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Abstract

We present conditions for the emergence of singularities in DGE models. We dis-

tinguish between slow-fast and impasse singularity types, review geometrical methods

to deal with both types of singularity and apply them to DGE dynamics. We find that

impasse singularities can generate new types of DGE dynamics, in particular tempo-

rary determinacy/indeterminacy. We illustrate the different nature of the two types

of singularities and apply our results to two simple models: the Benhabib and Farmer

(1994) model and one with a cyclical fiscal policy rule.
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1 Introduction

Jean-Michel Grandmont has been interested in the rigorous mathematical analysis of non-

linear dynamic systems in economic applications throughout his long career. In particular,

he has often focussed on the less standard aspects of dynamics revealed by the mathematics,

such as chaos and sunspots - Grandmont (1985), Grandmont (1998), Grandmont (2008), and

Grandmont, Pintus, and Vilder (1998) provide us some fine examples of his contribution to

our understanding on how endogenous fluctuations may emerge in competitive economies.

This line of research has been associated with the study of models with multiple equilib-

ria, local indeterminacy, and sunspot equilibria, which have became part of mainstream

macroeconomics in the last three decades.

In this article we explore something that Grandmont did not get around to studying:

the possibility of singular dynamics in economic models due to infinite eigenvalues. We

believe that infinite eigenvalues are more than a simple curiosity. With finite eigenvalues

the resulting non-singular dynamics display the property that the dimension of the stable

manifold is always the same, so that there is either permanent determinacy or permanent

indeterminacy of equilibrium paths. However, we believe that this is unrealistic: casual

empiricism suggests that economies can pass through periods when they are more volatile

(corresponding to indeterminacy) and periods when they are less volatile (corresponding

to determinate dynamics). Of course, there might be many explanations of this, but the

presence of infinite eigenvalues opens up the possibility that the dimension of the stable

manifold can change at a point in time resulting in a “natural” and endogenous change in the

determinacy of the equilibrium path in real (finite) time. The determinacy (indeterminacy)

of an economy can thus be a temporary phenomenon and the economy can switch between

determinate and indeterminate dynamics along its equilibrium path without the intervention

of changes in underlying parameters.

We provide a general analysis of a generic dynamic general equilibrium (DGE) model and

show that two different types of singularity can arise. One is the case where a parameter

varies and at a particular value renders the eigenvalues infinite everywhere. This is a singular

perturbation and calls for a method of solution dealing with slow-fast systems. The second

is a case of impasses for which there is a one-dimensional impasse set where eigenvalues

become locally infinite. This creates a barrier which can only be crossed at a specific point or

isolated points at which particular properties are satisfied. This is the case where eigenvalues

change sign from plus infinity to minus infinity (or the other way around). In this case, if
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an equilibrium path crosses this barrier, it does so at a particular point in time. The

determinacy properties will switch at that point in time to reflect the change in sign of the

eigenvalue. For example, if we have a path that approaches the barrier with two negative

eigenvalues, one of which goes to infinity, this will exert a strong pull towards a point on

the barrier, which will be reached in finite time. If that point on the barrier satisfies certain

conditions (see Proposition 4 in section 2.4), the path will emerge at the other side, but with

one positive eigenvalue and one negative at which point it can continue to the steady-state.

Hence, there is a period of temporary indeterminacy: prior to reaching the barrier, the point

acts as a sink and the dynamics are indeterminate. Once the barrier is passed, the dynamics

become determinate with a saddle path. In effect, impasses can give rise to a change in the

dimension of the stable manifold along the equilibrium path. In this chapter we characterize

the conditions required for such a crossing to be possible.

In section 3 we are able to provide two generic economic examples of DGE models that

can display singular perturbations and impasses. One is the model of Benhabib and Farmer

(1994) in which they noted the possibility that “one root passes through minus infinity

and re-emerges as a positive real root.” As we demonstrate, this case corresponds to a

perturbation singularity and has to be analyzed as a slow-fast dynamic system. The other

case is a Ramsey DGE model with endogenous labor in which there is a cyclical fiscal policy

rule and distortionary taxation, where we show that not only are impasses possible, but also

that they can display the crossing behavior which gives rise to temporary indeterminacy.

Whilst physics and engineering have explored the implications of singularities for some

time (e.g. in the study of Black holes), economists have tended to look the other way.

There are a few exceptions: Barnett and He (2010) and He and Barnett (2006) are, to our

knowledge, the only papers dealing with the importance of singularities in economic models

(in their case associated to the introduction of feedback policy rules). Singularities play

a large role in other scientific fields and we believe that we also need to understand their

potential role in macroeconomic dynamics.

The aim of this article is to present some results on the geometrical properties of local

dynamics in a neighborhood of a singularity and to apply them to simple DGE structures.

In section 2 we provide an intuition for their existence in a general DGE macro model with

endogenous employment. Section 3 provides one example for each type of singularity by

applying the methods presented in section 2.
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2 A general DGE model with singularities

2.1 The general structure of DGE models

Several DGE models, extending the Ramsey model, feature a semi-explicit differential-

algebraic equations (DAE) system in three variables - capital (K), consumption (C), and

labor (L):

K̇ = y(K,L, ϕ)− C , (1)

Ċ = C(r(K,L, ϕ)− ρ)θ(C,L) , (2)

0 = uL(C,L) + uC(C,L)w(K,L) ≡ v(K,C,L) , (3)

together with the conditions

K(0) = K0 , (4)

0 = lim
t→∞

uC(C(t), L(t))K(t)e−ρt , (5)

where y(·) is an aggregate (net) production function, r(·) is the aggregate (net) return-on-

capital function, θ(C,L) ≡ −uC/(CuCC) > 0 is the elasticity of intertemporal substitution

in consumption that corresponds to the felicity (or utility-flow) function u (C,L) 1, ρ > 0 is

the discount rate, and w(·) is the aggregate (net) wage-rate function. The parameter vector,

including ρ, is generically denoted by ϕ.

Equation (1) is the instantaneous budget constraint, equation (2) is the Euler equation,

and equation (3) is the arbitrage condition between consumption and labor supply (the

leisure-consumption trade off). Equations (4) is the initial condition for the stock of capital,

where K0 is a known positive number and (5) is the transversality condition.

Definition 1 (DGE path). A DGE path is a function (K(t), C(t), L(t)) mapping all t ∈
[0,∞) into a subset of R3

++ which is a solution to the DAE system (1)-(3) such that the
initial and the transversality conditions (4)-(5) hold.

A necessary condition for a solution to (1)-(3) to be a DGE path is that it exists and it

is positive for all t ∈ [0,∞). Solutions of system (1)-(3) that only exist for a finite interval

t ∈ [0, ts), with ts finite, cannot be DGE paths.

1We use the notation for derivatives fx ≡ ∂y
∂x and fxy ≡ ∂2y

∂x∂y .
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A steady-state of system (1)-(3) is a point (K̄, C̄, L̄) ∈ R3
++ such that K̇ = Ċ = 0.

steady-states are fixed points of the non-linear equation system




y(K L,ϕ) = C ,

r(K,L, ϕ) = ρ ,

v(K,C,L) = 0 .

(6)

A stationary DGE is a DGE path such that the variables are permanently at their

steady-state levels: (K(t), C(t), L(t)) = (K̄, C̄, L̄), for all t ∈ [0,∞). It can only exist if

K0 = K̄.

An asymptotic-stationary DGE path is a DGE path that converges asymptotically to a

steady-state, i.e. limt→∞(K(t), C(t), L(t)) = (K̄, C̄, L̄).

From now on, we restrict the analysis to stationary and asymptotic stationary DGE

paths, by introducing the following assumption 2:

Assumption 1. There is at least one steady-state for system (1)-(3).

The stable manifold associated to steady-state (K̄, C̄, L̄), Ws(K̄, C̄, L̄), is defined as the

set of initial points such that the DGE path is asymptotically stationary:

Ws(K̄, C̄, L̄) ≡ {(K,C,L) ∈ R3
++ : lim

t→∞
(K(t), C(t), L(t)) =

(
K̄, C̄, L̄

)
} .

Considering that both types of DGE paths (asymptotic-stationary and stationary) satisfy

the transversality condition, their existence and uniqueness (or multiplicity) can be assessed

by the characteristics of the stable manifolds associated to a steady state (K̄, C̄, L̄): (a) If

the stable manifold is empty and K0 = K̄, then a DGE path exists and it is stationary;

(b) If the stable manifold is non-empty and K0 belongs to it, then a DGE exists and it is

asymptotic-stationary.

Asymptotic-stationary DGE paths can be classified further according to their degree of

determinacy (or multiplicity). For this purpose we need to define the local stable manifold

(Ws
loc) associated to a steady-state (K̄, C̄, L̄) as the set of points, belonging to a vicinity of

(K̄, C̄, L̄), that asymptotically converge to that steady-state :

Ws
loc(K̄, C̄, L̄) ≡ {(K,C,L) ∈ N : lim

t→∞
(K(t), C(t), L(t)) =

(
K̄, C̄, L̄

)
} .

2For simplicity we exclude the existence of periodic solutions, but the analysis can easily be extended to
that case.
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where N is a neighborhood containing the steady-state such that the Euclidean distance

‖(K,C,L)− (K̄, C̄, L̄)‖ < δ for a small number δ > 0.

Definition 2 (Asymptotic- determinate and -indeterminate DGE paths). A DGE path is
asymptotic-determinate if the local stable manifold Ws

loc(K̄, C̄, L̄) is one-dimensional. A
DGE path is asymptotic-indeterminate if the local stable manifold Ws

loc(K̄, C̄, L̄) is two-
dimensional.

This means that, given an initial point for K (K0) sufficiently close to a steady-state,

we say there is determinacy if a single DGE path converges to that steady-state and we say

there is indeterminacy if an infinite number of paths converge to it.

In section 3 we will show that one possible consequence of the existence of singularities

in system (1)-(3) is that the determinacy properties of DGE paths can change along the

transition path. Therefore we distinguish further:

Definition 3 (Temporary-determinate and temporary-indeterminate DGE paths). A DGE
path is temporary-(in)determinate if, for a finite t, it belongs to a subset of the stable manifold
Ws(K̄, C̄, L̄) that is locally one-dimensional (two-dimensional).

Definition 4 (Permanent-determinate and permanent-indeterminate DGE paths). A DGE
path displays permanent determinacy (indeterminacy) if the stable manifold is one-dimensional
(two-dimensional) for all t ∈ [0,∞).

Two cases are possible in the presence of singularities. First, if the stable manifold has the

same degree of determinacy globally, then we have permanent determinacy or indeterminacy,

depending on the dimension of the local stable manifold. This is the case with regular models,

i.e. models without singularities. Second, if the dimension of the stable manifold for points

sufficiently far away from the steady-state is different from that of the local stable manifold,

then we have temporary determinacy or indeterminacy or both. In models with particular

types of singularities, knowing the dimension of the local stable manifold at the steady-state

does not allow us to characterize the determinacy properties of DGE paths sufficiently far

away from the steady-state.

Independently from generating a new type of indeterminacy, the existence of singularities

can also confine the existence of DGE paths to a subset of the domain of (K,C,L).

2.2 DGE paths in the presence of singularities

Assume that consumption and leisure are substitutes, so that v(·) is monotonic in C. Due

to the existence of externalities or any other type of distortion, let v(·) be non-monotonic
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in L. This property prevents us from eliminating L in equation (3). Instead, by using the

implicit-function theorem, we solve equation (3) for C as a function of the other variables:

C = c(K,L).

Differentiating c(K(t), L(t)) with respect to time and using equations (1) and (2) allows

us to obtain a reduced constrained ordinary differential equation (ODE) system in (K,L):

K̇ = s(K,L, ϕ) ,

cL(K,L, ϕ) L̇ = c(K,L, ϕ) (R(K,L, ϕ)− ρ) θ(K,L, ϕ) ,
(7)

where s(K,L, ϕ) ≡ y(K,L, ϕ)− c(K,L, ϕ) is a savings function and

R(K,L, ϕ) ≡ r(K,L, ϕ)− cK(K,L, ϕ)

c(K,L, ϕ)θ(K,L, ϕ)
s(K,L, ϕ) ,

is a modified return-on-capital function. Henceforth, we deal with the solutions of system

(7), seen as mappings t 7→ (K(t), L(t)), for [0,∞)→ Ω, where

Ω ≡ { (K,L) ∈ R2
++ : c(K,L) > 0}.

Again, notice that system (7) depends on the parameter vector ϕ ∈ Φ (representing endow-

ments, preferences, and technologies), where Φ is model-specific.

In this article, we explore models in which the consumption function takes the specific

form

C = c(K,L, ϕ) = z (K,L, ϕ) , with L ≡ Lε(ϕ) .

Therefore, cK(K,L, ϕ) = zK(K,Lε(ϕ), ϕ) and cL(K,L, ϕ) = ε(ϕ)zL(K,Lε(ϕ), ϕ)Lε(ϕ)−1. Us-

ing this specification it is convenient to rewrite the system (7) as

K̇ = f1(K,L, ϕ) ,

ε(ϕ) δ(K,L, ϕ) L̇ = f2(K,L, ϕ) ,
(8)

where

f1(K,L, ϕ) ≡ s(K,L, ϕ) ≡ y(K,L, ϕ)− z(K,Lε(ϕ), ϕ) , (9)

f2(K,L, ϕ) ≡ z(K,Lε(ϕ), ϕ) (R(K,L, ϕ)− ρ) θ (K,L, ϕ) Lε(ϕ)−1, (10)

δ(K,L, ϕ) ≡ zL(K,Lε(ϕ), ϕ). (11)

Steady-states of system (7) are points (K̄, L̄) belonging to set:

ΓE ≡ { (K,L) ∈ Ω : f1(K,L, ϕ) = f2(K,L, ϕ) = 0} ,
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which can have one element or more. The stationarity conditions are similar to those in the

benchmark competitive DGE model

s(K̄, L̄, ϕ) = 0, r(K̄, L̄, ϕ) = ρ ,

i.e. steady-state savings are zero and the return on capital equals the rate of time preference,

since there is no depreciation.

Let us denote a solution to system (8) for a given time t starting from a point (K∗, L∗) ∈ Ω

by ϕt(K
∗, L∗). Define the stable manifold associated to a steady-state (K̄, L̄) ∈ ΓE as

Ws(K̄, L̄) ≡ { (K∗, L∗) ∈ Ω : lim
t→∞

ϕt(K
∗, L∗) = (K̄, L̄)} .

Therefore, as a consequence of assumption 1, a DGE path is a trajectory (K(t), L(t))t∈[0,∞)

such that (K(t), L(t) ∈ Ws(K̄, L̄) for every t ∈ [0,∞). In the case in which Ws(K̄, L̄) is

empty, the DGE path is stationary and it exists only if K(0) = K̄ 3.

We introduce the three following assumptions. First, function z(·) is monotonic in K,

which implies that cK(K,L, ε) 6= 0 for all (K,L, ϕ) ∈ Ω × Φ. Second, ε is a primitive

parameter or a function of the primitive parameters, ε = ε(ϕ), such that it is a small number

centered around zero, e.g. −1 < ε < 1 or −1 < ε(ϕ) < 1. Third, function z(·) is non-

monotonic in L and there is one value Ls = Ls(K,ϕ) such that zL(K,Lεs, ϕ) = 0.

The two last assumptions imply that the consumption function can have a zero derivative

with respect to labor from two different sources: (i) when the parameter vector is such that

ε(ϕ0) = 0 or (ii) when L = Ls(K,ϕ). Those are the two main origins of singularities in our

model.

Let us introduce the following definitions to distinguish two different types of singularities:

Definition 5. A point (K,L, ϕ) ∈ Ω × Φ is a regular point if ε(ϕ) δ(K,L, ϕ) 6= 0. A
singularity exists if point (K,L, ϕ) ∈ Ω × Φ is such that ε(ϕ) δ(K,L, ϕ) = 0. We call
singular perturbation to a point ϕp ∈ Φ such that ε(ϕp) = 0. We call impasse set to a subset
of points (Ks, Ls) ∈ Ω such that δ(Ks, Ls, ϕ) = 0.

Henceforth, we assume for simplicity that there is either a singular perturbation or im-

passes, not both:

Assumption 2. There are no points (K∗, L∗, ϕ∗) such that ε(ϕ∗) = 0 and δ(K∗, L∗, ϕ∗) = 0
simultaneously.

3Observe that we are now referring to a two-dimensional projection in (K,L) of a three-dimensional
system in (K,L,C)
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Before we characterize DGE paths in the presence of singularities, we can show that

they have a fundamentally different nature depending on whether they arise from a singular

perturbation or from an impasse.

Proposition 1. Singular-perturbed steady-states are generic points of set Ω while impasse
steady-states are non-generic points of set Ω.

This is easy to see if we take into account that singular-perturbed steady states belong

to set:

ΓpE ≡ { (K,L) ∈ Ω : f1(K,L, ϕ
p) = f2(K,L, ϕ

p) = 0} ,

where ε(ϕp) = 0 and impasse steady-states belong to set

PE ≡ { (K,L, ϕ) ∈ Ω× Φ : f1(K,L, ϕ) = f2(K,L, ϕ) = δ(K,L, ϕ) = 0}, (12)

in which one parameter should take a particular value.

Proposition 2. Singular perturbations have a permanent character (i.e. they characterize
the entire DGE paths), because they occur when a parameter exhibits a particular critical
value (or the parameters satisfy a specific relationship). An impasse singularity generically
constrains the existence of DGE paths, or changes their dynamic properties, after a finite
time.

In order to prove this we denote the vector field in system (7) by

F (K,L, ϕ) =




f1(K,L, ϕ)

f2(K,L, ϕ)

ε(ϕ)δ(K,L, ϕ)


 . (13)

The Jacobian of F (·), evaluated at any point (K,L) ∈ Ω, is

DF (K,L, ϕ) =



f1,K(K,L, ϕ) f1,L(K,L, ϕ)
f2,K(K,L, ϕ)

ε(ϕ) δ(K,L, ϕ)
− f2(K,L, ϕ) δK(K,L, ϕ)

ε(ϕ) δ2(K,L, ϕ)

f2,L(K,L, ϕ)

ε(ϕ) δ(K,L, ϕ)
− f2(K,L, ϕ) δL(K,L, ϕ)

ε(ϕ) δ2(K,L, ϕ)


 ,

(14)

has trace and determinant given by

trDF (K,L, ϕ) = f1,K(K,L, ϕ) +
f2,L(K,L, ϕ) δ(K,L, ϕ)− f2(K,L, ϕ) δL(K,L, ϕ)

ε(ϕ) δ2(K,L, ϕ)
,
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and

detDF (K,L, ϕ) =
f1,K(K,L, ϕ)f2,L(K,L, ϕ)− f1,L(K,L, ϕ)f2,K(K,L, ϕ)

ε(ϕ) δ(K,L, ϕ)
+

+ f2(K,L, ϕ)

(
f1,K(K,L, ϕ)δL(K,L, ϕ)− f1,L(K,L, ϕ)δK(K,L, ϕ)

ε(ϕ) δ2(K,L, ϕ)

)
. (15)

There is a point in common between the two types of singularities: generically after the

singularity is crossed the dimension of the stable manifold changes because one eigenvalue

of DF (K,L, ϕ) changes sign by passing through plus or minus infinity. However, while for

singular perturbations the singularity crossing is associated to a change of a parameter away

from a critical value, for impasse singularities it is associated to a change in the value of

variables (K,L) away from a specific relationship, as we see next.

For singular perturbations we have:

lim
ϕ→ϕp

trDF (K,L, ϕ) = lim
ϕ→ϕp

detDF (K,L, ϕ) = ±∞ ,

and if ϕ1 and ϕ2 belong to the vicinity of ϕp and ε(ϕ1) < 0 < ε(ϕ2), then

sign (detDF (K,L, ϕ1)) 6= sign (detDF (K,L, ϕ2)) .

For impasse points we have:

lim
(K,L)→(Ks,Ls)

trDF (K,L, ϕ) = lim
(K,L)→(Ks,Ls)

detDF (K,L, ϕ) = ±∞ ,

and if (K1, L1) and (K2, L2) belong to a small neighborhood of (Ks, Ls) and δ(K1, L1, .) <

0 < δ(K2, L2, .), then sign(detDF (K1, L1, ϕ)) 6=sign(detDF (K2, L2, ϕ)).

The Jacobian of F (·) evaluated at a steady-state (K̄, L̄) ∈ ΓE, for a given parameter

value ϕ, is

DF (K̄, L̄, ϕ) =




f1,K(K̄, L̄, ϕ) f1,L(K̄, L̄, ϕ)

f2,K(K̄, L̄, ϕ)

ε(ϕ) δ(K̄, L̄, ϕ)

f2,L(K,L, ϕ)

ε(ϕ) δ(K̄, L̄, ϕ)


 , (16)

having the trace and the determinant given by

trDF (K̄, L̄, ϕ) = f1,K(K̄, L̄, ϕ) +
f2,L(K,L, ϕ)

ε(ϕ) δ(K,L, ϕ)
,

detDF (K̄, L̄, ϕ) =
f1,K(K̄, L̄, ϕ)f2,L(K̄, L̄, ϕ)− f1,L(K̄, L̄, ϕ)f2,K(K̄, L̄, ϕ)

ε(ϕ) δ(K̄, L̄, ϕ)
. (17)
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For singular perturbations we still have:

lim
ϕ→ϕp

trDF (K̄, L̄, ϕ) = lim
ϕ→ϕp

detDF (K̄, L̄, ϕ) = ±∞.

When impasse singularities exist and if the steady-state is not an impasse-singular steady-

state, that is if (K̄, L̄) /∈ PE and ϕ 6= ϕp, then both trDF (K̄, L̄, ϕ) and detDF (K̄, L̄, ϕ) are

finite, which means that the eigenvalues are finite and the steady-state is regular.

Therefore, there is a major difference between the two types of singularity. The singular

perturbation changes the signs of the eigenvalues of the Jacobian DF (K,L, ϕ) at each and

every point (K,L) ∈ Ω, including at steady-states, when the parameter ϕ passes through the

critical point ϕp. The impasse singularity, in contrast, generates infinitely-valued eigenvalues

only when the variables (K,L) satisfy the condition δ(K,L) = 0, which generically occurs

at points which are not steady-states, and steady-states are regular points. To put it simply,

while DGE paths are everywhere pointwise-singular for singular perturbations, DGE paths

are almost everywhere pointwise-regular and are pointwise-singular for a small number of

impasse points for impasse singularities.

Next, we enumerate and characterize the types of DGE paths that can occur in the

presence of a singularity.

2.3 DGE paths in the presence of singular perturbations

In this section, we assume there is a critical value for ϕ, ϕp ∈ Φ, such that ε(ϕp) = 0. From

assumption 2 we also have δ(K,L, ϕp) 6= 0 for all (K,L) ∈ Ω. We study the DGE dynamics

associated to varying ϕ in the vicinity of ϕp such that ε(ϕ) ∈ (−1, 1) and δ(K,L, ε(ϕ)) 6= 0.

For convenience, we write system (8) in the following equivalent form:

K̇ = f1(K,L, ε),

ε L̇ = f s2 (K,L, ε),
(18)

where f s2 (K,L, ε) ≡ f2(K,L, ε)/δ(K,L, ε).

Systems of type (18), with ε ∈ (−1, 1), are called singular-perturbed or slow-fast systems4.

That designation is justified because the two variables have two different time scales: K has

a slow time scale, and L has a fast time scale. Time t is called slow time and time τ = t/ε

is called fast time. If ε is close to zero we see that the adjustment of L is very fast along a

curve f s2 (K,L, ε) ≈ 0.

4See Kuehn (2015) for a recent textbook presentation.
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As time derivatives in system (18) refer to the dynamics along the slow time scale we call

it the slow system. The dynamics along the fast time scale is

K
′

=
dK

dτ
= ε f1(K,L, ε),

L
′

=
dL

dτ
= f s2 (K,L, ε).

(19)

This pair of systems (18)-(19) is called a slow-fast system.

The slow-fast vector fields associated to the slow-fact system (18)- (19) are, respectively,

F (K,L, ε) =



f1(K,L, ε)

f s2 (K,L, ε)

ε


 and F f (K,L, ε) =

(
εf1(K,L, ε)

f s2 (K,L, ε)

)
.

If ε 6= 0, the dynamics and bifurcations of system (18) are both regular and well-known.

If functions f1(K,L) and f2(K,L) are differentiable then, given any initial value K0 ∈ Ω a

solution to system (18)-(19) exists, it is unique, and it is continuous in t, for all t ∈ [0,∞).

Furthermore, at a regular equilibrium point (K̄, L̄) ∈ ΓE (for ΓE 6= ∅), the local dynam-

ics is characterized by the eigenvalues of the Jacobian for the slow-system evaluated at that

steady-state, DF (K̄, L̄). Clearly, there may exist values for ε such that one or more eigen-

values can have zero real parts (and therefore regular bifurcation can exist) or can change

from real to complex (or back) 5.

The Jacobian of the slow-vector field, F , evaluated at a steady-state

DF (K̄, L̄, ε) =



f1,K(K̄, L̄, ε) f1,L(K̄, L̄, ε)

f s2,K(K̄, L̄, ε)

ε

f s2,L(K̄, L̄, ε)

ε


 ,

has trace and determinant given by

trDF (K̄, L̄, ε) = f1,K(K̄, L̄, ε) +
f s2,L(K̄, L̄, ε)

ε
, (20)

detDF (K̄, L̄, ε) =
f1,K(K̄, L̄, ε) f s2,L(K̄, L̄, ε)− f1,L(K̄, L̄, ε) f s2,K(K̄, L̄, ε)

ε
. (21)

The local stable manifold is one-dimensional for detDF (K̄, L̄, ε) < 0 and it is two-

dimensional ( or zero-dimensional) for detDF (K̄, L̄, ε) > 0 and trDF (K̄, L̄, ε) < 0 (or > 0).

5Major references for continuous-time regular dynamics and bifurcations are Guckenheimer and Holmes
(1990) or Kuznetsov (2005).
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If ε = 0 we already know that the eigenvalues of the Jacobian for the slow system

evaluated at any point of Ω become infinite. In particular, the eigenvalues of the Jacobian

of the slow system evaluated at the steady-state also become infinite because

lim
ε→0

trDF (K̄, L̄, ε) = lim
ε→0

detDF (K̄, L̄, ε) = ±∞.

However, the local dynamics in the neighborhood of a singular-perturbation point can be

revealed by characterising the dynamics of the fast system in the neighbourhood of a steady-

state. For any value of ε, the Jacobian of the fast vector field F s evaluated at a steady-state

(K̄, L̄, ε) is

DF s(K̄, L̄, ε) =

(
ε f1,K(K̄, L̄, ε) ε f1,L(K̄, L̄, ε)

f s2,K(K̄, L̄, ε) f s2,L(K̄, L̄, ε)

)
.

As the trace and determinant are

trDF s(K̄, L̄, ε) = ε f1,K(K̄, L̄, ε) + f s2,L(K̄, L̄, ε) , (22)

detDF s(K̄, L̄, ε) = ε
[
f1,K(K̄, L̄, ε) f s2,L(K̄, L̄, ε)− f1,L(K̄, L̄, ε) f s2,K(K̄, L̄, ε)

]
, (23)

then

trDF s(K̄, L̄, 0) = f s2 (K̄, L̄, 0), detDF s(K̄, L̄, 0) = 0.

we see that the fast vector field evaluated in the vicinity of a singular perturbation, ε = 0,

has the characteristics of a regular-bifurcation point, i.e. the determinant changes sign by

passing through zero, instead of passing through infinite as is the case for the slow vector

field.

In order to understand the local dynamics when ε = 0 it is convenient to write the

slow-fast system as

K̇ = f1(K,L, 0) ,

0 = f s2 (K,L, 0) ,

K
′
= 0 .

L
′
= f s2 (K,L, 0) .

(24)

We define a singular-perturbed critical subset by6

Sp = {(K,L) ∈ Ω : f2(K,L, 0) = 0} .

We say that point (Kp, Lp) ∈ Sp is a slow-fast singular for f s2,L(Kp, Lp, 0) = 0. Point

(K∗, L∗) 6= (Kp, Lp) ∈ Sp is slow-fast regular for f s2,L(K∗, L∗, 0) 6= 0.

6 Recall we are assuming that δ(K,L, ε) 6= 0.
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At a slow-fast regular point we can solve equation f s2 (K,L, 0) = 0 for L as a function

of K, L = h(K), by applying the implicit-function theorem. Locally the slope of function

h(K) is

hK(K) = −f
s
2,K(K,L, 0)

f s2,L(K,L, 0)
= −f2,K(K,L, 0)

f2,L(K,L, 0)
for (K,L) ∈ Sp .

This means that the dynamics evolves along the surface Sp, which is geometrically rep-

resented by the isocline associated to L.

We call slow-fast regular point to a point (K,L) such that f2.L(K,L, 0) 6= 0 and slow-

fast singular point to a point (K
′
, L
′
) such that f2.L(K

′
, L
′
, 0) = 0. If slow-fast singular

points do not exist, then that surface contains only one of two types of points: (i) slow-fast

regular attracting points if f s2,L(K,L, 0) = f2,L(K,L, 0)/δ(K,L, 0) < 0 or (ii) slow-fast regular

repelling points if f s2,L(K,L, 0) = f2,K(K,L, 0)/δ(K,L, 0) > 0, for (K,L) ∈ Sp.
One of the most important results on the mathematics of slow-fast systems, the Fenichel

(1979) theorem, states that in the neighborhood of surface Sp the dimension of the stable

manifold is not changed by a small variation of the parameter ε in one of the neighborhoods

of ε = 0, that is either when ε→ 0+ or when ε→ 0−.

We denote the steady-state of system (24) by (K̄p, L̄p). A taxonomy for the generic local

dynamics in a neighborhood of a steady-state for system (18)-(19) can be built:

1. Let f1,K(K̄, L̄, ε)f s2,L(K̄, L̄, ε) − f1,L(K̄, L̄, ε)f s2,K(K̄, L̄, ε) > 0 in a small neighborhood

of ε centred around zero, i.e., for ε ∈ (0−, 0+):

(a) If f s2,L(K̄, L̄, ε) < 0, then (i) the steady state is a stable node for ε → 0+, as we

have trDF s(K̄, L̄, 0+) < 0 and detDF s(K̄, L̄, 0+) > 0; (ii) set Sp only contains

slow-fast regular attractor points converging to steady-state (K̄p, L̄p) for ε = 0,

since f s2,L(K̄p, L̄p, 0) < 0; and (iii) the regular steady-state is a saddle point for

ε→ 0− , as detDF s(K̄, L̄, 0−) < 0.

(b) If f s2,L(K̄, L̄, ε) > 0, then (i) the steady state is an unstable node for ε → 0+

, as we have trDF s(K̄, L̄, 0+) > 0 and detDF s(K̄, L̄, 0+) > 0; (ii) set Sp only

contains slow-fast regular repeller points diverging from steady-state (K̄p, L̄p) for

ε = 0, since f s2,L(K̄p, L̄p, 0) > 0; and (iii) the regular steady-state is a saddle point

for ε→ 0− , as detDF s(K̄, L̄, 0−) < 0.

2. For f1,K(K̄, L̄, ε)f s2,L(K̄, L̄, ε) − f1,L(K̄, L̄, ε)f s2,K(K̄, L̄, ε) < 0 in a small neighborhood

of ε centred around zero, i.e. for ε ∈ (0−, 0+):
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(a) If f s2,L(K̄, L̄, ε) < 0, then (i) the steady state is a saddle point for ε→ 0+ , as we

have detDF s(K̄, L̄, 0+) < 0; (ii) set Sp only contains slow-fast regular attractor

points converging to steady-state (K̄p, L̄p) for ε = 0, since f s2,L(K̄p, L̄p, 0) < 0; and

(iii) the regular steady-state is an unstable node for ε→ 0− , as trDF s(K̄, L̄, 0−) >

0 and detDF s(K̄, L̄, 0−) > 0.

(b) If f s2,L(K̄, L̄, ε) > 0, then (i) the steady state is a saddle point for ε → 0+ , as

detDF s(K̄, L̄, 0+) < 0; (ii) set Sp only contains slow-fast regular repeller points

diverging from steady-state (K̄p, L̄p) for ε = 0, since f s2,L(K̄p, L̄p, 0) > 0; and (iii)

the regular steady-state is a stable node for ε→ 0− , as trDF s(K̄, L̄, 0−) < 0 and

detDF s(K̄, L̄, 0−) > 0.

We can summarize the previous discussion in the following Proposition 3 which describes

the types of DGE paths that can exist in the presence of a singular perturbation:

Proposition 3 (DGE paths in the presence of a singular perturbation). Assume that there is
a singular-perturbation and that K0 ∈ Ws(K̄, L̄), ifWs(K̄, L̄) is non-empty, or that K0 = K̄,
if Ws(K̄, L̄) is empty. Then, only two generic cases exist:

1. If the DGE path exhibits permanent indeterminacy for ε → 0+ (ε → 0− ), it is deter-
minate for both ε = 0 and ε→ 0− (ε = 0+).

2. If the DGE is stationary for ε→ 0+ (ε→ 0− ), it is still stationary for ε = 0 and it is
determinate for ε = 0− (ε→ 0+ ).

The cases presented above always produce stable or unstable nodes, but not stable or

unstable foci. This is due to the fact that in generic cases, for ε ≈ 0, the trace of the Jacobian

DF (K̄, L̄, 0±) becomes very large in absolute value, which implies that the eigenvalues have

to be real. However, for values of ε in a wider range around zero, the trace of the Jacobian

tends to decrease which implies that the discriminant

∆DF (K̄, L̄, ε) =
1

4



(
f1,K(K̄, L̄, ε)− f s2,L(K̄, L̄, ε)

ε

)2

− 4 f1,L(K̄, L̄, ε) f s2,K(K̄, L̄, ε)

ε




can become negative, and eigenvalues may become complex, leading to oscillatory dynamics.

A geometric argument for the existence of real eigenvalues close to the singular critical

set containing only slow-fast regular points is that the solution path will tend to evolve along

the isocline for L, where f2(K,L, 0) = 0, which is a monotonic surface.
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Whilst we have only considered the cases in which slow-fast singular points exists for non-

zero f2,L(K,L, 0), there are also further results which hold for the zero case (for bifurcation

results in slow-fast systems for the zero case, see Kuehn (2015, ch 3, ch 8) ).

2.4 DGE paths in the presence of impasse singularities

In this section we assume that ε(ϕ) 6= 0 for all ϕ ∈ Φ and define the impasse set as

S = {(K,L) ∈ Ω : δ(K,L, ϕ) = 0} . (25)

Assumption 2 implies that set S is non-empty, which means that it introduces a partition

over state Ω, such that Ω = Ω− ∪ S ∪ Ω+, where we define:

Ω− ≡ {(K,L) : δ(K,L, ϕ) < 0} and Ω+ ≡ {(K,L) : δ(K,L, ϕ) > 0},

which are both open subsets containing exclusively regular points.

From now on we assume there are only regular impasse points, that is points (K,L) ∈ S
such that ∇δ(K,L) 6= 0. Singular impasse points are points satisfying ∇δ(K,L) = 0.

Zhitomirskii (1993) and Llibre, Sotomayor, and Zhitomirskii (2002) prove that regular

impasse points (Ks, Ls) ∈ S, such that δ(Ks, Ls) = 0, ∇δ(Ks, Ls) 6= 0, and f1(K
s, Ls) 6= 0,

can be of the following types 7:

1. (Ks, Ls) ∈ S is an impasse-repeller point if δL(Ks, Ls, ϕ) 6= 0, f2(K
s, Ls, ϕ) 6= 0 and

δL(Ks, Ls, ϕ) f2(K
s, Ls, ϕ) > 0. At an impasse-repeller point there are two trajectories

that are repelled away from S, one to the interior of Ω− and another to the interior

of Ω+. This means that, if those paths are solutions of system (8) they can, in most

generic cases, be continued until t → ∞, thus satisfying a necessary condition for

being DGE paths. We denote the sets of impasse-repeller points by S+ ≡ {(K,L) ∈
S : δL(K,L, ϕ) f2(K,L, ϕ) > 0}.

2. (Ks, Ls) ∈ S is an impasse-attractor point if δL(Ks, Ls, ϕ) 6= 0, f2(K
s, Ls, ϕ) 6= 0 and

δL(Ks, Ls, ϕ) f2(K
s, Ls, ϕ) < 0. An impasse-attractor point attracts two trajectories,

one coming from the interior of Ω− and another from the interior of Ω+. This means

that, if those paths are solutions of system (8) they are only defined for t ∈ [0, ts),

where ts is the time of collision with S. Therefore, they cannot be DGE paths, as

7A singular impasse point is a point in S such that ∇δ = 0.
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these trajectories cannot be continued until t → ∞. We denote the sets of impasse-

attractor points by S− ≡ {(K,L) ∈ S : δL(K,L, ϕ) f2(K,L, ϕ) < 0}.

3. (Ks, Ls) ∈ S is a impasse-tangent point if δL(Ks, Ls, ϕ) = 0 and f2(K
s, Ls, ϕ) 6= 0.

At such a point, there is one trajectory coming from the interior of Ω+ (or Ω−) that is

tangent to S at t = ts < ∞ and has a continuation in the interior of the same subset

Ω+ (or Ω−). This means that, if those paths are solutions of system (8) they can, in

most generic cases, be continued until t → ∞ within the same subset Ω+ (or Ω−).

Thus, a necessary condition for being considered DGE paths holds. We denote the set

of impasse-tangent points by ΓK ≡ {(K,L) ∈ S : δL(K,L, ϕ) = 0, f2(K,L, ϕ) 6= 0}.

4. (Ks, Ls) ∈ S is a impasse-transversal point if δL(Ks, Ls, ϕ) 6= 0 and f2(K
s, Ls, ϕ) = 0.

We denote the set of these points by ΓI ≡ {(K,L) ∈ S : f2(K,L, ϕ) = 0, δL(K,L, ϕ) 6=
0}. Trajectories that cross through impasse-transversal may or may not exist. In

other words, we may obtain trajectories that originate in the interior of one or both

subsets, Ω+ or Ω−, are transversal to S, and have a continuation for t ∈ (ts,∞) in

the interior of the other subset. This means that, we may have two additional cases:

(i) paths that remain within the same subset Ω+ or Ω− for all t ∈ [0,∞) and satisfy

a necessary condition to be DGE paths and (ii) paths colliding with S, but which

have no continuation cannot be DGE paths, as solutions do not exist for t ∈ (ts,∞).

Zhitomirskii (1993) demonstrates that three types of impasse-transversal points exist:

(i) impasse-transversal nodes, at which an infinite number of trajectories crossing S
exist, both traveling from the interior of one subset (Ω+ or Ω−) to the interior of the

other subset and no trajectories going in the opposite direction exist; (ii) impasse-

transversal saddles, at which two trajectories crossing S exist, one traveling from the

interior of Ω+ to the interior of Ω− and another traveling from the interior of Ω− to

the interior of Ω+; and (iii) impasse-transversal foci, at which there can be no crossing

of S.

In order to determine the type of a impasse-transversal point, it is convenient to consider

the dynamics for the desingularized system bellow:

K̇ = ε(ϕ) δ(K,L, ϕ) f1(K,L, ϕ) ,

L̇ = f2(K,L, ϕ) ,
(26)

which has the same integral curves as system (8), but in which the direction field within

subspace Ω− is inverted and the singularity at S is removed. We define the desingularized
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vector field for system (26) as

F r(K,L, ϕ) =

(
ε(ϕ) δ(K,L, ϕ) f1(K,L, ϕ)

f2(K,L, ϕ)

)
. (27)

By denoting impasse-transversal point as (Ki, Li) ∈ ΓI , we can readily see that they are fixed

points of the desingularized vector field, due to the fact that δ(Ki, Li, ϕ) = f2(K
i, Li, ϕ) = 0,

i.e. F r(Ki, Li, ϕ) = 0, where δL(Ki, Li, ϕ) 6= 0. Therefore, the Jacobian of the desingularized

vector field F r(·), evaluated at (Ki, Li), is given by

DF r(Ki, Li, ϕ) =

(
ε(ϕ) δK(Ki, Li, ϕ) f1(K

i, Li, ϕ) ε(ϕ) δL(Ki, Li, ϕ) f1(K
i, Li, ϕ)

f2,K(Ki, Li, ϕ) f2,L(Ki, Li, ϕ)

)
.

(28)

Its trace and determinant are, respectively,

trDF r(Ki, Li, ϕ) = ε(ϕ) δK(Ki, Li, ϕ) f1(K
i, Li, ϕ) + f2,L(Ki, Li, ϕ) ,

and

detDF r(Ki, Li, ϕ) =

= ε(ϕ) f1(K
i, Li, ϕ)

(
δK(Ki, Li, ϕ) f2,L(Ki, Li, ϕ)− δL(Ki, Li, ϕ) f2,K(Ki, Li, ϕ)

)
, (29)

which implies that the discriminant is

∆DF r(Ki, Li, ϕ) = (trDF r)2(Ki, Li, ϕ)− detDF r(Ki, Li, ϕ) .

The eigenvalues of Jacobian (28) allows us to determine the type of the impasse-transversal

point:

1. (Ki, Li) is an impasse-transversal node if the eigenvalues of (28) are both real and share

the same sign, i.e. if (Ki, Li) belongs to ΓIN ≡ {(K,L) ∈ ΓI : detDF r(K,L, ϕ) >

0,∆DF r(K,L, ϕ) > 0}.

2. (Ki, Li) is an impasse-transversal saddle if the eigenvalues of (28) are both real and ex-

hibit opposite signs, i.e. if (Ki, Li) belongs to ΓIS ≡ {(K,L) ∈ ΓI : detDF r(K,L, ϕ) <

0}.

17



3. (Ki, Li) is an impasse-transversal focus if the eigenvalues of (28) are complex-conjugate,

i.e. is if (Ki, Li) belongs to ΓIF ≡ {(K,L) ∈ ΓI : detDF r(K,L, ϕ) > 0,∆DF r(K,L, ϕ) <

0}.

Let us consider that (Ki, Li) is an impasse-transversal point and Ws(Ki, Li) is the sta-

ble manifold associated to it. We denote by Ws
+(Ki, Li) the stable sub-manifold which is

contained in Ω+ and by Ws
−(Ki, Li) the stable sub-manifold which is contained in Ω−.

If point (Ki, Li) is an impasse-transversal node and trDF r(Ki, Li, .) < 0 (> 0), then it is

attracting (repelling) from side Ω+ (Ω−) and it is repelling from side Ω− (Ω+). Thus, there

is an infinite number of trajectories coming from the interior of Ω+ (Ω−) that are attracted

to point (Ki, Li) and are all repelled from (Ki, Li) to the interior of Ω− (Ω+). Furthermore,

the basin of attraction of (Ki, Li) is a two-dimensional stable manifold contained in subset

Ω+ (Ω− ), i.e. Ws(Ki, Li) =Ws
+(Ki, Li) (Ws(Ki, Li) =Ws

−(Ki, Li)).

If point (Ki, Li) is a impasse-transversal saddle, there are only two trajectories converg-

ing to (Ki, Li) in finite time, one converging from the interior or Ω+ and another converg-

ing from the interior of Ω−. These trajectories belong to different integral curves passing

through (Ki, Li), which means that the eigenspaces tangent to the stable manifolds, from

both sides Ω+ and Ω−, are not collinear. All the remaining integral curves passing trough

(Ki, Li) contain repelling trajectories to the interior of Ω+ or Ω−. Therefore, the stable

manifold associated with (Ki, Li) has two one-dimensional branches Ws
+(Ki, Li) ⊂ Ω+ and

Ws
−(Ki, Li) ⊂ Ω−, i.e. Ws(Ki, Li) =Ws

+(Ki, Li) ∪Ws
−(Ki, Li).

While impasse-repeller and impasse-attractor points belong to a surface in (K,L)8, the

sets of impasse-tangent and -transversal points are isolated points in (K,L)9. If no impasse-

tangent or -transversal points exist, then set S only contains repeller or attractor points.

To put it simply, if both ΓI and ΓK are empty, then only one of two cases is possible:

either S = S+ and S− = ∅, or S = S− and S+ = ∅. However, if an impasse-tangent or

-transversal point exists, then the impasse set contains two open subsets of impasse-repeller

and impasse-attractor points. There are two cases: (i) if ΓI is empty and ΓK is not, then

S = S− ∪ ΓK ∪ S+ or (ii) if ΓK is empty and ΓI is not, then S = S− ∪ ΓI ∪ S+.

The possibility of crossing through the impasse set S is another important consequence

from the existence of impasse-transversal points. This crossing behavior cannot exist in

models without impasse singularities.

8Indeed, a one-dimensional manifold.
9A zero-dimensional manifold.
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Lemma 1 (Existence of crossing trajectories). Trajectories crossing the impasse surface S,
from the interior of Ω+ or Ω−, can only exist if there is a impasse-transversal point that is
either an impasse-transversal node or an impasse-transversal saddle, i.e. if ΓIN or ΓIS are
non-empty10.

Non-generic regular impasse points are points (K,L, ϕ) ∈ (ΓI ∪ ΓK) × Φ where a pa-

rameter (or relation between parameters) satisfies a critical condition. These points cor-

respond to one-parameter impasse bifurcations - for a complete characterization see Lli-

bre, Sotomayor, and Zhitomirskii, 2002. One example are points satisfying δ(K,L, ϕ) =

f1(K,L, ϕ) = f2(K,L, ϕ) = 0, which are members of the set PE defined in equation (12).

Clearly PE = ΓE ∩ ΓI . Non-generic points belonging to PE, satisfying further critical condi-

tions on the parameters, are sometimes called singularity-induced bifurcation points.

We call singular steady-state to a fixed point located on the impasse surface, S, i.e. to

a member of set PE. Therefore, a regular steady-state is a member of the set ΓE\PE. No

singular steady-states exist if PE is empty, although impasse-transversal points (i.e. non-

empty ΓI) may exist.

Next, we assume that there is a regular steady-state (K̄, L̄) ∈ ΓE in the neighbourhood of

an impasse surface S. We will see next that the types of impasse points not only determine

which types of steady-states can exist, depending on their location as regards S, but also

the confinement, or not, of the stable manifold Ws(K̄, L̄) to one of the subspaces ( Ω+ or

Ω−).

We start with cases in which S only contains generic regular impasse points, such that

δL(Ks, Ls) f2(K
s, Ls) 6= 0: that is S contains only impasse-repeller or impasse-attractor

points.

Lemma 2 (Local dynamics in the neighborhood of S containing only generic points). As-
sume there is a regular steady-state in a neighborhood of set S such that δL(Ks, Ls) f2(K

s, Ls) 6=
0 for all (Ks, Ls) ∈ S.

1. If the impasse set contains only impasse-attractor points, i.e., if S = S−, then the
stable manifold Ws(K̄, L̄) is empty or it is one-dimensional;

2. If the impasse set contains only impasse-repeller points, i.e., if S = S+, then the stable
manifold Ws(K̄, L̄) is one- or it is two-dimensional;

3. If the stable manifold is not empty it is allways contained in same subset as the steady-
state: if (K̄, L̄) ∈ Ω+, then Ws(K̄, L̄) = Ws

+(K̄, L̄) ⊂ Ω+ and if (K̄, L̄) ∈ Ω−, then
Ws(K̄, L̄) =Ws

−(K̄, L̄) ⊂ Ω−;
10For a proof, see Cardin, Silva, and Teixeira (2012) inter alia.
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Proof. If a steady-state exists in a neighbourhood of an impasse-attractor point then it is
either a saddle point or an unstable node or an unstable focus. If a steady-state exists in
a neighbourhood of an impasse-repeller point then it is either a saddle point or an stable
node or a stable focus. Because there are no crossing trajectories through S, if it only
contains attractor or repeller points, and if the steady-state is a saddle point or is a stable
node or focus, then the stable manifold Ws(K̄, L̄) is a subset of the subspace containing the
steady-state (K̄, L̄).

Next we assume that the impasse set S contains only one non-generic regular impasse

point that partitions it into two open sets of impasse-repeller or impasse-attractor points.

Lemma 3 (Local dynamics in the neighborhood of S containing one non-generic point).
Assume there is one regular steady-state (K̄, L̄) and that set S contains one non-generic

impasse points such that δL(Ks, Ls) f2(K
s, Ls) = 0 for (Ks, Ls) ∈ S. Then:

1. If there is one impasse-tangent point (Kk, Lk) ∈ ΓK then the stable manifold Ws(K̄, L̄)
can be empty, one-dimensional or two-dimensional. In the last two cases it is contained
in the interior (or in the closure containing the impasse-tangent point) of the subspace
containing the steady-state: if (K̄, L̄) ∈ Ω+ thenWs(K̄, L̄) ⊇ Ws

+(K̄, L̄), or if (K̄, L̄) ∈
Ω− then Ws(K̄, L̄) ⊇ Ws

−(K̄, L̄).

2. If there is one impasse-transversal focus point (Ki, Li) ∈ ΓIF then the stable manifold
Ws(K̄, L̄) is one-dimensional and it belongs to the subspace containing the steady-state:
if (K̄, L̄) ∈ Ω+ then Ws(K̄, L̄) = Ws

+(K̄, L̄), or if (K̄, L̄) ∈ Ω− then Ws(K̄, L̄) =
Ws
−(K̄, L̄).

3. If there is one impasse-transversal saddle point (Ki, Li) ∈ ΓIS either the stable mani-
fold Ws(K̄, L̄) is empty or it is non-empty. If it is non-empty two cases are possible:
(i) it can be contained in the interior of one subspace, that is if (K̄, L̄) ∈ Ω+, then
Ws(K̄, L̄) = Ws

+(K̄, L̄), or if (K̄, L̄) ∈ Ω−, then Ws(K̄, L̄) = Ws
−(K̄, L̄) and it is

two-dimensional; (ii) it can have elements in the two subspaces, that is Ws(K̄, L̄) =
Ws

+(K̄, L̄) ∪ {(Ki, Li)} ∪Ws
−(K̄, L̄) such that the sub-manifold coinciding with the sta-

ble manifold associated to (Ki, Li) is one-dimensional and the sub-manifold belonging
to the same space of (K̄, L̄) is two-dimensional.

4. If there is one impasse-transversal node (Ki, Li) ∈ ΓIN the stable manifoldWs(K̄, L̄) is
allways non-empty. Two cases are possible: (i) it can be contained in the interior of one
subspace, that is if (K̄, L̄) ∈ Ω+, then Ws(K̄, L̄) =Ws

+(K̄, L̄), or if (K̄, L̄) ∈ Ω−, then
Ws(K̄, L̄) =Ws

−(K̄, L̄) and it is one-dimensional; (ii) it can have elements in the two
subspaces, that is Ws(K̄, L̄) =Ws

+(K̄, L̄) ∪ {(Ki, Li)} ∪ Ws
−(K̄, L̄) such that the sub-

manifold coinciding with the stable manifold associated to (Ki, Li) is two-dimensional
and the sub-manifold belonging to the same space of (K̄, L̄) is one-dimensional.
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Proof. Assume S contains one impasse-tangent point, i.e. (Kk, Lk) ∈ ΓK . We proved that
S = S+ ∪ ΓK ∪ S− and that there is one trajectory which is tangent to S in finite time.
Since the steady-state is regular, we have (K̄, L̄) 6= (Kk, Lk). However, an integral curve
passing through (K̄, L̄) and (Kk, Lk) may exist, along which trajectories may converge to
or diverge from (K̄, L̄). In addition, from Lemma 2, we can distinguish two cases: (i) if
the steady-state (K̄, L̄) is close to S−, it is an unstable node, an unstable focus or a saddle
point or (ii) if it is close to S+, it is a saddle point, a stable node or a stable focus. In the
first case, the tangent trajectory diverges from the steady-state and in the second case, it
can be converging or diverging. In any case, no crossing of surface S is possible. Therefore,
assuming that the stable manifold is non-empty, if the tangent trajectory is diverging, then
eitherWs(K̄, L̄) =Ws

+(K̄, L̄) orWs(K̄, L̄) =Ws
−(K̄, L̄), and if the trajectory is converging,

then either Ws(K̄, L̄) =Ws
+(K̄, L̄) ∪ {(Kk, Lk)} or Ws(K̄, L̄) =Ws

−(K̄, L̄) ∪ {(Kk, Lk)}.
Assume S contains one impasse-transversal focus point, i.e. (Ki, Li) ∈ ΓIF . We proved

that S = S+ ∪ ΓIF ∪ S− and that there are no trajectories crossing S in finite time. Since
the steady-state is regular, we have (K̄, L̄) 6= (Ki, Li). Applying Lemma 2 we potentially
have the following cases: (i) if the steady-state (K̄, L̄) is close to S−, it can be an unstable
node or focus or a saddle point or (ii) if it is close to S+, it can be a saddle point or a
stable node or focus. However, from Lemma 4 the steady-state can only be a saddle point.
Considering that there are no trajectories crossing the surface S then, if the stable manifold
is non-empty, either Ws(K̄, L̄) = Ws

+(K̄, L̄) or Ws(K̄, L̄) = Ws
−(K̄, L̄) and Ws(K̄, L̄) it is

one-dimensional.
Assume S contains one impasse-transversal saddle point, i.e. (Ki, Li) ∈ ΓIS. We proved

that S = S+ ∪ ΓIS ∪ S− and that (see Lemma 1) there are two non-collinear converging tra-
jectories, originated in both subsets Ω+ and Ω−, and passing through (Ki, Li). Associated to
the trajectories passing through (Ki, Li) there is a one-dimensional stable manifold, spanning
the two subspaces Ω+ and Ω− , and thereforeWs(Ki, Li) =Ws

+(Ki, Li)∪Ws
−(Ki, Li). Since

the steady-state is regular, we have (K̄, L̄) 6= (Ki, Li). However, an integral curve passing
through (K̄, L̄) and (Ki, Li) can exist, along which trajectories may converge to or diverge
from (K̄, L̄). Again, using Lemmas 2 and 4 we have: (i) if the steady-state (K̄, L̄) is close to
S−, it is an unstable node or an unstable focus, or (ii) if it is close to S+ it is a stable node
or a stable focus. An important distinction is related to the direction of trajectories flowing
along integral curves passing through the two points (K̄, L̄) and (Ki, Li): trajectories may
diverge from (K̄, L̄) or converge to it. In the first case, the stable manifoldsWs

+(Ki, Li) and
Ws(K̄, L̄) are disjoint and in the second case, they exhibit a non-empty intersection. This al-
lows us enumerate the characteristics of the stable manifoldWs(K̄, L̄), when it is non-empty.
If integral curves passing through (Ki, Li) and (K̄, L̄) diverge from (K̄, L̄) and the stable
manifold is non-empty, then either Ws(K̄, L̄) = Ws

+(K̄, L̄) or Ws(K̄, L̄) = Ws
−(K̄, L̄) and

Ws(K̄, L̄) is two-dimensional. If integral curves passing through (Ki, Li) and (K̄, L̄) converge
to (K̄, L̄) and the stable manifold is non-empty, then the stable manifoldWs(K̄, L̄) contains
points in both subsets Ω+ and Ω−, i.e. Ws(K̄, L̄) = Ws

−(K̄, L̄) ∪ {(Ki, Li)} ∪ Ws
+(K̄, L̄).

21



Thus, two cases are possible: (i) if (K̄, L̄) ∈ Ω+, then Ws
−(K̄, L̄) = Ws

−(Ki, Li) is one-
dimensional and Ws

+(K̄, L̄) 6⊂ Ws
+(Ki, Li) is two-dimensional and (ii) if (K̄, L̄) ∈ Ω−,

then Ws
+(K̄, L̄) = Ws

+(Ki, Li) is one-dimensional and Ws
−(K̄, L̄) 6⊂ Ws

−(Ki, Li) is two-
dimensional.

Assume S contains one impasse-transversal node point, i.e. (Ki, Li) ∈ ΓIN . we proved
that S = S+ ∪ ΓIN ∪ S− and that (see Lemma 1) there is an infinite number of trajectories
coming from only one subspaces, Ω+ or Ω−, and passing through (Ki, Li). There is a
two-dimensional stable manifold associated to (Ki, Li), Ws(Ki, Li) = Ws

+(Ki, Li) ⊆ Ω+

or Ws(Ki, Li) = Ws
−(Ki, Li) ⊆ Ω−. Since the steady-state is regular, we have (K̄, L̄) 6=

(Ki, Li), but there is an integral curve passing through (K̄, L̄) and (Ki, Li), over which
trajectories may converge to or diverge from (K̄, L̄). Lemmas 2 and 4 imply that the steady-
state will always be a saddle point independently from being close to S− or to S+. Two main
cases can be distinguished: First, if both (K̄, L̄) and Ws(Ki, Li) are in the same subset, Ω+

or Ω−, or if they are in two different subsets, but along any integral curve joining (Ki, Li)
and (K̄, L̄), trajectories do not converge to (K̄, L̄), then either Ws(K̄, L̄) = Ws

+(K̄, L̄) or
Ws(K̄, L̄) =Ws

−(K̄, L̄) andWs(K̄, L̄) is one-dimensional. Second, if (K̄, L̄) andWs(Ki, Li)
are in different subsets and there are integral curves joining (Ki, Li) and (K̄, L̄) where
trajectories converge to (K̄, L̄), then the stable manifold Ws(K̄, L̄) contains points in both
subsets, Ω+ and Ω−, i.e. Ws(K̄, L̄) = Ws

−(K̄, L̄) ∪ {(Ki, Li)} ∪ Ws
+(K̄, L̄). Two cases are

possible: (i) if (K̄, L̄) ∈ Ω+, thenWs
−(K̄, L̄) =Ws

−(Ki, Li) is two-dimensional andWs
+(K̄, L̄)

is one-dimensional, or (ii) if (K̄, L̄) ∈ Ω−, then Ws
+(K̄, L̄) =Ws

+(Ki, Li) is two-dimensional
and Ws

−(K̄, L̄) is one–dimensional.

The results above allow us to classify DGE paths according to two dimensions: (i) ac-

cording to their crossing through S and (ii) according to the evolution of their determinacy

properties over time. We call regular DGE path to a DGE path that does not cross S and

singular DGE path to a DGE path does it. We say determinacy is permanent if the di-

mension of the stable manifold is the same throughout Ws(K̄, L̄), with the exception of an

impasse point, and determinacy is temporary if the dimension of the stable manifold is not

the same throughout Ws(K̄, L̄).

Proposition 4. Let sets S be non-empty and assume there is one regular steady-state. Then,
the following types of DGE paths are possible in the presence of impasse singularities:

1. Stationary DGE paths if the stable manifold associated to (K̄, L̄) is empty and K0 = K̄.

2. Regular asymptotic stationary DGE paths, which are permanently determinate or in-
determinate, and are confined to subset Ω+ (Ω−), if (K̄, L̄) ∈ Ω+ (Ω−) and K0 ∈
Ws

+(K̄, L̄) (Ws
−(K̄, L̄)).
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3. Singular asymptotic stationary DGE paths, which are not permanently determinate or
indeterminate, if the stable manifold has different dimensions on subsets Ω− and Ω+,
and if the initial point K0 belongs to one branch of the stable manifold and the steady-
state (K̄, L̄) belongs to its complement. Two cases are possible: (1) the DGE path can
be initially temporarily determinate and asymptotically indeterminate only if there is
an impasse-transversal saddle point; or (2) the DGE path can be initially temporarily
indeterminate and asymptotically determinate only if there is an impasse-transversal
node.

3 Singular macrodynamics

In this section we present two models with the structure of the benchmark model presented

in section 2 to illustrate the two types of singularity. The first is the well known Benhabib

and Farmer (1994) model and the second is a DGE model with a government following a

cyclical fiscal policy rule.

3.1 The Benhabib and Farmer (1994) model

Benhabib and Farmer (1994) provide us a fine example of the slow-fast singularity. In

this case, the production side is represented by y (K,L) ≡ KαLβ, α, β > 0 with α + β > 1,

r (K,L) ≡ aKα−1Lβ, and w (K,L) ≡ bKαLβ−1, where a, b ∈ (0, 1). Since the utility function

is u(C,L) = logC − (1 + χ)−1 L1+χ with χ ≥ 0, we have θ (K,L) = 1 and v (C,K,L) ≡
−Lβ−1−ε + bC−1KαLβ−1, where ε (ϕ) ≡ β − (1 + χ) and ϕ ≡

(
a b α β ρ

)>
.

To apply the results from subsection 2.3 we write the slow-fast system as

K̇ = f1(K,L, ε) ≡ KαLβ(1− bLε−β) ,

εL̇ = f s2 (K,L, ε) ≡ L
[
Kα−1Lβ

(
a− α(1− bLε−β)

)
− ρ
]
,

and

K ′ = εf1 (K,L, ε) ≡ εKαLβ
(
1− bLε−β

)
,

L′ = f s2 (K,L, ε) ≡ L
(
Kα−1Lβ

(
a− α

(
1− bLε−β

))
− ρ
)

,

where it is clear that a slow-fast singularity exists for ε = 0 and there are no impasse

singularities. There is a unique positive steady-state (K̄, L̄) where K̄ = (a/ρ)
1

1−α L̄
β

1−α and

L̄ = b
1
β−ε . The Jacobian for the slow system has trace and determinant given by

trDF (K̄, L̄) =
ρ2(1− α)(β − ε)

aε
, detDF (K̄, L̄) =

ρ (β(a− α) + εα)

aε
.
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Figure 1: Phase diagrams for the Benhabib and Farmer (1994) for ε > 0 (LHS panel) and
ε < 0 (RHS panel)

We can easily see that both these quantities can take infinite values for ε = 0.

Henceforth, we use the authors’ assumptions on the parameter values, i.e. we suppose

that α > a and β > b. Thus, we find that the dimension of the stable manifold depends on

ε: for ε < 0 the steady-state is either a stable focus or node and for ε > 0 it is a saddle11.

Using the theory presented in subsection 2.3 we can draw further conclusions. First, the

slow-fast subset (defined by f2(K,L, 0) = 0) is Sp = {(K,L) : L = h(K)}, where h(K) ≡(
ρK1−α−αb

a−α

) 1
β
. Second, all points belonging to set Sp are slow-fast regular and attracting due

to the fact that f2,L(K,Lp) = β(a − α)Kα−1Lβ−1p < 0 and there are no singular slow-fast

points.

Figure 1 illustrates the dynamic behavior of the Benhabib and Farmer (1994) model in

the (K,L) space. On the left-hand-side (LHS) panel, we represent the phase diagram for

ε > 0, but small. We can observe that there is a unique steady-state equilibrium represented

by point ΓE. Since there are two negative eigenvalues associated with this stationary point,

all DGE paths converge asymptotically to ΓE. However, the steady-state is locally and

11Benhabib and Farmer (1994, p.34) already noted this behavior for particular values of the parameters:
”As χ moves below −0.015 the roots both become real but remain negative until at (approximately) χ =
−0.05 [i.e. ε = 0] one root passes through minus infinity and reemerges as a positive real root.”. To compare
with our results please note that we introduced a slight change in notation: while the authors set χ as
non-positive we set χ as non-negative.
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globally indeterminate, as there is an infinite number of initial points for a given K0, leading

to the long-run equilibrium. We can also see that L adjusts very fast so that the trajectory

quickly approaches the isocline L̇ = 0 and then K starts adjusting more slowly until the

steady-state is reached.

On the right-hand-side (RHS) panel, we represent the phase diagram for ε < 0, also small.

Now, the unique steady-state is locally and globally determinate, as there is one positive and

one negative eigenvalue associated with it. For each initial level for the capital stock, K0,

there is only one value of L, such that convergence to the steady-state is asymptotically

assured and the transversality condition holds. Notice that the stable manifold associated to

the steady-state, Ws(ΓE), stays very close to the L̇ = 0 isocline, meaning that labor adjusts

faster than capital, as in the case ε > 0.

For ε = 0, we obtain a degenerate case where the adjustment of L is automatic, so that

the stable manifold coincides with the L̇ = 0 isocline, and this curve is the geometrical

analog of set Sp.

3.2 Singularities generated by cyclical fiscal policy rules

In this section we present a DGE model for an economy with a government that follows a

cyclical fiscal policy rule 12. The production side is represented by a production function

with constant returns to scale, i.e. y(K,L) = Kα L1−α, with α ∈ (0, 1). Thus, we obtain

r (K,L) ≡ α(L/K)1−α, and w (K,L) ≡ β(K/L)α. The utility function is the same as in

Benhabib and Farmer (1994).

The Government imposes a distortionary income tax on households with a flat rate T ∈
(0, 1). Thus, the relevant input prices for households are (1− T ) r (K,L) and (1− T )w (K,L).

The tax revenue, Ty(K,L), is used within each period to finance government final spending

(G)13.

We assume that the distortionary tax rule takes the form T (K,L) = φ y(K,L)µ, where

µ < 0, i.e. the rule is countercyclical, such that the constraint 0 < T (K,L) < 1 holds14.

From the assumptions above and considering equation (3), we obtain the consumption

function C = c(L,K) ≡ (1− T (K,L))w(K,L)L−χ, which is a non-monotonic function of L,

12For another example in a macro model with imperfect competition see Brito, Costa, and Dixon (2016).
13Considering that we have an infinitely-lived representative household, it would act as if budget was

balanced at all moments in time, i.e. Ricardian equivalence holds.
14One special case is given by φ = G and µ = −1, corresponding to setting the expenditure level.
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as cL Q 0 if and only if T (K,L) Q Ts ∈ (0, 1) where

Ts ≡
α + χ

ε
, ε (ϕ) ≡ α + χ− (1− α)µ , (30)

where ϕ ≡
(
α χ φ µ

)>
∈ Φ = (0, 1) × R3

++ and ε > 0 for all parameter values, thus

preventing the existence of slow-fast singularities. The system (8) takes the form:

K̇ = f1(K,L) ≡ (1− T (K,L)) y(K,L) (1− `(L)) ,

δ(K,L)L̇ = f2(K,L) ≡ L(1− T (K,L)) (R(K,L)− ρ) ,
(31)

where

δ(K,L) ≡ ε(T (K,L)− Ts) , (32)

R(K,L) ≡ r(K,L) (µT (K,L) + (1− (1 + µ)T (K,L))`(L)) , (33)

and `(L) = (L∗/L)1+χ, for L∗ = (1− α)1+χ. The domain for the two variables is

Ω =
{

(K,L) ∈ R2
++ : T (K,L) < 1

}
.

If we write the dynamic system as

K̇ = (1− T (K,L))y(K,L)(1− `(L)) ,

L̇ =
L(1− T (K,L)) (R(K,L)− ρ)

εδ(K,L)
,

(34)

it is clear that impasse-type singularities exist for values of (K,L) such that δ(K,L) = 0,

i.e. for T (K,L) = Ts.

The manifolds T (K,L) = 1 and T (K,L) = Ts both limit the set of admissible values for

(K,L), which is partitioned by the impasse set S = {(K,L) : T (K,L) = Ts} into a set of

low tax rates Ω− ≡ {(K,L) : 0 < T (K,L) < Ts} and high tax rates Ω+ ≡ {(K,L) : Ts <

T (K,L) < 1}. Notice that, for a given L the high (low) tax rate set corresponds to lower

(higher) values for K.

The steady-states (K̄, L̄) of system (34) cannot be determined explicitly. However, we

always have L̄ = L∗, then ¯̀ = `(L̄) = 1 and K̄ ∈
{
K : (1− T (K, L̄))r(K, L̄) = ρ

}
. Since

ρ > 0, then the steady-state constraint T̄ = T (K̄, L̄) < 1 always holds. Let us define a

critical value for φ:

φ∗ ≡ T ∗
[(

α(1− T ∗)
ρ

) α
1−α

L̄

]−µ
, for T ∗ ≡ 1− α + αµ

1− α .

Thus, we have two possible cases:
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1. For φ = φ∗, the steady-state is unique (there could be a local regular bifurcation), i.e.

ΓE = {(K̄∗, L̄)} with K̄∗ ≡
(
α(1−T ∗)

ρ

) 1
1−α

L̄.

2. For φ < φ∗, two steady-states exist, i.e. ΓE = { (K̄L, L̄), (K̄H , L̄)} such that K̄L <

K̄∗ < K̄H . In this case we obtain the following relations between the steady-state tax

rates: T̄H < T ∗ < T̄L, for T̄i = T (K̄i, L̄) with i = H,L.

The Jacobian of the reduced system, (8), evaluated at any steady-state (K̄, L̄), has the

trace and determinant given by

trDF (K̄, L̄) = −ρ(α + χ)(1− (1 + µ)T̄ )

ε(T̄ − Ts)
, detDF (K̄, L̄) =

ρ2(1 + χ)(µ∗ − µ)(T ∗ − T̄ )

ε(T̄ − Ts)
,

where µ∗ ≡ (1− α)/α and T ∗ ≡ µ∗/(µ∗ − µ). Let us define another critical value for φ:

φi ≡ Ts

[
(`i)

− 1
1+χ

(
α(µTi + (1− (1 + µ)Ti)`i

ρ

) 1
1+χ∗

L̄

]−µ

where `i ≡
(1 + χ∗)(α + χ)

(1 + χ)(χ∗ − χ and 1 + χ∗ ≡ 1− α
α

.

Now, consider the generic case φ < φ∗, for which two steady-states exist. Three generic

cases and one non-generic case are possible, concerning the local dynamic properties:

1. For φ < φs, two saddle steady-state equilibria exist such that the associated tax rates

are T̄L < min{T ∗, Ts} < max{T ∗, Ts} < T̄H . The low tax rate steady-state is located

in set Ω− and the high tax rate steady-state is in set Ω+.

2. For χ > χ∗ and φi < φ < φ∗, one saddle steady-state equilibrium exists at T̄L and one

unstable node or focus exists at T̄H . Both steady-states are located in the low tax rate

subset Ω−.

3. For χ < χ∗ and φi < φ < φ∗, one saddle steady-state equilibrium exists at T̄H and one

stable node or focus exists at T̄L. Both steady-states are located in the high tax rate

subset Ω+.

4. For φ = φi, one impasse-singular steady-state equilibrium exists at T̄L (T̄H) if χ < χ∗

(> χ∗).
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Figure 2: Phase diagram for the endogenous tax rule model

As far as impasse points (i.e. elements of set S) are concerned, we have the following

results. First, no impasse-tangent points exist, i.e. ΓK is empty. Second, impasse-transversal

points exist, i.e. ΓI = {(K,L) ∈ Ω : T (K,L) = Ts, R(K,L) = ρ} 6= ∅. Set ΓI partitions

set S into two (not necessarily compact) subsets: (i) the set of impasse-repeller points

S+ = {(K,L) ∈ S : R(K,L) < ρ} and (ii) the set of impasse-atractor points S− = {(K,L) ∈
S : R(K,L) < ρ}. In addition, ΓI has only one element for χ > χ∗ and it has two elements

for χ < χ∗ and φ < φi.

Considering that we can obtain two steady-states and two impasse-transversal points,

this model goes beyond the conditions stated in section 2.4. In order to illustrate a type

of DGE paths that can occur in models with singularities, but do not occur in regular

models, Figure 2 presents a phase diagram illustrating a case for which χ < χ∗. In this

case, two saddle steady-states (labelled H and L) exist and two impasse-transversal points

(one shown in Figure 2, as ΓI) exist. steady-state (K̄L, L̄) is located in subset Ω+, steady-

state (K̄H , L̄) is located in subset Ω− and the stable manifolds associated with both are

represented by Ws
L and Ws

H . While Ws
L is located entirely on Ω+, the stable manifold Ws

H

is located in the union of two subsets together with the impasse-transversal node point ΓI :
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Ws
H ⊃ Ws

H+ ∪ Ws
H− where Ws

H+ is two-dimensional and Ws
H− is one-dimensional. This

means that the DGE path (KH(t), L(t))t∈[0,∞ converging to the high tax rate steady-state

displays temporary indeterminacy. That is, if KH(0) ∈ Ws
H+ there is an infinite number of

values for LH(0) consistent with rational expectations equilibrium dynamics. All trajectories

in this area converge to a point, at a finite moment in time ts, depending upon LH(0), and

after that moment converge through a common path to the steady-state (K̄H , L̄).

Finally, notice that the stable manifold Ws
L defines the boundary to Ws

H+. This clearly

indicates that a local analysis using the usual approach, whilst appropriate for standard

DGE models, is clearly misleading here.

4 Conclusion

4.1 A tale with illustrative metaphors

Before we conclude this article, the reader may find the usage of some metaphors helpful to

understand the role of singularities in DGE models, especially that of impasse singularities15.

For that purpose, we will make use of expressions used in astrophysics that became popular

for the general audience, namely black holes, white holes and wormholes.

However, a word of caution is due. We do not intend to emulate gravitational fields here

and we do not claim that there is an isomorphism from physical concepts to the ones used

here. Despite the fact that mathematical structures behind physics models and those pre-

sented here are different, there is a strong analogy between the consequences of singularities

in both types of model.

This is not new in economics. When Cass and Shell (1983) coined the phrase sunspots

to represent random shocks that do not affect fundamentals, but end up affecting economic

activity, they were not trying to emulate magnetic fields on the surface of stars. These are

metaphors that help us understand the mathematics.

Attractor-impasse points, i.e. elements of set S−, can be seen as singularities within

black holes, as trajectories within their basin of attraction cannot escape their strong ”grav-

itational” pull. We saw that infinitely-living rational agents do not choose entering this area

of space as they would eventually arrive at the singularity and remain there forever. Unless

the singularity is an equilibrium a rational agent would never choose this path. Repeller-

impasse points, i.e. elements of set S+, can be seen as singularities within white holes, as

15We thank an anonymous referee and Nuno Barradas for suggesting this clarification.
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trajectories are drawn away from it. Impasse-transversal nodes work as a conduit between a

black-hole and a white-hole singularity, thus linking different areas of space. Let us call them

wormholes. Point ΓI in Figure 2 provides such an example. It works like a black hole from

the point of view of the (light) shaded area on the LHS of it. However, it also works like a

white hole from the point of view of the area on its RHS of the impasse-transversal point,

by expelling the trajectories onto a single determinate path towards ΓEH . Thus, it functions

as a ”portal” linking this otherwise two ”parallel universes”: one governed by high tax rates

and another one by low taxes rates.

4.2 Final remarks

The test of a good macro-model is not whether it predicts a little better in

“normal” times, but whether it anticipates abnormal times and describes what

happens then. Black holes ”normally” don’t occur. Standard economic method-

ology would therefore discard physics models in which they play a central role.

In Stiglitz (2011, p.17)

Singularities play a large role in other scientific fields, including physics and electrical

engineering (where they are related to systemic shut-downs). In economics, the phenomenon

has remained largely unexplored or, in the spirit of Stiglitz’s critique, just put aside as an

”abnormal time.” In this chapter we have hoped to rectify this ”black hole” in economics.

Despite the simplicity of the DGE models we have looked at in section 3 of this paper, we

have found singular dynamics were possible. There are also a large number of dynamic models

with externalities, rules, and distortions which may well also give rise to singularities. We

find it surprising that singular dynamics have been absent from the macroeconomic dynamics

literature - a veritable ”black hole” in macroeconomic theory.

In this paper we presented conditions for the emergence of singularities, described two

types of singularities, slow-fast (perturbation) and impasse singularities, presented geomet-

rical methods to deal with both of them, and applied our analysis to two simple cases, the

Benhabib and Farmer (1994) model and a DGE model with a government following a cycli-

cal fiscal policy rule. Because researchers have not known how to deal with singularities, we

believe that they have either been ignored or avoided. We now have the tools for analyzing

singularities and hope that this will mean that their implications within existing models can

now be explored properly.
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We hope that this article may provide a contribution to bring these black holes and the

techniques associated with them to the mainstream discourse in economics. Strange as they

may sound now, so did sunspots in the 1980s. Only the test of time can tell if this hope will

materialise. Nonetheless, there is no shadow of a doubt over how Jean-Michel Grandmont’s

contributions to economics has stood that test of time.
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A Appendix

To simplify notation let x = (x1, x2) ≡ (K,L) and consider functions f1(x), f2(x), and

δ(x). In addition, consider the two vector fields F (x), as in equation (13), and F r(x), as in

equation (27). Then, at a regular steady-state (x̄), we have f1(x̄) = f2(x̄) = 0 and δ(x̄) 6= 0.

Furthermore, at a generic impasse-transversal point (xi), we have δ(xi) = f2(x
i) = 0 and

f1(x
i) 6= 0.

Lemma 4. Assume there is one generic impasse-transversal point xi and one regular steady-
state x̄, both belonging to a set X, such that f2,x2(x) has the same sign for any point x ∈ X.
Therefore, sign (detDF r(xi)) = −sign (detDF (x̄)).

Proof. For sake of simplicity, let us set ε(ϕ) = 1. The determinants of the Jacobian for F (x)
evaluated at the steady-state and at an impasse-transversal point are respectively given by

detDF (x̄) =
f1,x1(x̄) f2,x2(x̄)− f1,x2(x̄) f2,x1(x̄)

δ(x̄)
,

detDF r(xi) = f1(x
i)
(
δx1(x

i) f2,x2(x
i)− δx2(xi) f2,x1(xi)

)
.

First, note that both points share a common condition f2(x1, x2) = 0. If this function
is differentiable, we can write ∇f2(x) · dx = 0. By computing Taylor approximations to
f1(x

i) in a neighbourhood of x̄ and to δ(x̄) in a neighbourhood of xi, and considering the
differentiability of f2 (·), we obtain:

f1(x
i) =

detDF (x̄)δ(x̄)

f2,x2(x̄)
(xi1 − x̄1),

δ(x̄) =
detDF r(xi)

f1(xi)f2,x2(x
i)

(x̄1 − xi1).

Thus,
detDF r(xi)

detDF (x̄)
= −(δ(x̄))2

f2,x2(x
i)

f2,x2(x̄)
.
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