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1 An inferential framework for testing DSGE models

Much of classical econometrics was developed with a view to estimating and testing macro-

economic models. It was an integral component of the aim of making economics a science.

But since the advent of DSGE macroeconomic modelling formal tests are rarely carried out.

Calibration and Bayesian estimation of DSGE models have replaced the classical estima-

tion of traditional macroeconometric models, arguably therefore undermining the status of

macroeconomics as a science.

There is an irony in this as the impetus behind the use of DSGE rather than traditional

macroeconomic models was Lucas�s critique that the latter were essentially reduced form

and not structural models and therefore likely to be structurally unstable and unsuited

to scienti�c testing. Moreover, using best-�t classical time series methods of estimation of

macroeconometric models with their �exible dynamics has come to be viewed as data-mining

and to have undermined the credibility of tests of these models.

DSGE modelling is, however, not without its problems. Lucas and Prescott soon found

that when tested using classical methods, DSGE models were invariably rejected. They

therefore proposed the use of calibration rather than classical estimation, and their tests

consisted of an informal comparison of moments simulated from the calibrated model with

those observed in actual data, rather than formal statistical tests.

Bayesian estimation is now widely used instead of calibration or classical estimation.

Its attraction is that it is a compromise between using strong priors, as in calibration,

and di¤use priors, which would give the same result as classical estimation. In practice,

however, the Bayesian posterior estimates are often found to be little di¤erent from their

prior values but considerably di¤erent from their classical estimates, thereby providing prima

facie evidence that the prior beliefs are not supported by the data, and that the model may

be misspeci�ed. If the mode of the posterior distribution is used as the point estimate then

Bayesian estimation is, in e¤ect, a weighted average of the prior values and the maximum

likelihood estimates, where the weights are inversely proportional to the strength of the
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prior beliefs and the precision of the maximum likelihood estimates. The stronger the prior,

therefore, the more likely that the posterior estimates will be close to their prior values, and

the more like calibration would Bayesian estimation become.

The focus in DSGE models on structural modelling (estimating deep structural rather

than �reduced-form�parameters) has resulted in the models being smaller and simpler than

traditional macroeconometric models, especially in their dynamic speci�cation. Friedman

(1953) regarded the use of simple rather than complicated models as an advantage, but it

makes it more likely that DSGE models are misspeci�ed. This is one reason why DSGE

models �t the data less well and are frequently rejected. DSGE models often have highly

serially correlated structural disturbances, which is a strong signal of potential misspeci�ca-

tion. In order to better match actual data, the structural disturbances of DSGE models are

commonly �tted with autocorrelated errors. The rejection of DSGE models using conven-

tional testing procedures, the arbitrary weight given to prior distributions, and the practice

of modelling dynamic misspeci�cation by highly serially correlated structural disturbances,

all undermine the high ideals originally envisaged for the DSGE approach to macroeconomic

modelling.

These arguments reveal a fundamental methodological divide between traditional macro-

econometric modelling and DSGE macro modelling. Traditional macroeconometric models

are not structural but, due to the �exibility this allows, particularly in their dynamic speci-

�cation, they can be speci�ed in such a way that they pass statistical tests, whereas DSGE

models are structural, deliberately simple and, because they are usually rejected using classi-

cal inference, strong prior restrictions are imposed in their estimation. DSGE models are also

a useful theoretical policy tool and have become the workhorse of modern macroeconomics.

Rather than dismiss DSGE models as �incredible�, as some have done, or accept that there

is no point in testing them because they would fail the test, it would be better to �nd a

way of putting them on �rmer statistical foundations. In addition to devising suitable tests,

and because, being deliberate simplications of reality, all macroeconomic models are �false�

3



- both DSGE models and conventional macroeconometric models - we might, nonetheless,

wish to know the �extent of their falseness� in order to be able to judge how useful they

might still be. This has been expressed by the question �how true is your false model?�In

order to answer this question we require an inferential framework that re�ects the degree of

falsity of macroeconomic models. Traditional statistical tests adopt the null hypothesis that

a theory is true; the power of a test is the probability of rejecting the theory if it is false.

This framework does not �t easily if one starts from the premise that the theory is false and

we seek to �nd how true or false it is. However an alternative to the traditional approach

is the null hypothesis that a model is �pseudo-true�. The idea, which was developed from

testing non-nested hypotheses - Cox (1961, 1962) - is to test an approximation to the �true�

- if it exists - but unknown, and probably highly complex, model using the estimates of

the parameters of the approximating model. (If estimated by maximum likelihood these are

called quasi-maximum likelihood estimates.) In other words, we may treat DSGE models

as deliberately simpli�ed representations or approximations of the economy for which it is

appropriate to apply a pseudo-true inferential framework rather than classical statistical

inference. The same argument can be applied to traditional macroeconometric models. The

di¤erence is that instead of testing DSGE models directly we will use indirect inference.

This has been the focus of work of ours and coauthors in the past decade and a half in

which we have used indirect inference to test prominent DSGE models estimated by others

but not tested by them. Indirect inference can be seen as an example of pseudo-true inference.

It involves approximating the DSGE model by an auxiliary model based on its solution, and

conducting inference on this. This auxiliary model will also be a pseudo-true representation

of the economy. The idea is to simulate the DSGE model and to base a test of the model

on a formal comparison of estimates of the auxiliary model derived from the simulated and

actual data. This is, in e¤ect, a generalisation and formalisation of the original method used

to judge the performance of calibrated DSGE models through a comparison of the moments

of simulated and actual data.
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This idea is, in e¤ect, a return to Friedman�s (Friedman, 1953) �as if�methodology in

which a model is treated as if it is true and is tested on that basis even though it is known

to be strictly and literally untrue. The �as if true�assumption asserts that the model has a

data generating mechanism that is a close approximation to the true model, so close that

statistical testing will not be able to distinguish between the two. Such a model is �pseudo-

true�in our use of Cox�s de�nition. Strictly, if the structural model is untrue, then so is its

reduced form; however, both are hypothesised to be pseudo-true.

It is helpful to illustrate these ideas using Friedman�s own favourite example of a pseudo-

true model: perfect competition. This, Friedman says without fear of contradiction, cannot

truly exist any more than the speed of a falling object can be accurately calculated as if it is

in a vacuum- the �gravity model�. But, Friedman goes on, perfect competition is an excellent

model of a highly competitive market. Aspects that are poorly modelled, due to the frictions

created by such things as temporary monopoly rents, can be replaced by error terms. These

can be modelled as univariate time-series processes which may be autocorrelated because

such frictions may persist for some time. Thus the structural model would consist of the

systematic demand and supply equations - �rst order conditions - and the market-clearing

condition, together with the structural errors; while the reduced form model can be obtained,

for example, as a VAR solution of the structural model with its own reduced form error

processes derived from the structural error processes. We assert that the DGP of each model

is a close approximation to the true DGP of the corresponding structural and reduced form

model: they are both �pseudo-true�. As we cannot know what the true models are, in practice

we cannot check whether any candidate model is true. But we can use normal statistical

methods to test whether any candidate pseudo-true model has a DGP that conforms to the

actual data where the test is de�ned in terms of properties of the data relevant to the user.

If it passes our test at the chosen con�dence level then we treat it as pseudo-true and hence

as if it is true.

We show in this paper that a Wald test (the IIW test) that focuses on the parameters
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of the auxiliary model performs better than a maximum likelihood test which is, in e¤ect,

based on predictions from the auxiliary model. We then ask how concerned users should

be about the possible mis-speci�cation of their pseudo-true model. To investigate this we

generate data from a DSGE model constructed to be more complex than the DSGE model

from which we form the pseudo-true model used in our test. We �nd that in a typical

small sample the IIW test will reject any mis-speci�ed pseudo-true model with a probability

of virtually 100%. This shows that if a pseudo-true model passes the test, it provides a

su¢ ciently good representation of the generated data to be regarded as if it were the true

model. More generally, it implies that the non-rejection of a pseudo-true model is a useful

guide to the validity of the DSGE model it is based on. By calculating the power of the test

as parameters are moved further away from their estimated values it is possible to establish

bounds for their possible numerical falsity.

This implies that a DSGE model can be tested using classical statistical inference as if it

were a true representation of the economy even though the economy�s �reality�is unknown.

The test of the model is whether it is pseudo-true and hence a valid statistical representa-

tion of the relevant data properties. In e¤ect as we have said this returns us to Friedman�s

original methodology whereby a model is a deliberate simpli�cation of the economy�s com-

plex reality, which we should test the model as if it is true in order to see whether it can

get �close�to those aspects of reality relevant for the model�s user. Under this interpreta-

tion traditional macroeconometric models may also be regarded as being only pseudo-true.

What distinguishes DSGE models from traditional models is their interpretation as being

structural.

The remainder of the paper is organised as follows. In section 2 we discuss the frequentist

methods that are used to test DSGE models. In section 3, we introduce the the idea of

using indirect inference in carrying out hypothesis tests of estimated structural models and,

in particular, DSGE models. We consider, with a simple example, how best to form the

auxiliary model for a DSGE model. In section 4, we describe the two tests � the LR and
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the indirect inference IIW test � and we examine their distributions both analytically and

numerically using the Smets-Wouters (2007, SW) model. In section 5, we investigate the

power of these two tests using numerical procedures. In section 6, we investigate the power

of the IIW test when the model is mis-speci�ed and ask whether we can con�dently test a

DSGE model as if it is is a pseudo-true hypothesis. Our conclusions are reported in section

7.

2 Testing DSGE models by frequentist methods

We start by addressing the issue of how best to test an already estimated macroeconomic

model in a classical or frequentist manner, as judged by the power properties of the test; we

do this in the standard way, treating the model as if true and we set on one side the issue of

mis-speci�cation to which we return in a later section. This problem has particular relevance

for DSGE models. It is rare for these models to be tested because they are commonly

estimated by Bayesian methods with the validity of the speci�cation of the model, and the

prior information, being taken as given. Both, however, may be incorrect. It would not, for

example, be surprising to �nd that incorporating incorrect prior information would cause

the Bayesian-estimated model to be rejected against maximum likelihood estimates of the

model. Le et al. (2011), for example, rejected the SWmodel. There is, however, an argument

for not testing DSGE models. As noted by Sargent (see Evans and Honkapohja, 2005), the

�rejection of too many good models�was what led Lucas and Prescott to reject classical

estimation methods in favour of calibration. The use of Bayesian estimation derives from a

similar concern; the di¤erence arises from the weight given to the prior information.

Although it is not common to test DSGE models estimated by Bayesian methods, it is

nonetheless possible to do so. One way is to perform a likelihood ratio (LR) test of the model

against its unrestricted solution using the observed data set. Another way, proposed by Le

et al. (2011), is to use an indirect inference test. This method of testing may be applied
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to any given set of estimates of a model, and not just DSGE models, or models estimated

using Bayesian methods. The basic idea here is to simulate the already estimated model

and compare the properties of an auxiliary model � which plays the role of an unrestricted

solution � estimated on actual and simulated data. Using Monte Carlo experiments, Le et

al. (2016a) found that, in small samples, LR tests of DSGE models may have weaker power

than an indirect inference test based on comparing particular features of an auxiliary model

estimated on actual and simulated data sets, such as its coe¢ cients or impulse response

functions, and using a Wald-type test statistic. The attraction of this approach is that it

can be tailored to speci�c properties of the auxiliary model rather than its overall �t, as in

an LR test. In this way it may be possible to test those features of a DSGE model that are

thought to be �good�or �important�and avoid rejecting the model on the basis of other

features which may be thought to be inessential.

Canova and Sala (2009) have suggested that the low power of LR tests may be due

to the likelihood surface of the data being rather �at � a result they put down to poor

identi�cation.1

Another possible explanation arises from the way that the DSGE model is speci�ed. The

equation dynamics of most DSGE models are usually rather simple, having just �rst-order

dynamics. This is probably because the underlying theory usually has little to say about the

lag dynamic structure. The estimated equations are, however, often found to have highly

serially correlated disturbances. The SW model is a good example; most of the equations

have serially correlated errors, some with serial correlations as high as 0.97. Allowing the

disturbances to be serially correlated greatly improves �t and so raises the likelihood of the

1Identi�cation is a theoretical property of the (DSGE) model when data is unlimited; it exists when the
reduced form of a model cannot be generated by a di¤erent model. While it is possible that lack of this
theoretical property is what lies behind the �at likelihood surface, in a recent paper Le, Minford and Wickens
(2013) suggested that two macro models in wide current use, those of Smets and Wouters (2003, 2007) and
Clarida, Gali and Gertler (1999), were highly over-identi�ed; they tested both of them by indirect inference
to see whether in Monte Carlo samples they generated data whose reduced form (or approximations to it)
could also be generated by other DSGE model versions; had it been possible to �nd such a model it would
be rejected the same percent of the time as the true original model. Yet the nearest model they could �nd in
both cases was rejected nearly 100% of the time on a 5% test when of course the true model is only rejected
5% of the time.
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model �tting the data.

In e¤ect, due to the form of the solution to DSGE models, an LR test is based on one-

period ahead �forecasts�. It seems possible that the weak power of LR and the �at likelihood

surface for DSGE models may come from the way in which false structural parameters may

have their �tracking performance�failure disguised by re-estimated error processes. Thus, a

model�s false structural parameters will imply di¤erent, false, error processes; these processes

will give rise to newly estimated autoregressive parameters which will bring the model back

on track in its ability to �forecast�next-period outcomes, this being what likelihood is based

on. If modelling a DSGE model�s structural errors as autoregressive processes in order to

improve its �t is interpreted as an integral part of its dynamic speci�cation, then this would

suggest that, when carrying out power calculations � which involves simulating false versions

of the model by using alternative values of the structural coe¢ cients � the autoregressive

coe¢ cients of the new structural errors should be re-estimated in order to maximise �t. This

too will help �bring the model back on track�in its ability to �forecast�next-period outcomes,

but it will also be likely to reduce the power of the test.

In contrast, the indirect inference Wald (IIW) test does not use tracking performance

as a measure of �t. Instead it compares the reduced form � or an auxiliary model that is

a close approximation � found in the data with that implied by simulations of the DSGE

model derived from the false parameter values generated to make the power calculations.

The error processes are not re-estimated and will therefore no longer be best �t for these

simulations of the false models. This is likely to improve the power of the test. For example,

Le et al. (2016a) allowed the estimated model parameters to be arbitrarily moved towards

greater falseness by small percentages; as falseness rose the models were rejected with fast-

increasing frequency, showing the power of the test. Le et al. (2016a) also found that making

the structural parameters of the model more false caused the autoregressive parameters of

the false model to di¤er signi�cantly from those of the original estimates which made the

test reject more powerfully still.

9



Unless the priors used in Bayesian estimation are uninformative (or di¤use), Bayesian

estimates will usually di¤er from maximum likelihood estimates, and so will not maximise

the likelihood function. Consequently, applying an LR test to a model estimated by Bayesian

methods is likely to raise the power of the LR test compared to the use of maximum likelihood

estimation. In e¤ect, the posterior mode is a weighted average of the mode of the prior

distribution and the maximum likelihood estimate with the weights determined roughly by

their relative precisions. The greater the in�uence of the prior information relative to the

sample information, the more likely is an LR test to reject the model when the posterior

distribution is centred di¤erently from the maximum likelihood estimator.

In this paper we investigate the power of two tests of an already estimated DSGE model.

One is an LR test in which the autoregressive processes generating the structural disturbances

are re-estimated to maximise �t. The other is the IIW test in which the error autoregressive

processes are not re-estimated. We begin by examining their asymptotic or large sample

properties. The IIW test is based on the distance between the data descriptors implied

by the true model and those implied by the false model; this distance depends on the

degree of falseness of the model�s structural parameters and error processes � both their AR

parameters and their innovation moments. The LR test is based on the distance between the

two models�forecasting errors. This depends on the falseness of the structural parameters.

It is also a¤ected by re-estimating the AR parameters of the error processes which partly

o¤sets the e¤ect on the overall forecast error of the false parameters. We �nd that the powers

of the two tests turns on two factors. The �rst is whether the LR test is preceded by re-

estimation of the model or of its error processes; if it is, the LR test�s power is substantially

weakened. The second is the way the IIW test is implemented: whether it is based on the

variance matrix of the coe¢ cients of the auxiliary VAR model estimated from the observed

data, or, as is done by Le et al. (2011, 2016a), on data simulated from the DSGE model

with its false structural parameters. Using the former the powers of the LR and the indirect

inference tests are roughly equivalent, but using the latter endows the IIW test with more
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power. The latter IIW test is the one that is referred to as �the IIW test�in what follows

unless otherwise speci�ed.

3 Indirect inference tests of a DSGE model

The IIW test focuses on speci�c features of the DSGE model such as particular impulse

response functions, rather than on the overall �t of the full model as in an LR test. A

justi�cation for this is provided by Lucas and Prescott who objected to likelihood ratio tests

of DSGEmodels on the grounds that �too many good models are being rejected by the data�.

Their point is that the DSGE model may o¤er a good explanation of features of interest but

not of other features of less interest, and it is the latter that results in the rejection of the

model by conventional hypothesis tests.

In an indirect inference test the parameters of the structural model are taken as given.

The aim is to compare the performance of the auxiliary model estimated on simulated data

derived from the given estimates of a structural model �which is taken as the true model of

the economy (the null hypothesis) �with the performance of the auxiliary model (here a VAR

model) when estimated from actual data (the alternative hypothesis). If the DSGE model

is correct then the simulated data, and the VAR estimates based on these data, will not be

signi�cantly di¤erent from those derived from the actual data. The method is in essence

extremely simple. The idea is to bootstrap the estimated DSGE model. These bootstraps

provide simulations of the data that represent what the model and its implied shocks could

have generated for the sample historical period of the data. The test then compares the

VAR coe¢ cients estimated on the actual data with VAR coe¢ cients estimated using the

simulated data.

We have argued that the DSGEmodel may be regarded as a pseudo-true representation of

the economy and that the auxiliary model, which is an approximation to the DSGE model,

is therefore also a pseudo-true model of the economy. In the original real business cycle
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analysis based on calibration the auxiliary model consisted of the moments of the data and

a comparison of these moments on observed and simulated data. The drawback with this is

that it limits the properties of the DSGE model that can be investigated. Minford, Wickens

and Xu (2016) report that using moments instead of VAR coe¢ cients or impulse response

functions can lower power substantally. As the solution of a DSGE model can be represented

as a VAR, or can be closely approximated by one, we use a VAR as the auxiliary model. In

this way we aim to capture the key properties of interest of the DSGE model. A VAR also

has the advantage of being easy to estimate. In the next section we show how this VAR may

be obtained.

3.1 The auxiliary model: a VAR representation of a DSGE model

There are several ways of deriving a VAR representation of a DSGE model. We make

use of the ABCD framework of Fernandez-Villaverde et al. (2007). We consider solely

what these authors call the �square�case, where the number of errors and the number of

observable variables are the same. We also consider only DSGE models with no observable

exogenous variables. Both the Smets-Wouters model (Smets and Wouters, 2003;2007) and

the 3-equation model New Keynesian model used by Le et al. (2013) and Liu and Minford

(2014) for their numerous IIW tests �t this framework. (Other classes of models, for example

those with �news shocks�, require a di¤erent treatment which is beyond our scope here.)

To illustrate, consider the 3-equation New Keynesian model of Le et al. (2013):2

�t = !Et�t+1 + �yt + e�t; ! < 1 (1)

yt = Etyt+1 �
1

�
(rt � Et�t+1) + eyt

rt = 
�t + �yt + ert

eit = �iei;t�1 + "it (i = �; y; r)

2Further lags in both endogenous variables and the errors could be added; but for our main treatment
we suppress these. Our results can be extended to deal with them, without essential change.
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This has the solution 266664
�t

yt

rt

377775 = KH
266664
e�t

eyt

ert

377775 (2)

where

K =

266664
1 + �

�
� �� � ��

�

� 1
�
(
 � ��) 1� !�y � 1

�
(1� !�r)


 � (
 � �
�
)�� �
 + � � �!�y 1� (1 + ! + �

�
)�r + !�

2
r

377775 ;

H =

266664
H11 0 0

0 H22 0

0 0 H33

377775 ;

H11 =
1

1 + �+�

�
� [�

�
+ !(1 + �

�
)]�� + !�

2
�

H22 =
1

1 + �+�

�
� [�

�
+ !(1 + �

�
)]�y + !�

2
y

H33 =
1

1 + �+�

�
� [�

�
+ !(1 + �

�
)]�r + !�

2
r:

or

zt = �et (3)

et = Pet�1 + "t (4)

where z0t = [�t; yt; rt]; e
0
t = [e�t; eyt; ert];� = K �H: Thus the matrix � is restricted, having

9 elements but consists of only 5 structural coe¢ cients (the �i can be recovered directly

from the error processes), implying that the model is over-identi�ed according to the order

condition. The model is not identi�ed, however, if the �i = 0 for all i:
3

3Le et al., 2013, also establish that it is identi�ed using the IIW test in unlimited-size sampling.
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The solved structural model can be written in ABCD form as follows where y (replacing

z above) is now the vector of endogenous variables and x (replacing e above) is the vector

of error processes:

(1) xt = Axt�1 +B"t

(2) yt = Cxt�1 +D"t

where A = P =

266664
�� 0 0

0 �y 0

0 0 �r

377775 ;B = I;C = �P ;D = �:
Note that yt = �xt is the (solved) structural model. Hence xt = ��1yt. The VAR

representation is 4

yt = �P�
�1yt�1 + �"t = V yt�1 + �t (5)

We may also note that

yt = �
1X
i=0

P i"t�i =
1X
i=0

P i�t�i:

More generally, the solution of a linearised DSGE model (including the SW model and

the 3-equation model) can be summarised by a state-space representation:5

xt = Axt�1 +B"t

yt = Cxt

where xt is an n � 1 vector of possible unobserved state variables, yt is a k � 1 vector
4If the DSGE model also had one-period lags in one or more of the equations so that the solution became

zt = �et + �zt�1 then we would obtain a VAR(2) as follows:
(1) xt = Axt�1 +B"t
(2) yt = Cxt�1 +D"t + �yt�1
Using xt�1 = ��1(yt�1 � �yt�2) we obtain
yt = (�P�

�1 + �)yt�1 � ��1�yt�2 +�"t
5The solution of the model can be obtained by using either Blanchard and Kahn (1980) or Sims (2002)

type of algorithms.
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of variables observed by an econometrician, and "t is an m � 1 vector of economic shocks

a¤ecting both the state and the observable variables, i.e., shocks to preferences, technologies,

agents�information sets, and economist�s measurements. The shocks "t are Gaussian vector

white noise satisfying E("t) = 0; E("t"
0
t) = I. The matrices A;B and C are functions of

the underlying structural parameters of the DSGE model. Using the ABCD framework of

Fernandez-Villaverde et al. (2007), the state-space representation can be written as the VAR

yt = V yt�1 + �t (6)

where E(�t�
0
t) = ��

0 = �.

We have assumed that the DSGE model includes no observable exogenous variables. If

it does then the solution to the DSGE model contains exogenous variables as well as lagged

endogenous variables: in general, lagged, current and expected future exogenous variables.

If, however, the exogenous variables are assumed to be generated by a VAR process then the

combined solution of both the endogenous and exogenous variables is a purely backward-

looking model that can be represented as a VAR.6

4 The LR and the IIW test statistics

In indirect inference we do not impose the restrictions on the coe¢ cients of the auxiliary

model that are implied by the structural model. Instead, we estimate the auxiliary model on

data simulated from the structural model and compare these estimates with those obtained

from using the observed data. In both cases the auxiliary model is estimated without any

coe¢ cient restrictions. The restrictions imposed by the DSGE model are re�ected in the

simulated data and not through explicit restrictions on the auxiliary model.

Since both the LR test and the IIW test involve estimation of an unrestricted VAR, �rst

6For further discussion on the use of a VAR to represent a DSGE model, see for example Canova (2005),
Dave and DeJong (2007), Del Negro and Schorfheide (2004, 2006) and Del Negro et al. (2007a,b) (together
with the comments by Christiano (2007), Gallant (2007), Sims (2007), Faust (2007) and Kilian (2007)), and
Wickens (2014).
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we brie�y review the maximum likelihood estimation (MLE) of a standard unrestricted VAR.

Consider a randomly generated sample of yt of size T . If �t is assumed to be NID (0;�)

then the log-likelihood function is

lnL(V;�) = �[Tn
2
ln(2�) +

T

2
ln j�j+ 1

2

TX
t=1

(yt � V yt�1)0��1(yt � V yt�1)]

Maximising with respect to ��1 gives

@ lnL(V;�)

@��1
=
T

2
�� 1

2

PT
t=1(yt � V yt�1)(yt � V yt�1)0

Setting this to zero and solving gives the MLE estimator of � as

^

� =
1

T

PT
t=1(yt � V yt�1)(yt � V yt�1)0 (7)

Substituting this back into the likelihood function gives the concentrated likelihood

lnL(V;
^

�) = �[Tn
2
ln(2�) +

T

2
ln j

^

�j+ Tn
2
]

Maximising this with respect to V is identical to minimising ln j
^

�j with respect to V .

Thus

@ ln j
^

�j
@V

= 2
^

��1
PT

t=1(yt � V yt�1)y
0

t�1 = 0

and hence the MLE of V is

bV = (PT
t=1 yty

0

t�1)(
PT

t=1 yt�1y
0

t�1)
�1
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and can be calculated by applying OLS to each equation separately. The MLE of � becomes

^

� =
1

T

PT
t=1(yt � bV yt�1)(yt � bV yt�1)0 (8)

In order to �nd the variance matrix of bV it is convenient to re-express the VAR. Denoting
the T observations on the ith element of yt as the T�1 vector yi and of �t as �i, each equation

of the VAR may be written as

yi = Zvi + �i (9)

where v0i is the i
th row of V and Z is a T � k matrix with tth row yt�1. The VAR may now

be written in matrix form as

Y = Xv + � (10)

where

Y =

266664
y1

:

yT

377775 ; X=

266664
Z ::: 0

:: :: ::

0 ::: Z

377775 = Ik 
 Z; ...� =
266664
�1

:

�T

377775 ; :::v =
266664
v1

:

vk

377775

 denotes a Kronecker product. Hence � is N(0;
) where 
 = � 
 IT . Generalised least

squares estimation gives the MLE of v as

^
v = (X 0
�1X)�1X 0
�1Y

= [Ik 
 (Z 0Z)�1Z 0]Y

= v + [Ik 
 (Z 0Z)�1Z 0]�

In general
^
v is a biased estimate of v as Z consists of lagged endogenous variables, but plim
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^
v = v and the limiting distribution of

p
T (

^
v � v) is N(0;W ) where

W = plim T [Ik 
 (Z 0Z)�1Z 0](�
 IT )[Ik 
 (Z 0Z)�1Z 0]0

= �
 (plim T�1Z 0Z)�1

4.1 The LR test

The LR test for a DSGE model based on the observed data compares the likelihood function

of the auxiliary VAR derived from the DSGE model with the likelihood function of the

unrestricted VAR computed on the observed data. The former is based on the estimate of

the variance matrix of the structural errors from the solution to the DSGE model. On the

assumption that the auxiliary model is the solution to the DSGE model and is a VAR, this

is also the error variance matrix of a restricted version of the auxiliary VAR. The latter is

based on the estimate of the error variance matrix of the unrestricted auxiliary VAR. As the

auxiliary model is a VAR, the LR test is, in e¤ect, based on the one-period ahead forecast

error matrix. Thus, the logarithm of the likelihood ratio test is

LR = 2(lnLU � lnLR)

= T
�
ln j�Rj � ln

���b����� (11)

where LR and LU denote the likelihood values of the restricted and unrestricted VAR, re-

spectively, and �R and b� are the restricted and unrestricted error variance matrices. Note
that, given estimates of the DSGE model, we can solve the model for v, and hence we can

calculate �t and �R = T�1
PT

t=1 �t�
0
t. Note also that the LR test can be routinely trans-

formed into a (direct inference) Wald test between the unrestricted and the restricted VAR

coe¢ cients, v.

To obtain the power function of the LR test we endow the structural model with false

values of the structural coe¢ cients and compare the restricted VAR with the unrestricted
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VAR on the observed data which are assumed to be generated by the true model. The

implied false model has the VAR

yt = VFyt�1 + �Ft (12)

The forecast errors for the false model are

�Ft = yt � VFyt�1 = �t + (V � VF )yt�1 = �t + qt

where qt = Yt�1(v � vF ): If we let

�F =
1

T

TX
t=1

�Ft�
0
Ft =

1

T

TX
t=1

(�t + qt) (�t + qt)
0

then the LR test for the false model is given by:

LRF = T [ln j�F j � ln
���b����] (13)

Thus the power of the test derives from the distance

ln j�
F
j � ln j�

R
j : (14)

4.2 The IIW test

In the IIW test we simulate data from the solution to the already estimated DSGE, ran-

domly drawing the samples from the DSGE model�s structural errors. We then estimate the

auxiliary VAR using these simulated data. We repeat this many times to obtain the average

estimate of the coe¢ cients of the VAR which we take as the estimate of the unrestricted
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VAR. The simulated VAR may be written

yS;t = VSyS;t�1 + �St

where yS;t is the data simulated from the DSGE model and VS is the (average estimate of v)

or, in the form of equations (9) and (10), as

yS;i = ZSvS;i; + �S;i

YS = XSvS + �S

where E(�S;i�
0
S;i) = �S. The IIW test statistic, which computes the distance of these esti-

mates from the unrestricted estimates based on the observed data, is:

IIW = [bv � vS]0W�1
S [bv � vS] (15)

where WS is the covariance matrix of the limiting distribution of vS, and is given by

WS = �S 
 (plim T�1Z 0SZS)
�1 (16)

On the null hypothesis that the DSGE model � and hence the auxiliary VAR � are correct,

the asymptotic distribution of the estimate of vS is the same that of the MLE bv. Moreover,
asymptotically, this IIW statistic will have the same distribution as [bv � v]0W�1[bv � v] and
hence will have the same critical values.7 In general, the IIW statistic di¤ers from a standard

Wald statistic in indirect inference which is [bv � vS]0W�1[bv � vS] where W is the covariance

matrix of the unrestricted model; we refer to this as the unrestricted IIW statistic.

The power of the IIW test is calculated, like that for the power calculations for the

LR test, by simulating the DSGE model using false values of its coe¢ cients and now using

7The IIW test can also be carried out for a sub-set of v.
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these data to estimate the unrestricted VAR from equation (12). The IIW statistic is then

computed from

IIW = [bv � vF ]0W�1
F [bv � vF ] (17)

where vF is the mean vector of coe¢ cients andWF is their variance matrix, which corresponds

to WS. Consider the decomposition

bv � vF = (bv � v) + (v � vF ):
It follows that the IIW statistic can be decomposed as

[bv � vF ]0W�1
F [bv � vF ] (18)

= �0[Ik 
 (Z 0Z)�1Z 0]0W�1
F [Ik 
 (Z 0Z)�1Z 0]�

+[v � vF ]0W�1
F [v � vF ]

= �0[��1 
 plim T (Z 0Z)�1]� + [v � vF ]0W�1
F [v � vF ] (19)

where the last term is based on the di¤erence between the true and the false values of the

coe¢ cients. Hence the power of the IIW test derives from the second term on the right-hand

side of equation (19).

We note two things. First, both the sign and size of the change in the �rst term on the

right-hand side of equation (19) as the false model changes cannot be evaluated analytically;

it depends on how the covariance weighting matrix of the false parameters, W�1
F ; changes

and interacts with [Ik
(Z 0Z)�1Z 0]�, the sample di¤erences on the true data of the estimated

v from the true v. If WF were diagonal then the false weighting matrix would, in e¤ect be

dividing each element by its false standard deviation, thereby converting them into false

t-values; some elements will have t-values that are too large, others that are too small. vF ,

the vector of VAR parameters implied by the false model, depends on two false elements: � (

the DSGE model�s structural parameters) and P (the time-series parameters of the errors).
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Second, in the New Keynesian model above, vF is a row in the matrix V = �P��1 where

� depends on �; P . In small samples we use the mean of the estimated vF , and hence a

third false element � " (the vector of innovations in the DSGE model�s structural errors)

� a¤ects the power through its properties (i.e. its variance matrix, skewness and kurtosis).

For small samples Le et al. (2016a) were able via Monte Carlo experiments to generate some

orders of magnitude for the contribution of the di¤erent elements to the power of the IIW

test. Essentially they found that they are all of some importance � Table 1 shows their

�ndings for the 3-equation New Keynesian model on stationary data.

ALL ELEMENTS Level of Falseness
1% 3% 5% 7% 10% 15% 20%

2 variable VAR(1) 16:8 82:6 99:6 100:0 100:0 100:0 100:0
3 variable VAR(1) 25:1 97:7 100:0 100:0 100:0 100:0 100:0
3 variable VAR(2) 16:1 77:2 98:4 100:0 100:0 100:0 100:0
3 variable VAR(3) 14:4 73:0 97:5 99:7 100:0 100:0 100:0

STRUCTURAL PARAMETERS
2 variable VAR(1) 7:3 8:7 12:6 19:3 40:4 76:1 92:7
3 variable VAR(1) 6:2 10:1 25:5 53:7 80:7 99:4 100:0
3 variable VAR(2) 6:8 9:3 12:8 20:6 45:9 77:2 95:0
3 variable VAR(3) 5:8 7:5 12:0 21:7 45:8 74:0 95:5

AR PARAMETERS
2 variable VAR(1) 16:2 86:3 99:7 100:0 100:0 100:0 100:0
3 variable VAR(1) 18:8 96:8 100:0 100:0 100:0 100:0 100:0
3 variable VAR(2) 16:5 87:3 99:9 100:0 100:0 100:0 100:0
3 variable VAR(3) 18:9 81:6 99:5 100:0 100:0 100:0 100:0

SHOCKS
2 variable VAR(1) 5:6 6:8 5:7 10:1 15:0 27:3 46:7
3 variable VAR(1) 5:4 6:0 8:4 8:7 11:7 26:7 48:8
3 variable VAR(2) 5:6 5:4 5:1 9:0 13:1 31:0 41:8
3 variable VAR(3) 4:9 6:1 4:1 9:0 12:4 29:5 48:2

Table 1: 3-EQUATION MODEL, STATIONARY DATA: Decomposition of the power of
IIW
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4.3 Comparing the power of the two tests

We have seen that the LR test compares the one-step ahead forecast error matrix of the

unrestricted VAR with that of the model-restricted VAR using the observed data, whereas

the IIW test asks whether the distribution of the VAR coe¢ cients based on the simulated

data (the restricted model) covers the VAR coe¢ cients based on the observed data (the

unrestricted model). We have also found that on the null hypothesis that the DSGE model

is true the limiting distributions of the two sets of estimates are the same. It follows from

equation (7) that, on the null hypothesis, the error variance matrix using simulated data is

�S =
1

T

PT
t=1(ySt � VSyS;t�1)(ySt � VSyS;t�1)0

=
1

T

PT
t=1(yt � VSyt�1)(yt � VSyt�1)0 +�

=
^

� + (bV � VS) 1
T

TX
t=1

yt�1y
0
t�1(

bV � VS)0 +�
where b� is the error variance matrix of the unrestricted VAR using the observed data and
� is Op(T�

1
2 ).

Using the result that vec(AXB) = (B0 
 A)vec(X), and vec(V 0) = v, it can be shown

that

vec[(bV � VS) 1
T

TX
t=1

yt�1y
0
t�1(bV � VS)0] = v0(I 
 1

T

TX
t=1

yt�1y
0
t�1)v
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Hence,

LR = T
�
ln j�Sj � ln

���b�����

= T [ln j1 +
(bV � VS) 1T TX

t=1

yt�1y
0
t�1(bV � VS)0 +����b���� j]

= T [ln j1 + (bv � vS)0(b�
 1

T

TX
t=1

yt�1y
0
t�1)

�1(bv � vS) + ����b���� j]
! IIW +Op(T

� 1
2 )

In other words, on the null hypothesis that the DSGE model is the true model, the LR test

based on observed data is asymptotically equivalent to using the IIW test, which is based

on simulated data.

In the power calculations we use

LR = T
�
ln j�F j � ln

���b�����
= T

�
ln j�Sj � ln

���b�����+ T (ln j�F j � ln j�Sj)
The power of the test derives from the last term which re�ects the di¤erence between VS and

VF . This makes � of order Op(1), which does not vanish as T ! 1, but causes the power

of the test to tend to unity.

5 Numerical comparison of the powers of the LR and

IIW test

In power calculations we deliberately falsify the DSGE model and seek to discover the prob-

ability that the model will be rejected. When the structural model is the true model, and

hence the solution is correct, the LR and IIW tests have the same asymptotic distribution
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and therefore test size. But when the model is made false the two tests are no longer as-

ymptotically equivalent; hence they will have di¤erent powers. The IIW test as carried out

by Le et al. (2016a) uses the distribution of the model-restricted VAR coe¢ cients. This

increases the precision of the variance matrix of the coe¢ cients of the auxiliary model and

so improves the power of the IIW test. Thus the IIW test asks whether the distribution of

the model-restricted VAR coe¢ cients covers the unrestricted VAR coe¢ cients found in the

data. The distribution of the resulting IIW statistic is asymptotically chi�squared. As in

practice we are usually dealing with small samples, the distribution of the test statistic will

be better determined numerically as below.

5.1 Numerical comparison of the distribution of the estimates

In our numerical comparison of the two tests our structural model is the Smets-Wouters

model (2007). This is a DSGE model which has a high degree of over-identi�cation (as

established by Le et al., 2013). It has 12 structural parameters and 8 parameters in the

error processes. It implies a reduced-form VAR of order 4 with seven observable endogenous

variables, i.e. a 7VAR(4), (Wright, 2015). This has 196 coe¢ cients. The size of the VAR in

a IIW test and the number of variables is usually lower than a 7VAR(4).

We concentrate on the dynamic response to own shocks of in�ation and the short-term

nominal interest rate. We focus on the three variables of the above New Keynesian model:

in�ation, the output gap and the nominal interest rate. We use a 3VAR(1) in these variables

as the auxiliary model. We then examine the own-lag coe¢ cients for in�ation and the

short-term interest rate.

We estimate the coe¢ cients of the 3VAR(1) using the observed data for these three

variables. We then �nd the distribution of the estimates of the two coe¢ cients of interest

by bootstrapping the VAR innovations. Next, we estimate the 3VAR(1) using data for these

three variables obtained by simulating the full SWmodel. The distribution of these estimates

of the two coe¢ cients is obtained by bootstrapping the structural innovations generating that
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sample. The graphs below show the densities of the joint distribution of the two coe¢ cients.

Figure 1 displays the joint distributions of the two VAR coe¢ cients based on (i) the

observed data (the unrestricted VAR), (ii) simulated data from the original estimates of the

structural model (the restricted VAR), and (iii) false speci�cations of the structural models

by 5% and 10% (the 5% false and 10% false restricted VARs). One can see clearly that (ii),

the joint distribution based on simulated data from the original structural model, is both

more concentrated and more elliptical (implying a higher correlation between the coe¢ cients)

which uses the observed data. Increasing the falseness of the model causes (iii), the joint

distributions from the 5% and 10% false DSGE model, to become a little more dispersed

and more elliptical; they are also located slightly di¤erently but this is not shown as the

distribution is centred on zero in all cases.

Figure 1: Restricted VAR and Unrestricted VAR Coe¢ cient Distributions

Figure 2 shows how this a¤ects the power of the Wald test for a model that is 5% false.
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The green dot is the mean of this false distribution. We have drawn the diagram as if the

joint test of two chosen VAR coe¢ cients has the same power as the overall test of all VAR

coe¢ cients.

Rejection Frontier
5% False (unrestricted)

Figure 2: Two 95% contours for tests of 5% False Model- Green=Unrestricted;
Red=Restricted.

The test of this false model can be carried out in two ways. First, we employ the

unrestricted Wald test, using the observed data to estimate a 3VAR(1) representation and

to derive the joint distribution of the two coe¢ cients by bootstrapping. The 5% contour of

such a bootstrap distribution is given by the dashed green line; the thick green line shows

the critical frontier at which the 5% false model is just rejected. Second, we employ the

restricted Wald test, using the distribution implied by the simulated data. The red ellipse

shows the 5% contour of the resulting joint distribution. The results show that the second

method has nearly double the power of the �rst. (Increasing the degree of falseness to 10%

raises the power of both to 100%.)
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5.2 Numerical comparison of the power of the test statistics

In the above comparison of the joint distribution of the two coe¢ cients of interest, the data

simulated from the structural model gave serially correlated structural error processes. In

order to make the estimates of their joint distribution compatible with the original Smets-

Wouters estimation strategy, �rst-order autoregressive processes were �tted to these struc-

tural errors for each bootstrap sample. In calculating the power of the tests we proceed a

little di¤erently in order that the tests are based on the same assumptions when the struc-

tural model is falsi�ed. We now �x both � (the vector of structural coe¢ cients of the DSGE

model) and � (the vector of coe¢ cients of the autoregressive error processes). Each is falsi�ed

by x%. We do not, however, falsify the innovations, maintaining them as having the original

true distribution. This last point is a matter of convenience as we could extract the exact

implied false error innovations, as implied by each data sample, � and �. But this extraction

is a long and computationally-intensive process requiring substantial iteration. We simply

assume, therefore, that the model is false in all respects except for the innovations. Gen-

erally, we �nd that if only the innovations are false this generates little power under either

test (see Le et al., 2016a) so this omission should make no di¤erence to the relative power

calculation. We use the SW model as the true model with a sample size of 200 throughout.

Our �ndings are reported in Table 2.

We �nd, as we would expect, that the two test statistics generate similar power when

the IIW test is based on the observed data (the unrestricted VAR). Focusing on the main

case, which is a 3VAR(1), and taking 5% falseness as our basic comparison, we see that the

rejection rate for the LR test is 38%. For the IIW test based on an unrestricted VAR the

rejection rate is 31% while using a restricted VAR (simulated data) for the IIW test it is

85%. The orders of magnitude of the rejection rates are therefore similar for LR test and

a IIW test based on the observed data8, while for the a IIW test based on simulated data

8This test uses the variance matrix of the VAR coe¢ cients for the observed data. When this VAR has a
very large number of coe¢ cients the variance matrix of the coe¢ cients has a tendency to become unstable;
this occurs even when the number of bootstraps is raised massively (e.g. to 10000). This is due to over-�tting
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VAR � no of coe¤s TRUE 1% 3% 5% 7% 10% 15% 20%
IIW TEST with unrestricted VAR
2 variable VAR(1) � 4 5:0 6:2 20:3 69:6 61:0 99:8 100:0 100:0
3 variable VAR(1) � 9 5:0 3:4 7:5 30:7 75:0 97:4 100:0 100:0
3 variable VAR(2) � 18 5:0 3:8 5:2 19:1 57:5 84:3 98:4 99:5
3 variable VAR(3) � 27 5:0 3:9 6:4 21:6 54:5 84:0 97:5 98:7
5 variable VAR(1) � 25 5:0 2:8 3:2 2:6 5:4 6:2 4:5 100:0
7 variable VAR(3) � 147 5:0 5:1 3:4 1:4 0:9 0:2 0:0 100:0
IIW TEST with restricted VAR
2 variable VAR(1) � 4 5:0 9:8 37:7 80:8 96:8 100:0 100:0 100:0
3 variable VAR(1) � 9 5:0 9:5 36:1 71:0 98:1 100:0 100:0 100:0
3 variable VAR(2) � 18 5:0 8:3 35:5 80:9 96:9 100:0 100:0 100:0
3 variable VAR(3) � 27 5:0 9:2 32:9 78:0 95:1 100:0 100:0 100:0
5 variable VAR(1) � 25 5:0 17:8 85:5 99:8 100:0 100:0 100:0 100:0
7 variable VAR(3) � 147 5:0 77:6 99:2 100:0 100:0 100:0 100:0 100:0
LIKELIHOOD RATIO TEST
2 variable VAR(1) � 4 5:0 12:0 28:3 45:9 63:4 83:2 97:0 99:7
3 variable VAR(1) � 9 5:0 9:4 21:8 37:5 58:9 84:0 99:0 100:0
3 variable VAR(2) � 18 5:0 8:9 20:7 36:8 57:6 82:9 98:7 100:0
3 variable VAR(3) � 27 5:0 8:9 20:4 36:7 56:7 82:2 98:7 100:0
5 variable VAR(1) � 25 5:0 8:9 22:4 44:3 68:6 89:6 99:6 100:0
7 variable VAR(3) � 147 5:0 5:7 10:6 23:6 46:3 83:2 99:6 100:0

Table 2: Comparison of rejection rates at 95% level for Indirect Inference and Direct Inference

they are very considerably higher, implying greater power. In what follows we will refer to

this last, the IIW test based on the restricted VAR, as �the�IIW test.

5.3 Why does the IIW test have more power in small samples

than the Likelihood Ratio test?

Although the LR and IIW tests are asymptotically equivalent when the structural model

is the true model and so generating the observed data, the two tests have di¤erent power,

as we have seen. We consider two possible reasons for this: a) they are carried out with

di¤erent procedures; b) even when the same procedures are followed, the two tests di¤er in

power by construction.

in small samples (here the sample size is 200); there is then insu¢ cient information to measure the variance
matrix of the VAR coe¢ cients.
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5.3.1 Reason a): di¤erent procedures

We noted earlier that in order to improve the �t of a DSGE model it is usual to respecify

the structural errors as being serially correlated by adding to the model the assumption that

the errors are generated by �rst-order autoregressive processes. Accordingly, in calculating

the power of the LR test, we re-estimated the error processes in order to �bring the model

back on track�. This will clearly reduce the power of the LR test as it will make it less likely

that a false model will be rejected. This can be illustrated by comparing the power of the

LR test in which the autoregression coe¢ cients are re-estimated, as above, with an LR test

in which the degree of falsi�cation of the autoregressive coe¢ cients is pre-speci�ed, as for

the IIW test above. We employ a 3-equation NK model for the comparison. As expected,

the results in Table 3 show that the LR test with pre-speci�ed autoregressive coe¢ cients has

considerably greater power than the test using re-estimated autoregressive coe¢ cients.

3-equation NK model (no lags)
Rejection rate of false models at 95% con�dence: T=200

Re-estimated �0s Pre-speci�ed �0s
True 5:0 5:0
1% 5:0 5:0
3% 5:3 9:6
5% 6:1 20:2
7% 8:0 39:1
10% 15:4 63:7
15% 48:1 90:7
20% 75:6 98:9

Table 3: Comparing power due to wrong parameter values

5.3.2 Reason b): comparison when the same procedures are followed

In our numerical comparison above of the LR and the two IIW tests, we noted that the

power of the LR and the IIW test using the unrestricted VAR coe¢ cient distribution were

similar when testing a DSGE model on a like-for-like basis (i.e. using the same procedure).

We also noted the IIW test carried out by Le et al. (2011, 2016a) using the VAR coe¢ cient
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distribution as restricted by the DSGE model was substantially more powerful than the other

form of the IIW test and hence than the LR test even when using the same procedure. This

therefore is the second reason for the greater power of the IIW test as they carry it out: that

it is carried out using the VAR coe¢ cient distribution that is restricted by the DSGE model.

It may be therefore possible to raise the power of this (�restricted�) IIW test further. We

suggest two ways in which this might be achieved: 1) extending this IIW test to include

elements of the variance matrix of the coe¢ cients of the auxiliary model; 2) including more

of the structural model�s variables in the VAR, increasing the order of the VAR, or both.

The basic idea here is to extend the features of the structural model that the auxiliary

model seeks to match. The former is likely to increase the power of this IIW test, but not

the LR test, as the latter can only ask whether the DSGE model is forecasting su¢ ciently

accurately; including more variables is likely to increase the power of both. There is, of

course, a limit to the number of features of the DSGE model that can be included in the

test. If, for example, we employ the full model then we run into the objection raised by

Lucas and Prescott against tests of DSGE models that was noted above, that �too many

good models are being rejected by the data�. The point is that the model may o¤er a good

explanation of features of interest but not of other features of less interest, and it is the

latter that results in the rejection of the model by conventional hypothesis tests. Focusing

on particular features is a major strength of the restricted IIW test.

To illustrate the e¤ects of extending the features that are tested, consider again the

simple example explored earlier, namely, the 3-equation NK model. This has a 3VAR(1)

reduced-form solution with 9 coe¢ cients each of which is a di¤erent non-linear combination

of the 8 structural and AR parameters. No extra information is therefore obtained by raising

the order of VAR. The number of variables in the auxiliary model is not an issue as all three

variables are included. The power of the restricted IIW test is reported in Table 4. The

results show that increasing the order of the VAR from one lag (the number in the solution

of the model) to two lags has no e¤ect on power.
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3-equation NK model � no lags (VAR(1) reduced form)
Rejection rates at 95% con�dence: T=200

3 variable VAR(1) 3 variable VAR(2)
True 5:0 5:0
1% 4:9 4:3
3% 7:3 7:1
5% 16:1 21:7
7% 37:0 40:3
10% 73:3 76:3
15% 99:4 99:8
20% 100:0 100:0

Table 4: Comparing power due to VAR order (3-equation NK model with no lags)

Consider now including an indexing lag in the Phillips Curve. This increases the number

of structural parameters to 9 and the reduced-form solution is a VAR(2). The power of the

restricted IIW test is reported in Table 5. Increasing the number of lags in the auxiliary

model has clearly raised the power of the test.

3-equation NK model � with lag (VAR(2) reduced form)
Rejection rates at 95% con�dence: T=200

3 variable VAR(1) 3 variable VAR(2)
True 5:0 5:0
1% 10:6 6:0
3% 20:7 19:5
5% 47:5 57:9
7% 65:6 91:2
10% 89:6 100:0
15% 98:8 100:0
20% 99:9 100:0

Table 5: Comparing power due to VAR order (3-equation NK model with indexing lag)

This additional power is related to the identi�cation of the structural model. The more

over-identi�ed the model, the greater the power of the test. Adding an indexation lag has

increased the number of over-identifying restrictions exploitable by the reduced form. A

DSGE model that is under-identi�ed would produce the same reduced-form solution for

di¤erent values of the unidenti�ed parameters and would, therefore have zero power for tests

involving these parameters.
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In practice, most DSGE models will be over-identi�ed, see Le et al. (2013). In particular,

the SW model is highly over-identi�ed. The reduced form of the SW model is approximately

a 7VAR(4) which has 196 coe¢ cients. Depending on the version used, the SW model has

around 15 (estimatable) structural parameters and around 10 ARMA parameters. The 196

coe¢ cients of the VAR are all non-linear functions of the 25 model parameters, indicating a

high degree of over-identi�cation.

The over-identifying restrictions may also a¤ect the variance matrix of the reduced-form

errors. If true, these extra restrictions may be expected to produce more precise estimates

of the coe¢ cients of the auxiliary model and thereby increase its power. It also suggests

that the power of the test may be further increased by using these variance restrictions to

provide further features to be included in the test.

6 Testing pseudo-true models for mis-speci�cation

In recent years Le et al (2011, 2016a) have suggested a method for testing macroeconomic

models that has substantial power in the small samples typically available for macro data.

They have exempli�ed this using Monte Carlo experiments on two major types of macro

model, the 3-equation New Keynesian and the Smets-Wouters multi-equation New Keyne-

sian, both DSGE models. Above we have summarised a number of these experiments and

explained why the IIW test is so powerful compared to the standard LR test which has up

to now dominated econometric thinking.

As we have seen, the IIW test, which we have explored in previous work, has very consid-

erable power in small samples in testing over-identi�ed macroeconomic models, typically of

the DSGE variety � Le et al (2016a). Indeeed, one can continuously raise the power of the

test by steadily adding to the auxiliary model more separately-identi�ed features implied by

the structural model. However, while we can set the power of the test very high, in practice

we will choose the level of power to be not so high that we cannot �nd a tractable model
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that will pass. Assuming that we do �nd such a model, we can then ask how false would

a model of that type have to be in order to be rejected 100% of the time. We do this by

Monte Carlo experiment, creating a model of this type, treating it as pseudo-true, generating

many samples from it and then measuring the rejection rate as this model is progressively

falsi�ed. Suppose for example that rejection reaches 100% when the model is 7% false. One

can then carry out a robustness analysis on any set of policy proposals, asking how they

would perform within a 7% range of the model which has passed the test. One can argue

that this model has to be within 7% of the pseudo-true model.

Thus the test procedure exploits the test�s power in order to inform the users of the

margin of e¤ectiveness of their �policies�on the �policy targets�. It does so by simulating a

potentially pseudo-true model to discover its power function; this model is in the region of

the estimated model, so that the power function should apply indi¤erently to models in this

region, as can easily be veri�ed. This power function is then used to analyse the e¤ectiveness

margin on the estimated model.

Should users be worried about possible mis-speci�cation of their pseudo-true model? In

investigating this we assume that mis-speci�cation may take the form of a failure to include

in our pseudo-true model features from a more complex model that is treated as the DGP

that in fact generates the data.

We set up a Monte Carlo experiment in which the DGP generating the data is such a

more complex model. Our starting point will be as in Le et al (2011, 2016a) the well-known

Smets-Wouters model on US data from the early 1980s. Le et al (2011, 2016b) found that

this model when modi�ed to allow for a competitive sector and for banking, can explain

the main US macro variables, output, in�ation and interest rates well. It is this model and

versions similar to it that we have used in previous Monte Carlo experiments.

To this model we can add money and a regime shift contingent on the state of the

economy, from the Taylor Rule to the zero bound, as in Le et al (2016b). This makes the

model�s parameters state-contingent so that it has this form of nonlinearity. We then treat

34



this nonlinear model as if it were the DGP generating the data. Using the Indirect Inference

test procedure with a VAR as the auxiliary model we estimate the power function for the

falseness criterion we described above in order to assess the sensitivity of this function to

the presence of greater nonlinearity in the true model than the �assumed true�DSGE model

we started with.

We looked at three very similar models, of varying complexity. All three are based on the

Smets-Wouters model as modi�ed in Le et al (2011). Model 1 is that model exactly. Model

2 is that model with the �nancial shock replaced by the Bernanke, Gertler and Gilchrist

model of banking (the ��nancial accelerator�). Model 3 is the same model, together with

an extension in which collateral is required and base money acts as cheap collateral, and

the additional nonlinearity of the zero bound constraint, triggered whenever the Taylor Rule

interest rate falls below a low threshold. These last two models are set out in Le et al

(2016b).

From the point of view of �realism�and �truth�we regard model 3 as the most realistic;

model 2 as a linear approximation to it; and model 1 as a simpler approximation to model

2. We investigate whether in each case the simpler, less realistic model can be treated as a

valid approximation to the more realistic one.

We carried out the following three experiments with sample sizes between 75 and 200,

and with 1000 sample replications. Our IIW test was based in all cases on the coe¢ cients

of a three variable (y; �;R) VAR(1) (including the three variances, as is the usual practice

in applying these tests; so 12 values in all). Table 6 shows that in all cases there is an

overwhelming probability of rejection, close to 100% and falling to 80 with the smallest

sample size of 75 and the two models closest in complexity (models 1 and 2).

The models we used for this experiment were those that Le et al (2011, 2016a,b) where

the parameters were estimated by indirect estimation using US data. In practice when we

carry out the IIW test on a model for a particular sample, in practice, we re-estimate the

model. We therefore carried out the test on this basis, re-estimating the tested model on
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3 variable VAR(1) T=200 T=125 T=75
1) Generating data from model 2 as true data,
testing model 1 by IIW 99:9 98:2 79:7

2) Generating data from model 3 as true data,
testing model 2 by IIW 100 99:3 95:2

3) Generating data from model 3 as true data,
testing model 1 by IIW 100 100 98:1

Table 6: Testing mis-speci�ed models: percentage rejection rates using IIW

each sample generated by the true model. As this is highly time-consuming, we did this

selectively for two model pairs and di¤erent sample sizes: for a sample of 125, model 3 is

the complex model and model 1 is the simpler model; with a sample of 75, model 2 is the

complex model and model 1 is the simpler model.

Table 7 shows that the rejection rate for model 1 for the �rst pair is still 100%, even

though there is some increase in closeness. Thus, even for a sample as small as 125, the

rejection of mis-speci�cation remains virtually 100%.

Transformed Wald Min Max Mean Rejection rate
(Critical value=1.645)

Re-estimated by II 1:686 79:314 21:739 100%
Original estimates 2:459 9:07E + 15 2:57E + 14 100%

Table 7: Transformed Wald for model 1 when tested on model 3 samples, T=125

In the second case, Table 8, where model 1 is tested using data from model 2 with a

sample of only 75, it is somewhat harder to distinguish model 1 from model 2, the two

closest models: the rejection rate falls to 68.6%. However, rejection is still overwhelmingly

probable.

Transformed Wald Min Max Mean Rejection rate
(Critical value=1.645)

Re-estimated by II 1:480 8:412 2:409 68:6%
Original estimates 1:291 11:818 2:909 79:7%

Table 8: Transformed Wald for model 1 when tested on model 2 samples, T=75

We would not have found this result had we used a Likelihood Ratio test as this has

much less power than the IIW test, even if falsi�cation is done in exactly the same way.
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Furthermore, if a mis-speci�ed model is re-estimated on the sample data, the power of the

test declines considerably due to the way the re-estimated model is then able to mimic

the data. Hence passing a such likelihood ratio test may carry little weight and give the

impression that there is little point in testing DSGE models since their misspeci�cation is

unlikely to be detected.

Our �ndings are the opposite using the IIW test. This test is found to give a very high

rejection rate of mis-speci�ed DSGE models, even with very low sample size.

What we �nd therefore is that treating DSGE models as pseudo-true, our IIW test can

establish for users a) whether they have a model that can predict relevant features of data

behaviour and if so b) the bounds within which they can be sure of its speci�cation and

parameter values. With the widely-used DSGE model examined here, we found that if the

pseudo-true model passes the test on the behaviour of three key macro variables, the power

of the test largely guarantees that no other speci�cation can be pseudo-true and that its

parameter values lie within a 7-10% region of the pseudo-true ones.

7 Conclusions

This paper has attempted to address the growing gulf between traditional macroeconometrics

and the increasingly dominant preference among macroeconomists to use DSGE models but

not to test them as they are likely to fail conventional statistical tests. Instead of using clas-

sical estimation and inference procedures, DSGE models are either calibrated or estimated

by Bayesian methods in which prior information tends to dominate sample information. The

dominance of DSGE models among macroeconomists followed from Lucas�famous Critique

of macroeconometric models as being reduced form models - and so subject to structural

change - rather than structural models. The strength of traditional macroeconometric mod-

els is that they can be speci�ed - often by giving them �exible dynamics - so that they are

not rejected by the data. The choice therefore seems to lie between statistically valid rep-
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resentations of the data that are not theoretically valid and more theoretically valid models

that are not statistically valid, and therefore not worth testing.

We have argued that both types of model are better regarded as approximations to

�reality� and are therefore at best pseudo-true and worth testing if only to evaluate how

close they are to providing a valid statistical representation of the data. Based on a decade

and a half of previous work, we have described a way to test DSGE models using indirect

inference. This involves formulating an auxiliary model that is a pseudo-true approximation

to the solution of the DSGE model and comparing estimates based on data simulated from

the DSGE model with those derived from actual data. This provides both a generalisation

of previous methods of assessing the performance of DSGE models and a formal statistical

test of the model.

We addressed the issue of how best to test an already estimated DSGE macroeconomic

model as judged by the power properties of the test. A key �nding is that, in small samples,

a test based on indirect inference (in particular, the IIW test) appears to have much greater

power than a likelihood ratio test based on the observed data. This �nding is at �rst sight

a little puzzling as under direct inference with the observed data an LR test and a Wald

test of all of the coe¢ cients are equivalent, while the IIW test using indirect inference is

asymptotically equivalent to the LR test and so has the same power in large samples. We

attempted to explain why this result occurs.

We �nd that the di¤erence in power in small samples of the LR and IIW tests may be

attributed to two things. First, in the power calculations, the simulated data is usually

obtained di¤erently for the two tests. The structural disturbances of DSGE models are com-

monly found to be serially correlated. In order to improve the �t of the model, the structural

disturbances are speci�ed to allow them to be generated by autoregressive processes. As the

simulated structural errors are also serially correlated, in calculating the power of the LR

test for the false DSGE model, the autoregressive processes of the resulting simulated struc-

tural errors are normally re-estimated. This �brings the model back on track� and as a
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result undermines the power of the LR test as it is, in e¤ect, based on the relative accuracy

of one-step ahead forecasts compared with those obtained from an auxiliary VAR model.

The fact that the serial correlation structure of the disturbances changes with each degree

of falsi�cation that is imposed shows the data-mining role played by the serially correlated

disturbances in the original set of estimates.

Second, the additional power of the IIW test may arise from the use of a covariance matrix

of the auxiliary model�s coe¢ cients determined from data simulated using the restrictions

on the DSGE model. These may both give more precise estimates of these coe¢ cients and

provide further features of the model to test. The greater the degree of over-identi�cation of

the DSGE model, the stronger this e¤ect. This suggests that for a complex, highly restricted,

model like that of Smets and Wouters, the power of the indirect inference IIW test can made

very high even in small samples. Because a test of all of the properties of a DSGE model

is likely to lead to its rejection, it may be preferable to focus on particular features of the

model and their implications for the data. This is where the IIW test has another clear

advantage over the LR test.

Finally, we addressed the issue of detecting mis-speci�cation in pseudo-true models. We

found that the power of the IIW test on typical small samples is high enough to detect

whether DSGE models give signi�cantly di¤erent estimates of the auxiliary model from

actual data and so are mis-speci�ed. If a DSGE model passes the test, the probability of

its being mis-speci�ed, and hence unable to explain estimates of the auxiliary model derived

using actual data, seems to be vanishingly small. We concluded that it is possible to test

a DSGE model in a normal frequentist way as if it were the true model while recognising

that it is, at best, only a good approximation, or pseudo-true, model of the economy. We

suggested using the power function of the test statistic to assess the robustness of the DSGE

model as a representation of the economy.
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