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Abstract

We consider the set-up of a Japanese-English auction with exogenously fixed discrete bid levels

for the wallet game with two bidders. We prove that bidding twice the signal - the equilibrium

strategy with continuous bid levels - is never an equilibrium in this set up. We show that partition

equilibria exist that may be separating or pooling. We illustrate some separating and pooling

equilibria with two and three discrete bid levels; we also compare the revenues of the seller from

these equilibria and thereby find the optimal bid levels in these cases.
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separating equilibrium.
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1 INTRODUCTION

Milgrom and Weber (1982) analysed a particular version of the English auction, the so-called Japanese-

English Auction (henceforth JEA) in which the price of the object increases continuously and the bidders

must keep on pressing a button whilst they are interested in buying the object at the posted price; the

auction ends when all but one bidder release the button. Later, Klemperer (1998) focused on a particular

common value auction with two bidders, popularly known as the “wallet game” (in which the common

value is simply the sum of two private signals, the “wallets”), as a special case of the above model

and illustrated that bidding twice the individual signal forms the unique symmetric (Bayesian-Nash)

equilibrium in this game.

The set-up in this paper is same as the usual JEA, except that the price, goes up in discrete commonly

known bid levels. As in the usual JEA, if a bidder wants to drop out, all he has to do is release the

button. The final auction price is equal to the highest bid level at which at least one bidder was active.

We use the wallet game (with two bidders) as our background game to theoretically analyse this JEA

with discrete bid levels.

In the recent past, English auctions with predefined discrete bid levels have been analysed. In

these studies, bidders have to choose among the exogenously fixed bid levels when it is their turn to

bid (Rothkopf and Harstad, 1994; David et al, 2007) or at the very least, increase the going bid by a

minimum increment (Isaac et al, 2007). Following the seminal experiment by Avery and Kagel (1997) on

a JEA based on the wallet game, not surprisingly, there is now a growing theoretical and experimental

literature on this issue (Yu, 1999; Sinha and Greenleaf, 2000; Cheng, 2004; Gonçalves and Hey, 2011).

However, to the best of our knowledge, nobody so far has attempted to theoretically characterise the

equilibria of a JEA in a common value environment with exogenously specified discrete bid levels. We

take the first step to this direction in this short paper.

Discrete bidding in English auctions is the norm in the real world, although substantial variations in

the exact characteristics of the auctions are observed.1 In most English auctions, admittedly, the discrete

bids are endogenous, possibly a function of several factors, including number of bidders, (expected)

bidders’ valuations, etc. Cassady (1967) gives examples of auctions in which the bid levels are known,

such as tobacco and livestock auctions in the USA. In auctions at Sotheby’s or Christie’s, bidding

usually advances between 5% and 10% of the current price level (Rothkopf and Harstad, 1994). Even

in real world examples of Japanese-English auctions (commonly known as clock auctions), the price

actually increases in discrete increments. For example, in the Looe wholesale fish auction (UK), the

increments are anywhere from 1p to 5p or 10p and sometimes different increments are used for different

1Harstad and Rothkopf (2000) and Isaac et al (2007), for example, provide alternative and under some circumstances,

perhaps more realistic, English auction models.
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species during the same auction session.2 Online auction sites, such as eBay, use variants of such

English auctions, adapted to the online world (Bajari and Hortaçsu, 2004), where bid increments are

also discrete (and depend on the price level).3 Bidding at the online auction site4 QXL was quite similar

to our model: the price went up in predetermined increments and if bids were not a multiple of that

increment, then the bid was rounded down to the closest multiple of the increment.5

In our game (JEA with discrete bid levels for the wallet game with two bidders), we first prove

that one cannot construct a symmetric equilibrium using bids that are twice the private signal (as

in the case of continuous bid levels illustrated by Klemperer, 1998). We then show that (symmetric)

partition equilibria, involving weakly increasing strategies based on partitions of the signal space, exist

for the wallet game in a JEA with discrete bid levels. Such partition equilibria may be pooling or

separating (depending on the number of partitions). We illustrate several such equilibria with only two

or three discrete bid levels (with certain parametric restrictions). These equilibria, however, yield a

lower expected revenue for the seller than in the case of a continuous JEA. Despite this, we further show

that a revenue-maximising second best solution for this set-up exists; that is, the seller may choose these

bid levels optimally to maximise the revenue.

2 THE GAME

We consider the wallet game in which there are two symmetric risk-neutral bidders  ∈ {1 2} who
compete for the purchase of one single good, whose value, ̃ , is common but ex ante unknown to both

bidders. Each bidder receives an independent and uniformly distributed6 private signal  ∼  (0 1),

 = 1 2. The (ex ante) unknown common value of the good is simply the sum of the two signals:

̃ = 1 + 2.

We make use of the JEA with some exogenously fixed discrete bids. In our set up, as in the usual JEA,

the price increases; however the bid levels are discrete (rather than continuous) and are fixed exogenously.

2 In wholesale fish markets, ascending (electronic) auctions are commonly used (Graham, 1999, p. 181), as they

replicate (electronically) the traditional oral ascending auctions; however, the descending (Dutch) auction is also used

(Guillotreau and Jimenez-Toribio, 2011). Discrete but known bid increments are a common feature in both these auction

types (Carleton, 2000, pp. 10-11).
3One example that sort of fits our model is eBay where it is not all that rare to specify that bids cannot start below a

given price, say, $49, and must be a multiple of $1 with the last digit 9; however, the assumption of a commonly known

upper limit does not hold there. We thank Ron Harstad for providing this example.
4The UK site closed down in 2008.
5QXL bidding increments depended on the bid value. For example, for bids in the $250 − $999 range, the bid

increment was $010 while for bids in the $10 − $9999, it was $100 and so on (as illustrated by the auction rules in
www.qxl.com).

6The uniform distribution is undoubtedly easier to compute solutions for, however, any other specific distribution

should not matter in our analysis.
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Formally, the bid levels are the elements of the set  = {1  }, with 0  1      2,  ≥ 2
a finite integer; the set  is common knowledge to the bidders. We will denote a typical bid level by

 , for  = 1  , with the implicit assumption that 0 = 0 and +1 = 2, for notational convenience

whenever required in this paper.

The commonly-known (publicly displayed) auction price goes up in discrete bid levels in the set 

starting from 1 and ending at . The bidders have to keep pressing a button at each bid level to be

actively bidding; if a bidder wants to drop out of the auction at any stage, all he has to do is release the

button. The final auction price is equal to the highest bid level in which at least one bidder was active.

This rule implies that, for any  = 1   − 1, if one bidder is active at  but not at +1 while his
opponent is active at +1, then the latter wins the auction and pays a price equal to +1; by contrast,

if both bidders are active at  , but not at +1, then the auction winner is decided at random with

equal probabilities and the final price is ; finally, if both bidders are active at the last bid level ,

the winner will be chosen at random with equal probabilities and will pay the price . The net payoff

to the (selected) winner in each of the above cases is the realised value of 1 + 2 minus the price to

pay while the payoff to the loser is 0. If no bidder is active at 1, then the auction ends immediately

and the payoff to either bidder is 0.

A strategy in this Bayesian game is therefore to choose (as in the standard JEA) a drop out bid

level as a function of the signal. Given a signal  ∈ (0 1), a bidding strategy for a player thus chooses 0
(which implies that the bidder is not active even at 1) or a bid level  so that the bidder will be active

at  but not at +1, where  = 1   (with +1 = 2). We denote a typical strategy by  which is a

function dented by () ∈ {0 1  }, which implies that the player with signal  is active until ().
The JEA for the wallet game with  bid levels (1  ) as described above will henceforth be called

. Let us now look at possible strategies of .

Definition 1 A strategy  = () for  is weakly increasing (decreasing) if for all pair of signals 

and ,   , () ≥(≤) ().

Theoretically, there are strategies that are neither weakly increasing nor weakly decreasing. For

example, consider a strategy  for which () = , when  is a rational number and () = ,

otherwise for some  and .

Understandably, bidders may not wish to use the strategy 0. Formally,

Definition 2 A strategy is called active if it never chooses 0 for any signal, i.e., the bidder is active at

least at 1 for any signal . A strategy is called inactive if it chooses 0 for at least one signal, i.e., the

bidder is inactive even at 1 for some signal .

A natural type of strategy one may think of is a strategy that divides the domain of the signal ,

the interval (0 1), into ( + 1) subintervals or partitions using  (≥ 1) many cut-off signals.

4



Definition 3 A partition strategy for  is a strategy that uses  (≥ 1) cut-off points and thus ( + 1)
partitions of the interval (0 1), and chooses an element from the set {0 1  } for each of these
partitions.

Note that  = 0, which implies no cut-off signal and therefore no partition, also generates a feasible

strategy; in such a strategy, only one bid level is picked for the whole set of signals, the interval (0 1).

Definition 4 In , a strategy is called a babbling strategy, if regardless of the signal, the bidder chooses

either 0 or a particular bid level ,  = 1  . In an active babbling strategy, the bidder chooses a

particular bid level ,  = 1  , regardless of the signal. An inactive babbling strategy chooses 0 for

any signal .

Obviously, there are strategies that are not partition strategies; for example, the above mentioned

 is not a partition strategy. Also, a partition strategy may be neither weakly increasing nor weakly

decreasing. For example, consider 2 with two bid levels,  and  and think of a strategy written

using two cut-offs ∗ and ∗ as:

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 if  ≤ ∗

 if ∗   ≤ ∗

 if   ∗

We now focus on a specific subset of the strategy sets in  and make the following assumption.

Assumption 0. All the bidders use weakly increasing partition strategies only.

A weakly increasing strategy in 0 can be written in terms of some cut-off signals 
∗
 ,  = 1  ,

where 0  ∗1    ∗  1 and  ≤  that divide the interval (0 1) into (+1) partitions and associates

an element of {0 1  } to each partition in an increasing order.
The JEA for the wallet game with  bid levels (1  ) with weakly increasing partition strategies

only is our baseline game and we henceforth call it 0. In any 
0
, a non-babbling strategy, , can be

easily associated with a certain probability distribution over the set {0 1  }, as determined by the
partition(s). A babbling strategy is clearly associated with a degenerate distribution (probability 1 on

one element of the set {0 1  }).
In the following section we find possible equilibria of the game 0, with   2, using the standard

notion of Bayesian-Nash equilibrium with usual expected payoffs.

3 RESULTS

We focus only on symmetric equilibria for the game 0, with   2, in the rest of our paper. As it is

well-known, the symmetric (Bayesian-Nash) equilibrium for the JEA with continuous bids is given by

bid functions ∗ () = 2,  = 1 2, as derived by Milgrom and Weber (1982), in a general model, and
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later specifically for the wallet game by Klemperer (1998) and Avery and Kagel (1997). An immediate

question, therefore, is whether these equilibrium strategies also form an equilibrium in the JEA with

discrete bids for the wallet game or not.

A direct translation of the above (continuous) JEA bidding strategies into our setting would yield

the following bidding strategy: each bidder  should stay active in the auction until the bid reaches

∗ () = 2 and drop out after that. The associated bidding strategy for each bidder therefore is a

weakly increasing partition strategy with cut-offs

2
,  = 1  , i.e., each bidder  will choose 0 if

2  1 (equivalent to  
1
2
) and will choose  ∈  (active at bid level  but would drop out at

bid level +1) if  ≤ 2  +1 (equivalent to

2
≤  

+1
2
), for  = 1   − 1 and will choose 

if 2   (equivalent to  

2
). Let us call this partition strategy “twice-signal bidding”. We show

that this bidding strategy in our setting is not an equilibrium.

Proposition 1 The twice-signal bidding strategy profile is not an equilibrium in 0.

Proof. We will prove Proposition 1 by showing that there are signal realisations for which there

exists some profitable individual deviation for a bidder. We will illustrate this using bidder 1’s strategy.

Without loss of generality, suppose 1  2 where 1 and 2 are the signals of two respective bidders;

further assume that for some ,  = 1  , −1 ≤ 22   ≤ 21  +1 (assume 0 = 0 and +1 = 2

if required). Hence, following the twice-signal bidding strategy, bidder 2 would be active at bid level

−1 but would drop out at bid level  while bidder 1 would be active at  - the price that bidder 1,

the winning bidder, would pay.

Note that bidder 1’s expected payoff, conditional on winning at  , is given by:

1 = 1 +
£
2| −12 ≤ 2 


2

¤− 
2
= 1 +

−1
2

+

2

2
−  which is equal to 1 +

−1
4
− 3

4
 .

Now suppose, bidder 1’s signal realisation is ‘too low’ within the chosen interval

2
≤ 1 

+1
2
,

that is 1 =

2
+  for some small   0. In this case, he will find the expected value of the good to be

lower than  , thus yielding negative profits. This is because in such a case, bidder 1’s expected payoff

1 will be

2
+ +

−1
4
− 3

4
 =

−1−
4

+   0, for an appropriately chosen small .

Note that the above proof of Proposition 1 goes through even in  as the deviation does not require

a partition strategy. Thus, we have the following.

Corollary 1 The twice-signal bidding strategy profile is not an equilibrium in .

Clearly, there is a discontinuity in the fact that the twice-signal bidding strategy is an equilibrium

in the continuous case but not so in the discrete case. We prove this formally.

Corollary 2 The twice-signal bidding strategy profile is not an equilibrium in , for any finite , but

is an equilibrium in the corresponding game with continuous bids.
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Proof. The proof follows immediately from the proof of Proposition 1. Consider any natural number

 and thus a JEA with  many bid levels. Take the minimum of the distances between two successive

bid levels and call it ; hence, for any ,  − −1 ≥ . One can now choose a small enough  such that

  4. Now, in the case mentioned in last line of the proof of Proposition 1 above, bidder 1’s expected

payoff (1 =
−1−

4
+ ) will definitely be strictly negative. Hence, the twice-signal bidding strategy

profile is not an equilibrium in the JEA with  many discrete bids, for any finite , while as we already

know (Klemperer, 1998), twice-signal bidding does constitute an equilibrium in the continuous case.

Although twice-signal bidding is not an equilibrium 0, we will show that other equilibria exist for

our game in the next subsection.

3.1 Partition Equilibria

In this subsection, we characterise different equilibria using partition strategies. We further focus on

active partition strategies to find equilibria in 0, with   2. Clearly, using Definitions 1, 2 and 3, for

any active weakly increasing partition strategy the number of cut-offs  must be ≤  − 1.
We call an active weakly increasing partition strategy separating if  = − 1, for any  ≥ 2. Clearly,

for  = 2, an active weakly increasing partition strategy is either babbling or separating with a single

cut-off. For   2, we call a partition strategy pooling if 1 ≤    − 1.

Definition 5 In 0, where   2, a separating strategy is an active weakly increasing partition strategy

that uses  − 1 cut-offs (∗1  ∗−1) and thereby  partitions; it can be written as:

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if  ≤ ∗1

 if 
∗
−1   ≤ ∗ ,  = 2   − 1

 if   ∗−1
In 02, with 2 bid levels (1 2) and one cut-off ∗, a separating strategy  can be written as:  =

1 if  ≤ ∗ and 2 otherwise.7

Similarly, one may also formally define and express any pooling strategy, in 0, with   2, using 

(  − 1) cut-offs.
As mentioned earlier, a non-babbling partition strategy, , can be interpreted as a probability

distribution. For example, for   2, the separating strategy in Definition 5 above is a strategy in which

the bidder chooses 1 with probability 
∗
1,  with probability (

∗
 − ∗−1),  = 2   − 1 and  with

probability

Ã
1−

−1P
=1

∗

!
. The probabilities for a pooling strategy can also be similarly identified.

7 In this definition, we have used, without any loss of generality, the weak inequality on the left hand side of the cut-off

(as the signal is generated using a continuous distribution). One may define a partition strategy with the weak inequality

on the right hand side of the cut-off in which case the following equilibrium analysis needs to be modified accordingly.
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Wemay now define a partition equilibrium, using the above partition strategies. As mentioned earlier,

we are going to consider symmetric equilibria only. An equilibrium in symmetric partition (babbling)

strategies is a strategy profile in which both bidders play the same partition (babbling) strategy.

A symmetric separating (pooling) partition equilibrium can be characterised by a separating (pool-

ing) strategy with usual (Bayesian-Nash) equilibrium conditions. The equilibrium conditions are: 

indifference at the cut-offs,  incentive constraints for each partition,  activation constraint (active

at 1) which implies the participation constraint (at the beginning of the auction) and  feasibility

constraints for the cut-off points. One can thus define and characterise such a partition equilibrium

using these conditions.

Definition 6 In 0, a symmetric strategy profile (1 2) is called a separating equilibrium if each

bidder  uses the same separating strategy  with  − 1 cut-offs (∗1  ∗−1) with all of the following
conditions satisfied.8

1 (  2)|1=∗ = 1 (+1 2)|1=∗   = 1   − 1 [indifference conditions]
1 (1 2)  1 ( 2) if 1 ≤ ∗1   1 [incentive constraint for the first partition]

1 ( 2)  1 ( 2) if 1  ∗−1    [incentive constraint for the last partition]

1 (  2)  1 ( 2) if 
∗
−1  1 ≤ ∗   = 2   − 1  6=  [incentive constraints for all other

partitions, needed only for   2]

1 (1 2) ≥ 1 (0 2) = 0 if 1 ≤ ∗1 [activation constraint] implying 1 (1 2)|1=0 ≥ 0 [partici-
pation constraint]

0  ∗1    ∗−1  1 [feasibility constraints]

Similarly, one may write down the equilibrium conditions for a (symmetric) pooling partition equi-

librium or even a (symmetric) babbling equilibrium. The conditions for a babbling equilibrium clearly

involve just the incentive constraint and the participation constraint.

Unfortunately, it is extremely difficult to analytically solve the above set of constraints (as in Defin-

ition 6) and thereby find all partition equilibria for 0, particularly when  is not small. The analysis

is understandably easier for 02 or 
0
3. In the next subsection, we will consider 

0
2 and 03 and show

examples of symmetric partition equilibria in such games.

3.2 Separating Equilibrium in 0
2

Consider any given 02; let us denote the bid levels by  (low) and  (high); that is,  = 2 with 1 = 

and 2 = . Further, we make the following assumption on the values of  and .

Assumption 1.   1
2
and + 1

2
   3

4
+ 

2
.

8Abusing notations for the expected payoff from a partition strategy.
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Note that Assumption 1 in turn implies   1.

Any separating strategy here can be written in terms of a cut-off signal ∗; a separating strategy for

some ∗, 0  ∗  1, is thus:

2 =

⎧⎨⎩  if  ≤ ∗

 if   ∗

In a symmetric separating equilibrium, each bidder thus plays  with probability ∗ (the probability

that  ≤ ∗) and  with probability (1− ∗), that is, the strategy 2 can be associated with the

distribution (∗; 1− ∗) over  and .

We are now ready to present the separating equilibrium of this game.

Proposition 2 Under Assumption 1, the separating strategy 2 = (∗; 1− ∗), with ∗ = 2−1
2(1+−) ,

constitutes a symmetric separating equilibrium of 02.

Proof. We first compute the (expected) payoffs for a bidder from the partition strategy profile;

without loss of generality, we consider bidder 1. When bidder 2 has a signal 2 ≤ ∗ and bids  using

the uniform distribution, bidder 1 expects bidder 2 to have a signal realisation equal to ∗2; similarly,

when bidder 2 has a signal 2  ∗ and bids , bidder 1 expects bidder 2 to have a signal realisation

equal to (1 + ∗) 2.

Bidder 1’s expected payoffs thus are given by: 1
¡
 2

¢
= ∗1

2
(1 +

∗
2
− ) + (1 − ∗)0 and

1
¡
2

¢
= ∗(1 + ∗

2
−) + (1− ∗) 1

2
(1 +

1+∗
2
−).

Setting the indifference condition (as in Definition 6) 1
¡
 2

¢
= 1

¡
2

¢
, we get ∗ =

21+1−2
2(−) , which implies that when 1 = ∗, 1

¡
 2

¢
= 1

¡
2

¢
provided ∗ = 2−1

2(1+−) .

Substituting this cut-off ∗ in the expected payoffs, we obtain

1
¡
 2

¢− 1
¡
2

¢
= 1

4

2−1−21(1+−)
1+− = 1

2
(∗ − 1).

Hence, for bidder 1, if 1  ∗, we have 1
¡
2

¢
 1

¡
 2

¢
, that is, with a high signal

realisation (above ∗), bidder 1 prefers to bid , and when 1 ≤ ∗, we have 1
¡
 2

¢
 1

¡
2

¢
,

that is, with a low signal realisation (below ∗), bidder 1 prefers to bid , which confirms the desired

equilibrium condition (incentive constraint as in Definition 6).

We now have to confirm the feasibility constraint that ∗ ∈ (0 1); this is guaranteed by Assumption
1 as ∗  0⇔   12 and ∗  1⇔   3

4
+ 

2
.

Finally, we need to check the activation (and thus the participation) constraint that the payoffs

cannot be negative (otherwise bidders would prefer not to be active) at . As 1
¡
 2

¢
is increasing

in 1, we just need to ensure that 1
¡
 2

¢¯̄
1=0

=
(1−2)(1+2)(2+1−)

16(−−1)2  0.

The above is indeed true; the denominator is always positive and for the numerator to be positive

we must have either   12 and   +12, which we disregard because it would not yield a positive

cut-off ∗, or we must have   12 and   + 12, which is guaranteed under Assumption 1.
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It is also easy to show that the above partition equilibrium is indeed unique (in weakly increasing

symmetric strategies). Clearly, there are only two potential candidate profiles which are based on two

babbling strategies of staying active until  or  regardless of the signal. We denote these profiles by

() and () respectively and prove that neither of them is an equilibrium.

Corollary 3 Under Assumption 1, the separating strategy profile (2  2), where, 2 = (∗; 1− ∗),

with ∗ = 2−1
2(1+−) , is the unique symmetric (Bayesian-Nash) equilibrium of 02.

Proof. To show uniqueness, we just need to prove that () and () cannot be an equilibrium.

To prove that () cannot be an equilibrium, we note that there are realisations of 1 for bidder 1 for

which bidding  is not a best response against . To see this, take 1  1  1− 2(3
4
+ 

2
−). In this

case, 1 ()−1 () = (1+ 1
2
−)− 1

2
(1+

1
2
−)  0 (as, by Assumption 1, 1−2( 3

4
+
2
−)  1).

Similarly, we prove that () cannot be an equilibrium by showing that there are realisations of 1

for bidder 1 for which bidding  is not a best response against . To see this, take 0  1   − 12.
Here, 1 ()− 1 () = 1

2
( − 1

2
− 1)  0.

The above results thus fully characterises the equilibrium of 02s under Assumption 1, as the following

example shows.

Example 1 Consider two specific values for  and , namely,  = 15 and  = 45, satisfying

Assumption 1. In this case, from Proposition 2, we have ∗ = 34. Hence, in the unique symmetric

equilibrium of this game, a bidder is active at  (but not at ) if and only if the signal is less than or

equal to 34. Bidder ’s payoff, , from this equilibrium strategy profile is given by  =
3
8
 +

21
320

if

 ≤ 34 (in which case bidder  plays ) and  =
7
8
 − 99

320
if   34 (in which case bidder  plays

).

3.3 Pooling Equilibria with Three Bid Levels

Now we consider 03 to provide some examples of pooling equilibria. Let us denote three bid levels by

 (low),  (medium) and  (high); that is,  = 3 with 1 = , 2 =  and 3 = . We illustrate

three different types of pooling equilibria with three bid levels in the following subsections.

3.3.1 Illustration 1

In this illustration, we use the parameter values from the previous subsection (02) and extend it to a

specific 03. We take any values of  and  satisfying Assumption 1 and call them  and respectively

(Assumption 10 below) and make a further assumption (Assumption 2) on  as below.

Assumption 10.   1
2
and + 1

2
   3

4
+ 

2
.

Assumption 2.   3
4
+ 

2
+ 2−1

8(1+−)
.

10



Clearly, Assumption 1
0
is same as Assumption 1 with renamed parameters. We now construct a

pooling equilibrium using the same cut-off as in Proposition 2. Let us consider the following partition

strategy:

31 =

⎧⎨⎩  if  ≤ ∗

 if   ∗

Clearly the above strategy is a pooling strategy as the bid level  is not used. In a symmetric

profile, each bidder plays  with probability ∗ and  with probability (1− ∗), that is, the strategy

31 can be associated with the distribution (∗; 1− ∗; 0) over ,  and . We now prove that this

strategy profile is an equilibrium for this game (following the proof of Proposition 2).

Proposition 3 Under Assumptions 1
0
and 2, the partition strategy 31 = (∗; 1 − ∗; 0), with ∗ =

2−1
2(1+−)

, constitutes a symmetric pooling equilibrium of 03.

Proof. We first compute bidder 1’s expected payoffs under this partition strategy profile which

turns out to be:

1
¡
 31

¢
= ∗ 1

2

³
1 +

∗
2
− 

´
; 1

¡
31

¢
= ∗

³
1 +

∗
2
−

´
+(1− ∗) 1

2

³
1 +

1+∗
2
−

´
.

The indifference condition (as in Definition 6), 1
¡
 31

¢
= 1

¡
31

¢
, is satisfied provided

∗ = 2−1
2(1+−)

.

Using this cut-off, we obtain 1
¡
 31

¢ − 1
¡
31

¢
= 1

2
(∗ − 1); therefore the incentive

constraints 1
¡
 31

¢
 1

¡
31

¢
if 1  ∗ (and thus the constraint 1

¡
 31

¢
 1

¡
31

¢
if 1  ∗) and 1

¡
31

¢
 1

¡
 31

¢
if 1  ∗ are all satisfied.

Hence, we just need to prove that bidder 1 does not deviate and play  when 1  ∗, that is, we

must have 1
¡
31

¢− 1
¡
31

¢
 0 if 1  ∗. Note that 1

¡
31

¢− 1
¡
31

¢
= 1

2
1 +

1+∗
4
−+ 

2
. Substituting the value of ∗ and setting 1 = 1 (the highest possible signal), we confirm

that this payoff difference is indeed negative under Assumption 2 (that is,   3
4
+ 

2
+ 2−1

8(1+−)
).

Finally, using the proof of Proposition 2, here as well we have the feasibility constraint and the

activation (thus participation) constraint satisfied.

To illustrate the above, we may use the values in Example 1.

Example 2 Take  = 15,  = 45 and  = 75, satisfying Assumptions 1
0
and 2. As in Example

1, here as well, we have ∗ = 34 Thus in this symmetric pooling equilibrium of this game, a bidder is

active at  (but not at  or ) when the signal is less than or equal to 34 and active at  (but not

at ) when the signal is bigger than 34. Bidder ’s payoff, , from this equilibrium strategy profile is

given by  =
3
8
 +

21
320

if  ≤ 34 (in which case bidder  plays ) and  = 7
8
 − 99

320
if   34 (in

which case bidder  plays ).
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3.3.2 Illustration 2

In this illustration, we will use different parameter values to illustrate another pooling equilibrium for

any given 03; we make the following assumptions.

Assumption 1
00
.   1

2
and 2    3

4
+ 

2
.

Assumption 3.  = 1
2
+ 2 − .

Let us consider the following partition strategy:

32 =

⎧⎨⎩  if  ≤ ∗

 if   ∗

In this pooling strategy the bid level  is not used. Here, the strategy 32 can be associated with

the distribution (∗; 0; 1− ∗) over ,  and . We now prove our next result.

Proposition 4 Under Assumptions 1
00
and 3, the partition strategy 32 = (∗; 0; 1 − ∗), with ∗ =

4
3
 − 2

3
, constitutes a symmetric pooling equilibrium of 03.

Proof. Following Definition 6, we need to show that the equilibrium conditions are satisfied at these

parameter values.

The indifference condition is met when ∗ = 4
3
− 2

3
 as 1

¡
 32

¢¯̄
1=∗

= 1
¡
32

¢¯̄
1=∗

=

2(2−)(−)
3

.

The activation (and thus participation) constraint is satisfied by Assumption 1
00
as 1

¡
 32

¢¯̄
1=0

=

2(2−)(−2)
9

≥ 0 when   2.

Note that the feasibility constraint 0  ∗ = 4
3
 − 2

3
  1 is satisfied under Assumption 1

00
.

We now need to prove the incentive constraints for the two partitions below and above ∗.

To do this, take a small   0 and 1 such that |1 − ∗| = . It is easy to check that at 1,

1
¡
 32

¢ − 1
¡
32

¢
is 

2
 0, when 1  ∗ and is − 

2
 0, when 1  ∗. Similarly, at 1,

1
¡
 32

¢ − 1
¡
32

¢
is

(2−)
3

 0, when 1  ∗ and is (−2)

3
 0, when 1  ∗ (by

Assumption 1
00
). Finally, when 1  ∗, at 1, 1

¡
32

¢ − 1
¡
32

¢
=

(3−4+2)

6
  0 (by

Assumption 1
00
). Thus all the incentive constraints are satisfied.

We may illustrate the above result now using some specific parameter values.

Example 3 Take  = 15,  = 35 and  = 32, satisfying Assumptions 1
00
and 3. From Proposition

4, we have ∗ = 23 Thus in this symmetric pooling equilibrium of this game, a bidder is active at 

(but not at  or ) when the signal is less than or equal to 23 and active at  when the signal is

bigger than 23. Bidder ’s payoff, , from this equilibrium strategy profile is given by  =
1
3
 +

2
45
if

 ≤ 23 (in which case bidder  plays ) and  =
5
6
 − 13

45
if   23 (in which case bidder  plays

).
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3.3.3 Illustration 3

In this illustration, we make the following assumptions on the parameters.

Assumption 4.   1
2
.

Assumption 5.  = + 1
2
.

Let us now consider the following partition strategy:

33 =

⎧⎨⎩  if  ≤ ∗

 if   ∗

In this pooling strategy the bid level  is not used. We may write the above strategy as 33 =

(0;∗; 1− ∗). We now prove that this strategy constitutes a symmetric equilibrium for this game.

Proposition 5 Under Assumptions 4 and 5, the partition strategy 33 = (0;∗; 1−∗), with ∗ = 2 ,
constitutes a symmetric pooling partition equilibrium of 03.

Proof. Following Definition 6, we need to show that the equilibrium conditions are satisfied at these

parameter values.

The indifference condition is satisfied at ∗ = 2 , as 1
¡
33

¢¯̄
1=∗

= 1
¡
33

¢¯̄
1=∗

=

2. The activation (and thus participation) constraint is trivially satisfied as 1
¡
33

¢¯̄
1=0

= 0.

The feasibility constraint 0  ∗ = 2  1 is met by Assumption 4

We now need to prove the incentive constraints for the two partitions below and above ∗. To do

this, as in the proof of Proposition 4, we take a small   0 and 1 such that |1 − ∗| = . It is easy

to check that at 1, 1
¡
33

¢− 1
¡
33

¢
is 

2
 0, when 1  ∗ and is − 

2
 0, when 1  ∗.

Similarly, whenever 1  ∗, at 1, 1
¡
 33

¢−1
¡
33

¢
= − (2 + )  0. Finally, whenever

1  ∗, at 1, 1
¡
 33

¢− 1
¡
33

¢
= −22 −− 1

2
  0. Thus all the incentive constraints

are satisfied.

We may now illustrate the above result.

Example 4 Take  = 110,  = 25 and  = 910, satisfying Assumptions 4 and 5. From Proposi-

tion 5, we have ∗ = 45 Thus in this symmetric pooling equilibrium of this game, a bidder is active at

 (but not at ) when the signal is less than or equal to 45 and active at  when the signal is bigger

than 45. Bidder ’s payoff, , from this equilibrium strategy profile is given by  =
2
5
 if  ≤ 45

(in which case bidder  plays ) and  =
9
10
 − 2

5
if   45 (in which case bidder  plays ).

3.4 Multiple Pooling Equilibria

In this subsection, we show that there may exist two pooling equilibria in a given 03 (for given values

of the bid levels), using the illustrations in the previous subsection.
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It is clear that one cannot find values of three bid levels so that both pooling equilibria (31  31)

and (33  33) exist simultaneously (as Assumptions 1 and 4 for values of  are mutually exclusive).

Similarly, one cannot find values of three bid levels for which both pooling equilibria (32  32) and

(33  33) exist (as both Assumptions 3 and 5 cannot be satisfied by the same value of ).

However it is possible to find values of the bid levels such that both pooling equilibria (31  31)

and (32  32) exist simultaneously.

Note that any values of  and  satisfying Assumption 1
0
will also satisfy Assumption 1

00
as for

any   1
2
,    + 1

2
implies   2. Hence, we may find a set of numerical values for three bid

levels for which two pooling equilibria exist as the following example (similar to Example 2) illustrates.

Example 5 Take a 03 with  = 15,  = 45 and  = 1910, satisfying Assumption 1
0
(and thereby

Assumption 1
00
) and Assumptions 2 and 3. In this game, we have two different pooling equilibria,

(31  31) and (32  32), characterised by two different cut-offs, respectively, 34 and 1415. First,

the symmetric pooling partition equilibria, (31  31) exists (as in Example 2) in which each bidder

is active at  (but not at  or ) when the signal is less than or equal to 34 and active at  when

the signal is bigger than 34. Bidder ’s payoff, , from this equilibrium strategy profile is given by

 =
3
8
 +

21
320

if  ≤ 34 (in which case bidder  plays ) and  =
7
8
 − 99

320
if   34 (in which

case bidder  plays ). Second, the symmetric pooling partition equilibria, (32  32) exists in which

each bidder is active at  (but not at  or ) when the signal is less than or equal to 1415 and active

at  when the signal is bigger than 1415. Bidder ’s payoff, , from this equilibrium strategy profile

is given by by  =
7
15
 +

28
225

if  ≤ 1415 (in which case bidder  plays ) and  =
29
30
 − 77

225

if   1415 (in which case bidder  plays ). One may compare these two equilibria by their ex-

ante expected payoffs (for each bidder ) that are respectively 43
160

(= 026875) for (31  31) and 323
900

(= 035889) for (32  32); hence, the equilibrium 32 is better for the bidders.

3.5 Seller’s Expected Revenue

We now focus on the seller’s expected revenue from all the equilibria stated in the previous subsections.

3.5.1 Revenue in 02

Consider the separating equilibrium (2  2) as presented in Proposition 2. The expected revenue

for the seller from this equilibrium is given by  when both players play  (occurs with probabil-

ity (∗)2) and  in all other cases (i.e., when at least one bidder bids ). Thus the seller’s ex-

pected revenue (2) is: 2 = (∗) (∗)+ (∗) (1− ∗) + (1− ∗) (∗) + (1− ∗) (1− ∗) =

+4−42+3−42+42

4(1+−)2 .
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We observe that for all values of  and  satisfying our assumption, the seller’s expected revenue is

lower than in a JEA with continuous bids, 
£
 

¤
= 23 (see Avery and Kagel, 1997). The following

figure (Figure 1) displays this result, which is similar to that obtained by Rothkopf and Harstad (1994,

Proposition, p. 575) in a private values setting (insofar as the revenue from a discrete bidding auction

is lower than in its continuous counterpart).

E[PJEA]=2/3

R

Figure 1: Seller’s expected revenue for different bid levels

Although 02 yields ‘lost revenue’ compared to the continuous case, it is possible to show that a

second-best solution for the choice of  and  exists in this set-up.

Proposition 6 In the equilibrium (2  2) as stated in Proposition 2, seller’s expected revenue is

maximised when ∗ = 14 and ∗ = 34, yielding ∗ = 12 and 2
∗
= 58.

Proof. In order to obtain the revenue-maximising values of  and  we need to solve the following

optimisation problem (rearranging the inequality restrictions):

max 2 = +4−42+3−42+42

4(1+−)2

subject to 12−  ≥ 0,  − − 12 ≥ 0, 34 + 2− ≥ 0,  ≥ 0 and  ≥ 0.
We set up the Lagrangian as below, where  are the multipliers:

 = +4−42+3−42+42

4(1+−)2 + 1 (12− ) + 2 ( − − 12) + 3 (34 + 2−)

We are now going to use the Kuhn-Tucker conditions for the above Langrangean. First, as we are

looking for ∗  0 and ∗  0, we have 


= 0 and 


= 0. Now, when 
2

=  −  − 12 = 0

(that is, when  = +12), we have 2  0 and the expected revenue is a concave function of  This

implies 
1

= 12−   0 and also 
3

= 34 + 2−  0, thereby 1 = 0 and 3 = 0.
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Thus we have three equations, namely, 

= 0, 


= 0 and 

2
= 0 that we can solve with respect

to ,  and 2. Solving these, we get 
∗ = 14 and ∗ = 34 (with ∗2 = 34). For these optimal bid

levels, 2
∗
= 58.

In the second best solution, the ‘loss of revenue’ compared to the JEA with continuous bids is

approximately 63%. It is, although significantly higher than zero, not very high in percentage terms.

3.5.2 Revenue in 03

We now consider the seller’s revenue for each of the three pooling equilibria for any given 03 as described

above. For each case, we find the best parameter values that maximise the corresponding seller’s revenue.

First we consider the pooling equilibrium (31  31) for 03 which is very similar to the separating

equilibrium (2  2) for 02. The seller’s revenue from the equilibrium (31  31) is given by:

31 = +4−42+3−42+42

4(1+−)2
.

It is obvious that we will have the same values for the parameters that maximise the seller’s revenue

here.

Corollary 4 Seller’s expected revenue from the equilibrium (31  31) is maximised when ∗ = 14,

∗ = 34 and ∗ = 54, yielding ∗ = 12 and 3
∗
1 = 58.

Proof. The proof follows immediately from Proposition 6. Given the solutions of the Lagrangean

(as in the proof of Proposition 6) ∗ = 14 and∗ = 34 we obtain ∗ = 3
4
+∗

2
+ 2∗−1
8(1+∗−∗) = 54

For these bid levels, ∗ = 12 and 3
∗
1 = 58.

Note that, not surprisingly, 3
∗
1 = 2

∗
.

We now consider the pooling equilibrium (32  32). The seller’s revenue from the equilibrium

(32  32) is given by:

32 = 28
9
 − 16

9
2 − 1

3
+ 1

2
+ 2

3
 − 10

9
2.

Proposition 7 Seller’s expected revenue from the equilibrium (32  32) is maximised when ∗ = 14,

∗ = 12 and ∗ = 54, yielding ∗ = 12 and 3
∗
2 = 58.

Proof. The proof is similar to that of Proposition 6. Given the constrained maximisation problem,

we write down the corresponding Lagrangean and use the Kuhn-Tucker conditions. Solving, we get

∗ = 14 and∗ = 12 Hence, ∗ = 1
2
+2∗−∗ = 54. For these bid levels, ∗ = 4

3
∗− 2

3
∗ = 12

and therefore 3
∗
2 = 58.

Finally, we consider the pooling equilibrium (33  33). The seller’s revenue from the equilibrium

(33  33) is given by:

33 = − 22 + 1
2
.
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Proposition 8 Seller’s expected revenue from the equilibrium (33  33) is maximised at ∗ = 14

and ∗ = 34, with any   14, yielding ∗ = 12 and 3
∗
3 = 58.

Proof. The proof is straightforward. From the first order condition, we obtain ∗ = 14, in which

case ∗ =∗+12 = 34. Any   ∗ = 14 will thus be revenue-maximizing. In this case, ∗ = 12

and 3
∗
3 = 58.

Observe that 3
∗
1 = 3

∗
2 = 3

∗
3 = 2

∗
. It is not really surprising if we carefully look at the

way the pooling strategies 31 , 32 and 33 have been constructed as extreme points of a separating

equilibrium in a 03 (discussed in the next subsection) and hence the corresponding equilibrium profiles

(31  31), (32  32) and (33  33) have the same payoffs.

3.6 Separating Equilibrium in 0
3: A Simulation

One may be interested in constructing a separating equilibrium for any given 03. Following Definition

5, a separating strategy for 03 with three bid levels, ,  and  can be written using two cut-offs ∗

(= ∗1) and ∗ (= ∗2) as:

3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 if  ≤ ∗

 if ∗   ≤ ∗

 if   ∗

From Definition 6, we can construct a symmetric separating equilibrium using the above strategy.

The profile (3  3) is an equilibrium if the following conditions are met.

1
¡
 3

¢¯̄
1=∗

= 1
¡
3

¢¯̄
1=∗

[indifference at ∗]

1
¡
3

¢¯̄
1=∗

= 1
¡
3

¢¯̄
1=∗

[indifference at ∗]

1
¡
 3

¢
 1

¡
3

¢
if 1  ∗ [incentive constraint for the first partition]

1
¡
3

¢
 1

¡
 3

¢
if ∗  1  ∗ [first incentive constraint for the second partition]

1
¡
3

¢
 1

¡
3

¢
if ∗  1  ∗ [second incentive constraint for the second partition]

1
¡
3

¢
 1

¡
3

¢
if 1  ∗ [incentive constraint for the third partition]

1
¡
 3

¢ ≥ 1 (0 2) = 0 if 1 ≤ ∗ [activation constraint] implying 1
¡
 3

¢¯̄
1=0

≥ 0 [partic-
ipation constraint]

0  ∗  ∗  1 [feasibility constraint]

As mentioned earlier, it is difficult to analytically characterise such an equilibrium, that is, it is hard

to find numerical values for ∗ and ∗ satisfying all the above constraints for any given values of , 

and . We thus present a simulation to indicate the existence of such an equilibrium for a fixed set of

values of ,  and . We start off with  = 14 and  = 34; recall that these values maximise the

seller’s revenue from the equilibrium (2  2) with two bid levels. Coupled with these values, we take

a range of values for  between 54 (= 125) and 74 (= 175). Note that, for the bid levels  = 14,
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 = 34, and  = 54, we have the pooling equilibrium (31  31) and for  = 14,  = 34, and

 = 74, we have the pooling equilibrium (32  32). We vary the value of  and find values of ∗

and ∗ satisfying all the equilibrium conditions and thereby find a separating equilibrium in this case.

The following figure (Figure 2) shows the cutoffs ∗ and ∗ in the separating equilibrium for different

values of  (between 125 and 175 on the horizontal axis).

Figure 2: Cutoffs for separating equilibrium

In Figure 2, for each value of  (on the horizontal axis) we have two different dots: the lower curve

is for ∗ while the upper curve is for ∗. Take, for example, three different levels of :  = 75

 = 32 and  = 85. The approximate numerical values are the following:

 = 75  = 32  = 85

∗ 0734 0782 0801

∗ 0873 0853 0842

Seller’s Revenue 0514 0476 0453

Note that at the two boundaries of the values of , we have the pooling equilibria (31  31) and

(32  32) that can be interpreted as the two extremes of the separating equilibrium. The pooling

equilibrium (31  31) is equivalent to a separating equilibrium with ∗ = 12 and ∗ = 1 in which 

is not played. Similarly, the pooling equilibrium (32  32) is equivalent to a separating equilibrium

with ∗ = ∗ = 56 in which  is not played.

We can find the seller’s revenue from such a separating equilibrium, as displayed in Figure 3.
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Figure 3: Seller’s revenue in pooling and separating equilibrium

We observe that the revenue from any separating equilibrium here (revenue0 in Figure 3) is lower

than that of the pooling equilibrium (31  31) which is equivalent to the equilibrium (2  2) with

two bid levels (revenue0 in Figure 3).

Thus, we note that in this example, the seller strictly prefers the pooling equilibrium (31  31) to

be played rather than the separating equilibrium for any sufficiently high  where these two types of

equilibria coexist. Also, by the same token, we observe that two bid levels are (weakly) better than three

for the seller. However, it is important to note that if the seller had the choice of all three bid levels,

 = 14  = 34 and   54 would in all likelihood not be his revenue-maximising choices. But

finding the optimal choice of   and  is not easy, even with simulations. We conjecture that perhaps

the revenue from the equilibrium (2  2) in 02 is (weakly) higher than that from any (pooling or

separating) equilibrium in 03.

4 CONCLUSION

We have shown that the standard equilibrium (of bidding twice the signal) in JEA with continuous bid

levels is not an equilibrium in a setting where bid levels are discrete; nevertheless, a partition equilibrium

based on cut-offs in signals exists in a modified game where the bidders use only weakly increasing

partition strategies. We have characterised these equilibria that can be pooling or separating. We

illustrated a few such equilibria with two and three discrete bid levels. Under our partition equilibrium,

seller’s expected revenue is strictly lower than that of the continuous JEA; the seller can, however,
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optimally choose the bid levels to maximise the expected revenue. In this second best solution, the ‘loss

of revenue’ compared to the JEA with continuous bid increments is not very high in percentage terms.

Our paper thus provides some understanding of how, once one fixes the number of bid levels, bid levels

should be optimally chosen by the seller.

The rationale behind our result is relatively straightforward; given discrete bid levels, the partition

equilibrium leads players to bid up to the lowest discrete bid level ‘too’ often, and that reduces the

expected revenue compared to the continuous bidding JEA. With continuous bid levels the players can

easily infer (from the equilibrium strategies) their opponent’s signal and thus accurately calculate their

payoff, however, with discrete bid levels such an accurate inference is no longer possible and bidding up

to the low bid level more often provides a ‘safety net’ under such "uncertainty".

Our construction of equilibrium is somewhat similar to the recent work by Ettinger and Michelucci

(2016) and Hernando-Veciana and Michelucci (2016) in a different environment: these results are all

related to a type of bunching which is somehow endogenously determined (in their papers, by jump bids

or by the choice of a 2-stage mechanism while in our work by the choice of the bid levels).

Needless to add, whether a general result for the set of equilibria can be obtained for more than

three bid levels is certainly an interesting question; future research should characterise the set of all

such partition equilibria for any number of discrete bids and other (non-partition) equilibria, if any.

JEA with discrete bids may present other advantages to the auctioneer or to the bidders, such as,

reduced auction duration or an easier understanding of the rules. Thus, it may very well be the case

that it becomes a more attractive auction format in the future, in which case more analysis should be

devoted to this format than its continuous bid counterpart.

Our research points out what the implications are of using a specific set of bid levels and how a seller

should optimally manipulate it. One may be interested in finding the optimal number of bid levels for

such an auction. Our simulation on three bid levels suggests that the optimal number of bid levels (to

maximise the seller’s revenue) is perhaps small. One may also be interested in testing this hypothesis

in a suitably designed experiment. These are likely to be the next steps in our research.
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