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Abstract

While a good deal of research in simultaneous equation models has
been conducted to examine the small sample properties of coeffi cient es-
timators there has not been a corresponding interest in the properties of
estimators for the associated variances. In this paper we build on Kiviet
and Phillips (2000) and explore the biases in variance estimators. This
is done for the 2SLS and the MLIML estimators.The approximations to
the bias are then used to develop less biased estimators whose properties
are examined and compared in a number of simulation experiments. In
addition, a bootstrap estimator is included which is found to perform es-
pecially well. The experiments also consider coverage probabilities/test
sizes and test powers of the t-tests where it is shown that tests based on
2SLS are generally oversized while test sizes based on MLIML are closer
to nominal levels. In both cases test statistics based on the corrected vari-
ance estimates generally have a higher power than standard procedures.
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1 Introduction

In the static simultaneous equation model a considerable amount of research has
been conducted to examine the small sample properties of coeffi cient estimators.
Of particular relevance is the seminal paper by Nagar(1959) in which approxi-
mations were given for the bias of the 2SLS estimator to the order of T−1and for
its mean squared error to order T−2, where T is the sample size. The analysis
did not focus entirely on 2SLS however, but also covered the consistent k−class
of estimators where k is fixed. When the square of the bias approximation is
subtracted from the approximation for theMSE, we have an approximation for
the variance. By comparing this approximate variance with an approximation
to order T−2 for the expectation of the asymptotic variance estimator which is
used in practice, we may find an approximation for the bias of the asymptotic
variance estimator. This was explored by Kiviet and Phillips(2000) who were
able to deduce that the bias, which is of order T−2, is in general upwards in the
2SLS case. However no attempt was then made to explore the magnitude of the
bias nor a method for bias correction although it is apparent that once a bias
approximation is available a means for correcting for the bias is available too.
In this paper we examine bias correction for the variance estimator by first

considering the traditional approach whereby the estimated approximate bias
is subtracted from the estimator; then we examine its performance in a set on
Monte Carlo experiments. We also include results for the bootstrap technique
which provides a general method of estimating the variance.
In Kiviet and Phillips (2000) the focus of attention was the 2SLS estimator

which, while in very common use, has certain drawbacks related to the non-
existence of moments in some situations. In this paper we widen the investiga-
tion to include the Modified Limited Information Maximum Likelihood(MLIML)
estimator proposed by Fuller (1977) which has attracted considerable attention
in recent years and which does not suffer from the non-existence of moments
problem. Our aim is to compare the properties of the variance estimators for
2SLS and the Fuller MLIML. It is found that these estimators may be badly
biased and so bias corrected versions are developed. An alternative variance
estimator based upon the bootstrap is also included in the comparison. Monte
Carlo experiments are used explore the properties of these latter estimators in
the context of standard inference procedures.
The structure of the paper is as follows. Section 2 presents the model and

it gives a summary of large T approximations. It also discusses a problem with
2SLS variance estimation. In section 3 we derive approximations to the expec-
tation of the asymptotic variance for 2SLS and LIML estimator. In section 4 we
discuss the bias of these asymptotic variance estimators and develop the bias
corrected variance estimators. Section 5, we include a bootstrap variance esti-
mation method. In section 6, we present the results of simulation experiments
that indicate the usefulness of the proposed procedures in a numerous cases.
Finally, Section 7 concludes. The proofs are collected in the Appendix.
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2 The Simultaneous Equation Model

The model we shall analyze is the classical static simultaneous equation model
containing G equations given by

Byt + Γxt = ut, t = 1, 2, ......, T, (1)

in which yt is a G × 1 vector of endogenous variables, xt is a K × 1 vector of
strongly exogenous variables and ut is a G× 1 vector of structural disturbances
with G × G positive definite covariance matrix Σ. The matrices of structural
parameters, B and Γ are, respectively, G×G and G×K. It is assumed that B
is non-singular so that the corresponding reduced form equations are

yt = −B−1Γxt +B−1ut = Πxt + vt, (2)

where Π is a G×K matrix of reduced form coeffi cients and vt is a G× 1 vector
of reduced form disturbances with a G × G positive definite covariance matrix
Ω. With T observations we may write the system as

Y B′ +XΓ′ = U (3)

Here, Y is a T × G matrix of observations on endogenous variables, X is a
T × K matrix of observations on the strongly exogenous variables and U is a
T × G matrix of structural disturbances. The first equation of the system will
be written as

y1 = Y2β +X1γ + u1 (4)

where y1 and Y2 are, respectively, a T × 1 vector and a T × g1 matrix of obser-
vations on g1 +1 endogenous variables. X1 is a T ×r1 matrix of observations on
r1 exogenous variables, β and γ are, respectively, g1×1 and r1×1 vectors of un-
known parameters and u1 is a T ×1 vector of normally distributed disturbances
with covariance matrix E(u1u

′
1) = σ11IT .

The reduced form of the system includes

Y1 = XΠ1 + V1, (5)

in which Y1 = (y1 : Y2), X = (X1 : X2) is a T ×K matrix of observations on K
exogenous variables with an associated K × (g1 + 1) matrix of reduced form
parameters given by Π1 = (π1 : Π2), while V1 = (v1 : V2) is a T ×(g1 +1) matrix
of normally distributed reduced form disturbances. The transpose of each row
of V1 is independently and normally distributed with a zero mean vector and
(g1 + 1) × (g1 + 1) positive definite matrix Ω1 = (ωij). We also make the
following assumption:
Assumption 1. (i): The T×K matrix X is strongly exogenous and of rank

K with limit matrix limT→∞ T−1X ′X = ΣXX , which is K×K positive definite,
and that (ii): Equation (4) is over-identified so thatK > g1+k1 , i.e. the number
of excluded variables exceeds the number required for the equation to be just
identified. In cases where second moments are analyzed we shall assume that K
exceeds g1 + k1 by at least two. These over-identifying restrictions are suffi cient
to ensure that the Nagar expansion is valid in the case considered by Nagar and
that the first two estimator moments for 2SLS exist: see Sargan (1974).
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2.1 Large T-approximations for the Moments of k-class
Estimators

The k-class estimator was introduced by Nagar (1959) and in the context of (4)
it is given by(

β̂k
γ̂k

)
=

(
Y
′

2Y2 − kV̂2V̂2 Y
′

2X1

X
′

1Y2 X
′

1X1

)−1(
Y
′

2y1 − kV̂
′

2y1

X
′

1y1

)
. (6)

When k = 1 we have the 2SLS estimator while the Limited Information
Maximum Likelihood (LIML) estimator is obtained when k = λ ≥ 1, and λ is
the smallest root of the determinantal equation∣∣∣Y ′1 (I − PX1

)Y1 − λY
′

1 (I − PX)Y1

∣∣∣ = 0.

Note that λ is stochastic and under the assumptions employed here, Tλ is
asymptotically distributed as χ2

k2−g1 , see Fuller(1977). The LIML estimator has
the drawback that it does not have finite moments of any order. To overcome
this problem Fuller (1977) presented a Modified Limited Information Maximum
Likelihood Estimator (MLIML) where λ is replaced by λ − α

T−K and α is a
chosen positive integer, which has (at least) finite first and second moments .
Hence the MLIML estimator is(
β̂F
γ̂F

)
=

(
Y
′

2Y2 − (λ− α
T−K )V̂2V̂2 Y

′

2X1

X
′

1Y2 X
′

1X1

)−1(
Y
′

2y1 − (λ− α
T−K )V̂

′

2y1

X
′

1y1

)
.

(7)
When α = 1 the estimator has small bias whereas when α = 4 the estimator

has smallestMSE but its bias is typically larger than when α = 1. A number of
recent studies have found that MLIML may have good finite sample properties,
see for example, Hahn, Hausman and Kuersteiner (2004).
We shall later consider a set of Monte Carlo experiments in which the small

sample properties of both of these estimators are explored.
We shall find it convenient to rewrite (4) as

y1 = Z1α+ u1 (8)

where Z1 = (Y2 : X1) and α = (β
′
, γ
′
)
′
.In this context the k−class estimator

will be written as α̂k.
In his seminal paper, Nagar (1959) presented approximations for the first

and second moments of the k−class of estimators where k = 1 + θ/T and θ
is non-stochastic and may be any real number. Notice that (1− k) is of order
T−1. The main results are given by the following:

1. If we denote α̂k as the k−class estimator for α in (6) then, defining L as
the degree of overidentification, the approximate bias is given by

E(α̂k − α) = [L− θ − 1]Qq + o(T−1). (9)
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2. The MSE of α̂k is given by

(E(α̂k − α)(α̂k − α)
′
) = σ2Q[I +A∗] + o(T−2), (10)

where

A∗ = [(2θ − (2L− 3))tr(C1Q) + tr(C2Q)]I + {(θ − L+ 2)2

+2(θ + 1)}C1Q+ (2θ − L+ 2)C2Q. (11)

To interpret the above approximations we define the degree of overidentifi-
cation as

L = k2 − g1, (12)

where k2 = K − k1 is the number of exogenous variables excluded from the
equation of interest.
Noting that Y2 = Ȳ2 + V2 where Ȳ2 = XΠ2,we define

Q =

[
Ȳ ′2 Ȳ2 Ȳ ′2X1

X ′1Ȳ2 X ′1X1

]−1

. (13)

Further, we may write that V2 = W +u1π
′ where u1 andW are independent

and
1

T

(
E(V ′2u1)

0

)
= σ2

(
π
0

)
= q. (14)

Moreover, defining Vz = [V2 : 0] we have

C = E[
1

T
V ′zVz] =

[
(1/T )E(V ′2V2) 0

0 0

]
= C1 + C2, (15)

where C1 =

[
σ2ππ′ 0

0 0

]
and C2 =

[
1/TE(W ′W ) 0

0 0

]
.

The approximations for the 2SLS estimator are found by setting θ = 0 in
the first expression above so that, for example, the 2SLS bias approximation is
given by

E(α̂− α) = (L− 1)Qq + o(1/T ). (16)

while the second moment approximation is

E((α̂− α)(α̂− α)′) = σ2Q[I +A∗]

where

A∗ = [−(2L−3)tr(C1Q)+tr(C2Q)]I+{(−L+2)2+2}C1Q+(−L+2)C2Q. (17)

The 2SLS bias approximation above was extended by Mikhail (1972) to

E(α̂− α) = (L− 1)[I + tr(QC)I − (L− 2)QC]Qq + o(1/T 2). (18)

Notice that this bias approximation contains the term (L − 1)Qq which,
as we have seen, is the approximation to order 1/T whereas the remaining
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term, (L − 1)[tr(QC)I − (L − 2)QC]Qq, is of order T−2. This higher order
approximation is of considerable importance for this paper. Note that the T−2

term includes a component −(L−1)(L−2)QCQq which may be relatively large
when L is large, a fact that will be commented on again later. It is also of
particular interest that the approximate bias is zero to order T−2 when L = 1,
i.e, when K − (g1 + k1) = k2 − g1 = 1.

2.2 A Problem With 2SLS Variance Estimation.

There are, in effect, two stages to 2SLS variance estimation, the first of which
requires the estimation of the disturbance variance σ2. It turns out that the
properties of the usual estimator of σ2, which is obtained by dividing the sum
of squared residuals by the sample size, is itself affected by non-existence of
moments of the coeffi cient estimators. This is not a feature of regression models.
For example, consider the classical linear regression model

Y = Xβ + ε (19)

where E(ε) = 0, E(εε′) = σ2IT and X is T × k and is non-stochastic of rank k.
As is well known the least squares estimator, β̂ = (X ′X)−1X ′y is best linear

unbiased (BLUE) with covariance matrix given by

V ar(β̂) = σ2(X ′X)−1.

The estimator for σ2 is given by

σ̂2 =

T∑
t=1

ê2
t/(T − k)

where êt = yt − x′tβ̂ = εt − x′t(β̂ − β) and

T∑
t=1

ê2
t/(T − k) =

1

T − k {
T∑
t=1

ε2
t − 2

T∑
t=1

(β̂ − β)′xtε+ (β̂ − β)′
T∑
t=1

xtx
′(β̂ − β)}.

For E(σ̂2) < ∞ to hold, we require only that E(ε2
t ) < ∞ for all t, which is

an assumption of the classical model. This also ensures that the second moment
of β̂ exists. However, if the fourth moment of εt does not exist, then the second
moment of σ̂2 and the fourth moment of β̂ will not exist either. Of course, if
the εt are normally distributed then all moments exist for both σ̂

2 and β̂ but if
this is not assumed it should be borne in mind that the existence of a second
moment for σ̂2 is a prerequisite for valid finite sample inference since, otherwise,
the variance estimator may be subject to extreme outliers.
A different situation occurs in the simultaneous equation model in section

2. Consider the equation to be estimated:

y1 = Z1α+ u1
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where Z1 = (Y2 : X1) and let the estimated version be

y1 = Z1α̂+ û1 (20)

so that the sum of squared residuals is

û′1û1 = u′1u1 − 2(α̂− α)′Z ′1u1 + (α̂− α)′Z ′1Z1(α̂− α),

while the estimator for σ2 may be represented as

σ̂2 =
u′1u1 − 2(α̂− α)′Z ′1u1 + (α̂− α)′Z ′1Z1(α̂− α)

T − g1 − k1
. (21)

If the estimator employed is 2SLS then it is well known that it has moments
up to the order of overidentification of the associated parameters. Thus we see
from (21) that even when components of ut have a finite second moment this
does not ensure that even the first moment of σ̂2 exists. It is necessary to also
consider the existence of moments for α̂. In fact, for the existence of the first
moment of σ̂2 it is required that the second moment of α̂ should exist and this,
in turn, requires that the order of overidentification of the estimated parameters
be at least two,i,e L ≥ 2. Similarly, for σ̂2 to have a second moment we require
that, in addition to the existence of the fourth moment of components of u1,the
fourth moment of α̂ should be finite also. This requires that L ≥ 4.Thus even
when normality for the disturbances is assumed, so that moments of all orders
for the disturbances exist, finite sample inference based on an estimated variance
may be problematic unless L ≥ 4,see Murray D.Smith (1994) for a full analysis
of structural disturbance estimators.This is obviously a serious restriction on
the use of 2SLS in practice.
Of course the problem is avoided if we estimate the parameters using an

estimator which has all necessary moments and, fortunately, such estimators
are available. This applies in the case of the Fuller MLIML estimator in (7) and
to any member of the consistent k−class for which 0 < k < 1, see Kinal (1983).

3 Expectations of Asymptotic Variances

In this section we derive approximations to the expectation of the asymptotic
variances for the MLIML estimator which is required for the variance bias ap-
proximation. In Kiviet and Phillips (2000) an approximation to order T−2 was
given for the 2SLS case as was noted in section 1. We shall exploit these results
to find the required expectations for the MLIML estimator but first we consider
how results were obtained for 2SLS.

3.1 The 2SLS Asymptotic variance

We shall write the 2SLS asymptotic variance estimate as

V̂ ar(α̂) = σ̂2(Ẑ1Ẑ1)−1 (22)
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where

σ̂2 =
û′1û1

T − (g1 + k1)
=
u′1u1 − 2(α̂− α)′Z ′1u1 + (α̂− α)′Z ′1Z1(α̂− α)′

T − (g1 + k1)
(23)

in which successive terms are Op(1), Op(T
− 1
2 ) and Op(T−1).

The 2SLS estimation error may be expanded (see Nagar 1959) as

α̂− α = QZ̄ ′1u1 +QV ′zM
∗u1 −Q[Z̄ ′1Vz + V ′z Z̄]QZ̄ ′1u1 + op(T

−1). (24)

while the inverse matrix (Ẑ1Ẑ1)−1 is similarly expanded to obtain:

(Ẑ ′1Ẑ1)−1 = [Q−Q(Z̄ ′Vz + V ′ZZ̄)Q−QV ′ZMVZQ

+Q(Z̄ ′VZ + V ′ZZ̄)Q(Z̄ ′Vz + V ′ZZ̄)Q] + op(T
−2) (25)

where successive terms are O(T−1), OpT
−3
2 ) and Op(T−2).

To find an appropriate expansion for σ̂2(Ẑ1Ẑ1)−1 we combine the expressions
in (23) and (25) to yield

σ̂2(Ẑ1Ẑ1)−1 = [[
u′1u1

T − (g + k)
[Q−Q(Z̄ ′Vz + V ′ZZ̄)Q−QV ′ZMVZQ

+Q(Z̄ ′VZ + V ′ZZ̄)Q(Z̄ ′Vz + V ′ZZ̄)Q]− 2(α̂− α)′Z ′1u1

T − (g + k)
]

×[Q−Q(Z̄ ′Vz + V ′ZZ̄)Q] +
(α̂− α)′Z ′1Z1(α̂− α)

T − (g + k)
Q

+op(T
−2). (26)

The expectation of this to order T−2 is given in Kiviet and Phillips (2000) as

E[σ̂2(Ẑ1Ẑ1)−1] = σ2Q+ σ2[−(L− 2)QCQ+ 4QC1Q

−2(L− 1)tr(QC1)Q+ 2tr(QC)Q] + o(T−2). (27)

We shall make use of this in evaluating the counterpart results for MLIML.

3.2 The MLIML Asymptotic Variance

The estimate for the asymptotic variance of MLIML is given by

V̂ ar(α̂F ) = σ̂2
F

(
Y
′

2Y2 − (λ− 1
T−K )V̂2V̂2 Y

′

2X1

X
′

1Y2 X
′

1X1

)−1

which we shall write as

V̂ ar(α̂F ) = σ̂2
F (Ẑ ′1Ẑ1)−1

F (28)

where σ̂2
F is obtained from the residuals following estimation by MLIML.
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To find the counterpart expression to the 2SLS for MLIML, we first note
that the relevant estimator for σ2

F is given by

σ̂2
F =

û′1F û1F

T − (g1 + k1)
=
u′1u1 − 2(α̂F − α)′Z ′1u1 + (α̂F − α)′Z ′1Z1(α̂F − α)

T − (g1 + k1)
(29)

where α̂F is the MLIML estimate of α.
Noting that (α̂F − α)′Z ′1Z1(α̂F − α) = (α̂ − α)′Z ′1Z1(α̂ − α) + op(1), see

Nagar(1961), we see that, using (23) and (29), we may write

σ̂2
F − σ̂2 = −2(α̂F − α̂)′Z ′1u1

T − (g1 + k1)
+ op(T

−1). (30)

Also, the asymptotic expansion for the estimation error of MLIML is given
in Appendix A (A.3) by

α̂F − α = QZ̄ ′1u1 + (1− λ+
1

T −K )QV ′Zu1 +QV ′ZM
∗u1

−QV ′ZZ̄ ′1QZu1 −QZ̄ ′1VZQZ̄ ′1u1 + op(T
−1) (31)

where we have used the result that λQV ′ZM
∗u1 = QV ′ZM

∗u1 + op(T
−1).

From (24) and (31) we find that

α̂F − α̂ = (1− λ+
1

T −K )QV ′Zu1 + op(T
−1). (32)

Substituting from (32) into (30) we have

σ̂2
F − σ̂2 = −2(α̂F − α̂)′Z ′1u1

T − (g1 + k1)
+ op(T

−1)

= −
2(1− λ+ 1

T−K )u′1VZQZ
′
1u1

T − g1 − k1
+ op(T

−1). (33)

In what follows we shall need the following asymptotic expansions:

(Ẑ ′1Ẑ1)−1
F = [Q−Q(Z̄ ′Vz + V ′ZZ̄)Q−Q((1− λ)V ′ZVZ

+
1

T −KV ′ZVZ)Q−QλV ′ZMVZQ

+Q(Z̄ ′VZ + V ′ZZ̄)Q(Z̄ ′Vz + V ′ZZ̄)Q]

+op(T
−2) (34)

where this expansion is given in Appendix A (A.2).
From (34) and (25), we have

(Ẑ ′1Ẑ1)−1
F − (Ẑ ′1Ẑ1)−1 = −Q((1− λ)V ′ZVZ +

1

T −KV ′ZVZ)Q+ opT
−2. (35)
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We wish to find an approximation for the expected value of the asymptotic
variance estimate

σ̂2
F (Ẑ ′1Ẑ1)−1

F = ((σ̂2
f − σ̂2) + σ̂2)(Ẑ ′1Ẑ1)−1 + ((Ẑ ′1Ẑ1)−1

F − (Ẑ ′1Ẑ1)−1))

= σ̂2(Ẑ ′1Ẑ1)−1 + (σ̂2
f − σ̂2)(Ẑ ′1Ẑ1)−1

+σ̂2((Ẑ ′1Ẑ1)−1
F − (Ẑ ′1Ẑ1)−1)) + op(T

−2)

= σ̂2(Ẑ ′1Ẑ1)−1 −
2(1− λ+ 1

T−K )u′1VZQZ
′
1u1

T − g − k (Ẑ ′1Ẑ1)−1

−σ̂2(Q((1− λ)V ′ZVZ +
1

T −KV ′ZVZ)Q

+op(T
−2) (36)

from which it is seen that the asymptotic variance estimate for MLIML to
Op(T

−2) equals the asymptotic variance estimate for 2SLS minus two addi-
tional terms. Hence to get the required approximation to the expected value of
σ̂2
f (Ẑ

′
1Ẑ1)−1

F we shall need to find expectations for these additional terms only.
Thus we need

E[(−
2(1− λ+ 1

T−K )u′1VZQZ
′
1u1

T − g − k )Q]

−E[(
u′1u1

T − (g + k)
)(Q((1− λ)V ′ZVZ +

1

T −KV ′ZVZ)Q)] (37)

where terms of smaller order than T−2 have been ignored.
It is shown in the Appendix B (B.10), that the first part of the above is

E[(−
2(1− λ+ 1

T−K )u′1VZQZ
′
1u1

T − g − k )Q] = 2σ2(L− 1)tr(QC1)Q+ o(T−2). (38)

It is also shown in the Appendix B (B.17), that the second part of the above is:

−E[(
u′1u1

T − (g + k)
)(Q((1− λ)V ′ZVZ +

1

T −KV ′ZVZ)Q]

= −E[σ2(Q((1− λ)V ′ZVZ +
1

T −KV ′ZVZ)Q] + o(T−2)

= σ2(L− 1)QCQ+ o(T−2) (39)

where we have used the fact that

u′1u1

T − (g + k)
= σ2 + op(1).

Finally, gathering terms, we have that

E(σ̂2
F (Ẑ ′1Ẑ1)−1

F ) = E(σ̂2(Ẑ ′1Ẑ1)−1) + 2σ2(L− 1)tr(QC1)Q

+σ2(L− 1)QCQ+ o(T−2)

= σ2Q+ σ2[QCQ+ 4QC1Q+ 2tr(QC)Q]

+o(T−2). (40)
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We shall use the results in (27) and (40) in the next section when we derive
approximately unbiased estimates for the variances of 2SLS and MLIML .

4 The Bias of the Asymptotic Variance Estima-
tors

From the results in Kiviet and Phillips (2000), we may deduce an approximation
to the unknown variance of 2SLS as follows:

V ar(α̂) = σ2Q+ σ2[tr(QC)Q− 2(L− 1)tr(QC1)Q

−(L− 3)QC1Q− (L− 2)QCQ] + o(T−2). (41)

In Kiviet and Phillips (2000), it was also shown in (27) that, the expected
value of the asymptotic variance estimator can be approximated to order T−2

by:

E[V̂ ar(α̂)] = σ2Q+ σ2[−(L− 2)QCQ+ 4QC1Q

−2(L− 1)tr(QC1)Q+ 2tr(QC)Q] + o(T−2). (42)

It then follows that an approximation to order T−2 for the bias of the as-
ymptotic variance estimator is given by

E[V̂ ar(α̂)]− V ar(α̂) = σ2[tr(QC)Q+ (L+ 1)QC1Q] + o(T−2). (43)

Noting that the terms on the right hand side of the above are positive semi-
definite, Kiviet and Phillips(2000) deduced that the bias to the order of the
approximation is, in general, upwards.
An approach to finding a bias corrected estimate of the variance is imme-

diate. We simply deduct an estimate of the bias in (43) from V̂ ar(α̂).Thus we
have the result:

Theorem 1 In the model of section 2, an unbiased estimate of the variance of
the 2SLS estimator α̂ to order T−2,is given by

V̂ ar(α̂)BC = V̂ ar(α̂)− σ̂2[tr(Q̂Ĉ)Q̂+ (L+ 1)Q̂Ĉ1Q̂] (44)

where σ̂2, Q̂ and Ĉ are consistent estimates of σ2, Q and C respectively.

A similar approach can be adopted in the case MLIML. For MLIML it has
been shown by Anderson,Kunitomo and Morimune (1986) that an approxima-
tion for the MSE is

E(eF e
′
F ) = σ2Q+ σ2([trQC]Q−QC1Q+ LQC2Q) + o(T−2) (45)

and since the estimator is unbiased to order T−1, this is also the approximation
to the variance. Hence we shall write:

V ar(α̂F ) = σ2Q+ σ2([trQC]Q−QC1Q+ LQC2Q)

+o(T−2). (46)
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It is of interest to compare this approximation to the variance approximation
for the 2SLS estimator given in (41). Subtracting (46) from (41) yields:

V ar(α̂F )− V ar(α̂) = 2(L− 3)QC1Q+ 2(L− 1)QC2Q+ 2(L− 1)(trQC1)Q

+o(T−2). (47)

Upon noting that (trQC1)Q ≥ QC1Q, it follows that the above is positive
semidefinite for L ≥ 2 so that the MLIML estimator has a larger variance than
2SLS to the order of the approximation.
Similarly the comparison of the mean squared errors to order T−2 yields:

MSE(α̂F )−MSE(α̂)

= (−L2 + 4L− 7)QC1Q+ 2(L− 1)QC2Q+ 2(L− 1)(trQC1)Q

+o(T−2). (48)

It is not possible to sign this expression but the first term is always negative
and will tend to dominate as L increases whereupon the MSE of MLIML will
be less than that of 2SLS.
The estimate for the asymptotic variance of MLIML is given by

V̂ ar(α̂F ) = σ̂2
F (Ẑ ′1Ẑ1)−1

F (49)

Its expectation is evaluated in (40) as:

E(V̂ ar(α̂F )) = σ2Q+ σ2[QCQ+ 4QC1Q+ 2tr(QC)Q] + o(T−2) (50)

from which it follows that an approximation to the bias of V̂ ar(α̂F ) using (46)
and (50) is:

E(V̂ ar(α̂F )− V ar(α̂F ))

= σ2[4QC1Q+ tr(QC)Q− (L− 1)QC2Q+ o(T−2). (51)

This leads immediately to the following bias corrected estimator:

Theorem 2 In the model of section (2), an unbiased estimator to order T−2

for the variance of the MLIML estimator is given by

V̂ ar(α̂F )BC = V̂ ar(α̂F )− σ̂2[4Q̂Ĉ1Q̂+ tr(Q̂Ĉ)Q̂− (L− 1)Q̂Ĉ2Q̂ (52)

where V̂ ar(α̂F ) is the asymptotic variance estimate and σ̂2, Q̂, Ĉ , Ĉ1 and Ĉ2

are consistent estimates of σ2, Q, C, C1and C2 respectively.

The properties of the approximately unbiased estimators in Theorems 1-2
will be explored in a set of Monte Carlo experiments in section 6. But first
we note a problem with bias correction of variance estimates which, as here,
involves substacting the estimated bias term from the original estimator in that
the corrected version may become negative;clearly this is inappropriate for a
variance estimate. When this happens a natural response is not to correct and
this procedure was followed in the very small number of cases when it occurred
in the simulations.
Finally we shall consider an alternative estimator for the variances based on

the non-parametric bootstrap method.
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5 Bootstrap Variance Estimation

In this section we consider a bootstrap approach to estimating the variances.
Consider the model of section 2. Suppose that the model has been estimated;
for simplicity we shall consider the case where estimation has been carried out
using 2SLS. The estimated equation is then

y1 = Z1α̂+ û1

where û1 is a T × 1 vector of 2SLS residuals. As already noted a variance
estimate is obtained as

V̂ ar(α̂) = σ̂2(Ẑ ′1Ẑ1)−1 .

As part of the estimation procedure we also estimate the reduced form:

Y2 = XΠ̂2 + V̂2.

The bootstrap data are obtained by first sampling with replacement from
the rows of (V̂2, û1). This yields a corresponding matrix which we label (V ∗2 :
u∗1).From these data we can form new values for Y2 and y1 as follows:

Y ∗2 = XΠ̂2 + V ∗2 ,

y∗1 = Z1α̂+ u∗1.

Suppose that N bootstrap samples are drawn as above and for each sample
an estimate for α is obtained. Denote these estimates as α̂∗j , , j = 1, 2, ......, N.
The variance estimate is formed as follows:

V̂ ar(α̂)B =
1

N

N∑
j=1

(α̂∗j − α̂)(α̂∗j − α̂)′ (53)

which measures the variation of the bootstrap estimates about the original
2SLS estimate α̂. It would also be possible to replace α̂ with the sample mean
1
N

N∑
j=1

α̂∗j .It is, in principle, possible to develop a bias corrected version of this

estimator but the procedure is quite complicated and is not likely to be used in
practice; hence we shall not explore this. A question arises concerning the mo-
ments of this bootstrap variance estimator. There is no requirement to estimate
σ2 but the variance estimator involves the second moment of the bootstrap es-
timates with respect to the bootstrap distribution. In the case of a parametric
bootstrap variance estimator a non-existence of moments problem will arise but
it is not clear that this will carry over to the non-parameteric bootstrap.
For the MLIML estimator, a similar bootstrap variance estimator can be

developed whereby there will not be a moments problem. We shall examine and
compare the performance of the bootstrap estimator in the simulation experi-
ments which follow.
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6 The Simulations

In this section we present the results of a set of simulation experiments designed
to examine and compare the approaches to variance estimation that have been
developed in the preceding sections. The model specified contains two equations
of the form

y1t = α11 + β12y2t + γ11x1t + γ12x2t + u1t,

y2t = α21 + β21y1t +

k∑
j=3

γ2jxjt + u2t , t = 1, 2, ..., T. T = 50 or 100.

Interest centres on the estimation of the first equation whereby the order of
overidentification of its parameters is determined by the number of exogenous
variables in the second equation. Any redundant variables added to the first
equation, were also included in the second equation. Only the first equation is
estimated.
In matrix notation the system may be written as

Y B́ +XΓ́ + U = 0.

The matrix of endogenous coeffi cients was chosen as

B =

[
1.00 −0.20
0.00 1.00

]
.

The matrix of the exogenous variable coeffi cients for the case L = 2 and where
all instruments are strong, was

Γ =

[
−1.00 −0.60 −1.20 0.00 0.00 0.00
−1.00 0.00 0.00 −0.30 −0.30 −0.30

]
,

and where all instruments are weak, was

Γ =

[
−1.00 −0.60 −1.20 0.00 0.00 0.00
−1.00 0.00 0.00 −0.08 −0.08 −0.08

]
.

And as L is increased , further additional columns
[

0.00
−0.30

]
or
[

0.00
−0.08

]
were added. .
The corresponding reduced form matrices, Π, were, for L = 2,

Π =

[
1.200 0.600 −1.200 0.060 0.060 0.060
1.000 0 0 0.300 0.300 0.300

]
.

or

Π =

[
1.200 0.600 −1.200 0.016 0.016 0.016
1.000 0 0 0.080 0.080 0.080

]
and as L increases further columns of

[
0.060
0.300

]
or
[

0.016
0.080

]
are added.
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The covariance matrix of the structural disturbances was either

Σ =

[
2.00 1.80
1.80 2.00

]
or Σ =

[
2.00 1.00
1.00 2.00

]
which gave rise to two different levels of simultaneity in the estimated equation.
The corresponding covariance matrix for the reduced form disturbances was

either

Ω =

[
2.80 2.20
2.20 2.00

]
or Ω =

[
2.48 1.40
1.40 2.00

]
.

The matrix of reduced form parameters can be varied in the experiments so
as to examine the performance of estimators under different levels of overiden-
tification and instruments of different strenghts.
In all our experiments the X matrix contains a first column of ones. The

other exogenous variables are generated independently as

xjt = 0.95xj,t−1 + vjt, j = 1, 2, ..., k, t = 1, 2, ......, T,

while the vjt were generated from a N(0, 1) distribution. Once a sample of the
required size has been generated, the sample was kept fixed over all replications.
The disturbances are generated as the product of a 100×2 matrix of N(0, 1)

times a Cholesky decomposition matrix. In our experiments only the first struc-
tural equation is estimated and we focus on the following:

1. The simulated coeffi cient estimator bias,denoted Bias.

2. The simulated variance of the estimator,denoted V ar.

3. The simulated expected value of the asymptotic variance, denoted EstV ar.

4. The simulated expected value of the bias corrected asymptotic variance
estimator,denoted V arBC.

5. The simulated expected value of the bootstrap variance estimator, denoted
V arB.

6. The simulated expected value of the estimator for σ2,which is denoted as
either σ̂2 or σ̂2

F .

In each simulation experiment there were 20000 replications so that the
simulated values for 1-6 above can be taken as essentially the true values. The
order of overidentification was varied starting at L=2 so that the 2SLS estimator
would have a second moment, and L was increased in steps of two so that
typically results covered L=2,4 and 6. Generally estimator biases increase with
L while the variance decreases.
It is seen that in each of the reported experiments, instruments may be weak

or strong as measured by the R2 in the reduced form regression of the endoge-
nous variable regressor. Since the order of overidentification, L, is either 2,4 or
6, the R2,and, hence, the instrument strength, will vary with L. However in
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the simulations when weak instruments are employed, the R2 is typically in the
range 0.09 to 0.15. In the strong instrument cases R2 is in the range 0.26 to
0.48, deliberately chosen not to be so strong that there is little difference be-
tween the variance estimators. Also the degree of simultaneity may be moderate
or strong depending on the correlation, ρ, between the endogenous regressor and
the structural disturbance. The degree of simultaneity is moderate when ρ is 0.5
and strong when ρ is 0.9. This is not affected by the the order of overidentifica-
tion. The sample size in the strong instrument case is chosen as T=50 but when
the instruments are weak T=100. We found that in the weak instrument case
when T=50 the results were too volatile to be of practical use. We conducted
four sets of experiments: 1) strong instruments with strong simultaneity and
sample size 50; 2) weak instruments with strong simultaneity and sample size
100; 3) weak instruments with moderate simultaneity and sample size 100, and
4) strong instruments with moderate simultaneity and sample size 50. We now
proceed to examine the results which are presented below.

6.1 Simulation Results

In the Tables below it is seen that there are two sections. The first presents the
main findings for variance estimation. Then the first two columns present the
coeffi cient estimator bias and the sample variance as found in the 20000 simu-
lations.These are taken to be the "true" values. The coeffi cient bias is included
because of the effect the coeffi cient bias has on the coverage probabilities to be
explored later. The third column gives the ratio of the value of the asymptotic
variance, termed EstVar, to the variance, which indicates the proportionate er-
ror in practice in estimating the variance using EstVar. The fourth column
provides a similar measure of the error in estimating the variance using the bias
corrected variance estimate while the last column does the same in respect of
the bootstrap variance estimate. Clearly a value close to unity for the corre-
sponding ratio indicates a variance estimator with small bias. It is seen that
the above results are given for 2SLS and MLIML and in respect of all three
coeffi cients β, γ1 and γ2 in the estimated equation though the coeffi cient on the
endogenous regressor, β, is of particular interest. The second part of the Table
uses the first five columns to give more information on the sampling properties
of the three variance estimators and the estimator of the disturbance variance
σ2 while the final two columns present the coverage probabilities and test sizes
for the associated t-test of the null hypothesis H0 : β = 0.2 based upon the
three variance estimates.

Experiment 1: Strong Instruments and Strong Simultaneity

Table 1: L=2 T=50 (R2 = 0.26, ρ= 0.9)
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Bias Var EstVar
Var

VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.067 0.074 1.52 1.09 1.27
MLIML 0.015 0.065 1.77 1.19 1.01

γ1 = 0.6 2SLS -0.0140 0.014 1.21 1.02 1.08
MLIML -0.003 0.014 1.25 1.05 1.01

γ2 = −1.2 2SLS -0.001 0.007 1.10 0.98 0.99
MLIML 0.001 0.007 1.09 0.99 1.00

2SLS Var(β̂)=0.074
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.112 0.683 56.509 0.005 0.050 0.859 0.141
VarBC 0.081 0.679 56.509 0.000 0.039 0.830 0.170
VarBoot 0.093 0.203 11.677 0.005 0.049 0.813 0.187
σ̂2 1.914 1.327 37.881 0.409 1.602 Na Na

MLIML Var(β̂F )=0.065
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.115 0.192 3.503 0.005 0.059 0.909 0.091
VarBC 0.077 0.165 3.503 0.000 0.041 0.880 0.121
VarBoot 0.065 0.053 0.683 0.005 0.052 0.860 0.140
σ̂2 2.064 1.097 10.488 0.439 1.783 Na Na

In Table 1 above, the value for L is chosen as L=2 and, as noted in the text,
the second moment of the 2SLS variance estimator will not exist. While we have
shown that the 2SLS variance is smaller than that of MLIML, it is seen that this
is not the case here and this may be attributed to the non-existence of the sec-
ond moment and the outliers that result. The ratio of the asymptotic variance
to the true variance is much greater than one for both estimators and, surpris-
ingly, is worse for MLIML; thus both variance estimators are badly biased. The
corresponding ratios for the corrected variance estimators are much closer to one
and is almost one for the bootstrap variance estimator. Similar comments can
be made for the variance estimators of the exogenous coeffi cients. The second
part of the Table indicates that the 2SLS variance estimator is affected by large
outliers and this applies also to the disturbance variance estimator although the
associated bias of the disturbance variance estimator is relatively small. The
coverage probabilities of the t-test are much below the notional 95% in the 2SLS
case which is partly due to the fact that the coeffi cient estimator is very biased
and so the distribution of the test t-statistic is shifted to the right in all three
cases. Notice that the asymptotic variance estimator, EstVar, is strongly biased
upwards which is in accordance with the findings of Kiviet and Phillips (1999)
noted earlier; hence when the t-ratio is correctly centred at zero, the overstated
variance/standard deviation will reduce the spread of the t-statistic and there
will be a tendency for the t-test to under-reject. Thus the nominal size of the
test is overstated.
However, when the t-statistic is not centred at zero due to coeffi cient esti-

mator bias and /or the distribution of the test t-statistic is far from normal,
test sizes greater than the notional will be expected and that would explain the
large empirical sizes which are observed.
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Table 2: L=4 T=50 (R2 = 0.44, ρ = 0.9)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.085 0.026 1.17 0.92 0.90
MLIML 0.003 0.035 1.19 1.02 1.07

γ1 = 0.6 2SLS -0.014 0.010 1.06 1.00 0.92
MLIML -0.001 0.012 1.06 1.01 1.07

γ2 = −1.2 2SLS -0.017 0.007 1.05 0.98 0.90
MLIML -0.001 0.008 1.06 1.00 1.06

2SLS Var(β̂)=0.026
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.031 0.033 2.591 0.004 0.024 0.846 0.154
VarBC 0.024 0.024 2.591 0.004 0.020 0.826 0.174
VarBoot 0.024 0.016 0.602 0.003 0.020 0.845 0.155
σ̂2 1.766 0.665 15.554 0.488 1.643 Na Na

MLIML Var(β̂F )=0.035
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.042 0.045 1.580 0.004 0.030 0.926 0.074
VarBC 0.035 0.034 1.580 0.004 0.027 0.921 0.079
VarBoot 0.037 0.029 0.748 0.004 0.029 0.910 0.090
σ̂2 2.055 0.857 11.246 0.505 1.875 Na Na

In Table 2 where L=4, it is again seen that 2SLS is more biased while MLIML
has virtually zero bias. The 2SLS variance estimator now has necessary moments
and it is seen to be less that of MLIML in line with the earlier approximations.
The ratios of the asymptotic variance to the actual variance are now closer
to but greater than unity in all cases and the ratio which involves the bias
corrected variance is very close to unity. The ratios for the bootstrap variance
are noticeably less than unity for 2SLS and larger than unity for MLIML. In
the second part of the Table, none of the variance estimates are affected by
extreme outliers but it is noticeable that the bootstrap variance estimator is
decidedly less volatile than the others. The disturbance variance estimator
σ̂2 based on 2SLS is substantially biased whereas based on MLIML there is little
bias. Examining the coverage probabilities, the 2SLS t-statistic has a coverage
probability which leads to a test size about three times the notional 5% in all
three cases while the MLIML statistics are much closer to 5%. However the
t-statistics based on bias corrected variances have slightly larger size for 2SLS.
Again we see that although the 2SLS asymptotic variance is biased upwards
the test size is too large. This is at least partly explained by the fact that
the coeffi cient estimator is considerably upwards biased so that the t-statistic is
shifted to the right.
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Table 3: L=6 T=50 (R2 = 0.48, ρ = 0.9)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.123 0.021 1.19 0.91 0.82
MLIML 0.001 0.033 1.15 1.05 1.02

γ1 = 0.6 2SLS 0.033 0.010 1.07 1.00 0.87
MLIML 0.000 0.014 1.06 1.02 1.06

γ2 = −1.2 2SLS 0.025 0.006 1.06 0.99 0.86
MLIML 0.000 0.008 1.05 1.01 1.05

2SLS Var(β̂)=0.021
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.024 0.018 0.529 0.004 0.020 0.785 0.215
VarBC 0.018 0.011 0.529 0.004 0.017 0.755 0.245
VarBoot 0.017 0.009 0.139 0.003 0.015 0.785 0.215
σ̂2 1.646 0.547 8.782 0.549 1.552 Na Na

MLIML Var(β̂F )=0.033
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.037 0.039 1.450 0.004 0.027 0.928 0.073
VarBC 0.034 0.032 0.968 0.004 0.026 0.924 0.076
VarBoot 0.033 0.026 0.422 0.004 0.026 0.918 0.082
σ̂2 2.054 0.839 12.864 0.571 1.887 Na Na

A feature of Table 3 where L is now increased to 6, is that the 2SLS coeffi cient
estimator biases are increased while those for MLIML are essentially zero and
the 2SLS variances are all less that those for MLIML .The ratios based on the
bias corrected variances are close to unity and In terms of the ratios of the three
variance estimates to the variance there is little change from Table 2 except
that the 2SLS ratios based upon the bootstrap variance continue to be less than
unity. In the second part of the Table it is seen that the 2SLS asymptotic
variance is upwards biased while the other variance estimators are downwards
biased. There is no sign of extreme outliers in either case but again the bootstrap
variance estimator is less variable. The estimator for the disturbance variance
is biased for both estimators and some relatively extreme values occur. The
coverage probabilities for the 2SLS t-statistic are now smaller which is partly
explained by the increased coeffi cient bias, and the associated test sizes are
around four times the nominal 5%. The t-statistic based on the bias corrected
variance has a larger size. In the MLIML case the disturbance variance estimator
has very small bias while coverage probabilities and, correspondingly, the test
sizes are much closer to the nominal levels. In particular the test sizes are now
close to those in Table 2.
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Experiment 2: Weak instruments, moderate simultaneity. T=100

Table 4: L=2 T=100 (R2 = 0.10, ρ = 0.5)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.054 0.106 1.55 1.24 1.28
MLIML 0.027 0.104 1.41 1.10 1.01

γ1 = 0.6 2SLS -0.002 0.008 1.17 1.03 1.16
MLIML -0.000 0.008 1.14 1.02 1.12

γ2 = −1.2 2SLS -0.001 0.004 1.19 1.06 1.17
MLIML -0.000 0.004 1.16 1.03 1.13

2SLS Var(β̂)=0.106
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.164 2.118 197.315 0.012 0.076 0.925 0.076
VarBC 0.132 2.117 197.315 0.002 0.066 0.906 0.094
VarBoot 0.136 0.538 53.235 0.011 0.081 0.877 0.123
σ̂2 2.108 1.090 60.893 0.924 1.873 Na Na

MLIML Var(β̂F )=0.104
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.147 0.196 2.706 0.012 0.085 0.936 0.064
VarBC 0.115 0.162 2.706 0.000 0.073 0.920 0.080
VarBoot 0.106 0.068 0.733 0.012 0.088 0.874 0.126
σ̂2 2.156 0.825 12.625 0.924 1.929 Na Na

In Table 4 , it is seen that the instruments are weak. Since L=2 there
is a non-existence of moments problem for the 2SLS variance estimator and
, possibly, for the bootstrap variance estimator. Both coeffi cient estimators
are quite biased and the variance of 2SLS is shown to exceed that of MLIML
which is explained by the occurrence of large outliers. The ratios of the 2SLS
asymptotic variance to the variance is noticeably larger than unity but this is
much improved when the bias corrected variance is considered. The ratio based
on the bootstrap variance is too large for 2SLS but better when MLIML is
employed. In the second part all three variance estimators based on 2SLS are
seen to strongly biased upwards and there are extreme outliers in all three cases.
Here there is an indication that there is a moments problem for the bootstrap
estimator. In the MLIML case the asymptotic variance is again biased upwards
but the biased corrected variance removes most of the bias, Also the bootstrap
variance estimator is close to being unbiased. There is no indication of outliers
when MLIML is used. The 2SLS estimator for the disturbance variance is
much affected by extreme outliers as expected while there is little bias. The
corresponding MLIML estimator is not affected by outliers and also has little
bias.The coverage probabilities for 2SLS again lead to test sizes which are above
the nominal 5% but not greatly so and now they are relatively close to those for
MLIML. Here bias correcting the variances does not lead to improved test size.
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Table 5: L=4 T=100 (R2 = 0.09, ρ = 0.5)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.141 0.082 1.25 0.95 0.83
MLIML 0.043 0.141 1.31 1.13 0.84

γ1 = 0.6 2SLS -0.008 0.008 1.12 1.00 1.03
MLIML -0.002 0.009 1.19 1.10 1.15

γ2 = −1.2 2SLS -0.008 0.004 1.11 0.98 1.01
MLIML -0.002 0.005 1.17 1.08 1.10

2SLS Var(β̂)=0.082
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.102 0.279 29.597 0.012 0.068 0.885 0.115
VarBC 0.078 0.274 29.597 0.000 0.058 0.859 0.141
VarBoot 0.068 0.042 0.573 0.010 0.057 0.880 0.120
σ̂2 1.919 0.701 34.988 0.839 1.772 Na Na

MLIML Var (β̂F )=0.141
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.185 0.265 4.234 0.013 0.092 0.922 0.078
VarBC 0.159 0.217 3.122 0.006 0.089 0.916 0.084
VarBoot 0.119 0.078 0.837 0.013 0.098 0.872 0.129
σ̂2 2.200 0.927 13.476 0.839 1.928 Na Na

In Table 5 the 2SLS estimator is very biased and the MLIML estimator has
a bias of 20%.The variance of 2SLS is much lower than that of MLIML. The
variance ratios involving the asymptotic variance are well above unity for both
estimators and for all parameters with those based on MLIML being larger.
The bias corrected ratios are much closer to unity and the bootstrap variance
ratios are clearly below unity for the endogenous parameter. Thus moving
from L=2 to L=4 has a large effect on the bootstrap variance ratios which
supports the non-existence of a second moment for the bootstrap variance when
L=2. There is some evidence of extreme values for the 2SLS variance estimators
excluding the bootstrap based estimator. The asymptotic variance estimator
based on MLIML is heavily biased upwards while bias correction is effective. The
bootstrap estimator is biased downwards. Examining the coverage probabilities
and associated t-test sizes, it is again seen that 2SLS based tests are considerably
oversized and more so than when L=2 while the MLIML based tests are less
oversized. However the bootstrap based test with MLIML is the most oversized
here. We again note that even though the MLIML variance estimator is heavily
biased upwards whereas the coeffi cient bias is not especially large, the
resulting tests still have an empirical size which is too large.
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Table 6: L=6 T=100 (R2 = 0.16, ρ = 0.5)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.116 0.041 1.10 0.92 0.82
MLIML 0.002 0.080 1.06 1.01 0.85

γ1 = 0.6 2SLS 0.008 0.007 1.04 0.98 0.98
MLIML 0.000 0.009 1.07 1.04 1.09

γ2 = −1.2 2SLS 0.001 0.004 1.05 1.00 1.00
MLIML 0.000 0.004 1.08 1.06 1.11

2SLS Var(β̂)=0.041
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.045 0.033 1.072 0.009 0.037 0.874 0.126
VarBC 0.037 0.023 1.072 0.005 0.034 0.862 0.138
VarBoot 0.034 0.015 0.194 0.008 0.030 0.874 0.126
σ̂2 1.878 0.443 7.582 0.775 1.802 Na Na

MLIML Var(β̂F )=0.080
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.085 0.137 2.501 0.010 0.050 0.929 0.071
VarBC 0.081 0.123 2.289 0.010 0.050 0.927 0.073
VarBoot 0.068 0.049 0.801 0.010 0.054 0.907 0.093
σ̂2 2.161 0.798 11.662 0.776 1.965 Na Na

In Table 6 where L=6, the instrument strength increases which makes a
direction comparison with the previous Table 5 less possible. The coeffi cient
biases and the associated variances are smaller now. As a result the variance
ratios of interest are quite close to unity except for 2SLS and MLIML bootstrap
ratios for the endogenous parameter which are well below unity as a result of the
bootstrap variance estimators being considerably biased downwards. The other
variance estimators have a small bias and bias correction works well. There
is no evidence of extreme values. The estimators of the disturbance variance
are little biased. The coverage probabilities for 2SLS and the associated test
sizes are again too large and those based on the bias corrected variances a little
higher than the others. The MLIML test sizes are quite close to the nominal
level but, as in Table 5, the bootstrap based tests are the most oversized.
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Experiment 3: Weak Instruments and Strong Simultaneity T=100

Table 7: L=2 T=100 (R2 = 0.10, ρ = 0.9)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.098 0.095 1.76 1.34 1.25
MLIML 0.041 0.070 2.18 1.49 1.00

γ1 = 0.6 2SLS -0.005 0.009 1.22 1.07 1.02
MLIML -0.002 0.009 1.18 1.05 0.99

γ2 = −1.2 2SLS -0.003 0.004 1.20 1.06 1.00
MLIML -0.001 0.004 1.17 1.04 0.98

2SLS Var(β̂)=0.095
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.167 0.865 50.696 0.005 0.059 0.824 0.176
VarBC 0.132 2.117 197.315 0.002 0.066 0.906 0.094
VarBoot 0.136 0.538 53.235 0.011 0.081 0.877 0.123
σ̂2 1.856 1.485 35.656 0.368 1.482 Na Na

MLIML Var(β̂F )=0.070
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.153 0.229 2.909 0.005 0.075 0.894 0.106
VarBC 0.105 0.203 2.909 0.000 0.040 0.854 0.146
VarBoot 0.070 0.052 0.824 0.006 0.056 0.824 0.176
σ̂2 1.990 1.034 9.626 0.363 1.712 Na Na

In Table 7 we consider the worst possible case for estimation; both weak
instruments and strong simultaneity. Hence, unsurprisingly the 2SLS coeffi -
cient estimator for the endogenous variable regressor is strongly biased and the
corresponding MLIML estimator has a substantial bias also. The ratios of the
asymptotic variance to the variance are far from unity. This is not unexpected
for 2SLS when L=2 but the very large value in the MLIML case is surprising.
Both results reflect the large biases in the asymptotic variance.However the cor-
rected variance ratio is much nearer unity for all coeffi cients and the bootstrap
variance ratios even better especially for MLIML. As expected, there is evidence
of large outliers in the 2SLS case. The estimated disturbance variance is clearly
biased for 2SLS and extreme values are evident while MLIML shows little bias.
Despite the large upward biases in the variance estimators the coverage prob-
abilities are much higher than the notional level leading to size distortions in
both cases especially for 2SLS. Tests based on the corrected variance have better
size in the 2SLS case but are worse for MLIML. The bootstrap based test for
MLIML is particularly oversized.
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Table 8: L=4 T=100 (R2 = 0.09, ρ = 0.9)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.257 0.056 1.45 0.98 0.66
MLIML 0.059 0.077 2.25 1.55 0.91

γ1 = 0.6 2SLS -0.015 0.005 1.17 1.04 0.80
MLIML -0.002 0.009 1.25 1.08 1.03

γ2 = −1.2 2SLS -0.015 0.003 1.15 1.01 0.77
MLIML -0.004 0.004 1.25 1.07 1.00

2SLS Var(β̂)=0.056
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.081 0.187 8.587 0.005 0.043 0.646 0.354
VarBC 0.054 0.186 8.587 0.000 0.027 0.554 0.446
VarBoot 0.037 0.029 0.516 0.004 0.029 0.645 0.355
σ̂2 1.327 0.751 14.637 0.313 1.138 Na Na

MLIML Var(β̂F )=0.077
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.173 0.250 3.299 0.006 0.082 0.876 0.124
VarBC 0.119 0.196 2.545 0.001 0.054 0.852 0.148
VarBoot 0.070 0.051 0.526 0.006 0.057 0.828 0.173
σ̂2 2.200 0.927 13.476 0.839 1.928 Na Na

Table 8 shows that 2SLS is hugely biased when L is increased and the as-
ymptotic variance ratio is much greater than unity. However the bias corrected
variance ratio is very close to unity while the ratio based on the bootstrap vari-
ance estimator is far less than unity. For MLIML the asymptotic variance ratio
is much greater than in the 2SLS case though the bias corrected variance ratio
while much reduced is still well above unity for the endogenous regressor but
close to unity for the other coeffi cients. The ratios based on the bootstrap give
a different picture where they are well below unity for 2SLS and very close to
unity for MLIML. The problems with the variance ratios are explained by the
large upward bias in the variance estimators and this is especially so in the
MLIML case.The associated estimator for the disturbance variance is greatly
biased downwards for 2SLS and there is a moderate upward bias for MLIML.
The coverage probabilities are far from the nominal level for 2SLS and the test
sizes are over six times as large. The situation is much better in the MLIML
case but still around two and a half times the nominal level. Bias correcting the
variances makes matters worse for 2SLS and has little effect for MLIML.
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Table 9: L=6 T=100 (R2 = 0.16, ρ = 0.9)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.206 0.029 1.27 0.82 0.68
MLIML 0.008 0.056 1.47 1.17 0.94

γ1 = 0.6 2SLS 0.014 0.005 1.07 0.99 0.79
MLIML 0.000 0.009 1.10 1.02 1.07

γ2 = −1.2 2SLS 0.002 0.003 1.06 0.99 0.79
MLIML 0.001 0.004 1.08 1.01 1.07

2SLS Var(β̂)=0.029
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.037 0.045 2.595 0.004 0.026 0.659 0.341
VarBC 0.024 0.037 2.595 0.000 0.020 0.594 0.406
VarBoot 0.020 0.011 0.197 0.003 0.017 0.659 0.341
σ̂2 1.414 0.550 10.657 0.457 1.297 Na Na

MLIML Var(β̂F )=0.056
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.083 0.138 3.258 0.004 0.047 0.906 0.094
VarBC 0.066 0.105 2.899 0.004 0.041 0.898 0.102
VarBoot 0.053 0.042 0.526 0.004 0.041 0.892 0.108
σ̂2 2.080 1.026 12.848 0.470 1.827 Na Na

In Table 9, it is again seen that the 2SLS coeffi cient estimator is badly biased
but MLIML is virtually unbiased. Here the instruments are somewhat less weak
than in Table 8. The strong upward biases in the asymptotic variance estimates
are repeated with those based on MLIML again being the largest. Thus the
asymptotic variance ratios are well above unity for the endogenous regressor
though generally close to unity for the other coeffi cients. The bias correction is
seen to work quite well in this case though the bootstrap variance ratios are well
below unity. The estimator for the disturbance based on 2SLS is greatly biased
downwards while there is a small upwards bias in the MLIML counterpart.
The coverage probabilities and the associated test sizes and hugely far from
the nominal levels. The situation is much better with the MLIML based tests
however, and are better than those in Table 8. While bias correction works well
when applied to the variance ratios it appears to have little effect on the tests.
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Experiment 4: Strong Instruments andModerate Simultaneity T=50

Table 10: L=2 T=50 (R2 = 0.26, ρ = 0.5)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.038 0.076 1.25 0.98 1.25
MLIML 0.011 0.081 1.32 1.06 1.06

γ1 = 0.6 2SLS -0.008 0.015 1.12 0.99 1.14
MLIML -0.002 0.015 1.15 1.02 1.10

γ2 = −1.2 2SLS -0.001 0.007 1.08 0.98 1.10
MLIML -0.001 0.007 1.09 1.00 1.10

2SLS Var(β̂)=0.076
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.094 0.231 16.175 0.008 0.059 0.934 0.066
VarBC 0.074 2.209 16.175 0.002 0.005 0.921 0.079
VarBoot 0.095 0.132 5.602 0.009 0.061 0.898 0.102
σ̂2 2.068 0.831 29.077 0.620 1.901 Na Na

MLIML Var(β̂F )=0.081
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.107 0.150 2.819 0.010 0.064 0.944 0.056
VarBC 0.086 0.120 2.640 0.002 0.059 0.934 0.066
VarBoot 0.086 0.060 0.744 0.009 0.069 0.890 0.110
σ̂2 2.132 0.815 10.267 0.622 1.950 Na Na

The results in Table 10 are for the case most favourable to estimation. It
is seen that coeffi cient biases are now much smaller. In contrast to the results
in other Tables, when L=2 the 2SLS variance is found to be less than that of
MLIML which suggests that extreme values had less influence in the results
despite the non-existence of the second moment. The asymptotic variances are
generally upward biased but the bias correction works very well to bring the
variance ratios close to unity. The ratios based on the bootstrap are similarly
close. The disturbance variance estimator has small bias though MLIML has
more bias than 2SLS. The coverage probabilities and test sizes are now closer
to nominal levels with the MLIML based tests being slightly better except for
the bootstrap based tests. The standard t-tests are slightly superior here and
the variance bias correction has little effect. However the bootstrap based tests
are substantially over sized for both 2SLS and MLIML

Table 11: L=4 T=50 (R2 = 0.44, ρ = 0.5)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.049 0.030 1.08 0.97 0.96
MLIML 0.000 0.040 1.03 0.99 1.01

γ1 = 0.6 2SLS -0.009 0.012 1.03 0.99 1.00
MLIML -0.001 0.013 1.04 1.02 1.06

γ2 = −1.2 2SLS 0.025 0.006 1.04 0.99 1.00
MLIML -0.011 0.008 1.04 1.02 1.07
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2SLS Var(β̂)=0.030
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.032 0.021 0.807 0.005 0.027 0.924 0.076
VarBC 0.029 0.015 0.807 0.005 0.025 0.917 0.083
VarBoot 0.029 0.015 0.339 0.005 0.025 0.923 0.077
σ̂2 1.963 0.533 7.937 0.692 1.891 Na Na

MLIML Var(β̂F )=0.040
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.041 0.048 2.845 0.005 0.031 0.943 0.057
VarBC 0.039 0.043 2.764 0.005 0.031 0.941 0.059
VarBoot 0.040 0.027 0.489 0.005 0.033 0.925 0.075
σ̂2 2.078 0.650 11.367 0.695 1.970 Na Na

In Table 11 there is still a substantial 2SLS coeffi cient bias but none for
MLIML. All the variance ratios are close to one reflecting the low variance esti-
mation bias for all three variance estimators. The estimators of the disturbance
variance have a very small bias. The coverage probabilities for the t-statistics
based on 2SLS and the associated test sizes are close to the nominal values
though the test sizes are about 50% too large. None the less they are the closest
to the 5% level that have been found in the experiments. The coverage proba-
bilities and test sizes for tests based on MLIML and the asymptotic variance or
the bias corrected variance are very close to the 5% level while tests based on
the bootstrap variance have a slightly larger size. Hence when the coeffi cient
estimator bias and the variance estimator biases are small one can expect the
tests to have approximately the correct size.

Table 12: L=6 T=50 (R2 = 0.48, ρ = 0.5)
Bias Var EstVar

Var
VarBC
Var

VarBoot
Var

β = 0.2 2SLS 0.070 0.025 1.08 0.97 0.90
MLIML 0.000 0.037 0.99 0.98 0.97

γ1 = 0.6 2SLS 0.018 0.012 1.03 0.99 0.97
MLIML 0.000 0.014 1.02 1.01 1.04

γ2 = −1.2 2SLS 0.015 0.008 1.04 1.00 0.98
MLIML 0.001 0.009 1.03 1.02 1.06

2SLS Var(β̂)=0.025
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.027 0.014 0.351 0.005 0.023 0.905 0.095
VarBC 0.024 0.011 0.344 0.005 0.022 0.898 0.102
VarBoot 0.022 0.010 0.140 0.005 0.020 0.905 0.095
σ̂2 1.921 0.486 5.432 0.707 1.866 Na Na

MLIML Var(β̂F )=0.037
β = 0.2 Mean Sdv Max Min Med CovProb size(t)
EstVar 0.037 0.043 2.168 0.006 0.028 0.941 0.059
VarBC 0.036 0.041 2.167 0.006 0.028 0.941 0.059
VarBoot 0.036 0.024 0.440 0.006 0.030 0.927 0.073
σ̂2 2.079 0.640 11.196 0.712 1.978 Na Na
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The results in Table 12 have much in common with Table 11. The coeffi cient
estimator for the endogenous coeffi cient has a larger bias though of about 35%
as L is increased to 6 while there is no bias in MLIML. All the variance ratios
are close to unity reflecting the very small biases in the variance estimators.
The estimators of the disturbance variance have a small bias. However the
coverage probabilities for the 2SLS t-test statistics are below notional values
and the associated test sizes are nearly twice the nominal value which stems
from the bias in the coeffi cient estimator. The test sizes for the MLIML tests
based on the asymptotic variance and the bias corrected variance are both very
close to the 5% level while reflects the fact that there is no coeffi cient bias and
the estimated variances are all virtually unbiased. Test sizes for tests based on
the bootstrap variance are somewhat larger.

6.2 Power of the t-test

In the remaining part of the paper we examine the powers of the two types of
t-test. We do this for the cases of L = 4, so that the 2SLS estimator has no
moments problems. As we observed from the experiments the the coeffi cient
estimator is biased upwards, so that the distribution of the t-statistic is shifted
to the right. To get a better understanding, we examine the power of the two
types of t− test: left tail and right tail t-tests. In the left tail test, we test HL

0 :
β = 0 against HL

1 : β < 0. In right tail test, we test HR
0 : β = 0 against HR

1 :
β > 0. We do this for cases: i): Strong instruments and strong simultaneity,
T = 50, L = 4. ii) Weak instruments and strong simultaneity T = 100, L = 4.
The experiment setup and the choice of parameters in DGPs are same as in
previous section, except for β. See the table below for the choice of β in the
DGPs.

Table 13 : Values for β in t-test
Left tail test Right tail test
0 0
−0.06 0.06
−0.12 0.12
−0.18 0.18
−0.24 0.24
−0.30 0.30
−0.36 0.36
−0.42 0.42
−0.48 0.48
−0.54 0.54

The results are reported in the figures below.The coeffi cient estimator bias of
2SLS is again quite large and positive so that the distribution of the t-statistic
is shifted to the right. This has an effect on the standard t-statistic. It can be
seen that the size of the left tail t-test is too small while the size of the right tail
t-test is too large. This is true whenever we use an asymptotic or bias corrected
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variance estimator in the t-statistics. However, the power of the t-statistics
when using the bias corrected variance estimator shows a clear difference. We
can see that the power is higher when using the bias corrected variance than
when using the asymptotic variance estimator. This is true for both the left
tail and right tail test. This is also true when the instruments are strong or
weak. The t-statistics when using the bootstrap variance estimator works in a
way similar to the one using the bias corrected variance estimator. They have
similar powers, which are both significantly higher than for the t-statistics which
use the asymptotic variance. The bias corrected variance works slightly better
than the bootstrap variance estimator in some cases. The results for MLIML are
somewhat similar to the test powers in the 2SLS case. In all,what we can learn
from this experiment is that the false hypothesis is more likely to be rejected
when we correct the bias of the variance estimators in the t-statistics.

29



­0
.7

­0
.6

­0
.5

­0
.4

­0
.3

­0
.2

­0
.1

0
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

β

Power

P
ow

er
 o

f t
he

 t­
te

st
: L

ef
t­T

ai
l, 

S
tro

ng
 In

st
ru

m
en

ts
, L

=4
, T

he
or

et
ic

al
 S

iz
e

V
ar

A
sy

2S
LS

V
ar

B
C

2S
LS

V
ar

B
oo

t2
S

LS
V

ar
A

sy
M

LI
M

L
V

ar
B

C
M

LI
M

L
V

ar
B

oo
tM

LI
M

L

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

β

Power

P
ow

er
 o

f t
he

 t­
te

st
: R

ig
ht

­T
ai

l, 
S

tro
ng

 In
st

ru
m

en
ts

, L
=4

, T
he

or
et

ic
al

 S
iz

e

V
ar

A
sy

2S
LS

V
ar

B
C

2S
LS

V
ar

B
oo

t2
S

LS
V

ar
A

sy
M

LI
M

L
V

ar
B

C
M

LI
M

L
V

ar
B

oo
tM

LI
M

L

­0
.7

­0
.6

­0
.5

­0
.4

­0
.3

­0
.2

­0
.1

0
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

β

Power

P
ow

er
 o

f t
he

 t­
te

st
: L

ef
t­T

ai
l, 

W
ea

k 
In

st
ru

m
en

ts
, L

=4
, T

he
or

et
ic

al
 S

iz
e

V
ar

A
sy

2S
LS

V
ar

B
C

2S
LS

V
ar

B
oo

t2
S

LS
V

ar
A

sy
M

LI
M

L
V

ar
B

C
M

LI
M

L
V

ar
B

oo
tM

LI
M

L

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

β

Power

P
ow

er
 o

f t
he

 t­
te

st
: R

ig
ht

­T
ai

l, 
W

ea
k 

In
st

ru
m

en
ts

, L
=4

, T
he

or
et

ic
al

 S
iz

e

V
ar

A
sy

2S
LS

V
ar

B
C

2S
LS

V
ar

B
oo

t2
S

LS
V

ar
A

sy
M

LI
M

L
V

ar
B

C
M

LI
M

L
V

ar
B

oo
tM

LI
M

L

F
ig
ur
e
1:
P
ow
er
of
t-
te
st
:
on
e
ta
il
te
st
.

30



7 Conclusion

This paper shows that the bias in the usual variance estimator for simultaneous
equation coeffi cient estimators can be substantially reduced by using a bias cor-
rection. However, the bias corrected estimator may sometimes yield a negative
estimate and when this occurs an obvious solution is to simply replace the bias
corrected estimate by the usual estimate. This may not be a serious drawback
to using bias correction since if negative estimates are relatively infrequent the
bias corrected estimator will be little affected. In our experiments there was
every sign that this approach is valid. An alternative is to use a bootstrap vari-
ance estimator. This bootstrap is shown to have good finite sample properties,
including that of relatively small bias which in most cases rival those of the bias
corrected variance estimator. Also, since the bootstrap estimator is inherently
positive, there are no problems of negative estimates.
One particularly relevant result arising out of this paper is that the 2SLS

estimator of the disturbance variance does not have a second moment unless
L, the order of overidentification, is at least 4. Since the disturbance variance
estimate is inherently part of the actual variance estimate, this imposes severe
restrictions on the practical use of 2SLS for inference purposes unless some other
variance estimate is used which does not depend on the estimated disturbance
variance.This is not a limitation which applies to estimators which have all nec-
essary moments such as the MLIML estimator explored in this paper although
the variances associated with both estimators are affected by the volatility in the
disturbance variance estimate. In situations where 2SLS is ruled out, MLIML
is the best alternative since it has the smallest coeffi cient estimator bias and is
more effi cient.
The experiments which investigated coverage probabilities and the associ-

ated test sizes were very informative. It was seen that 2SLS based tests were
generally seriously oversized whereas tests based on MLIML were clearly closer
to nominal levels. Some results were also given for a comparison of t-test powers.
These showed that the powers of tests based on 2SLS can be much affected by
coeffi cient estimator bias which may enhance or reduce the test power. Hence in
some cases the power may be low and substantially less than that of the MLIML
based tests and in other cases corresponding higher.
Overall our results so far suggest that MLIML based inference is to be rec-

ommended, used in conjunction with either the bias corrected variance estimate
or the associated bootstrap variance estimate although overall our simulations
suggest that using the bias corrected variance estimate has some advantages in
terms of test size and power.
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Appendix

A. An approximation to the MLIML estimator

In the first part of this appendix we obtain a number of results which were
used in section 3 in relation to the MLIML estimator. We commence with the
asymptotic expansion for the estimation error. First we shall write the Fuller
estimator error as

αF − α = (Ẑ ′1Ẑ1)−1
F Ẑ ′1Fu1

where

(Ẑ1Ẑ1)F = Z̄ ′1Z̄1+V ′ZZ̄1+Z̄ ′1VZ+(1−λ)V ′ZVZ+
1

T −KV ′ZVZ+λV ′ZM
∗VZ−

1

T −KV ′ZM
∗VZ .

Putting Z̄ ′1Z̄1 = Q−1 and rearranging leads to

(Ẑ1Ẑ1)−1
F = [I +Q(V ′ZZ̄1 + Z̄ ′1VZ + (1− λ)V ′ZVZ

+
1

T −KV ′ZVZ + λV ′ZM
∗VZ −

1

T −KV ′ZM
∗VZ)]−1Q

= Q−Q(V ′ZZ̄1 + Z̄ ′1VZ)Q−Q((1− λ)V ′ZVZ +
1

T −KV ′ZVZ)Q

−QλV ′ZM∗VZQ+
1

T −KQV ′ZM
∗VZQ

+Q(V ′ZZ̄1 + Z̄ ′1VZ)Q(V ′ZZ̄1 + Z̄ ′1VZ)Q+ op(T
−2). (A.1)

The associated term Ẑ ′1Fu1is given by:

Z̄ ′1u1 + V ′Zu1 − (λ− 1

T −K )V ′Z(I −M∗)u1. (A.2)

Multiplying the terms in (A.1) by (A.2) and retaining terms up to order
Op(T

−1) yields

αF − α = QZ̄ ′1u1 +Q(1− (λ− 1

T −K ))V ′Zu1 + λQV ′ZM
∗u1

−QV ′ZZ̄QZ̄u1 −QZ̄ ′VZQZ̄ ′u1 + op(T
−1). (A.3)

Taking the expected value of (A.3) shows that the bias to disappears to order
T−1.
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B. An approximation to the two expectations in (37)

Next we consider two expectations that are required in (37), section 3.

(i)E[(−
2(1− (λ− 1

T−K )u′1VZQV
′
Zu1

T − g − k Q)]

(ii) E[Q((1− λ)V ′ZVZ +
1

T −KV ′ZVZQ].

(i) An approximation to E[(− 2(1−(λ− 1
T−K )u′1VZQV

′
Zu1

T−g−k Q)]

To proceed we note that from Kadane(1960) we have

1− λ =
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
+ op(T

−1) (B.1)

so that for (i) we have

E[(−
(1− (λ− 1

T−K )u′1VZQV
′
Zu1

T − g − k Q)]

= E[
−u′1(P̄z̄1 − P̄X)u1

u′P̄Xu

u′1VZQV
′
Zu1

T − g − k Q− u′1VZQV
′
Zu1

(T −K)(T − g − k)
Q] + o(T−2)(B.2)

To evaluate the first of these terms we shall put VZ = [W + u1π
′ : 0] where

W and u1 are independent so that

E[
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1

u′1VZQV
′
Zu1

T − g − k Q]

= E[
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
(u′1WQ11W

′u1 + u′1u1πQ11π
′u′1u1)Q] (B.3)

plus terms involving a product of W and an odd number of terms in u1 which
will have an expected value of zero. Noting that

−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
(u′1WQ11W

′u1)Q (B.4)

is of stochastic order T−3, we may ignore this term so we focus on

E[
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
(u′1u1πQ11π

′u′1u1)Q]. (B.5)

Evaluating this is simplified by noting that

u′1u1 = u′1P̄Xu1 + u′1PXu1 (B.6)
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where u′1PXu1 is Op(1).Hence we may replace u′1u1 with u′1P̄Xu1 in the above
expectation which will be unchanged to order T−2. So we consider

E[
−u′(P̄z̄1 − P̄X)u

u′P̄Xu
(u′1u1πQ11π

′u′1u1)Q]

= E[−u′1(P̄z̄1 − P̄X)u1(πQ11π
′u′1P̄Xu1)Q] + o(T−2)

= −πQ11π
′E(u′1(P̄z̄1 − P̄X)u1u

′
1P̄Xu1)Q+ o(T−2)

= σ2Ltr(QC1)Q+ o(T−2) (B.7)

This is found by straightforward evaluation of a product of quadratic forms
in normal variables and by noting that −tr(P̄z̄1 − P̄X) = K − (g + k) = L ,
the order of overidentification. Also we use the fact that πQ11π

′ = tr(QC1),see
(15).
Hence we have shown that

E[
−2u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1

u′1VZQV
′
Zu1

T − g − k Q] = 2σ2Ltr(QC1)Q+ o(T−2). (B.8)

Next we consider E
(
− u′1VZQV

′
Zu1

(T−K)(T−g−k)Q
)
. Substituting VZ = [W + u1π

′ : 0]

and ignoring terms which involve products of W and u we find that:

E

(
− u′1VZQV

′
Zu1

(T −K)(T − g − k)
Q

)
= −E

(
u′1u1π

′Q11πu
′
1u1

(T −K)(T − g − k)

)
Q

= −2σ2tr(QC1)Q. (B.9)

Gathering terms from (B.8) and (B.9) we have shown that for (i)

E[(−
2(1− (λ− 1

T−K ))u′1VZQV
′
Zu1

T − g − k Q)] = 2σ2(L− 1)tr(QC1)Q+ o(T−2).

(B.10)

(ii) An approximation to E[Q((1− λ)V ′ZVZ + 1
T−KV

′
ZVZQ]

For (ii) we need to find

E[Q((1−λ)V ′ZVZ +
1

T −KV ′ZVZQ] = E[Q(1−λ)V ′ZVZQ]+E[Q
1

T −KV ′ZVZQ].

(B.11)
Consider the first part E[Q((1 − λ)V ′ZVZQ].Using (B.1) and putting VZ =

[W + u1π
′ : 0] ,we may write

E[Q((1−λ)V ′ZVZQ] = E[
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
(QW ′WQ+u′1u1Qππ

′Q)] + o(T−2)

(B.12)
where the expectations products of W and u1 have been ignored.
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There are two terms to evaluate the first of which is

E[
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
(QW ′WQ)] = E(

−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
)QE(W ′W )Q

= −LQC2Q (B.13)

and the second is

E[
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
u′1u1Qππ

′Q]

= E[
−u′1(P̄z̄1 − P̄X)u1

u′1P̄Xu1
u′1P̄Xu1Qππ

′Q] + o(T−2)

= E[−u′1(P̄z̄1 − P̄X)u1Qππ
′Q] + o(T−2)

= −σ2LQC1Q. (B.14)

Gathering the two parts above we have shown that

E[Q(1− λ)V ′zVzQ] = −LQCQ+ o(T−2) (B.15)

where C = σ2C1 + C2,see (15).
Finally it may be shown directly that

E(Q
1

T −KV ′zVzQ) = QCQ+ o(T−2) (B.16)

We thus have

E[Q((1− λ)V ′zVz +
1

T −KV ′zVz)Q] = −(L− 1)QCQ+ o(T−2). (B.17)
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