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ABSTRACT
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Estimating Fixed Effects: Perfect Prediction 
and Bias in Binary Response Panel Models, 
with an Application to the Hospital 
Readmissions Reduction Program*

The maximum likelihood estimator for the regression coefficients, β, in a panel binary 

response model with fixed effects can be severely biased if N is large and T is small, a 

consequence of the incidental parameters problem. This has led to the development of 

conditional maximum likelihood estimators and, more recently, to estimators that remove 

the O(T–1) bias in β^. We add to this literature in two important ways. First, we focus 

on estimation of the fixed effects proper, as these have become increasingly important 

in applied work. Second, we build on a bias-reduction approach originally developed 

by Kosmidis and Firth (2009) for cross-section data, and show that in contrast to other 

proposals, the new estimator ensures finiteness of the fixed effects even in the absence of 

within-unit variation in the outcome. Results from a simulation study document favourable 

small sample properties. In an application to hospital data on patient readmission rates 

under the 2010 Affordable Care Act, we find that hospital fixed effects are strongly 

correlated across different treatment categories and on average higher for privately owned 

hospitals.
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1 Introduction

Consider a panel probit model with individual-specific intercepts or fixed effects, αi,

Pr(yit = 1|αi,xit) = Φ(αi + x′itβ), i = 1, . . . , N, t = 1, . . . , T, (1)

where yit ∈ {0, 1}, Φ(·) is the cumulative distribution function of the standard normal distribution,

xit is a vector of covariates and β a conformable vector of coefficients. Typically, N is large and T

is small. This model is very popular among empirical practitioners, since it does not require any

assumption on the distribution of αi regardless of whether the αi’s are exogenous (uncorrelated

with xit) or endogenous.

As noted in the literature, the maximum likelihood estimator (MLE), (α̂, β̂) = (α̂1, . . . , α̂N , β̂),

that is obtained from maximising the log-likelihood function with respect to (α,β) has a number

of deficiencies in this case. First, β̂ is inconsistent. This is an instance of the incidental parameters

problem. Abrevaya (1997) has shown for the panel logit model with T = 2, that plimβ̂ =2β. Greene

(2004) provides Monte Carlo simulation results for the probit model showing that the upward bias

persists for T = 8 and even T = 20. Second, α̂i is technically inconsistent for fixed T , and may have

poor small sample properties for small T . Third, α̂i does not exist if
∑

t yit = 0 or if
∑

t yit = T .

This is called the “perfect prediction problem” (e.g., Maddala, 1983).

The second and third problems would be of little relevance if the only objective was estimation of

β. However, this is rarely, if ever, the case. First, the α̂i’s are needed to estimate marginal effects

or obtain predicted probabilities. Second, the α̂i’s can be of intrinsic interest per-se, for instance

in order to classify or rank individuals by their propensity to experience the event.

A recent literature has reconsidered estimation of such models by giving up the fixed-T assumption

(Hahn and Kuersteiner, 2002; Hahn and Newey, 2004; Fernández-Val, 2009; Dhaene and Jochmans,

2015).1 The incidental parameters problem is then seen as a manifestation of first-order bias, and

bias corrections can remove the O(1/T ) bias in β̂. In these papers, this is done by subtracting the

first-order bias ex-post from the MLE. A related approach obtains an estimator free of first-order

bias directly from a modified objective function. For instance, Bester and Hansen (2009) propose

to add to the log-likelihood function a penalty term related to the discrepancy between Hessian

and outer product of the score (HS estimator; the estimator was also developed independently in

Arellano and Hahn 2016; see also Bartolucci et al. 2016 for a similar estimator).

1Asymptotics for the case that both T and N increase have been developed by Woutersen (2001) and Hahn and
Newey (2004).
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While these solutions address the incidental parameters problem, they do not solve the perfect

prediction problem. This is obvious for bias-correction, as this approach requires estimation of the

MLE. We show below that, in general, the HS estimator equally fails in the perfect prediction case

in the context of a panel probit model. In this paper, we therefore explore an alternative bias-

reduced (BR) estimator for panel probit and logit models that addresses the incidental parameters

problem and works well for datasets with a high incidence of perfect prediction. The BR estimator

we advocate is due to Kosmidis and Firth (2009) and it is based on the idea originally due to Firth

(1993) of removing the first-order bias b1(θ) of the MLE for the parameter θ by using a modified

score function s̃(θ) = s(θ) − I(θ)b1(θ)/N , where s(θ) is the score, I(θ) is the Fisher information

and N the sample size. This modification ensures that the root of s̃(θ), say θ̂, is a bias-reduced

estimator of θ0.

Relatively simple expressions for s̃(θ) can be derived for the probit and logit models, as well as

other linear exponential family models. In the logit case, this approach is equivalent to penalising

the log-likelihood using Jeffreys invariant prior. Moreover, in this case, the BR estimator coincides

with the expectation version (IE) of the HS estimator. But in the probit case (as well as other

alternative binary response models) they do not. The BR estimator is not only immune to the

perfect prediction problem, but it is also relatively easy to compute, as it can be obtained using an

iteratively weighted least squares estimator (Kosmidis and Firth, 2009).

Bias-reduced estimation is one way to address the perfect prediction problem, in particular, if

individual heterogeneity is not treated as a nuisance parameter but rather as a model feature of

intrinsic interest. There is a growing literature which focusses on such distributions of individual-

specific heterogeneity net of the effects of some xit, including neighborhood effects (Chetty and

Hendren, 2015), teacher effects (Chetty, Friedman and Rockoff, 2014), worker and firm effects

(Card, Heining and Kline, 2013), judges effects (Abrams, Bertrand and Mullainathan, 2012), and

doctor and hospital effects (Street et al., 2014); see Abadie and Kasy (2016) for an excellent

overview. To date, all this work has been confined to linear models, presumably for a lack of viable

alternatives.

While linear models have the advantage that they do not suffer from the perfect prediction problem,

the use of linear models for panel data with binary response variables in the setting of this paper—

short panels with a high incidence of perfect prediction—is inadequate and can lead to severely

distorted estimates. The high prevalence of “perfectly predicted” observations results in substantial

shares of linear predictions outside the unit interval. In our simulations and in our application,

OLS produced up to almost 50 per cent of such predictions. This can be a severe problem in itself;

for instance, if predicted probabilities are needed as inputs into structural models. It also implies
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that the estimates of probability effects based on OLS for values other than the mean might be

substantially misleading, a point we return to in our simulation.

In the next section, we introduce the problem of perfect prediction in the context of binary response

fixed effects panel data, the BR estimator, which solves it, and the HS estimator, which does not.

In Section 3, we show in Monte Carlo simulations that the BR estimator has a superior performance

in estimating the distribution of αi across a number of starkly differently-shaped distributions. The

simulations also indicate that the BR estimator performs well in terms of obtaining more reliable

estimates of β in short panels.

Finally, in Section 4, we consider an application to the US Hospital Readmissions Reduction Pro-

gram, a policy which came into effect in 2012 as part of the Affordable Care Act. Its broad aim was

to increase the quality of health care offered to patients. It consisted in imposing negative incentive

payments (monetary penalties) for hospitals which exceeded a threshold value of risk-standardised

30-day readmission rates in three specific health conditions. In the health policy literature, this

measure is debated intensely, with a set of arguments focussing on the appropriateness of the

risk adjustment, which by not including socio-economic characteristics of the patients might have

disadvantaged certain hospitals unfairly. Using the BR estimator, we analyse hospital-specific un-

observed heterogeneity in an unbalanced panel of about 3,000 hospitals over five years, and over the

three penalised health conditions. Our results indicate that this time-invariant heterogeneity is an

important determinant of penalty status for a given health condition, that the correlation in hetero-

geneity across conditions is positive, and that there are significant differences in this heterogeneity

across for-profit and non-profit hospitals.

2 Econometric methods

Non-linear maximum likelihood estimators have a finite sample bias. Considering the T dimension,

the bias can be split up in an O(T−1) term, the first-order bias, and higher-order terms that

converge in probability at a faster rate. A formal derivation of the first-order bias of maximum

likelihood estimators is given in Cox and Snell (1971). For an illustration, consider a simple panel

probit model with time-invariant regressors only:

Pr(yit = 1|α̃i, x̄i) = Φ(α̃i + x̄′iγ), t = 1, . . . , T.
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Since α̃i and γ are not separately identified, we substitute αi = α̃i+ x̄′iγ, with first-order condition,

for unit i,
∂ logL

∂αi
=
∑
yit=1

φ(αi)

Φ(αi)
−
∑
yit=0

φ(αi)

(1− Φ(αi))
= 0,

where φ(·) denotes the standard normal density function. Estimates of γ can then in principle be

obtained in a second-step regression of α̂i on x̄.2

In this example, it can be shown (cf. Appendix) that the first-order bias is given by

Bias =
1

T

αiΦ(αi)(1− Φ(αi))

φ2(αi)
. (2)

Therefore, the bias is positive if αi > 0, and hence Φ(αi) > 0.5. It is negative for αi < 0. Moreover,

the bias increases in the absolute value of αi. As αi goes to infinity, so does the product of Mills

ratios Φ(αi)(1−Φ(αi))/φ
2(αi) and hence the bias. Since perfect prediction is more likely to occur

for αi which are large in absolute value, this is an indication of the close relationship between

first-order bias and perfect prediction in this case.

2.1 Perfect prediction problem in the panel probit model

Perfect prediction in the general model (1) means that the first-order conditions for the maximum

likelihood estimator do not have a finite solution. This problem can arise with any ill-designed

x-vector, but it is particularly relevant, and easily detectable, in the context of the panel probit

log-likelihood function with fixed effects. The first-order conditions are:

sML(βk) =
∂ logL

∂βk
=

N∑
i=1

T∑
t=1

(yit − Φ(ηit))
φ(ηit)

Φ(ηit)(1− Φ(ηit))
xk,it = 0, k = 1, . . . ,K, (3)

sML(αi) =
∂ logL

∂αi
=

T∑
t=1

(yit − Φ(ηit))
φ(ηit)

Φ(ηit)(1− Φ(ηit))
= 0, i = 1, . . . , N, (4)

where ηit = αi +x′itβ, and K is the number of regressors in xit.
3 Suppose that yi1 = . . . = yiT = 0

for some i. Then (4) simplifies to

−
T∑
t=1

φ(ηit)

1− Φ(ηit)
= 0, (5)

2An alternative approach would be to treat α̃i as random effects and estimate γ directly by maximising the
marginal log-likelihood function. This approach would require a distributional assumption, however, that may be
invalid.

3We use notation for the balanced panel case for expositional simplicity, but this is immaterial for the argument.
Our application in Section 4 uses an unbalanced panel.
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which does not have a solution since the inverse Mills ratio λit = φ(ηit)/(1− Φ(ηit)) > 0 for finite

ηit. Similarly, if yi1 = . . . = yiT = 1 for some i, (4) simplifies to

−
T∑
t=1

φ(ηit)

Φ(ηit)
= 0, (6)

which does not have a solution either. In the first case, α̂i will tend to minus infinity, while it will

tend to plus infinity in the second. Units i where observations are either all equal to zero or all

equal to one are called concordant.

Note that existence of the estimator for β is unaffected by perfect prediction. Assuming that there

are some panel units with variation in yit (i.e., some discordant units), β can be estimated using

those observations only, based on (3). For perfectly predicted observations, the contributions to

the (concentrated) score yit − Φ(α̂i(β) + x′itβ) ≈ 0, so they do not contribute to estimation of β̂.

With perfect prediction, estimates α̂i for affected panel units i do not exist. Hence, we cannot

make any inferences on quantities that depend on αi. This problem will be most severe for small

values of T . As T increases, and provided that 0 < Pr(yit = 1) < 1, it becomes less and less likely

to observe panel units with ȳi = 0 or ȳi = 1.

2.2 Bias reduction

Firth (1993) considered the first-order bias of maximum likelihood estimators in the context of linear

exponential family models. He showed that for models in so-called canonical parameterisation the

first-order bias can be removed by maximising a modified log-likelihood function that includes a

penalty term based on the log-determinant of the information matrix, equal to “Jeffreys prior” (see

also Ehm, 1991). For binary response models, the canonical parameterisation is the logit model.

For linear exponential family models in non-canonical parameterisation—including, for example,

the probit model—such a modified objective function does not exist. Instead, as shown by Kosmidis

and Firth (2009) and Kosmidis (2007), it is possible to make an adjustment to the score function

that achieves the same first-order bias reductions for the MLE. The adjusted score for the probit

panel model is

sBR(αi) =
T∑
t=1

[
yit − Φ(ηit)−

1

2
hitηit

Φ(ηit)(1− Φ(ηit))

φ(ηit)

]
φ(ηit)

Φ(ηit)(1− Φ(ηit))
(7)

= s(αi)−
T∑
t=1

1

2
hitηit,
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where hit are the it-th diagonal elements of the NT ×NT projection matrix

H = W 1/2X(X ′WX)−1X ′W 1/2, (8)

with X the NT ×K matrix of the K regressors, and W is the NT × NT diagonal matrix with

typical element wit = φ(ηit)
2/[Φ(ηit)(1− Φ(ηit))]. From (7), it can be seen that if we redefined

y∗it = yit −
1

2
hitηit

Φ(ηit)(1− Φ(ηit))

φ(ηit)
, (9)

then (7) would be the standard MLE score sML(αi), but for the pseudo-response y∗it.

It is therefore possible to solve the first-order conditions using an iteratively re-weighted least

squares (IWLS) algorithm (McCullagh and Nelder, 1989; Kosmidis and Firth, 2009) which makes

this approach attractive also from a computational point of view. For implementation, pseudo-

responses are constructed, at the iteration s, using existing estimates from the previous iteration s−1

to replace the unknown quantities hit and ηit with estimates ĥit(α̂
s−1, β̂

s−1
) and η̂it(α̂

s−1, β̂
s−1

).4

To examine whether the estimator based on the modified score (7) exists in the cases of perfect

prediction, we consider the case where all observations of a unit i are equal to one,
∑

t yit = T .

Then, we can write (7) as

sBR(αi) =

(∑
t

φ(ηit)

Φ(ηit)

)
− αi

2

(∑
t

hit

)
− 1

2

(∑
t

hitx
′
itβ

)
= g1(αi)− αig2(αi)− g3(αi). (10)

When αi becomes very large, the first term in the score, g1(αi), approaches zero, because each

inverse Mills ratio in the sum approaches zero. Because hit is an element of the diagonal of a

projection matrix, we have that 0 < hit ≤ 1 for each hit, so that g2(αi) is bounded. Thus, as αi

tends to plus infinity, the second term, −αig2(αi), tends to minus infinity. The third term, g3(αi),

tends to some finite constant because it is a sum of T finite summands. Thus, the whole score tends

to minus infinity when αi tends to plus infinity. When αi tends to minus infinity, g1(αi) grows

without bound, and so does −αig2(αi), while g3(αi) tends to some other finite constant. Thus, the

whole score tends to plus infinity. Since the score is continuous, this implies that it has a finite

solution. It is evident that similar arguments can be made to show that a solution exists for the

other perfect prediction case,
∑

t yit = 0, as well.5

An interesting example is the case β = 0, i.e. a constants-only model. The first perfect prediction

4An implementation in Stata is available from the authors. For an implementation in R, see Kosmidis et al. (2017).
5Heinze and Schemper (2002) noted that the Firth method for bias reduction solves the perfect prediction problem

for the cross-sectional Logit model.
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case gives

αi = 2T
∑
t

φ(αi)

Φ(αi)
, (11)

and the second case gives

αi = −2T
∑
t

φ(αi)

1− Φ(αi)
, (12)

where we used the fact that for this example
∑

t hit = 1. The two cases only differ in the sign. For

T = 2, 3, 4 this gives estimates for αi of about ±1.06, ±1.24, ±1.37. The associated probabilities

for, e.g., the second case are about 0.144, 0.107, 0.086. These estimates reflect the shrinkage away

from the bounds of 0 (and 1) associated with values of minus (and plus) infinity of αi, which are

“built into” this estimator. The shrinkage is asymptotically negligible.6

2.3 HS Estimator

An alternative estimator based on a penalised likelihood approach is the HS estimator of Bester

and Hansen (2009). The HS estimator is very general and therefore applicable to a broad class of

models; for instance, it has been used in applications with multiple fixed effects (Hospido, 2012;

Carro and Traferri, 2014). Here, we consider the case of a probit model with a single fixed effect.

For unit i, the objective function is

QHSi =

T∑
t=1

[yit log(Φ(ηit) + (1− yit) log(1− Φ(ηit))]−
1

2

∑
t v

2
it∑

t−vαit
+

1

2
. (13)

The first term on the right-hand side is the conventional log-likelihood contribution of unit i asso-

ciated with (1). The remainder is a penalty term which depends on the discrepancy between the

outer product of the score and the (negative of the) Hessian, both with respect to αi. The outer

product of the score is given by
∑

t v
2
it, where vit denotes the per-period score with respect to αi,

that is s(αi) =
∑

t vit. The Hessian is given by
∑

t v
α
it, where vαit = ∂vit/∂αi.

For the perfect prediction case of yi1, ...yiT = 0, we obtain

vit = − φ(ηit)

1− Φ(ηit)
= −λit,

−vαit = λ(ηit)[λ(ηit)− ηit] = λαit,

where we used the shorthand notation λit = λ(ηit) to denote the inverse Mills ratio and λαit =

6The MLE solution, of course, is a probability of exactly zero in each of these cases, which, while unbiased, might
be an unreasonable estimate for many applications: it means that an event is deemed impossible based on not having
occurred in two or three periods.
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∂λ(ηit)/∂αi its derivative. We can rewrite individual i’s contribution to the penalised likelihood as

QHSi =

T∑
t=1

log(1− Φ(ηit))−
∑

t λ
2
it

2
∑

t λ
α
it

+
1

2
,

with associated score for αi

sHS(αi) =
T∑
t=1

−λit −
∑

t λit∑
t λ

α
it

+
1

2

(
∑

t λ
2
it)(
∑

t λ
αα
it )

(
∑

t λ
α
it)

2
.

Since λit > 0, 0 < λαit < 1, and λααit = ∂λαit/∂α > 0 (see, for instance, Heckman and Honore, 1990,

p.1130), only the third term on the right-hand side provides a positive contribution to the score.

However, this term may in general be too small to offset the negative contributions of the first two

terms. As an illustration, consider the simple case where λit = λis ≡ λi for all t, s. The HS score

then simplifies to

sHS(αi) = −Tλi −
λi
λαi

+
λ2
iλ

αα
i

2λα2
i

= −
(
T − 1

2

)
λi −

λi
λαi

+
λ3
i (λ

α
i − 1)

2λα2
i

< 0,

where the second equality used λααi = 2λiλ
α
i −λαi ηi−λi and therefore λ2

iλ
αα
i = λiλ

α2
i +λ3

i (λ
α
i − 1).

Thus, we see that there are cases where the HS estimator for αi is not finite. We show in the

Appendix that for T=2 no finite value of α̂i may satisfy sHS(αi) = 0 over a substantial region of

(x′i1β,x
′
i2β) ∈ R2. In our simulation study in the next section, we also considered several T > 2.

We did not find a case where the HS estimator for αi existed in practice.

2.4 Other binary response models

In the Appendix, we discuss BR and HS estimators for the more general case of binary response

panel models of the form P (yit = 1|xit, αi) = F (x′itβ + αi), with some known function F (·). For

all the commonly used functions F (·) in the literature, such as logit, cloglog, Weibull, etc., the BR

estimator ensures existence under perfect prediction. Of particular interest is logit, which is the

canonical parametrisation for generalised linear models with a binary response variable. For this

special case, the BR estimator has a penalised likelihood representation (Firth, 1993). Similarly,

it is possible to modify the HS estimator in the logit case. The resulting estimator is called “IE”

as it involves integrating expectations of the scores and their derivatives. The IE estimator has

been shown to have a better small sample performance than the HS estimator (Bester and Hansen,

2009). We show that both estimators coincide in the logit case as they use the same penalty. The
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only difference is that BR penalises both α and β, while IE only penalises α. However, as the

penalty on β vanishes as NT increases, the difference is negligible for large N .

3 Monte Carlo evidence

3.1 Experimental design

The primary aim of our Monte Carlo experiment is to investigate how well the approaches discussed

in the previous section estimate the unobserved individual-specific heterogeneity as well as its

distribution, in simple probit models with a small to moderate number of time periods and a high

prevalence of perfect prediction.

In our simulations, the time-invariant individual effects αi are drawn from four alternative distri-

butions: uniform, beta, Gaussian, and Bernoulli, as plotted in Figure 1. The distributions have

been rescaled and shifted to make them more comparable. All distributions have a mean of zero,

or close to zero, and all, or most, of their probability mass lies within the interval [-1,1]. The

distributions vary starkly, however, in their shape. The data generating processes correspond to

a “random effects” model as the distribution of αi does not depend on the regressor. This allows

us to focus on biases purely related to small samples and the perfect prediction problem, whereas

additional dependence on regressors would exacerbate or attenuate those biases.

Below, we report simulation results for N = 100 and T ∈ {2, 4, 8, 12}. For each of the four

distributions from Figure 1, we draw one hundred values of αi first, and keep them fixed through all

Monte Carlo replications. There is a single regressor, xit, which is drawn from a uniform distribution

with support on [-1,1]. Again, this is done once for each T and kept fixed over replications. Finally,

the binary dependent variables yit are obtained as

y
(r)
it = 1(αi + βxit + ε

(r)
it > 0), i = 1, . . . , 100 t = 1, . . . , T,

where ε
(r)
it has a standard normal distribution, β = 1, and r = 1, . . . , 500 denotes Monte Carlo

replications.

In each of the 500 replications, we keep track of the fraction of perfectly predicted, or concordant,

observations, i.e., the fraction of cross-sectional units for which ȳ
(r)
i = 0 or ȳ

(r)
i = 1. For instance,

with T = 4 and a uniformly distributed αi, the average fraction of concordant individuals over the

500 replications amounts to 24 percent. This fraction is somewhat lower for the beta (15 percent)

and Bernoulli (20 percent) distributions, respectively, and higher for the normal distribution (28
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percent). Plots and summary statistics of our results are based on all finite estimates: since the

maximum likelihood estimator and the HS penalised likelihood estimators of αi do not exist for

concordant observations, the effective replication sample size is below 500 in these cases. For

example, for T = 4, the share of replications for a particular i with concordant observations ranges

from 5.6 per cent to 91.6 per cent. For increasing T , the incidence of perfect prediction decreases.

3.2 The distribution of unobserved heterogeneity

Figure 2 displays results for T = 4, with one row each for the different distributions of the true

fixed effects and columns for the three different estimation methods. In each case, the average

estimated fixed effects

¯̂αi =

[
R∑
r=1

dir

]−1 R∑
r=1

dirα̂
(r)
i ,

is plotted against the true αi Here, dir is an indicator variable indicating whether the estimator

exists (dir = 1) or not (dir = 0). Points along the 45 degree line signify unbiasedness of the

estimator.

Panel (A) displays results for uniformly distributed αi. Both the Maximum Likelihood estimator

(ML, left-hand-side graph) and the HS Penalised Likelihood estimator (HS, middle graph) miss

the 45 degree line visibly and along the whole range of αi. In contrast, the BR estimator (BR,

right-hand-side graph) follows the 45 degree line closely for the most part, which indicates that

it is capturing the shape of the true distribution of αi well. However, some underestimation, in

absolute value, is visible at the tails.

Panel (B) shows the same plots for the beta distribution. In the middle of the range of αi, both

ML and HS are closer to the 45 degree line. However the large discrepancies at the tails show that

they fail to capture the skewed shape of this distribution. In contrast, BR estimates the shape

of this distribution very well. Panel (C) contains similar plots for the normal distribution, and it

suggests the same conclusions than for the previous panels. The bottom panel depicts results for the

Bernoulli distribution. Here a plot like the ones in Panels (A)–(C) would only reveal the dispersion

around the two mass points, so we show instead the true empirical cumulative distribution function

of αi against its estimated counterpart. Only the empirical cumulative distribution function (cdf) of

the BR estimates resembles the true step function. The empirical cdfs of α̂i of the other estimators,

on the other hand, do not capture the discreteness of the true cdf.

Thus, the results of Figure 2 illustrate the advantage of BR over the other approaches in estimating

the distribution of the individual-specific heterogeneity. Results similar to these are also obtained
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for all other values of T , where, as expected, the performance of all estimators improves with

increasing T . For T = 12, the differences between estimators are very small. However, even there,

BR produces visibly better estimates in the more difficult cases, such as the tails of the normal

distribution or the discreteness of the Bernoulli distribution. In the Appendix, Figures E2 and E3

show the complete results for T = 2 and T = 12.

The primary motivation of our paper was the development of methods for estimating each αi. In

some applications, it might be sufficient to obtain statistics of the distribution of αi, such as the

first and second moments. Table 1 reports results for the three estimators considered. For each of

the four distributions of αi, the table lists the true mean and standard deviation of the α′is, as well

as the estimated mean and standard deviations, averaged over the 500 replications. Here, too, the

best-performing estimator in terms of mean is BR. It is interesting to observe that for short panels

(in particular for T = 2), the BR estimators underestimates the true variance of the fixed effects.

This is a result of shrinkage that was already visible in Figure 2, where we saw that BR does not

work perfectly in the tails of the distribution. Reassuringly however, the problem becomes already

quite minor for T = 4. Moreover, the other estimators tend to perform worse than BR on that

dimension as well.

Figure 3 returns to the type of plots of Figure 2 and documents the improvement in the estimation

of the distribution of αi as T increases for the BR estimator. For the most part, it seems that four

time periods are enough to provide a good approximation to the true distribution, but eight or

twelve periods might be needed to estimate the tails of the distributions without any distortion.

3.3 Mean squared error

Lower small sample bias may not be a desirable property if it comes at the expense of an increased

variance of the estimator. Figure 4 therefore focusses on the simulation root mean squared error

(RMSE) for each αi, where

R̂MSE(α̂i) =

√√√√ 1

500

500∑
r=1

(
α̂

(r)
i − αi

)2
.

To highlight the consequences of perfect prediction in this context, we sorted the total of 300

RMSEs (for i = 1, . . . , 100 and for each of the three estimators) by the mean dependent variable

of unit i across the 500 replications:

s̄i =
1

500

1

T

500∑
r=1

T∑
t=1

y
(r)
it
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The average s̄i gives an indication of the severity of the perfect prediction for individual i. Both

si = 1 and si = 0 result in perfect prediction, and thus values of s̄i close to these bounds indicate

a high prevalence of perfect prediction across replications.

In Figure 4, circles show the RMSE of the maximum likelihood estimator, squares that of HS and

diamonds that of BR, and the lines are corresponding kernel-weighted local polynomial regressions.

As expected, the RMSE is highest for those αi whose average si is close to zero or one, as can

be seen from the U-shape of the nonparametric fit through the RMSE of α̂i for each of the three

estimators. As T increases, the RMSE falls for all estimators, which we account for by adjusting

the y-scale in the panels. In all cases, the RMSE of α̂i estimated by BR is always substantially

smaller than the RMSE of ML and HS. Its U-shape is also much flatter, indicating its robustness

to perfect prediction. Indeed, for T = 8 and T = 12, there seems not to be any difference in RMSE

of BR for different values of si.

3.4 Estimation of β

Table 2 presents means and standard deviations of the estimated β̂ across different distributions

of αi and different numbers of time periods. The true value is 1. The corresponding entries in the

table confirm the incidental parameters bias of the ML estimator. The bias is sizeable regardless

of the distribution of αi, and it amounts to about 110, 40, 15 and 10 per cent for T equal to 2, 4,

8 and 12, respectively. The HS estimator reduces the bias, although not very effectively for small

T . With T equal to 2, 4 and 8 the biases are still about 100, 20 and 5 per cent, respectively. In

contrast, we find that BR removes much of the bias for β. Already for T = 2, only a bias of about

-10 per cent is left. At T = 4 the bias falls to between 0.6 per cent (Bernoulli) and 2.3 per cent

(normal), and for larger T the bias is virtually zero.

Figure 5 plots, for each estimator and distribution of αi, the sampling distribution of β̂, based

on the 500 replications and using a kernel density approximation, for T = 4. All three sampling

distributions of β̂ are reasonably close to normal. However, only BR is centred around the true

value of β = 1, and it also is the distribution with the smallest dispersion.

Finally, we investigate estimation of some quantities which involve both β and all the αi. We

focussed on average predicted probabilities. Differences between such probabilities for different

values of xi give average effects, which are often of direct interest in empirical studies. Table

3 gives average predicted probabilities at the observed values of xi (Columns “Mean”) as well

as at the first, fifth and ninth decile of the distribution of xi (Columns “D1”, “D5” and “D9”)

for T = 2 and T = 4. The true average predicted probabilities are contained in Rows “True”,
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while the remaining rows show the estimates relative to these true values. We see that while all

estimators give reasonable estimates for the estimates at the observed values of xi, ML and HS

often result in misleading estimates at other values of xi. BR not only gives the best estimates at

the observed values of xi, but it is also often able to improve substantially in the other cases as

well. Corresponding results for T = 8 and T = 12 are given in Table E1 in the appendix. With

more time periods the bias for all estimators is reduced and differences in the ranking of their

performance are less stable. Thus, BR seems to be useful for estimation of such derived quantities,

and especially so for small T where it outperforms the other estimators. We also estimated the

model by OLS. For the case of αi following a Bernoulli distribution with T = 2 and T = 4, OLS

gave more than 50 per cent of its predicted probabilities out of the unit interval. Indeed, both

D1 < 0 and D9 > 1. Results were similar for the other distributions of αi.

4 Application to hospital readmissions

Hospital readmissions have been identified as a major driver of health care costs. If patients are

discharged too early after hospitalisation, readmission rates will be higher than would otherwise be

the case (e.g., Heggestad, 2002). For the US, the aggregate costs of “excessive” readmissions have

been estimated to be in the order of $1 billion per year (Jencks, Williams and Coleman, 2009).

While costly at the aggregate level, an early discharge or not offering sufficient post-discharge care

can be rational from the point of view of an individual hospital when reimbursements are based on

diagnosis-related groups [DRG] rather than actual costs.

In an attempt to have hospitals internalise the costs of readmissions, the 2010 Affordable Care

Act [ACA] established a financial penalty for hospitals whose Medicare readmission rates exceed a

certain threshold in three common emergency conditions. In the financial year 2013, the Hospital

Readmission Reduction Program [HRRP], a part of the ACA, started to reduce Medicare reim-

bursements for high-readmission hospitals. In the following years, aggregate readmission rates fell.

McIlvennan, Eapen and Allen (2015) report a drop in the overall 30-day readmission rate for all

causes from around 19 percent in 2010 to under 18 percent in 2013.

Our empirical analysis is based on administrative data for the years 2012–2016. We use separate

panel probit models to estimate the determinants of a penalty for each emergency condition using

the BR estimator. A first question that we can explore with our approach concerns risk adjustment.

The imposition of a penalty under the HRRP depended on the hospital’s actual readmission rate

during a reference period as well as on a threshold value. The threshold is calculated as the

average readmission rate of hospitals with a comparable case mix as defined by age, gender and
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co-morbidities. With perfect risk adjustment, controls for relevant socio-demographic and health

characteristics of a hospital’s patients should be orthogonal to that hospital’s propensity of being

fined. This is a prediction about the β vector that can be tested.

Importantly, our approach also delivers estimates of hospital fixed effects for each emergency con-

dition. This matters in an application such as this one, where the fixed effects are not just nuisance

parameters that do not have any significance beyond avoiding omitted variable bias when estimat-

ing β. There are a number of reasons why the fixed effects are of intrinsic interest. First, fixed

effects provide a ranking of hospitals by their propensity of receiving readmission penalties. Similar

rankings are common in the literature as indicators of hospital quality (Joynt and Jha 2013; Herrin

et al. 2015; for a recent review, see Fischer et al. 2014), although this requires the assumption of

absence of confounders. Second, having estimates of the fixed effects for each emergency condition

allows us to study correlation patterns in rankings across conditions. Positive correlation patterns

would suggest the presence of common, hospital-specific underlying causes of penalties, such as in

the overall quality assurance systems. In contrast, a negative correlation might indicate special-

isation in the treatment of a particular condition, or “competing risks”, where a hospital which

invests in reducing readmissions by targeting one condition increases readmissions in another.

Third, fixed effects can reflect heterogeneity in strategic decision making by hospitals. While

penalties affect the tradeoff between treatment cost and readmission probability, it is by no means

clear whether none, or very few, readmissions are optimal from the point of view of a hospital. If

the costs of avoiding readmission are very high, optimising behaviour will tolerate some penalties

up to the point where marginal costs are equalised. Systematic differences in the penalty likelihood

between hospitals can be indicative of differences in the trade-off, or the way it is evaluated, by

these hospitals. Of particular interest, for instance, is whether for-profit hospitals systematically

differ in this regard from non-profit hospitals. This can be tested by regressing the estimated fixed

effects on hospitals’ time invariant characteristics, including hospital type (for-profit/non-profit).

4.1 Hospital Readmission Reduction Program

The Hospital Readmission Reduction Program became first effective for the financial year 2013.

The penalty consists of reduced rates of Medicare reimbursements for those hospitals whose past

readmission rates following emergency conditions among Medicare patients are “too high” during a

three-year reference period. Initially, the reductions amounted up to one per cent of total Medicare

reimbursements. They were increased to three per cent later on, resulting in aggregate penalties of

about three hundred million dollars in 2013 and over half a billion in 2017 (Boccuti and Casillas,
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2017). The program applies to three emergency conditions: heart attack or acute myocardial

infarction (AMI), congestive heart failure (HF), and pneumonia (PN).

To determine the number of readmissions per hospital, a 30-days window after release was applied,

and any admission to the same or any other hospital for the same or any other condition was counted

(all-cause). The hospital specific rate, 30-day readmissions divided by the number of discharges,

was then compared to the average rate of hospitals with a similar case-mix. Risk adjustment was

based on age, sex, and co-morbidities. The risk adjustment did not take into account differences

in socio-economic characteristics of the case-mix, nor of the communities’ patient pool. Hospitals

with above average readmission rates were subject to a penalty.

To assess the effects of the policy, we use administrative Hospital Compare Data for information

on penalties announced in each July of the years 2012–2016.7 Reporting is delayed by one year, so

the data relate to the three-year aggregates of readmissions during the years 2011–2015. For each

of the 3,135 included hospitals and each of the three emergency conditions, we know whether or

not a penalty was issued.

To these primary data, we add geographic and hospital specific information (urban/rural, teaching

status of hospital, number of beds) from the corresponding final rule impact files, an approach

which broadly follows Gu et al. (2014). Based on hospital referral regions (HRR) provided by the

Dartmouth Atlas of Health Care, we merge the number of ambulatory-care-sensitive conditions

(ACSC), measuring accessibility of local primary health care (Gu et al., 2014), and the number of

hospitals in the region, a local competition measure (Chandra et al., 2016). Lastly, we use the Fed-

eral Information Processing Standard (FIPS) to add county-wide community characteristics, such

as the poverty rate and the median household income, which have been discussed as determinants

of readmission rates outside the control of the hospital (cf. Herrin et al., 2015). Detailed variable

descriptions, as well as descriptive statistics for our sample by condition and penalty status, are

reported in Table F1 in the Appendix.

4.2 Results

Let ycit ∈ {0, 1} denote the imposition of a penalty for hospital i in condition c at time t. For each

condition c, we specify a probit model of the form

Pr(ycit = 1|αci ,xcit) = Φ
(
αci + xc

′
itβ

c
)
, (14)

7The data can be found at https://data.medicare.gov/data/hospital-compare. All employed datasets are
public use files; more detail on the data construction is presented in Appendix F.1.
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where αci is a hospital and condition specific fixed effect, xcit a covariate vector including time

fixed effects and county-level variables, and βc a conformable vector of condition-specific regression

parameters.

Estimation of these three panel probit models for c = {AMI,HF, PN}, each with dummy variables

for every hospital, by maximum likelihood would be subject to the problems discussed above: (1)

α̂ci ’s are non-existent in case of concordant observations (hospitals which were either always or never

fined in the sample period), (2) few time periods, here five, mean that the α̂ci ’s suffer from small

sample bias, and (3) this also biases estimates of the common parameter, β̂
c
.

In our application, problem (1) is of particular relevance, since roughly 50 percent of hospitals

do not change their penalty status during the sample period. One natural reason for the high

level of persistence in the dependent variable over time is that the three-years reference windows

determining the penalty status do overlap.8 Table 4 shows the estimation results for the standard

as well as the bias-reduced (BR) probit models for each condition. A comparison of the standard

probit and the BR probit results highlights the incidental parameters bias of the standard estimation

method: almost all standard probit coefficient estimates are substantially larger than the ones using

the BR estimator, illustrating that the standard probit estimator should not be used in this setting.

Turning to the BR probit results, we find that having a large number of condition-specific dis-

charges increases the penalty-propensity significantly across conditions. The size of the emergency

department, as measured by the number of discharges in the respective non-c conditions, does not

affect the condition-specific penalty probabilities equally across diagnostic conditions.

Next, we use hospital referral regions (HRR) to assess the effects of local health care provisions,

first by the number of discharges with ambulatory care sensitive conditions (Gu et al., 2014) and

second by the competition in the local health care market (Bloom et al., 2015; Chandra et al.,

2016; Gobillon and Milcent, 2017). We find that the number of discharges with ACSC increases

the probability of being fined across the three conditions. ACSC measure potentially preventable

medical problems, such as hypertension, which with proper medication and management of care

should be treatable outside of a hospital. The average marginal effect of increasing ACSC by 1

standard deviation—roughly 15 discharges per 1,000 enrolees—on the penalty-probability amounts

to 7.1 percentage points for heart attack DRGs, 1.5 for heart failure, and 2.1 for pneumonia.9

These effects are both economically and statistically relevant determinants of the penalty propen-

sity. In contrast, the entry of competitors in the HRR significantly decreases readmission risk only

8We account for this overlap when computing standard errors by clustering at the hospital level.
9Marginal effects at the average can easily be obtained by multiplying the coefficient with φ(x′β), which is reported

at the bottom of the table. E.g., for heart attack, φ(x′β) × β × sdx = 0.34 × 0.014 × 15=0.071.
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for heart attack patients, but not for those experiencing a heart failure or pneumonia. The exit

of competitors in the local market is negatively, yet insignificantly, associated with penalty risk.

Consequently, we do not find evidence that competitive forces or disruptions in the local hospi-

tal market impact the readmission risk in a meaningful way. One simple explanation is that these

forces take some time to materialise and the aggregation to three-year reference periods makes them

difficult to observe in this setting. In contrast to the cross-sectional evidence presented by Herrin

et al. (2015), we do not find much evidence that socioeconomic community characteristics influence

the penalty risk (over and above those captured by the other factors). Among the economic county

characteristics, only median household income is significantly related to the readmission risk of

heart attack diagnosed patients.

Figure 6 compares the estimated hospital-specific fixed effects across diagnostic conditions: A

positive correlation indicates that a hospital that performs poorly in one emergency condition is

likely to perform poorly in another condition as well. Such a situation might be due the hospital’s

management choice of a low value of care across (emergency) conditions due to common, hospital-

specific marginal costs of providing high quality care. Provision of care for different conditions

would then be complements rather than substitutes.

We find that the correlation is stronger between heart failure and pneumonia (with a regression

slope of 0.67), than with respect to heart attacks (0.43 between AMI and HF; and 0.39 between

AMI and PN). The grey line displays the regression ignoring observations (the grey points) which

are concordant in at least one of the two conditions—and which thus would not be estimable

using other estimation approaches. Relative to the regression using all observations, slopes are

biased downwards for AMI-by-HF and AMI-by-PN correlations and upwards for HF-by-PN. All

distributions exhibit a long tail in the negative domain, meaning that there are some hospitals that

have a much lower penalty propensity (across years and conditions) than could be expected based

on their observed characteristics.

The positive correlations in Figure 6 seem to indicate the presence of a common hospital-specific

component in the αci . On the other hand, the fact that there is considerable dispersion around the

regression lines in the figure suggests that condition-specific components might be important as

well. The model we have in mind is

αci = αi + τ ci ,

where αi is the common component and τ ci the condition-specific component of the time-invariant

effect αci . Because each αci is estimated based on a small number of years and thus potentially with

low precision, the dispersion around the regression line might only reflect sampling error rather than
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the presence of τ ci . To formally test for the presence of condition-specific heterogeneity we consider

the null hypothesis H0 : (N − 1)−1/2
√∑

i(α
c
i − αc

′
i )2 = 0. By differencing across two conditions

c and c′ we remove the common component. We then tests for any remaining variation, which

by definition must be due to condition-specific components, using a Monte Carlo permutation test

(see Abrams, Bertrand and Mullainathan, 2012).

The permutation distributions of the test statistics are shown in Figure 7 for each of the three

paired conditions. In each panel, the sample test statistic and the 95 percentile of the distribution

are indicated by vertical lines. We do not find evidence, at the 5 per cent significance level, of

condition-specific differences between heart infarct and heart failure (left panel), nor between heart

infarct and pneumonia (middle panel). Only for heart failure and pneumonia (right panel) do we

see clear evidence for condition-specific heterogeneity.

In a final step, we regress the hospital-specific fixed effects on other time-invariant characteristics.

For instance, to test whether for-profit hospitals behave differently than other hospitals, one can

run the following regression

αci = γcfor-profiti + zc
′
i δ

c + uci , (15)

the estimated fixed effects are used as dependent variable, and γc measures the difference between

for-profit and non-profit hospitals. Here, zci is a condition- and hospital-specific covariate vector, δc

its corresponding coefficient vector, and uci an error term. Table 5 presents the estimation results.

We find that for-profit hospitals indeed have a significantly larger time-constant penalty propensity

across the three emergency conditions. This suggests that for-profit hospitals chose a different

level of care resulting in higher readmissions, potentially due to cost-benefit considerations by the

hospital’s owners and managers. These differences change only minimally when accounting for other

time invariant hospital characteristics identified in the literature on the readmission determinants

(e.g., Gu et al., 2014).

5 Conclusions

This paper studied the use of bias-reduction approaches to address perfect prediction problems in

fixed-T panel probit models for binary responses with fixed effects, and applied them to study the

determinants of excessive readmission rates among Medicare patients in the US. We advocated an

estimator based on Kosmidis and Firth (2009), which had not been adapted to the context of panel
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data so far, and for which we showed that it always produces finite estimates of all fixed effects.

This feature is essential if the interest lies in the distribution of the unobserved heterogeneity, and

it also facilitates the estimation of derived quantities which depend on the fixed effects. In our

simulations, the estimator performed better than either the MLE or HS estimator.

Perfect prediction is a problem which is very common in applications, especially in short and very

short panels. In the data of our application—an unbalanced panel covering a five-year period—

about half of the observations were concordant and would have led to infinite estimates for the

corresponding fixed effects had we used conventional panel data model estimators or bias-corrected

estimators. While the incidence of the type of perfect prediction we discussed in this paper lessens

with increasing T , a substantial incidence of perfect prediction can persist even in longer panels if

the outcome is a rare event.

Our simulations showed that estimators which fail to obtain estimates for all fixed effects can give

severely distorted estimates of the shape of the distribution of the fixed effects and of moments such

as mean and variance. Using the advocated BR estimator is a simple and effective way of reducing

such distortions. In our empirical application, we illustrated several ways in which estimates of

the fixed effects can be used to answer economic questions. For instance, we plotted the joint

distribution of the estimated fixed effects from different models to see whether care for different

health conditions behaved as substitutes or complements, and we regressed the estimated fixed

effects on time-invariant regressors to answer questions about differences in strategic behaviour by

hospital ownership type.

We focussed on the probit model as it is a common choice in empirical work, but the advocated

approach is applicable to a number of other binary response models as well. More broadly, the

estimator can be extended to other nonlinear fixed effects panel models which suffer from perfect

prediction, such as models for ordered and count data.
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Figure 1: Distributions of αi

Notes: Distributions from which αi were drawn for the Monte Carlo simulation: “uniform” corresponds to a uniform distribution
on the interval [-1,1]; “beta”, to a Beta distribution with shape parameters 2 and 5, rescaled to the interval [-1;1] by multiplying
the variable by 2 and subtracting 0.5; “bernoulli”, to a modified Bernoulli distribution taking the value -0.75 with probability
0.25, and the value 0.25 with probability 0.75; and “normal”, to a Normal distribution with mean 0 and variance 0.5.

23



(A) αi ∼ uniform

-1
.0

-0
.5

0.
0

0.
5

1.
0

α̂

-1.0 -0.5 -0.0 0.5 1.0
α

ML

-1
.0

-0
.5

0.
0

0.
5

1.
0

α̂

-1.0 -0.5 -0.0 0.5 1.0
α

HS

-1
.0

-0
.5

0.
0

0.
5

1.
0

α̂

-1.0 -0.5 -0.0 0.5 1.0
α

BR

(B) αi ∼ beta

-1
.0

-0
.5

0.
0

0.
5

1.
0

α̂

-0.5 -0.2 0.1 0.4 0.7
α

ML

-1
.0

-0
.5

0.
0

0.
5

1.
0

α̂

-0.5 -0.2 0.1 0.4 0.7
α

HS

-1
.0

-0
.5

0.
0

0.
5

1.
0

α̂
-0.5 -0.2 0.1 0.4 0.7

α

BR

(C) αi ∼ normal

-2
.0

-1
.0

0.
0

1.
0

2.
0

α̂

-2.0 -1.1 -0.2 0.7 1.6
α

ML

-2
.0

-1
.0

0.
0

1.
0

2.
0

α̂

-2.0 -1.1 -0.2 0.7 1.6
α

HS

-2
.0

-1
.0

0.
0

1.
0

2.
0

α̂

-2.0 -1.1 -0.2 0.7 1.6
α

BR

(D) αi ∼ bernoulli

0.
0

0.
2

0.
5

0.
8

1.
0

-1.0 -0.5 0.0 0.5 1.0

ecdf of α̂ (ML)
ecdf of α

ML

0.
0

0.
2

0.
5

0.
8

1.
0

-1.0 -0.5 0.0 0.5 1.0

ecdf of α̂ (HS)
ecdf of α

HS

0.
0

0.
2

0.
5

0.
8

1.
0

-1.0 -0.5 0.0 0.5 1.0

ecdf of α̂ (BR)
ecdf of α

BR

Figure 2: Estimated versus true distributions of αi, N=100, T=4

Notes: Graphs in panels (A), (B), (C) show average estimates of α1, . . . , α100 over 500 replications against
their true values. Graphs in panel (D) show the empirical cdf of the hundred true αi against the empirical
cdf of the hundred average α̂i estimated over 500 replications.
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Figure 3: Estimated versus true distributions of αi, N=100, BR Likelihood Estimator

Notes: Graphs in panels (A), (B), (C) show average estimates of α1, . . . , α100 over 500 replications against their
true values. Graphs in panel (D) show the empirical cdf of the hundred true αi against the empirical cdf of the
hundred average α̂i estimated over 500 replications.
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Figure 4: Root Mean Square Error of αi and Incidence of Perfect Prediction

Notes: Graphs show RMSE estimated for each α̂i and for each of the three estimators Maximum Likelihood (ML),
HS Penalised Likelihood (HS), and BR Likelihood (BR); against the average share of yit = 1 within i, over 500

replications. The share of yit = 1 within i is si =
∑T
i=1 yit/T . The lines represent kernel-weighted local polynomial

regressions of each estimator’s RMSE on the average si. Scales of y-axes adjust for the reductions in the RMSE.
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Figure 5: Kernel density estimates of β̂ (β = 1) for four DGP with N = 100 and T = 4

Notes: Graphs show estimated kernel density of β̂ based on 500 replications for the three estimators, BR Likelihood
(BR), HS Penalised Likelihood (HS) and Maximum likelihood (ML). The vertical maroon dashed line represents the
true value of β.
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Figure 6: Pair-wise scatter plots of hospitals unobserved heterogeneity in readmission penalties

Notes: The panels plot estimates of αci based on (14) and Table 4, pairwise for all combination of c = {AMI,HF, PN}, which
denote acute myocardial infarction (AMI), heart failure (HF), or pneumonia (PN). The solid black line shows the correlation
using all points; dashed grey line shows the correlation among (bias reduced) discordant pairs. Although overlying greatly,
black dots depict all fixed effects and grey dots only those that are concordant in at least one condition (hence not estimable
by a näıve probit).
Source: Hospital Compare Dataset and Final Rule Impact files 20012-2016, ACS, Dartmouth Atlas of Health Care, own
calculations.
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Figure 7: Monte Carlo test for condition-specific heterogeneity

Notes: For pairs c, c′ = {AMI,HF, PN}, the vertical black line represents the test statistic σ̂(αci −αc
′
i ) = ((N − 1)−1

∑
i(α̂

c
i −

α̂c
′
i )2)1/2. The null hypothesis is σ(αci − αc

′
i ) = 0. The histogram is an estimate of the distribution of the test statistic under

the null hypothesis, calculated based on 500 random permutations of the dependent variable. The vertical red line is the 90th
percentile of this distribution.
Source: Hospital Compare Dataset and Final Rule Impact files 20012-2016, ACS, Dartmouth Atlas of Health Care, own
calculations.

Table 1: MC Simulation: Estimates of E(αi) [Mean] and SD(αi) [SD]; N = 100, 500 replications

T = 2 T = 4 T = 8 T = 12

Mean SD Mean SD Mean SD Mean SD

αi ∼ Bernoulli
True -0.030 0.451

ML 0.025 0.778 -0.030 0.361 -0.019 0.452 -0.032 0.482
HS 0.024 0.752 -0.027 0.317 -0.017 0.405 -0.029 0.445
BR -0.018 0.353 -0.023 0.420 -0.031 0.446 -0.034 0.453

αi ∼ Uniform
True -0.045 0.585

ML 0.025 0.819 -0.048 0.445 -0.047 0.573 -0.053 0.620
HS 0.024 0.794 -0.042 0.388 -0.043 0.512 -0.049 0.572
BR -0.044 0.431 -0.041 0.540 -0.047 0.576 -0.050 0.588

αi ∼ Beta
True 0.034 0.296

ML -0.147 0.836 -0.014 0.317 0.025 0.305 0.034 0.318
HS -0.142 0.809 -0.014 0.281 0.022 0.274 0.031 0.295
BR 0.007 0.229 0.027 0.290 0.032 0.295 0.033 0.296

αi ∼ Normal
True 0.045 0.733

ML -0.138 0.831 -0.000 0.473 0.028 0.638 0.047 0.710
HS -0.133 0.803 -0.002 0.410 0.024 0.569 0.043 0.650
BR 0.009 0.502 0.038 0.629 0.040 0.696 0.043 0.715

Notes: Rows labelled “True” contain the (true) mean and standard deviation of the 100
drawn αi for each of the four distributions (Bernoulli, uniform, beta, and normal). Cells in
rows ML, HS and BR contain the average, over 500 replications, of the mean and standard
deviation of the estimated αi for each of the three estimators.
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Table 2: MC Simulation: Mean and Standard Deviation [SD] of β̂ (β = 1, 500 replications)

T = 2 T = 4 T = 8 T = 12

Mean SD Mean SD Mean SD Mean SD

αi ∼ Bernoulli
ML 2.105 0.673 1.400 0.256 1.154 0.122 1.092 0.089
HS 2.038 0.658 1.246 0.228 1.055 0.111 1.022 0.083
BR 0.953 0.240 1.006 0.169 1.007 0.103 1.002 0.080

αi ∼ Uniform
ML 2.206 0.747 1.427 0.272 1.163 0.122 1.098 0.091
HS 2.138 0.730 1.268 0.241 1.063 0.110 1.028 0.084
BR 0.928 0.242 0.997 0.173 1.005 0.102 1.004 0.082

αi ∼ Beta
ML 2.075 0.716 1.364 0.231 1.143 0.125 1.084 0.086
HS 2.009 0.699 1.212 0.204 1.047 0.113 1.018 0.081
BR 0.942 0.268 1.013 0.159 1.004 0.107 0.999 0.078

αi ∼ Normal
ML 2.195 0.990 1.410 0.263 1.163 0.126 1.103 0.090
HS 2.124 0.967 1.253 0.234 1.063 0.114 1.030 0.083
BR 0.889 0.250 0.977 0.165 0.997 0.105 1.001 0.080

Notes: Cells contain the average and standard deviation, over 500 replications, of
the estimated β for each of the three estimators, ML, HS, and BR. The true value
of β is 1.
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Table 3: MC Simulation: Predicted probabilities, averaged over distribution of αi (500 replications)

T = 2 T = 4

Mean D1 D5 D9 Mean D1 D5 D9

αi ∼ Bernoulli
True 0.494 0.227 0.495 0.760 0.494 0.227 0.495 0.760

ML 1.040 0.474 1.061 1.192 1.007 0.791 1.008 1.074
HS 1.040 0.498 1.060 1.186 1.006 0.864 1.006 1.052
BR 1.001 1.218 1.000 0.940 1.001 1.134 1.000 0.964

αi ∼ Uniform
True 0.487 0.235 0.485 0.741 0.487 0.235 0.485 0.741

ML 1.059 0.434 1.082 1.229 1.002 0.734 1.000 1.089
HS 1.058 0.454 1.081 1.223 1.003 0.804 1.001 1.067
BR 1.000 1.179 1.002 0.944 1.004 1.115 1.005 0.969

αi ∼ Beta
True 0.512 0.231 0.512 0.788 0.511 0.231 0.512 0.788

ML 0.934 0.418 0.917 1.109 0.971 0.790 0.966 1.029
HS 0.935 0.439 0.918 1.103 0.970 0.864 0.966 1.006
BR 0.985 1.224 0.982 0.918 0.994 1.132 0.992 0.955

αi ∼ Normal
True 0.516 0.273 0.518 0.754 0.516 0.273 0.518 0.754

ML 0.931 0.339 0.918 1.170 0.970 0.680 0.967 1.080
HS 0.930 0.357 0.919 1.163 0.969 0.738 0.965 1.058
BR 0.978 1.111 0.975 0.934 0.992 1.069 0.990 0.967

Notes: Entries in rows “True” are mean predicted probabilities. Entries in other rows
are mean predicted probabilities divided by the value in the corresponding “True” row.
Entries in Columns “Mean” are mean predicted probabilities marginal of x. Entries in
Columns “D1”, “D5” and ‘D9” are mean predicted probabilities evaluated at the first,
fifth (median) and ninth decile of x.
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Table 4: Probit and bias-reduced fixed effects probit models for penalty status by condition

Dependent variable: readmission penalty indicator

Probit BR-Probit

AMI HF PN AMI HF PN

(1) (2) (3) (4) (5) (6)

Number of condition-specific discharges per 1’000 1.939 3.863 0.682 1.306 2.512 0.452
(0.902) (0.691) (0.320) (0.675) (0.463) (0.229)

Total number of discharges other conditions per 1’000 0.350 −0.433 0.856 0.232 −0.251 0.599
(0.272) (0.345) (0.429) (0.206) (0.234) (0.304)

Discharges ACSCs per 1’000 enrollees, in HRR 0.020 0.017 0.009 0.014 0.011 0.006
(0.007) (0.006) (0.006) (0.005) (0.004) (0.004)

Hospital entry in HRR (Yes/No) −0.144 −0.025 0.023 −0.093 −0.016 0.017
(0.071) (0.062) (0.060) (0.053) (0.045) (0.044)

Hospital exit in HRR (Yes/No) −0.086 −0.004 −0.022 −0.055 −0.001 −0.017
(0.065) (0.056) (0.055) (0.049) (0.041) (0.042)

Household median income in 10’000$, in county −0.367 0.109 −0.023 −0.242 0.074 −0.014
(0.172) (0.123) (0.118) (0.130) (0.097) (0.096)

Percent unemployed, in county −0.071 −0.027 −0.019 −0.049 −0.021 −0.013
(0.044) (0.036) (0.034) (0.033) (0.027) (0.026)

Percent of total population living in poverty, in county −0.010 −0.004 −0.010 −0.007 −0.002 −0.007
(0.023) (0.017) (0.017) (0.018) (0.013) (0.013)

Total population in 100’000, in county 0.013 0.079 0.038 0.012 0.063 0.034
(0.113) (0.100) (0.091) (0.089) (0.081) (0.074)

Number of observations 6,071 7,989 8,369 10,880 14,889 15,106
Number of hospitals 1,256 1,633 1,713 2,301 3,075 3,112

Share of concordant observations, 0 22.6 23.8 24.2
Share of concordant observations, 1 21.6 22.5 20.4

φ(x′β) 0.34 0.09 0.23

Hospital fixed effects X X X X X X
Time fixed effects X X X X X X

Notes: Coefficient estimates from bias reduced probit regressions, clustered standard errors in parentheses. First three columns
standard probit with dummy variables, separately by DRG-condition: acute myocardial infarction (AMI), heart failure (HF),
or pneumonia (PN). Columns (4)-(6) bias-reduced probit estimation. Penalty status is only defined if there were more than 25
discharges in the specific condition across three years. All regressions include hospital and year fixed effects. Exit and entry in the
hospital referral region are constructed by increase (decrease) in the number of hospitals in the region, which are observationally
identical to mergers or separations. All regressions include indicators for missing values, whose main effects are set to zero to avoid
sample selection issues. Descriptive Statistics for the variables and their definitions are presented in Appendix, Table F1.
Source: Hospital Compare Dataset and Final Rule Impact files 20012-2016, ACS, Dartmouth Atlas of Health Care, own calculations.
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Table 5: Hospitals’ unobserved time-constant heterogeneity and ownership structure,
OLS regressions

Dependent variable: Unobserved hospital fixed effects by condition

αAMI
i αHF

i αPN
i

(1) (2) (3) (4) (5) (6)

For-profit hospital (Yes/No) 0.189 0.144 0.206 0.149 0.167 0.153
(0.059) (0.059) (0.081) (0.072) (0.056) (0.054)

Number of beds (100 - 400, Yes/No) −0.254 −0.663 −0.181
(0.070) (0.062) (0.050)

Number of beds (>400, Yes/No) −0.889 −1.836 −0.768
(0.096) (0.113) (0.087)

Minor teaching hospital (Yes/No) −0.298 −0.439 −0.228
(0.061) (0.079) (0.062)

Major teaching hospital (Yes/No 0.398 0.272 0.371
(0.074) (0.095) (0.070)

Located in urban area (Yes/No) 0.213 −0.751 −0.299
(0.066) (0.059) (0.051)

Number of hospitals 2,301 2,301 3,075 3,075 3,111 3,111

Notes: OLS regression coefficients and robust standard errors in parentheses. Conditions are acute myocardial
infarction (AMI), heart failure (HF), or pneumonia (PN). For-profit is an indicator for Physican Ownership, Physician,
Proprietary, and Tribal hospitals; non-profit, the reference category, is a mix of voluntary and government hospitals.
The omitted categories are ‘number of beds 0-100’, ‘no teaching hospital’, and ‘located in rural area’. Teaching
intensity is measured by the resident-to-bed and resident-to-average-daily-census ratio; minor teaching if ratio was
between 0-0.25, major teaching if at least one ratio >0.25. Descriptive statistics for the variables are presented in
Appendix, Table F1.
Source: Hospital Compare Dataset and Final Rule Impact files 20012-2016, ACS, Dartmouth Atlas of Health Care,
own calculations.
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Appendix

A Details on derivation of the bias in the Probit model

In general the small sample bias can be written as Cox and Snell (1968, equation 16)

Bias =
1

κ2
αα

(
κα,αα +

1

2
κααα

)
where κ2

αα is the square of the expected Hessian (total information in the sample), κα,αα is the

expected product of Hessian and score, and κααα the expected derivative of the Hessian.

In the our example of the probit model using αi = α̃i + x̄′iγ, these expected moments are equal to

(see, e.g., Alexander and Breunig, 2016):

καα =

T∑
t=1

E(vαit),

κα,αα =

T∑
t=1

E(vitv
α
it),

κααα =

T∑
t=1

E(−vit − αivαit − 2vitv
α
it) = −αi

T∑
t=1

E(vαit)− 2
T∑
t=1

E(vitv
α
it),

where the last equality uses the fact that the expected score is equal to zero.

For T observations, this gives

Bias =
1

T 2E(vαit)
2

(
TE(vitv

α
it) +

1

2
T (−αiE(vαit)− 2E(vitv

α
it))

)
=

1

T 2E(vαit)
2

(
1

2
T (−αiE(vαit))

)
= − 1

T
αiE(vαit)

−1.

Since E(vαit) = −φ(ηit)
2/(Φ(ηit)(1−Φ(ηit)) this is identical to the bias shown in equation (2) in the

main text.

B Details on BR estimator for other binary response panel models

B.1 Modified score for αi

For a general binary response fixed effects panel model with

P (yit = 1|xit, αi) = F (ηit) = F (αi + x′itβ) i = 1, . . . , N, t = 1, . . . , T,
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where F (·) is a known distribution function, the modified score of the bias-reduced estimator for

the parameter αi is

sBR(αi) = sML(αi) +
1

2

T∑
t=1

hit
f ′it
fit
,

where fit = f(ηit) and f ′it = f ′(ηit) are the first and second derivative of Fit = F (ηit) with respect

to αi, and hit is the it-th diagonal elements of the NT ×NT projection matrix

H = W 1/2X(X ′WX)−1X ′W 1/2,

with X the NT ×K matrix of the K regressors, and W is the NT × NT diagonal matrix with

typical element

wit =
f2
it

Fit(1− Fit)
.

The expressions for probit, Fit = Φ(ηit), are given in Section 2.2. For logit, Fit = Λit = Λ(ηit) =

exp(ηit)/(1 + exp(ηit)), and so

sBR(αi) =

T∑
t=1

yit − Λit + hit

(
1

2
− Λit

)
,

with the corresponding hit being based on W with typical element wit = Λit(1− Λit).

B.2 IWLS estimation

The BR estimator can be obtained by iterative weighted least squares. In iteration s+ 1, estimates

are obtained by solving the the weighted least squares first order conditions

T∑
t=1

N∑
i=1

(
ŷ∗,sit − η̂

s+1
it

)
ŵsit = 0,

where η̂s+1
it = α̂s+1

i + x′itβ
s+1 contains the updated estimates, and ŷ∗,sit and ŵsit are constructed

using iteration-s estimates of ηit. The expression for wit was given above, and y∗it is defined as

y∗it = ηit +
(ỹit − Fit)

fit
, with ỹit = yit +

1

2
hit

f ′it
wit

.

For instance, for the probit model, ỹit = yit − hitηitΦit(1 − Φit)/(2φit); while for the logit model,

ỹit = yit + hit(0.5− Λit). (And ML estimates are obtained for ỹit = yit.)

B.3 Existence in perfect prediction cases

In the perfect prediction cases,
∑

t yit = 0 and
∑

t yit = T , the ML estimator for αi does not exist.

We consider the case
∑

t yit = T for the BR estimator:

sBR(αi) =

T∑
t=1

fit
Fit

+
1

2
hit
f ′it
fit
.
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For all the usual choices of Fit (normal, logistic, cloglog, etc.), the log-likelihood ln fit is globally

concave, and the corresponding score, f ′it/fit, has a unique root, is positive for small values of ηit

(ηit → −∞) and negative for large values of ηit (ηit → ∞). This implies that the second term on

the right-hand-side of the equation,
∑

t
1
2hitf

′
it/fit, is positive for small values of αi (αi → −∞)

and negative for large values of αi (αi →∞), as hit ∈ (0, 1]. For such Fit, the first term,
∑

t fit/Fit,

tends to zero for small αi (αi → −∞) and to a positive constant or positive infinity for large αi

(αi →∞). Therefore, because sBR(αi) is continuous, there must exist a α̂i such that sBR(α̂i) = 0.

A detailed example was given in Section 2.2 for Fit = Φit. For logit, Fit = Λit, and

sBR(αi) =
T∑
t=1

(1− Λit) +
1

2
hit (1− 2Λit) .

As αi → −∞, the first term
∑

t 1 − Λit tends to T and the second to
∑

t hit/2 > 0; thus,

limα→−∞ s
BR(αi) > 0. As αi → ∞, the first term

∑
t 1 − Λit tends to 0 and the second to

−
∑

t hit/2 < 0; thus, limα→−∞ s
BR(αi) < 0. Therefore, sBR(α̂i) = 0 exists.

Existence for the case
∑

t yit = 0 can be examined using the same arguments.

C Panel probit HS estimator for T=2

For T = 2, the score for αi corresponding to the HS estimator is

sHS(αi) = −(λ1 + λ2)− λ1λ
α
1 + λ2λ

α
2

λα1 + λα2
+

1

2

(λ2
1 + λ2

2)(λαα1 + λαα1 )

(λα1 + λα2 )2

=
−2(λ1 + λ2)(λα1 + λα2 )2 − 2(λ1λ

α
1 + λ2λ

α
2 )(λα1 + λα2 ) + (λ2

1 + λ2
2)(λαα1 + λαα1 )

(λα1 + λα2 )2
,

where we have suppressed the dependence of the notation on i; that is, λi1 = λ1, etc. Since the

denominator is positive for any (ηi1, ηi2) ∈ R2, we only need focus on the numerator, sHSnum(αi):

sHSnum(αi) = −4λ1λ
α2
1 −4λ2λ

α2
2 −2λ1λ

α2
2 −2λ2λ

α2
1 −6λ1λ

α
1λ

α
2−6λ2λ

α
1λ

α
2 +λ2

1λ
αα
1 +λ2

2λ
αα
2 +λ2

2λ
αα
1 +λ2

1λ
αα
2 .

For the last four terms, we use

λ2
sλ

αα
t = λ2

s(2λtλ
α
t − λαt ηt − λt)

= λ2
s[λ

α
t (λt − ηt) + λt(λ

α
t − 1)],

which for t = s simplifies further to

λ2
tλ

αα
t = λtλ

α2
t + λ3

t (λ
α
t − 1).
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Inserting these expressions for the four last terms and rearranging, we obtain

sHSnum(αi) =

−3λ1λ
α2
1 − 3λ2λ

α2
2 − 2λ1λ

α2
2 − 2λ2λ

α2
1 − 6λ1λ

α
1λ

α
2 − 6λ2λ

α
1λ

α
2 + λ3

1(λα1 − 1) + λ3
2(λα2 − 1)

+λ2
2λ

α
1 (λ1 − η1) + λ2

2λ1(λα1 − 1) + λ2
1λ

α
2 (λ2 − η2) + λ2

1λ2(λα2 − 1).

Other than the two terms underlined with a solid line, all terms are strictly negative. We are

interested in the case η1 6= η2; the case η1 = η2 was discussed in Section 2.3. Without loss of

generality, assume η1 > η2. This implies λ1 > λ2 and λα1 > λα2 .

Then, the sum of the first term and the first underlined positive term is negative:

−3λ1λ
α2
1 + λ2

2λ
α
1 (λ1 − η1) < −3λ1λ

α2
1 + λ2

1λ
α
1 (λ1 − η1) = −2λ1λ

α2
1 < 0,

where the first inequality used λ2
1 > λ2

2. Thus,

sHSnum(αi) <

−2λ1λ
α2
1 − 3λ2λ

α2
2 − 2λ1λ

α2
2 − 2λ2λ

α2
1 − 6λ1λ

α
1λ

α
2 − 6λ2λ

α
1λ

α
2 + λ3

1(λα1 − 1) + λ3
2(λα2 − 1)

+λ2
2λ1(λα1 − 1) + λ2

1λ
α
2 (λ2 − η2) + λ2

1λ2(λα2 − 1),

where the underlined term is the only positive one.

We now consider a case where α̂i does not exist. Suppose 1 < η1−η2 ≤ 6; that is, 1 < x′i1β−x′i2β ≤
6. We only consider the limit case, as the results for differences smaller than 6 follow immediately

using the same arguments.10 Without loss of generality, η1 = αi, η2 = αi−6. We consider only the

first, the fifth and the underlined positive term from the right-hand-side of the previous inequality:

−2λ1λ
α2
1 − 6λ1λ

α
1λ

α
2 + λ2

1λ
α
2 (λ2 − η2) = −2λ2

1λ
α
1 (λ1 − η1)− 6λ2

1λ
α
2 (λ1 − η1) + λ2

1λ
α
2 (λ2 − η2)

=
1

2
λ2

1 [λα2 (λ2 − η2)− 4λα1 (λ1 − η1)]

+
1

2
λ2

1λ
α
2 [λ2 − η2 − 12(λ1 − η1)]

=
1

2
λ2

1 [g(η2)− 4g(η1)] +
1

2
λ2

1λ
α
2 [h(η2)− 12h(η1)] ,

where we defined the functions g(η) = λα(λ − η) and h(η) = λ − η. The factors multiplying the

two terms in brackets on the right-hand-side of the last equality are positive for all αi, so it suffices

to show that the terms in brackets are negative for any finite value of αi to prove that sHS(αi) is

negative for all αi ∈ R and thus that for x′i1β − x′i2β = 6 the estimator α̂i does not exist.

Figure C1 plots the two terms in brackets. Each one is negative over the entire plotted range (green

dash-dotted lines). This holds in general as well. Consider the first term in brackets, g(η2)− g(η1).

It is straightforward to show that the function g(η) is positive for all η and has a unique global

maximum of about 0.52 at about η = −0.3826. Then, since 4g(−0.3826 + 6) ≈ 0.6547 > 0.52, the

10This example is meant as an illustration. The interval 1 < x′i1β − x′i2β ≤ 6 is not a tight bound for the interval
in which α̂i does not exist. However, differences such as x′i1β − x′i2β = 6 already represent quite extreme change in
the covariates of a unit i; in this case, corresponding to a change of 6 standard deviations in the distribution of the
error term.
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first term in brackets is strictly negative for all αi. (In the left panel of Figure C1, this can be seen

as the solid blue line, which depicts 4g(αi), clearly passes over the maximum of the red dashed line,

which depicts g(αi − 6).)

Now consider the second term in brackets, h(η2) − 12h(η1) = h(αi − 6) − 12h(αi). As αi → −∞,

the slopes of the two components tend to h′(αi − 6) → −1 and −12h′(αi) → −12. For αi →
+∞, we have h′(αi − 6) → 0 and −12h′(αi) → 0. The slope h′(η) = λα − 1 is monotonically

increasing with exactly one inflection point, h′′(η∗) = 0, at about η∗ ≈ −1.002. Thus, to show

that 12h(αi) > h(αi − 6) for all αi, we just need to show that this holds at α = α◦ where

12h′(α◦) = h′(α◦ − 6) (i.e., where the slopes of the two components are the same), and at α = α∗

where h′′(α∗ − 6) = 0 (i.e., at the inflection point of the positive component). Here, α◦ ≈ 2.468, at

which point h(α◦−6)−12h(α◦) ≈ −0.367; and α∗ ≈ 4.998, at which h(α◦−6)−12h(α◦) ≈ −0.950.

(In the right panel of Figure C1, this can be seen as the solid blue line, which depicts 12h(αi),

always lies higher than the dashed red line, which depicts h(αi).)

Figure C1: Appendix: Some terms in sHS(α)
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Panel I: g(η2) − 4g(η1)
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Panel II: h(η2) − 12h(η1)

Notes: For both panels, η1 = α, η2 = α− 6. Panel I: g(η) ≡ λα(λ− η). Panel II: h(η) ≡ λ− η. The
blue solid lines show the absolute value of the negative term, the red dashed lines the positive term
of the functions. The dash-dotted green line depicts the sum of the negative and positive terms.

D Equivalence of Firth Penalised Likelihood Logit estimator and

Bester-Hansen Penalised Likelihood “IE” Logit estimator

For generalised linear models in canonical parametrisation, Firth (1993) showed that first-order-

bias-corrected scores lead to a penalised likelihood estimator. In panel data notation, this estimator

is

QF (θ) =
∑
i

∑
t

logLit(θ) + πF (θ),
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where logLit(θ) is the log-likelihood contribution of observation it, and πF (θ) is the penalty term,

πF (θ) =
1

2
ln (detI(θ)) ,

where I(θ) =
∑

i

∑
t(∂ logLit(θ)/∂θ)(∂ logLit(θ)/∂θ)′ is the Fisher information matrix. Thus, for

the logit panel model, we obtain the Firth penalised likelihood estimator as

QF (θ) =
∑
i

∑
t

yit log Λ(ηit)+(1−yit) log(1−Λ(ηit))+
1

2
ln
[
det(Λ(ηit)(1− Λ(ηit))(∂ηit/∂θ)(∂ηit/∂θ)′))

]
,

(16)

where Λ(ηij) = exp(ηij)/(1 + exp(ηij)) is the logistic cdf.

For the HS estimator,

QHS(θ) =
∑
i

∑
t

logLit(θ) + πHS(α),

the penalty term is given by

πHS(α) =
∑
i

−1

2

∑
t v

2
it∑

t−vαit
+

1

2
.

The IE version of this estimator is obtained by replacing vit and vαit by E(vit) and E(vαit). For the

logit model, analytical expressions for E(vit) and E(vαit) are available, and one obtains

QIE =
∑
i

∑
t

yit log Λ(ηit)+(1−yit) log(1−Λ(ηit))+
∑
i

1

2
ln

[
det

(∑
t

Λ(ηit)(1− Λ(ηit))

)]
+
N

2
,

see also Bester and Hansen (2009, p.138).

For β = 0, it is immediately evident that QIE = QF . For the general case with covariates, the

two estimators would be equivalent for a penalty function applied πF (θ) only to α, πF (α); i.e., by

replacing (∂ηit/∂θ)(∂ηit/∂θ)′ in (16) by (∂ηit/∂α)(∂ηit/∂α)′. Since the common parameter vector

β uses information from the whole sample NT , the penalisation should be mild when the size of

the cross-sectional dimension N is large, so that QIE ≈ QF .
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E Additional simulation results

Table E1: MC Simulation: Predicted probabilities, averaged over distribution of αi (500
replications)

T = 8 T = 12

Mean D1 D5 D9 Mean D1 D5 D9

αi ∼ Bernoulli
True 0.494 0.227 0.495 0.760 0.494 0.227 0.495 0.760

ML 1.014 0.985 1.015 1.021 1.002 0.997 1.003 1.004
HS 1.013 1.041 1.013 1.005 1.003 1.041 1.002 0.992
BR 1.000 1.078 0.999 0.978 0.998 1.054 0.998 0.983

αi ∼ Uniform
True 0.486 0.235 0.485 0.741 0.487 0.235 0.485 0.741

ML 1.003 0.940 1.003 1.024 0.998 0.979 0.997 1.004
HS 1.004 0.988 1.004 1.009 0.999 1.015 0.999 0.994
BR 1.000 1.061 1.001 0.981 0.998 1.042 0.999 0.985

αi ∼ Beta
True 0.511 0.231 0.512 0.788 0.511 0.231 0.512 0.788

ML 0.991 0.962 0.990 1.001 0.997 0.994 0.997 0.999
HS 0.989 1.019 0.988 0.983 0.996 1.039 0.995 0.984
BR 0.997 1.082 0.996 0.973 0.998 1.060 0.997 0.980

αi ∼ Normal
True 0.516 0.273 0.518 0.754 0.516 0.273 0.518 0.754

ML 0.987 0.881 0.986 1.027 1.001 0.955 1.001 1.018
HS 0.985 0.918 0.983 1.012 0.999 0.981 0.998 1.007
BR 0.995 1.037 0.993 0.981 0.996 1.025 0.994 0.986

Notes: Entries in rows “True” are mean predicted probabilities. Entries in other rows
are mean predicted probabilities divided by the value in the corresponding “True”
row. Entries in Columns “Mean” are mean predicted probabilities marginal of x.
Entries in Columns “D1”, “D5” and ‘D9” are mean predicted probabilities evaluated
at the first, fifth (median) and ninth decile of x.
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(D) αi ∼ bernoulli
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Figure E2: Appendix: Estimated versus true distributions of αi, N=100, T=2

Notes: Graphs in panels (A), (B), (C) show average estimates of α1, . . . , α100 over 500 replications against
their true values. Graphs in panel (D) show the empirical cdf of the hundred true αi against the empirical cdf
of the hundred average α̂i estimated over 500 replications.
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(A) αi ∼ uniform
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(C) αi ∼ normal
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Figure E3: Appendix: Estimated versus true distributions of αi, N=100, T=12

Notes: Graphs in panels (A), (B), (C) show average estimates of α1, . . . , α100 over 500 replications against
their true values. Graphs in panel (D) show the empirical cdf of the hundred true αi against the empirical cdf
of the hundred average α̂i estimated over 500 replications.
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F Additional information about Section 4, Application to hospital

readmissions

F.1 Data sources

FIPS crosswalk

We start by performing minor corrections on the file CBSAtoCountycrosswalk FY13.xls11 to make the
crosswalk between county and FIPS State county linkable to the hospital compare data (i.e. SAINT CLAIR
we set equal to ST. CLAIR). Note, that island states such as AMERICAN SAMOA are dropped because we
could not merge them to county or HRR information.

County information

We compiled for the years 2011-2015:
Rural Atlas Update14/Jobs.csv and Rural Atlas Update14/People.csv files12 from which we get the
variables: yearly unemployment rate, and yearly total population/100,000.

Next, we use the file SAIPESNC 05APR17 15 02 58 98.csv,13 which provides yearly measures of all ages in
poverty (in percent) and the median household income (in dollars/10,000). We then merge them via the
FIPS crosswalk, all hospitals which could not be merged are included in the regressions with a missing
indicator for county.

Hospital Referral Region information

We use zip code crosswalks:14 ZipHsaHrr10.xls-ZipHsaHrr14.xls from the Dartmouth Atlas, which allows
us to connect the Zip codes to HRRs. We use the one year lagged values as hospital data is published with
a lag. We calculate the number of hospitals for each year and define two indicators, one if there are more
hospitals (in HRR) than in the previous year, and one if there where less. Note, that we can not distinguish,
whether these are actually openings/closings of hospitals or a result of mergers or separations.

We use the number of Discharges for Ambulatory Care Sensitive Conditions from the selected medical dis-
charge rates files:15 2010 med discharges hrr.xls-2014 med discharges hrr.xls where we subtract the
conditions that are equal to our outcome measures (BacterialPneumoniaDischargesp and CongestiveHeart-
FailureDischar) form the total discharges (DischargesforAmbulatoryCareS). We then merge them via the
zip code crosswalk, all hospitals which could not be merged are included in the regressions with a missing
indicator for HRR.

Hospital Compare data

Our main data set is provided by the Centers for Medicare & Medicaid Services.

Acute Inpatient PPS:16

11downloaded from http://www.nber.org/ssa-fips-state-county-crosswalk/ (accessed 26.03.17).
12downloaded from https://www.ers.usda.gov/data-products/atlas-of-rural-and-small-town-america/download-

the-data/ (accessed 26.03.17).
13downloaded from https://www.census.gov/data-tools/demo/saipe/saipe.html (accessed 26.03.17).
14downloaded from http://www.dartmouthatlas.org/tools/downloads.aspx?tab=39 (accessed 26.03.17).
15downloaded from http://www.dartmouthatlas.org/tools/downloads.aspx?tab=41 (accessed 26.03.17).
16downloaded from https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/index.html

(accessed 26.03.17).
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- FY 2012 Final Rule- IPPS Impact File PUF-August 15, 2011 1.txt

- FY 2013 Final Rule CN - IPPS Impact File PUF-March 2013.txt

- FY 2014 Final Rule IPPS Impact PUF-CN1-IFC-Jan 2014.txt

- FY 2015 IPPS Final Rule Impact PUF-(CN data).txt

- FY 2016 Correction Notice Impact PUF - (CN data).txt

The construction of these variables is taken from Gu et al. (2014). First, we use the information on the
number of hospital beds which we include as 2 indicators for 100-399 beds and for more than 400. Second,
we resident to bed or daily ratio (rday) is larger than 0.25 as major teaching hospitals and lower than 0.25
but larger than 0 as minor teaching hospitals. Also urban if either urgeo or urspa indicate an urban area.
These covariates are almost always constant within hospital, for the very few minor changes we set the to
the maximum observed state, to make them time-consistent.

Next, we use Hospital Compare data archive:17

- HOSArchive Revised Flatfiles 20121001/Hospital Data.csv and
READMISSION REDUCTION.csv

- HOSArchive Revised Flatfiles 20131001/Hospital Data.csv and
READMISSION REDUCTION.csv

- HOSArchive Revised Flatfiles 20141218/Hospital General Information.csv and
READMISSION REDUCTION.csv

- HOSArchive Revised FlatFiles 20151210/Hospital General Information.csv and
READMISSION REDUCTION.csv

- Hospital Revised Flatfiles/Hospital General Information.csv and
READMISSION REDUCTION.csv

from which we get for each health condition READM-30-AMI-HRRP, READM-30-HF-HRRP, READM-30-
PN-HRRP the excess readmission ratio, which we define as a penalty if larger than 1, we drop the hospitals
with missing information in this (our key) variable. We use for each condition its corresponding number
of discharges (in 1’000). Note, that missing in this variable correspond to too few discharges, which we
use as explanatory variable. Hence, we set missing values to 0 and included with a missing indicator to
measure the impact of too few discharges. Further, across the three conditions we calculate the total number
of discharges (in 1’000) leaving-out the current condition’s discharges. Finally, the hospital’s ownership
is defined for-profit, if neither governmental nor non-profit (as above very minor changes, which we made
time-consistent by taking the maximum observed value).

17downloaded from https://data.medicare.gov/data/archives/hospital-compare (accessed 26.03.17).
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F.2 Additional results

Table F1: Descriptive Statistics, by penalty status and condition

AMI-fine Heart Failure-fine Pneumonia-fine

Never Some Always Never Some Always Never Some Always

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Number of condition-specific discharges per 1’000 0.23 0.21 0.22 0.41 0.34 0.42 0.33 0.31 0.39
(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00) (0.01)

Total number of discharges other conditions per 1’000 0.84 0.89 0.93 0.59 0.45 0.50 0.51 0.49 0.65
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01)

For-profit hospital (Yes/No) 0.15 0.19 0.21 0.14 0.20 0.24 0.14 0.21 0.22
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Number of beds, between 100 and 400 (Yes/No) 0.66 0.69 0.67 0.54 0.54 0.59 0.47 0.56 0.60
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Number of beds, more than 400 (Yes/No) 0.16 0.18 0.23 0.17 0.12 0.17 0.12 0.12 0.21
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Minor teaching hospital (Yes/No) 0.30 0.24 0.24 0.30 0.18 0.16 0.23 0.18 0.20
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Major teaching hospital (Yes/No) 0.10 0.17 0.29 0.10 0.13 0.23 0.06 0.14 0.24
(0.01) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Located in urban area (Yes/No) 0.80 0.84 0.87 0.78 0.71 0.77 0.68 0.74 0.79
(0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

Discharges ACSCs per 1’000 enrollees, in HRR 23.03 26.08 28.17 23.49 26.35 29.06 23.82 26.18 28.87
(0.27) (0.19) (0.32) (0.23) (0.17) (0.28) (0.24) (0.17) (0.29)

Hospital entry in HRR (Yes/No) 0.17 0.15 0.11 0.16 0.15 0.12 0.18 0.14 0.11
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Hospital exit in HRR (Yes/No) 0.16 0.18 0.20 0.16 0.18 0.21 0.17 0.18 0.21
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Household median income in 10’000$, in county 5.27 5.29 5.35 5.19 5.14 5.04 5.13 5.15 5.00
(0.02) (0.02) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03)

Percent unemployed, in county 6.79 7.27 7.75 6.79 7.39 7.96 6.84 7.36 8.03
(0.05) (0.03) (0.05) (0.04) (0.03) (0.04) (0.04) (0.03) (0.04)

Percent of total population living in poverty, in county 15.33 16.02 16.71 15.60 16.51 17.80 15.70 16.56 17.93
(0.10) (0.07) (0.12) (0.08) (0.06) (0.11) (0.09) (0.06) (0.11)

Total population in 100’000, in county 7.57 9.14 12.89 6.29 8.38 10.51 5.96 8.43 10.47
(0.32) (0.21) (0.44) (0.22) (0.20) (0.33) (0.24) (0.19) (0.34)

Observations 2,459 6,071 2,350 3,549 7,993 3,347 3,651 8,365 3,086
Number of hospitals 531 1’256 514 741 1’633 701 756 1’713 643
Share in % 22.6 55.8 21.6 23.8 53.8 22.5 24.2 55.4 20.4

Notes: Means and standard deviations by condition and fine status. Total number of discharges, if there were to few too report we set the number to 0,
in all regressions we include an indicator for this bottom-coding “too few condition-specific cases to report discharges”. We follow the same procedure
for the total number of discharges in other conditions (we do not present the indicators here). Teaching intensity via the indirect medical education
adjustment which measures how many residents are employed at the hospital relative to either the number of beds or to average daily census, which
measures the occupancy rate rather than beds. When either ratio was larger than 0 the hospital is classified as a minor teaching hospital and if either
one being larger than 0.25 as a major teaching hospital. Dischargees in ambulatory care sensitive conditions, exclude pneumonia and heart failure
related causes and is lagged by one year to avoid endogeneity. Hospital entry/exit was assessed by whether the number of hospitals in an HRR went
up or down relative to the previous year.
Source: Hospital Compare Dataset and Final Rule Impact files 20012-2016, ACS, Dartmouth Atlas of Health Care, own calculations.
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