we graphically illustrate the necessary and su¢ cient parameter set for the trivariate
SUE-P system. This will provide a better understanding of the results presented in the previous Subsec-
tion. We discuss four examples. We allow two o¤-diagonal elements of B to vary from �0:5 to 0:5. In
the �rst example, we examine the situation where b13 and b31 vary. The purpose is to see if bidirectional
negative (conditional) spillovers are permitted. In the second example, we allow b21 and b31 (i.e., two
parameters in the �rst column of B) to vary. The purpose is to see if negative (conditional) spillovers
from one variable to the other two variables can be allowed. In the third example, we vary b21 and
b23 (i.e., two parameters in the second row of B). The purpose is to see if negative spillovers from two
conditional variables to the third one can be allowed. In the fourth example, we examine if more than
two o¤-diagonal elements of the B matrix can be negative. To do so, we restrict b21 to be negative and
vary b13 and b31.
The parameters chosen are mainly from the empirical results in Table 6 presented in Section 7 (in

particular, the results from the FTSE index in dataset 2). The four data generating processes (DGP) are
given by:

Table1A: Data generating process for Examples 1 and 2.

DGP Ex.1 DGP Ex.2
!0

�
0:149 0:074 0:124

� �
0:153 0:106 0:103

�
A

0@ 0:064 0:021 0:158
0:008 0:005 0:108
0:028 0:043 0:198

1A 0@ 0:075 0:017 0:123
0:021 0:002 0:109
0:030 0:037 0:104

1A

B

0@ 0:790 0:032 b13
0:001 0:808 0:006
b31 0:137 0:616

1A 0@ 0:780 0:003 0:017
b21 0:901 0:022
b31 0:082 0:650

1A
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Table1B: Data generating process for Examples 3 and 4.

DGP Ex.3 DGP Ex.4
!0

�
0:162 0:114 0:117

� �
0:214 0:184 0:164

�
A

0@ 0:075 0:011 0:140
0:013 0:003 0:139
0:023 0:044 0:201

1A 0@ 0:078 0:012 0:171
0:012 0:005 0:100
0:048 0:029 0:228

1A

B

0@ 0:744 0:002 0:051
b21 0:901 b23
0:009 0:056 0:559

1A 0@ 0:743 0:031 b13
�0:028 0:851 0:053
b31 0:111 0:548

1A
In the following �gures, the lines show which combinations of the two free parameters satisfy the

necessary and su¢ cient conditions of Theorem 1 and those for the existence of the �rst and second
unconditional moments (reported in Appendices B and C, respectively). We begin by discussing the
implications of Example 1, which is presented in Figure 1a. First, all combinations of b13 and b31 that
are bounded by the bold solid lines satisfy the conditions of Theorem 1. Second, the combinations of the
two parameters, which are bounded by the dotted grey (dashed red) lines, satisfy the conditions for the
existence of the �rst (second) unconditional moments. Interestingly, both o¤-diagonal elements can be
negative simultaneously.
Example 2 is visualized in Figure 1b. The conditions of Theorem 1 allow for negative spillovers from

��11t to �
�2
2t and �

�3
3t . The negative parameter set that satis�es all conditions simultaneously is given by

the area that is above and to the right of all the three lines in the third quadrant. Figure 1c shows that,
for the parameters in Example 3, the conditions of Theorem 1 allow for negative spillovers from ��11t and
��33t to �

�2
2t . From example 4, it is interesting to observe that three o¤-diagonal elements in the B matrix

can be negative and, at the same time satisfy all the non-negativity conditions.

a. Example 1 b. Example 2

10



c. Example 3 d. Example 4

FIGURE 1. Necessary and su¢ cient parameter sets for the trivariate SUE-P system from Examples
1 to 4. Solid brown lines represent the restrictions implied by Theorem 1. Dotted grey lines represent
the restrictions implied by the existence of the unconditional �rst moment. Dashed red lines represent
the restrictions implied by the existence of the unconditional second moment.

4 Monte Carlo Simulations

In this Section we employ the symmetric SUE model in eq. (3) with �i = 1 for all i, and by using Monte
Carlo simulations, we examine the e¤ects of ignoring the non-negativity conditions in Theorem 1 on: i)
the bias of quasi maximum likelihood (QML) estimates, and ii) the out of sample forecasts. We compare
three cases: I) imposing our matrix inequality constraints in the estimation, II) enforcing Bollerlsev�s
su¢ cient conditions, and III) the unconstrained estimation.
The DGP in the context of MEM is as follows. To generate the disturbance vector et, we use the

multivariate log-normal distribution, with unit vector j as an expectation and covariance matrix Q = [qij _]
(using dataset 2, the FTSE index; see the empirical Section and Table 6 below). The results are based
on 1000-repetition Monte Carlo simulations each with a sample size of 1000 observations. It should be
noted that there should be no di¤erences between the three alternative estimates if all the parameter
values in the DGP are non-negative.
In our DGP, we set three elements in the B matrix to be negative (b13; b21; b31), but still maintain

the matrix inequality constraints in Theorem 1. The parameter values are reported in the �rst column of
Table 2. The estimates based on the matrix inequality constraints have smaller bias than the other two.
The performance of the estimates without imposing any non-negativity conditions is the worst both in
terms of the bias and the standard deviation.
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Table 2. The mean and standard deviation of QML estimates.

Mean Std.
True Case I Case II Case III Case I Case II Case III

!11 0:214 0:244 0:185 0:245 0:220 0:111 0:336
!12 0:184 0:239 0:246 0:279 0:212 0:251 0:277
!13 0:164 0:106 0:194 0:049 0:272 0:074 0:367
a11 0:078 0:077 0:070 0:079 0:027 0:033 0:048
a12 0:012 0:014 0:012 0:017 0:007 0:008 0:038
a13 0:200 0:202 0:192 0:211 0:061 0:071 0:077
a21 0:012 0:028 0:020 0:031 0:033 0:034 0:042
a22 0:005 0:009 0:009 0:010 0:010 0:014 0:014
a23 0:100 0:088 0:068 0:106 0:071 0:095 0:102
a31 0:150 0:152 0:148 0:151 0:014 0:016 0:019
a32 0:029 0:029 0:030 0:030 0:004 0:005 0:010
a33 0:120 0:113 0:113 0:113 0:032 0:035 0:037
b11 0:743 0:747 0:637 0:743 0:186 0:201 0:276
b12 0:031 0:018 0:113 0:024 0:205 0:193 0:308
b13 �0:060 �0:064 0:021 �0:076 0:133 0:064 0:201
b21 �0:020 0:041 0:046 0:108 0:216 0:120 0:317
b22 0:851 0:792 0:752 0:726 0:221 0:206 0:312
b23 0:053 �0:003 0:078 �0:096 0:179 0:148 0:285
b31 �0:120 �0:196 0:003 �0:259 0:250 0:009 0:340
b32 0:111 0:204 0:024 0:269 0:274 0:042 0:367
b33 0:548 0:562 0:470 0:572 0:116 0:055 0:191

Bias Std.
Average 0:025 0:045 0:048 0:122 0:075 0:177

Notes: The true parameter values are reported in the �rst column.

Case I imposes the matrix inequality constraints of Theorem 1.

Case II enforces Bollerslev�s su¢ cient conditions. In case III no constraints are imposed.

For the latter case, there are about 20 out of the 1000 cases where negative

conditional means appear in the simulation/optimization. We disregard these cases.

Std. stands for the standard deviation. The last row reports the average bias and average standard deviation.

Root mean square errors (RMSE) for the out of sample forecasting are reported in Table 3. For one
step ahead forecasting, the estimation imposing our matrix inequality constraints works best. For �ve
step ahead forecasting, the estimation for the �rst two cases works equally well. For twenty step ahead
forecasting, the estimated model based on Bollerslev�s su¢ cient conditions displays the best performance,
mainly because its QML estimates have smaller standard deviations. The estimation without enforcing
any non-negativity constraints is the worst.

Table 3. RMSE for the out of sample forecasting.

Model k = 1 k = 5 k = 20
Case I Case II Case III Case I Case II Case III Case I Case II Case III

�1;t 0:142 0:314 1:017 4:572 4:534 14:887 9:903 6:667 48:354
�2;t 0:270 0:493 1:310 2:888 3:131 29:258 7:623 4:823 26:537
�3;t 0:113 0:182 0:659 3:013 3:300 26:813 8:194 4:932 27:808

Notes: k = 1; 5; 20 are one, �ve and twenty days ahead forecasting, respectively.
Cases I, II and III are as in Table 2. To obtain the forecasts we use eq. (B.1) in Appendix B.

5 Extensions

As noted in the Introduction the constraints that all the parameters in multivariate extended GARCH/HEAVY
models and MEM should be non-negative are only su¢ cient conditions and may be weakened in certain
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cases. In the previous Section we reviewed and generalized the non-negativity conditions derived in Con-
rad and Karanasos (2010). We proposed simple matrix inequalities which incorporate these conditions.
In other words, we reformulated this set of constraints in a more (compact) intuitive visual form, that is
we expressed them in a more e¢ cient way as matrix inequalities. In the next Section we will examine
various extensions such as asymmetric systems, higher shock orders and some new mixture formulations.
Our methodology enables us to deal with these cases without di¢ culty.

5.1 Asymmetric Systems

In the asymmetric version of the N -dimensional system it will su¢ ce to show that the matrix inequality
constraints given in Theorem 1 are satis�ed not only for A but for A+ � as well. In other words, it
su¢ ces to show that the constraints are satis�ed in the two extreme cases: i) that is all the N i.i.d errors
are non-negative for every t: et > 0 for all t, and thus At = A in eq. (2), since st = 0 for all t, and ii)
for every t At = A+�, that is, et < 0 for all t and, therefore, st = j. Then the following theorem holds.

Theorem 2 Consider the N -dimensional vector SUE-AP model in eq. (2) and let Assumptions (A1)
and (A2) in Appendix A be satis�ed. Then, necessary and su¢ cient conditions for ��iit > 0, i = 1; : : : ; N ,
for all t are given by:
(a) � = adj[I�B]! > 0

(b)

8>><>>:
�1 is real, and �1 > 0, (C1)
adj[I�1 �B]A > 0 and adj[I�1 �B](A+ �) > 0; (C2*)

Bka�1A
(k���ij;�)

� 0
(for ka=1;:::;��)

and Bk�1(A+ �)
(k��ij;)

� 0
(for k=1;:::;�)

(C3*)

(the symbol
(k&��ij;&)
� means that if k& > �ij;& , & = �; , then the ijth scalar inequality of the matrix

inequality 	k& � 0 should be disregarded)
(b*)The �ij;& and �& in Condition (C3*) can be obtained as follows: Let �& = max[K(&)], K(&)= [�ij;& ],
and �ij;& is the smallest integer greater than or equal to maxf0; 'ij;&g with �(&) = ['ij;& ], given by

�(&) = [log[H(&;1)]� log[(N � 1)H(&;n)
max ]][log(j�2j)� log(j�1j)]�1;

where H(&;n)
max =[ max

2�n�N
�
(n)
ij;& ] and H

(&;n) = [�
(n)
ij;& ], 1 � n � N , is given by

H(&;n) = abs

"
adj[I�n �B]A(&)PN
j=1 j�j�

N�(j�1)
n

#
,

with A(&) = A if & = � and A(&) = A+ � if & = .

Theorem 2 is similar to Theorem 1 with the only di¤erence that we augment Conditions (C2) and
(C3) in order to take into account the asymmetries. As with Theorem 1 in practice instead of checking
Condition (C3*) one should check the matrix inequalities: Bka�1A � 0 and Bk�1(A + �) � 0 for
all ka and k up to a large enough �a and � , i.e., �a = � = N . As we noted in Theorem 1 this
simpli�cation of Condition (C3*) is another important consequence of our matrix inequalities. Clearly,
the latter conditions, for ka = k = 1, imply that A; (A+ �) � 0.
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5.2 Models of Higher Order: (1; q)

In this Section we extend the order of the N -dimensional vector SUE-AP system in eq. (2) from (1; 1)
to (1; q). That is we consider the multivariate process:

(I�BL)�t = !+
Xq

l=1
LlAlt"t; (9)

where Alt = Al + �lt, with Al = [�
(l)
ij ], and �lt = �ldiag[st], with �l = [

(l)
ij ] (recall that "t and st have

been de�ned in eqs. (1) and (2), respectively). For the above process the following theorem holds.

Theorem 3 Consider the N -dimensional vector SUE-AP (1; q) model in eq. (9) and let Assumptions
(A1)-(A2) in Appendix A be satis�ed.5 Then, the necessary and su¢ cient conditions for ��iit > 0, i =
1; : : : ; N , for all t, are as in Theorem 2 where we replace
i) in Condition (C2*), A and � by eA=Pq

l=1Al�
q�l
1 , and e�=Pq

l=1 �l�
q�l
1 , respectively, and

ii) in Condition (C3*), Bka�1A by
Pmin(q;k�)

s=1 Bk��sAs, and B(k�1)(A+ �) by
Pmin(q;k)

s=1 Bk�s(As+
�s)

(the proof is trivial). An analogous result (not reported) holds for the N -dimensional SUE-AP model
2 of order (1; q). Clearly, if q = 1, then Theorem 3 becomes identical to Theorem 2.
In this Section we have presented results regarding the matrix inequality constraints for two important

extensions of the SUE-P (1; 1) model, namely, the asymmetric case and the higher order (1; q) case. In
the next Section we propose two new multivariate processes.

6 New Formulations

In this Section we examine two important developments. These are the asymmetric power mixture (APM)
and the UE asymmetric power semi-exponential (APSE) model. The former speci�cation can be used if
some of the matrix inequality constraints in the SUE-AP model are violated. Once we have identi�ed
for which equation (power transformed conditional variable) the non-negativity conditions are not met,
then they are easily removed by using the new mixture formulation.
The UE-APSE model allows not only for negative conditional spillovers but for negative shock (un-

conditional) spillover e¤ects as well and, therefore, can be used as an alternative to the APM formulation.

6.1 Asymmetric Power Mixture Model

If a SUE-AP model is estimated and the non-negativity conditions are violated then what should be the
next step? One solution to this problem is to use a multivariate exponential type of model, that is a
system where we model instead of the power transformed conditional variables (��iit ) their logarithmic
transformations, ln(�it). In what follows we will provide an alternative strategy which includes the
exponential type of system as a special case. Before we do that, however, we will introduce some additional
notation.
De�ne the N -dimensional vector �M;t = [�M;it], where

�M;it =

�
��iit if i = 1; : : : ; d; d � 1
ln(�it) if i = d+ 1; : : : ; N; d � N � 1:

with d = 0; : : : ; N . In other words the �rst d conditional variables in this N -dimensional mixture for-
mulation are modelled as power speci�cations (as in Ding et al., 1993) whereas the rest are modelled as
exponential processes (in the spirit of Nelson, 1991). The vector �M;t can be written as:

5with AL replaced by
Pq
l=1AlL

l and (A+ �)L replaced by
Pq
l=1(Al + �l)L

l.
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�M;t = I[d]�t + I(d)�L;t; (10)

where �L;t = [ln(�it)] (recall that �t has been de�ned in eq. (1)), I[d] is a diagonal matrix with ones in
the �rst d diagonal elements and zeros elsewhere, and I(d) = I � I[d]. Clearly, if d = N , then I[N ] = I,
I(N) = 0; and �M;t = �t, whereas if d = 0, then I[0] = 0, I(0) = I, and �M;t = �L;t.
Similarly, de�ne the N -dimensional vector "M;t = ["M;it], where

"M;it =

(
j"itj�i if i = 1; : : : ; d; d � 1
jeitj�i if i = d+ 1; : : : ; N; d � N � 1:

This vector can be expressed as:
"M;t = I[d]"t + I(d)zt (11)

(recall that "t and zt have been de�ned in eq. (1)). Clearly, if d = N , then "M;t = "t, whereas when
d = 0, "M;t = zt.
Then the N -dimensional vector SUE-APM model 1, that is, with the Glosten et al., 1993, type of

asymmetry (we refer to the speci�cation with the Ding et al., 1993 type of asymmetry as model 2; see
Section B in the supplementary Appendix) consists of the following equations:

�M;it = !i +
Xd

j=1
(�ij + ijsj;t�1) j"j;t�1j

�j +
XN

j=d+1
(�ij + ijsj;t�1) jej;t�1j

�j

+
Xd

j=1
�ij�

�j
j;t�1 +

XN

j=d+1
�ij ln(�j;t�1); i = 1; : : : ; N .

The system in a matrix form can be written as

(I�BL)�M;t = !+LAt"M;t; (12)

where B, ! and At are as in eq. (2). When d = N , the APM model becomes identical to the AP model
in eq. (2), whereas if d = 0, it reduces to the multivariate extension of the exponential speci�cation of
Nelson (1991):

(I�BL)�L;t = !+LAtzt: (13)

We will refer to this model as the UE asymmetric power exponential (UE-APE). This multivariate process
in the context of MEM has been used in Taylor and Xu (2017). An applied researcher can also use a
number of alternative multivariate APM speci�cations, i.e., replacing zt in eq. (11) by either "t or
"L;t = [ln("2it)] (see, for details, Section B in the supplementary Appendix). For all these models the
non-negativity constraints are identical and will be given in the following theorem. But �rst, recall that
the N order matrix J[d] indicates a binary matrix with ones in its �rst d rows and zeros elsewhere; when
d = 0, then J[0] = 0, whereas when d = N , J[d] becomes the unit matrix J.

Theorem 4 Consider the N -dimensional vector SUE-APM model in eq. (12) and let Assumptions (A1)-
(A2) in Appendix A be satis�ed. Then, necessary and su¢ cient conditions for ��iit > 0, i = 1; : : : ; d, for
all t in Theorem 2 become
(a) � = adj[I�B]!�J[d]

d
�0

(b)

8>>>>>>>><>>>>>>>>:

�1 is real, and �1 > 0, (C1)

adj[I�1 �B]A�J[d]
d
�0 and adj[I�1 �B](A+ �)� J[d]

d
�0; (C2**)

(Bka�1A)�J[d]
(d; k���ij;�)

� 0
(for ka=1;:::;��)

, and

[Bk�1(A+ �)]�J[d]
(d; k��ij;)

� 0
(for k=1;:::;�)

(C3**)

(the symbol
d
� means that we check only the inequalities in the �rst d rows of the matrix and we disregard

the other inequalities) where �& = max[K(&)�J[d] ] and K(&), & = �; , are as in Theorem 2.
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The non-negativity constraints (matrix inequalities) in the above theorem are similar to (actually
exactly the same as) those in Theorem 2 with the only di¤erence that now for each matrix inequality
we have only d�N scalar inequalities and not N2, that is, we only have to check the scalar inequalities
in the �rst d rows which are linked to the d power transformed conditional variables. In other words,
if d = N , then the above Theorem becomes identical to Theorem 2, whereas when d = 0, it becomes
redundant, since in the UE-APE model no constraints are needed.

6.2 Asymmetric Power Semi Exponential Model

Here we will present the new N -dimensional UE-APSE process. This formulation, with the Glosten et
al. (1993) type of asymmetry (model 1), is given by

��iit = !i +
NX
j=1

NX
l=1

�ij exp[(�jl + jlsj;t�1) jej;t�1j
�j
] +

NX
j=1

�ij�
�j
j;t�1, i = 1; : : : ; N:

The above process can be written in a matrix form as

(I�BL)�t = ! +�LeAtzt ; (14)

where � = [�ij ] and ex means that we take the exponential of each element of the x vector. Thus, since
we take the exponential of each element �ij + ijsj;t�1 this model allows matrices A and � to take
any negative values. However, the B and � matrices must satisfy the matrix inequality constraints of
Theorem 1. Therefore, the following theorem holds.

Theorem 5 Consider the N -dimensional UE-APSE model in eq. (14) and let Assumptions (A1)-(A2)
(with A replaced by �) in Appendix A be satis�ed. Then, necessary and su¢ cient conditions for ��iit > 0,
i = 1; : : : ; N , for all t, are as in Theorem 1 with A replaced by �.

The next table presents a summary of the various multivariate models and theoretical results.

Table 4. Various HEAVY/GARCH models and MEM.

Models# Formulations Notation Non-negativity Constraints

SUE-P (I�BL)�t = !+LA"t
[Eq. (3)]

�t = [�
�i
it ]; "t = Zt�t

Zt = diag[zt], zt = [jeitj�i ]
[Eq. 1]

Theorem 1

SUE-AP (I�BL)�t = !+LAt"t
[Eq. (2)]

At= A+ �t, �t= �diag[st] Theorem 2

SUE-APM (I�BL)�M;t = !+LAt�M;t
[Eq. (12)]

�M;t = I[d]�t + I(d)�L;t
[Eq. (10)]

"M;t = I[d]"t + I(d)zt
[Eq. (11)]

Theorem 4

UE-APSE (I�BL)�t = ! +�LeAtzt

[Eq.(14) ]
; � = [�ij ] Theorem 5

UE-APE (I�BL)�L;t = !+LAtzt
[Eq.(13) ]

�L;t = [ln(�it)] No constraints

7 Empirical Results

In this Section we estimate trivariate and four variate SUE MEM systems (that is symmetric models
with �i = 1 for all i; see also Cipollini, et al. 2013):

(I�BL)e�t = ! +ALe"t;
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where we recall that e�t = [�it] and e"t = Ete�t with Et = diag[et], et = [eit] (see Section 2.2). Notice thate"t, is the vector, which contains the observed series. Since we now use the MEM, we assume that the
stochastic vector et > 0 (and, hence, e"t > 0) is i.i.d with unit vector j as an expectation, positive de�nite
correlation matrix R = [�ij ] with �ii = 1, and covariance matrix Q = [qij ] = diag[q^1=2]Rdiag[q^1=2]
with q = [qii]. So now, e�t = E(e"t jFt�1 ) (see also Section 2.2). The elements of e"t could be the intraday
trading duration, volume and volatility, or three di¤erent measures of volatility (i.e., high-low range
volatility, absolute return and realized volatility) for an individual asset, or the volatility proxy (i.e.,
high-low range volatility) for several �nancial markets.
Following Taylor and Xu (2017) we use the multivariate log-normal distribution for the innovation

vector et, which is a random vector de�ned in [0;+1), that is et � ln N(j;Q). The log likelihood
function, based on e"t = Ete�t, is given by

l(�) =
XT

t=1
ln f(e"tj�);

where

ln f(e"tj�) = �N
2
ln(2�)� 1

2
ln jQj �

XN

j=1
ln "jt �

1

2
(lne"t � ln e�t � �)0Q�1(lne"t � ln e�t � �); (15)

with � = �1=2q. These assume that � = [�0;�], where � contains the parameters in e�t, and � = vech(Q).
Here, the vech operator stacks the lower triangular elements of the N order symmetric Q matrix into the
(N � (N + 1)=2) � vector.
The model can be estimated consistently by QML estimation.6 In what follows we estimate three

(two trivariate and one four-variate) SUE MEM, based on data and model availability. The �rst example
is a trivariate system of intra day trading duration, stock volume and volatility. We use the same
dataset as in Manganelli (2005), who estimated an equation-by-equation speci�cation of this model, but
we estimate a trivariate system.7 The second model employs three volatility indicators (high-low range
volatility, absolute return and realized volatility), which was proposed by Engle and Gallo (2006), and
also estimated by Cipollini et al. (2013).8 The third example is by Cipollini et al. (2010), who estimated a
four-variate process by using daily high-low range data in four EU stock markets (UK, France, Germany,
Switzerland). We use the latest data (from 01/01/2003 to 31/12/2014). As noted earlier all MEM are
estimated by employing the QML estimation strategy initially proposed by Taylor and Xu (2017). The
estimation results are reported in the Tables below. We restrict theA matrix to be non-negative. That is,
combining restrictions on the parameter space (A � 0) with the sample data, we are using the restricted
QML estimation.

Duration, Volume and Volatility

Manganelli (2005) used a diagonal B matrix and an unrestricted A matrix. It should be noted that
Manganelli�s results violate the non-negativity conditions in Theorem 1 (in Section I of the supplementary
Appendix we give examples where well known papers report estimated parameters that violate these
conditions). Caution should be used when estimating a model where the A matrix is unrestricted. In our
estimation all the parameters of the A matrix that turned out to be negative were set equal to zero (see
Table 5 below). For example, in line with Manganelli, who reports negative �13 and �31, in almost all
cases these two parameters took negative values and, therefore, were set equal to zero. Similarly, all the
parameters of the B matrix that turned out to be negative and violated the matrix inequality constraints
were set equal to zero.
In particular, the conditional mean of trading duration a¤ects that of stock volatility positively in

four out of the �ve cases (�31 is positive and signi�cant). This result is in line with the predictions of

6An alternative estimation method was proposed by Cipollini et al. (2013). They bypassed the speci�cation conditional
distribution of the errors and made use of only the �rst two conditional moments of the errors by using an e¢ cient generalized
methods of moments (GMM) estimation method. By a simulation study Taylor and Xu (2017) showed that both the QML
and GMM estimation techniques are consistent and that the e¢ cient loss of the QML estimation compared with the GMM
estimation due to misspeci�cation of the error distribution is trivial.

7See Section H in the supplementary Appendix or Subsection 4.1 in Manganelli (2005) for a concise description of how
the data are prepared for use in his and our paper.

8For the description of the data set see Section H in the supplementary Appendix or Cipollini et al. (2013).
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Diamond and Verrecchia (1987). For CP and DLP the conditional mean of stock volume has a negative
impact on that of volatility (�32 is negative and signi�cant), which is in line with the theory by Wang
(2007). According to Wang foreign purchases tend to lower volatility by increasing the investor base in
emerging markets, since the broadening of the investor base improves the accuracy of market information
and stabilizes stock prices (see also Karanasos and Kartsaklas, 2009). Clearly, the negative estimated
parameter �32 would have been ruled out by the su¢ cient Bollerslev conditions. It also appears that
the conditional mean of trading duration is independent of changes in the other two conditional means
as in all cases (except one) the �12 and �13 parameters are either set equal to zero or are insigni�cant.
Similarly, the conditional mean of stock volume is independent of changes in the conditional means of
the other two variables as in four out of the �ve cases the �21 and �23 parameters are set equal to zero.
Only for the COX case does the conditional mean of volatility a¤ect that of stock volume negatively.
This result is in alignment with the work of Li and Wu (2006). Clearly, the negative value of �23 would
have been ruled out by the su¢ cient Bollerslev conditions. It is easy to check that the matrix inequality
constraints of Theorem 1 are satis�ed for the given parameter combination (see Table G1 in Section G
of the supplementary Appendix).
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Three Volatility Measures

We also �nd signi�cant dynamic interactions among the three di¤erent volatility measurements (daily
high-low range volatility, absolute return, and realized volatility), which is consistent with Cipollini et al.
(2013); see Table 6 above. However in the aforementioned paper, the estimated A matrix has negative
elements and, therefore, the non-negativity conditions are violated (see Section I in the supplementary
Appendix). As a result, negative values may be observed if their estimated model is used to forecast
the three measures of volatility. Nevertheless, the results in Cipollini et al. (2013) indicate that there
might exist negative interactions between the three conditional means. If we restrict the B matrix to be
non-negative (as in the BEKK formulation used in Noureldin et al., 2012), some of the most important
dynamic interconnections between the three volatility indicators may be lost and as a result the forecasts
of these volatility measurements may not be as accurate as they should be. Therefore we allow some
of the elements in the B matrix to be negative while at the same time we make sure that the matrix
inequality constraints of Theorem 1 are preserved. In other words we estimate a less restricted model.
Indeed, our results show that �13 and �31 can be both negative (see for example the DJ30 and S&P 500

cases), while the non-negativity conditions are satis�ed (see Table G2 in Section G of the supplementary
Appendix). Cippolini et al. (2013) view the high-low range volatility as a proxy for jumps in the realized
volatility. Our �nding, that these jumps have a negative impact on the realized volatility (�31 < 0),
is consistent with that in Andersen et al. (2007). This �nding is also interesting, since it shows that
negative conditional spillover e¤ects in both directions are permitted by the matrix inequality constraints.
In sharp contrast, such negative bidirectional feedback is prohibited in a bivariate restricted (or even semi
unrestricted) extended system (see Conrad and Karanasos, 2010). Similarly to the DJ30 and S&P 500
indices in the other three cases the parameters �13 and �31 take negative values. Interestingly, in all
�ve datasets the conditional means of the absolute returns are independent of changes in the other two
conditional means. Finally, the positive and signi�cant �32 parameter implies that in three out of the
�ve indices the conditional mean of the absolute returns has a positive impact on that of the realized
volatility. This result is in line with the �nding of Forsberg and Ghysels (2007), that absolute return is
the most favorable regressor for predicting realized volatility.

High-low Range Volatility in Four Equity Markets

Our results regarding the links between the high-low volatilities of the four European equity markets
are presented in Table 7 below. Interestingly, seven out of the twelve o¤-diagonal elements of A are
positive and signi�cant. For example, the German and UK volatilities a¤ect the conditional mean of
Swiss volatility (see the fourth row), while the conditional mean of the French volatility (in the �rst
row) is a¤ected by all three volatilities. Most importantly, in the B matrix eight out of the twelve cross
e¤ects elements are negative (three of which signi�cant) and yet the non-negativity conditions (matrix
inequality constraints) of Theorem 1 are satis�ed (see Table G3 in Section G of the supplementary
Appendix). Interestingly, in the equations for France and UK (�rst and third rows) all six o¤-diagonal
parameters are negative.
Most importantly, as pointed out by Cipollini and Gallo (2010), in the semi-unrestricted model,

since it allows for negative conditional spillovers, the speed of absorption of a shock can be higher than
in the restricted speci�cation. For example, an increase in the UK high-low range at time t � 1 will
increase (�33 > 0) its conditional mean at time t, which will be further increased at time t+1 (�33 > 0).
However, the initial increase in the UK range will also boost the conditional range of Switzerland upwards
(�43 > 0), which will decrease the UK one at time t+ 1 (�34 < 0). The former e¤ect will partially o¤set
the latter. Cipollini and Galo (2010) also report negative values in their estimated B matrix but the
matrix inequality constraints are violated (see Section I in the supplementary Appendix).
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Table 7. Four variate SUE MEM (1; 1) of daily
high-low range volatility in four Euro equity markets.

A 0.080 0.042 0.040 0.033
( 6.83) ( 2.61) ( 3.27) ( 2.22)
- 0.161 0.002 0.028

(11.92) ( 0.25) ( 2.14)
0.024 0.020 0.086 0.049
( 1.69) ( 1.42) ( 5.59) ( 3.29)
0.013 0.030 0.024 0.108
( 1.02) ( 2.15) ( 2.21) ( 8.36)

B 0.891 -0.050 -0.012 -0.038
(46.41) ( 2.27) ( 0.60) ( 1.67)
- 0.804 - -

(46.17)
-0.037 -0.029 0.923 -0.049
( 1.65) ( 1.44) (34.79) ( 2.08)
-0.044 -0.028 0.024 0.853
( 2.09) ( 1.41) ( 1.23) (37.15)

Notes: We use the same data set as Cipollini and Gallo (2010).
Bollerslev-Wooldridge robust t-statistics in parentheses.
Variables signi�cant at the 5 percent con�dence level
formatted in bold. 1st, 2nd, 3rd and 4th rows:
FR, GE, UK and SW, respectively.
The !i and the qij ; i; j = 1; : : : ; N are not reported
but they are available upon request.
Table 8. Trivariate SUE-AP HEAVY/MEM (1; 1) Model.

A 0.002 0.147 0.003
( 0.05) ( 1.59) ( 0.03)
0.002 0.114 0.054
( 0.01) ( 2.65) ( 2.61)
- 0.123 0.002

( 2.47) (0.01)
B 0.765 0.003 0.003

(30.53) ( 0.01) ( 0.01)
0.002 0.696 -
( 0.05) ( 3.45)
- 0.001 0.741

( 0.01) ( 4.25)
� 0.011 0.239 0.002

( 0.24) ( 2.06) ( 0.02)
0.127 0.108 0.001
( 2.56) ( 2.22) ( 0.03)
0.095 0.109 0.030
( 4.06) ( 1.48) ( 0.51)
Returns Realized Volatility GK Volatility

� 1.70 1.40 1.37
( 7.05) (17.00) (13.64)

Notes: Bollerslev-Wooldridge robust t-statistics in parentheses.
Variables signi�cant at the 5 percent con�dence level
formatted in bold. 1st, 2nd, and 3rd rows:
Returns, Real. Vol. and GK Vol., respectively.
The !i and the qij ; i; j = 1; : : : ; N are not reported
but they are available upon request.
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7.1 The SUE-AP HEAVY Model

In this Section we estimate a trivariate SUE-AP-HEAVY/MEM (1; 1) system, as given by eq. (2), using
daily data for the S&P 500 stock index from 03=01=2000 to 01=03=2013. The 3-dimensional HEAVY
process can be estimated either as a multivariate GARCH speci�cation or as a MEM. In the �rst case,
we model the power transformed conditional variances of the three variables, that is stock returns, SSR
realized volatility and SSR Garman Klass (GK) volatility, using a multivariate normal distribution. For
the MEM we model the power transformed conditional means of the three squared variables, that is
squared returns, realized volatility and GK volatility, using a multivariate log-normal distribution. In
what follows we will use the MEM (and QML estimation, see eq. (15)). The �rst equation in Table 8 is
for the returns, and the other two for SSR realized and GK volatilities, respectively.
There are signi�cant interactions between the three conditional means. The most dominant variable

is the power transformed (� = 1:40) realized volatility since it has a signi�cant impact on the power
transformed (� = 1:70, 1:37) conditional means of the other two variables; see the second column of the
A matrix. The stock return series is also an in�uential variable which a¤ects the two volatilities. In
particular, since the parameters 21 and 31 are signi�cant, we �nd asymmetric shock spillovers from
the power transformed (� = 1:70) stock returns to the power transformed (the two �s are 1:40 and 1:37)
conditional means of the two volatilities. In other words, it is only for the negative returns that such
cross e¤ects are signi�cant. The GK volatility is the less forcible of the three variables. These results are
consistent with those presented in Karanasos et al. (2017). Interestingly, only the diagonal elements of
B are signi�cant, in other words there is no evidence of conditional spillovers either positive or negative.

7.2 UE-PSE Speci�cation

Since the SUE model in eq. (2) restricts the elements of the A matrix to be non-negative we also estimate
for the AVT data from the �rst dataset the following version of the UE-PSE model in eq. (14) (which
allows the elements of the A matrix to take either positive or negative values):

(I�BL)e�t = ! +�LeAz�t ;
where z�t = [je1tj; je2tj; je3tj]0. The estimated (using QML estimation, see eq. (15)) B and � matrices are
now restricted to be diagonals (and therefore non-negative).
Our results are consistent with those in Table 5 (see the AVT part) where most of the o¤-diagonal

elements of B were either restricted to zero or took negative values. Most importantly, there are negative
bidirectional shock spillovers between duration and volatility (�13 and �31 are negative and signi�cant),
a �nding that con�rms many microstructure predictions. In particular, Easley and O�Hara (1992) have
argued that times of high activity (short durations) are associated with a larger fraction of informed
traders in the market, which leads to a quick adjustment in the prices and, hence, increases price volatility
(�31 < 0). Similarly, the negative value of �13, shows that short durations follow large absolute price
changes, and it is consistent with the �ndings of Engle (2000) and Manganelli (2005). This result
implicitly suggest that large absolute quote changes indicate a risk of informed trading, which may make
some liquidity traders leave the market or slow down their trading activity in order to avoid adverse
selection, as predicted by the microstructure theory (see, for example, Easley and O�Hara, 1987, and
Admati and P�eiderer, 1988).
There is also a negative impact from volatility to volume (captured by the �23 parameter) as well.

Interestingly, the three corresponding parameters in Table 5 (�13, �31, and �23) were set to zero. The
aforementioned negative bidirectional shock spillovers are in line with the ones in Manganelli (2005), who
also reported negative �13 and �31 parameters. However, since he did not employ the semi-exponential
speci�cation, these negative values violate the matrix inequality constraint: A � 0:
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Table 9. Trivariate UE-PSE MEM.

AVT data from the �rst dataset
A 0.704 -0.049 -0.119

(29.57) ( 0.83) ( 2.80)
0.010 0.259 -0.110
(0.13) (29.15) ( 2.52)
-0.164 0.057 0.723
( 3.24) ( 2.11) (35.56)

B 0.770 - -
(48.57)
- 0.859 -

(28.76)
- - 0.736

(56.31)
diag(�) 0.196 0.093 0.299

(10.98) ( 5.43) (18.55)
Notes are as in Table 5.

7.3 Mixture Formulation

Having estimated two trivariate symmetric models (the SUE MEM and the UE-PSE one), using the
ATV data from the �rst dataset, in this Section we turn our attention, for comparison purposes, to the
trivariate mixture MEM formulation:

(I�BL)�M;t = ! +AL"M;t;

(see eq. (12)), where now �M;t = [ln(�1t); �2t; ln(�3t))]
0 and "M;t = [je1tj; "2t; je3tj]0. In other words, we

use the conditional mean of volume, whereas for duration and volatility we model the logarithms of their
conditional means. The estimated results (using QML estimation, see eq. (15)) are presented in Table
10 below. Interestingly, there are signi�cant negative spillovers from volume to duration (unconditional)
and volatility (conditional), and conditional spillovers from volatility to duration (that is, �12, �32 and
�13, respectively are negative and signi�cant). This empirical exercise illustrates the importance of the
mixture formulation. All these three signi�cant negative impacts were either not permitted, or were
insigni�cant, in the estimation of the SUE MEM (see the AVT part of Table 5).
Notice that for this mixture formulation the non-negativity conditions of only the second equation

should be checked. Therefore the matrix inequality constraints of Theorem 4 are satis�ed (see the numbers
in italic in the bottom part of the Table).
Finally, comparing the results in the last two Tables, it seems that the negative �13 parameter in

Table 9 has been regained by the corresponding negative � parameter in Table 10 (as predicted by the
microstructure theory), whereas �32 is signi�cant in both cases. In the last table �32 is also signi�cant
and negative, con�rming the theoretical prediction of Wang (2007).

23



Table 10. Trivariate SUE-PM MEM.

AVT data from the �rst dataset
A 0.084 -0.010 -0.005

( 3.26) ( 2.83) ( 0.15)
- 0.025 -

( 7.38)
-0.005 0.016 0.296
(0.18) (6.48) (7.64)

B 0.915 - -0.112
(46.40) (18.09)
- 0.899 -

(54.54)
- -0.100 0.836

(2.49) (7.58)
Matrix Inequality Constraints

adj(I�B)]! 1.509 0.786 -0.252
adj(I�1�B)A 0.135 0.237 -0.565

0.001 0.001 0.001
-0.001 -0.001 0.003

BA 77.456 -10.543 -38.043
0.901 22.648 0.089
-4.599 11.168 247.392

B2A 70.269 -7.765 -0.905
0.810 20.354 0.082
-3.726 11.690 206.751

Notes are as in Table 5.

8 Conclusions

In this paper we have examined some of the properties of N -dimensional extended GARCH/HEAVY
models and MEM. For the parameters of these systems we have derived matrix inequality constraints
that require the power transformed conditional means or variances to be almost surely non-negative at
all t. Our methodology allows us to communicate such non-negativity conditions in a more user friendly
way so that their implications can be seen explicitly. The conditions are not only su¢ cient but necessary
as well. Often in practice these constraints are not taken into account. As a result many seminal papers
report estimated parameters with negative values, which frequently violate the non-negativity conditions.
We have shown that the more general asymmetric setting considerably increases (actually doubles)

the number of constraints and, therefore, imposes severe restrictions on the parameter space. We have
also dealt with those cases where the non-negativity conditions are violated in a di¤erent way. By
modelling the relationship between the conditional variables using a mixture of power and logarithmic
transformations we have minimized the number of such constraints.
These �ndings are of interest in themselves but they also matter because they raise a number of new

questions that we believe may be useful in motivating future research. Here we highlight three suggestions.
Further research should try to follow our techniques and derive matrix inequality constraints ideally in
multivariate systems of order higher than (1; q). The second suggestion refers to a new methodological
approach for obtaining explicit formulas of the second moment structure for such higher orders models.
Note that He and Teräsvirta (2004) have provided only recursive solutions for the restricted extended
multivariate GARCH system of order (2; 2). Our less complicated procedure of adopting the ARMA
representation of a GARCH model will enable us to achieve this goal. A third suggestion for future
research is to relax the assumption of constant parameters. That is, to derive necessary and su¢ cient
non-negativity conditions for N -dimensional models in a time varying setting would strengthen what
we know about such systems. This is undoubtedly a di¢ cult task, but it highlights the importance
of our technique. For such �time varying�multivariate models it is not possible to obtain univariate
representations. Therefore, the approach adopted in Conrad and Karanasos (2010) is not applicable in
this case. In sharp contrast, the multivariate Wold-Crámer decomposition that we have proposed in this
paper, coupled with the novel methodology, proposed in Canepa et al. (2017), for dealing with �time
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varying�models, can provide a solution to this problem.
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A APPENDIX

In this Appendix we will present the identi�ability and invertibility conditions for the SUE-AP model.

ASSUMPTIONS

Assumption A1 (Identi�ability). The formulation of the N -dimensional SUE-AP model at the
true values of the parameters is minimal if I�BL, AL, and, if there are asymmetries, (A+ �)L as well,
satisfy the following conditions:

1. det[AL] 6= 0 (and det[(A+ �)L] 6= 0, if asymmetries are present), det[I�BL] 6= 0.
2. AL and I�BL are coprime. That is, any of the greatest common left divisors of AL and I�BL

are unimodular. In addition, if we have asymmetries, (A+ �)L and I�BL are coprime as well.
3. I�BL is column reduced, that is det[B] 6= 0.

Assumption A1 guarantees that the model in eq. (3) is identi�able (see also Proposition 3.4 in
Jentheau, 1998 and Assumption A1 in Conrad and Karanasos, 2010).

Assumption A2 (Invertibility). The inverse roots �i, i = 1; : : : ; N of �(z) in eq. (5) lie inside the
unit circle and without loss of generality are distinct and ordered as follows: j�1j > j�2j > � � � > j�N j.

B APPENDIX

In this Appendix we will present an explicit formula for the k-step-ahead optimal (in L2 sense) linear
predictor of the SUE-APM model.

OPTIMAL PREDICTORS

The k-step-ahead (k 2 Z+, where Z+ is the set of positive integers) optimal (in L2 sense) linear
predictor of �M;t, E(�M;t jFt�k�1 ), is readily seen to be

E(�M;t jFt�k�1 ) = (I�C)�1(I�Ck)!+Ck�M;t�k; (B.1)
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where C =E[Ct] = B+ (A + � 12 )I[d]Z, and ! = ! + (A + � 12 )I(d)z, with z =E[zt] and Z =E[Zt]; I[d]
and I(d) have been de�ned in eq. (10).
In addition, the �rst-order moment vector, �M = E(�M;t), exists if and only if

�(C) < 1; (B.2)

where �(C) refers to the modulus of the largest eigenvalue of C. Under the condition in eq. (B.2),
�M = limk!1 E(�M;t jFt�k�1 ), is given by

�M = (I�C)�1!: (B.3)

Similarly, the k-step-ahead optimal (in L2 sense) linear predictor of "M;t is:

E("M;t jFt�k�1 ) = I[d]ZE(�t jFt�k�1 ) + I(d)z: (B.4)

When d = N , eq. (B.4) gives: E("t jFt�k�1 ) = ZE(�t jFt�k�1 ), where E(�t jFt�k�1 ) is obtained by eq.
(B.10 by setting d = N .
In addition, under the condition in eq. (B.2), "M = limk!1 E("M;t jFt�k�1 ), is given by

"M = I[d]Z(I�C)�1! + I(d)z: (B.5)

Notice that eq. (B.3) imposes an additional matrix inequality constraint on the parameter space, that
is (I�C)�1! > 0. Finally, setting d = N in eq. (B.5), we obtain " = E("t). The proofs are presented
in Section C of the supplementary Appendix.

C APPENDIX

Now that we have presented the optimal predictors and the �rst unconditional moment of the SUE-APM
model, we will examine its second moments.

SECOND MOMENTS

But �rst, we will introduce some additional notation, which involves various Kronecker products.
Speci�cally, Let

Z
2 = Z
 Z; Z
2� = E(Zt 
 Zt); eZ = Z
2� � Z
2; (C.1a)

C
2 = C
C; C
I = C
 I; I
C = I
C;eA = E(At 
At);

and

I
2[d] = I[d] 
 I[d]; I
2(d) = I(d) 
 I(d); (C.1b)

I

I(d)
[d] = I[d] 
 I(d); I


I[d]
(d) = I(d) 
 I[d]:

Finally, denote eC = IN2�I
CC
I�eAI
2[d] eZ: (C.1c)

Notice that eZ in eq. (C.1a) is a diagonal matrix (of order N2), and its rth element, with r =
[(i� 1)N + j], where for each i = 1; : : : ; N , j = 1; : : : ; N , is given by

z(i�1)N+j = E(jeitj�i jejtj�j )� E(jeitj�i)E(jejtj�j ):

Therefore, eZjN2 is a vector of order N2 with [(i� 1)N + j]th element z(i�1)N+j .
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Observe also that the four matrices in eq. (C.1b), are diagonal of order N2, with only their [(l �
1)N + i]th diagonal elements non-zero, where (for d 6= 0; N):

For I
2[d] : l; i = 1; : : : ; d; d � 1;
For I
2(d): l; i = d+ 1; : : : ; N; d � N � 1;
For I


I(d)
[d] : l = 1; : : : ; d; d � 1 ; i = d+ 1; : : : ; N; d � N � 1;

For I

I[d]
(d) : l = d+ 1; : : : ; N; d � N � 1; i = 1; : : : ; d; d � 1:

Next, let �M (l) = [M;ij(l)], l 2 Z, denote the multidimensional covariance function of f�M;tg, that
is

�M (l) = E[(�M;t�l � �M )(�M;t � �M )0];

or
�M (l) = �M (l)� �M �0M ;

where �M (l) = E(�M;t�l�
0
M;t). In addition, let the vec forms of �M (l) and �M (l) denoted by sM (l) and

M (l), respectively. Explicit solutions for the �M (l) and conditions for its existence will be presented
below.
Further, let

DM = diag[
q
M;11(0); : : : ;

q
M;NN (0)];

where M;ii(0) is the ith diagonal element of �M (0). To further �x notation, write the lth-order, for
l � 1, autocorrelation matrix of f�M;tg as

RM (l) = D
�1
M �M (l)D

�1
M :

Assumption C1. �max(eC) < 1:
Under Assumption C1 (eC has been de�ned in eq. (C.1c)) the vec form of �M (0) is given by

M (0) = eC�1 eA(I
2[d] eZ�
2 + I
2(d)eZjN2 + I

I(d)
[d]

eZ�
j + I
I[d](d)
eZj
�): (C.2)

Further, the vec form of the covariance function, for lag l � 1, M (l), is given by

M (l) = I

CM (0):

Notice that eq. (C.2) imposes an additional matrix inequality constraint on the parameter space, that is
DM > 0.
The proofs are presented in Section E of the supplementary Appendix.
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