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ABSTRACT
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Including Covariates in the Regression 
Discontinuity Design

This paper proposes a fully nonparametric kernel method to account for observed covariates 

in regression discontinuity designs (RDD), which may increase precision of treatment 

effect estimation. It is shown that conditioning on covariates reduces the asymptotic 

variance and allows estimating the treatment effect at the rate of one-dimensional 

nonparametric regression, irrespective of the dimension of the continuously distributed 

elements in the conditioning set. Furthermore, the proposed method may decrease bias 

and restore identification by controlling for discontinuities in the covariate distribution at 

the discontinuity threshold, provided that all relevant discontinuously distributed variables 

are controlled for. To illustrate the estimation approach and its properties, we provide a 

simulation study and an empirical application to an Austrian labor market reform.

JEL Classification: C13, C14, C21

Keywords: treatment effect, causal effect, complier, LATE, nonparametric 
regression, endogeneity

Corresponding author:
Markus Frölich
University of Mannheim
68131 Mannheim
Germany

E-mail: froelich@uni-mannheim.de



1 Introduction

The regression discontinuity design (RDD) has received tremendous attention in many fields,

e.g. labor markets, political economy, health, education, psychology, criminology, as a credi-

ble approach to identifying causal effects without having to resort to fully randomized experi-

ments. Hahn, Todd, and van der Klaauw (2001) formalize the assumptions required to identify

causal effects in the RDD and provide nonparametric (local linear) estimators. Porter (2003)

complements their work by alternative estimators. Lee and Card (2008) consider the case when

the forcing variable is discrete. McCrary (2008) proposes a test for the manipulation of the

running variable related to the continuity of its density function. Imbens and Lemieux (2008),

van der Klaauw (2008) and Lee and Lemieux (2010) survey the applied and theoretical liter-

ature on the RDD. Imbens and Kalyanaraman (2012) discuss optimal bandwidth selection in

terms of squared error loss, while Calonico, Cattaneo, and Titiunik (2014) propose methods for

robust inference along with optimal bandwidth selection. Dong (2014) presents an alternative

to some of the identifying assumptions in Hahn, Todd, and van der Klaauw (2001).

In this paper, the regression discontinuity approach is extended to incorporate covariates

in a fully nonparametric way. Our estimator is based on a local nonparametric regression

approach, i.e. kernel-based estimation, which allows deriving closed-form expressions for bias

and variance.1 Consider the setup of the RDD: D is a binary treatment indicator, Y is the

outcome variable of interest, and Z is the ‘forcing variable’with a known threshold z0 at which

the treatment probability Pr(D = 1|Z) is discontinuous. There are various motivations for

accounting for covariates, denoted by X. A first reason is variance reduction, which is well

known for the parametric case. But gains in precision can also be achieved in the nonparametric

setup, as flexibly including covariates and averaging them out in an appropriate way reduces

the asymptotic variance of the estimated treatment effect. We show that under mild regularity

conditions, incorporating covariates permits estimating the treatment effect at the rate for one-

1An alternative approach could use global nonparametric methods such as sieves or polynomials of increasing

order. However, such global methods, which are capable of fitting regression curves at many points by means of

extrapolation, may perform poorly in the RDD, where a good fit is only needed at the treatment threshold, see

Gelman and Imbens (2016). Extrapolation from far-away data points is also inherent in linear regression where

one linearly controls for covariates.
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dimensional nonparametric regression, i.e. n−
2
5 (where n is the sample size), irrespective of the

dimension of the continuously distributed elements in X. Hence, the curse of dimensionality

does not apply due to smoothing over X.

Second, as pointed out in Imbens and Lemieux (2008), covariates may mitigate small sample

biases in cases where the number of observations close to the threshold z0 is small such that one

has to include observations in the estimation that are further apart and may potentially differ

in X. Controlling for X might eliminate some of the bias that is introduced by observations

further away from the threshold, as illustrated in Black, Galdo, and Smith (2007). However,

biases related to unobserved characteristics cannot be accounted for.

Third, we also permit for situations where the density f(X|Z) is discontinuous at z0, which

may point to a failure of the RDD assumptions, see Lee (2008), such that the simple RDD

estimator is generally inconsistent. Our approach nevertheless identifies a local treatment effect

in cases in which X contains all variables that (i) are imbalanced around the threshold and

(ii) affect the outcome variable. With this respect, our contribution distinguishes itself from

a more recent paper on RDD with covariates by Calonico, Cattaneo, Farrell, and Titiunik

(2016), who assume f(X|Z) to be continuous at z0. Under that stronger identifying condition

not needed here, Calonico, Cattaneo, Farrell, and Titiunik (2016) discuss potential precision

gains when linearly (rather than nonparametrically as in our method) controlling for X and

provide methods for optimal bandwidth selection and robust inference.

One example for f(X|Z) being discontinuous at z0 is ‘classical confounding’where manip-

ulation of Z at the threshold is selective with respect to characteristics that may also affect the

outcome, see for instance Urquiola and Verhoogen (2009). If all confounding characteristics are

observed in the data, our method yields the treatment effect on compliers at the threshold. See

also van der Klaauw (2008) for confounding in the context of dynamic treatment assignment,

where observed earlier treatment eligibility or participation (X) jointly affects the (current)

forcing variable Z and Y . As a further example, consider the case when Z not only affects D,

but also further variables that affect Y . This may occur in spatial RDDs where Z is based

on distance to geographical borders. Eugster, Lalive, Steinhauer, and Zweimüller (2017), for

instance, use the (mainly French and German) language border within administrative units
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of Switzerland to estimate the effects of culture on unemployment. The authors consider a

measure of the ‘taste for leisure’as one particular indicator of culture. However, in addition

to this treatment variable, further community-based covariates that are likely affected by cul-

ture also change discontinuously at the border. Controlling for X is therefore necessary as Z

would otherwise violate the exclusion restriction with respect to Y at the threshold through

its influence on X. Identification of a causal effect is, however, only obtained if X are not ‘bad

controls’which are affected by unobservables that also influence Y .

The remainder of this paper is organized as follows. Section 2 discusses the identification of

the treatment effect in the presence of covariates. Section 3 proposes two estimators and exam-

ines their properties and shows that one of them achieves the n−
2
5 convergence rate. Section 4

provides a simulation study that (among others) illustrates the implications of confounding re-

lated to observed covariates at the threshold when applying RDD with and without controlling

for X. Section 5 presents an empirical application to Austrian labor market reform previously

considered by Lalive (2008) to estimate the effect of age-dependent eligibility to unemployment

benefits on unemployment duration. As employees at risk of becoming unemployed might ne-

gotiate the exact date of dismissal with their employers, manipulation at the age threshold is

a concern. We therefore control for a range of labor market-relevant characteristics that are

potential confounders and find our results to differ from RDD without X. Section 6 concludes.

2 RDD with covariates

We define causal effects using the potential-outcome notation in the framework known as the

Neyman-Fisher-Rubin causal model.2 Following the setup of Hahn, Todd, and van der Klaauw

(2001), let Di ∈ {0, 1} be a binary treatment variable, let Y 0
i , Y

1
i be the individual potential

outcomes and Y 1
i − Y 0

i the individual treatment effect. The potential outcomes as well as the

treatment effects Y 1
i − Y 0

i are permitted to vary across individuals, i.e. no constant treatment

effect is assumed. Let Zi be a variable that influences the treatment variable in a discontinuous

way.

In the literature, two distinct designs are examined: the sharp design where Di changes for

2See Neyman (1923), Fisher (1935) and Rubin (1978).
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everyone at a known threshold z0, and the fuzzy design where Di changes only for a subset of

individuals. In the sharp design (Trochim 1984), participation status is given by a deterministic

function of Z, e.g.

Di = 1(Zi ≥ z0). (1)

This implies that all individuals change programme participation status exactly at z0. The

fuzzy design, on the other hand, permits D to also depend on other factors but assumes that

the treatment probability changes discontinuously at z0:

lim
ε→0

E [D|Z = z0 + ε]− lim
ε→0

E [D|Z = z0 − ε] 6= 0. (2)

Note that the fuzzy design includes the sharp design as a special case when the left hand side

of (2) is equal to one. For this reason, the subsequent discussion mostly focusses on the more

general fuzzy design.3 See Hahn, Todd, and van der Klaauw (2001) for more details.

Identification is feasible under the continuity of the mean potential outcomes at z0 and

relies on comparing the observed outcomes of those individuals to the left of the threshold with

those to the right. In addition to continuity of E[Y d|Z = z] in z at z0 for d = {0, 1}, Hahn,

Todd, and van der Klaauw (2001) consider two alternative identifying assumptions:

HTK1: Y 1
i − Y 0

i ⊥⊥Di|Zi for Zi near z0 (3)

or

HTK2:
{
Y 1
i − Y 0

i , Di(z)
}
⊥⊥Zi near z0 and there exists e > 0

such that Di(z0 + ε) ≥ Di(z0 − ε) for all 0 < ε < e. (4)

Assumption (3) is a local selection on observables assumption and identifies the average

treatment effect at the threshold: E[Y 1 − Y 0|Z = z0]. Assumption (4) is an instrumental

variables assumption that identifies a local average treatment effect (LATE) for a local group

of compliers at the threshold:

lim
ε→0

E
[
Y 1 − Y 0|D(z0 + ε) > D(z0 − ε), Z = z0

]
.

3Battistin and Rettore (2008) introduce the mixed sharp fuzzy design as a special case of the fuzzy design.
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In the sharp design, everyone is a complier at z0 and assumption (3) is meaningless (i.e. has no

identifying power) such that one needs assumption (4). In the fuzzy design one typically invokes

(4), since the conditional independence assumption (3) does not permit treatment selection

based on individual gains Y 1
i − Y 0

i . It is worth mentioning that Dong (2014) recently has

shown that alternatively to (4), identification of the LATE is obtained by making a continuity

assumption of Z in the neighbourhood of z0.4

In the following, we introduce observed covariatesXi and assume that (4) is valid conditional

on X. As an example, suppose that there exists a liberalized education market in which

schools may charge tuition fees, and that by law classes must be split if the number of students

surpasses a particular threshold. As argued in Urquiola and Verhoogen (2009) for the case of

Chile, schools close to the threshold might adjust tuition fees, thereby causing discontinuities

in the admitted students’socioeconomic characteristics such as household income and parents’

education. Assume that the latter variables also affect the outcome of interest, e.g. students’

educational degree, which implies a violation of HTK2 when assessing the educational effect of

class size. However, if household income, parents’education, and all other variables imbalanced

at the threshold and affecting the outcome are observed, (4) holds conditional on Xi.5 By

an analogous reasoning as in HTK, and further assumptions made precise below, it follows

immediately that the treatment effect on the local compliers conditional on X is identified as:

lim
ε→0

E
[
Y 1 − Y 0 |X,D(z0 + ε) > D(z0 − ε), Z = z0

]
=
m+(X, z0)−m−(X, z0)

d+(X, z0)− d−(X, z0)
, (5)

wherem+(X, z) = lim
ε→0

E [Y |X,Z = z + ε] andm−(X, z) = lim
ε→0

E [Y |X,Z = z − ε] and d+(X, z)

and d−(X, z) defined analogously with D replacing Y .

In this paper, however, we focus on identifying and estimating the unconditional effect

lim
ε→0

E
[
Y 1 − Y 0 |D(z0 + ε) > D(z0 − ε), Z = z0

]
, (6)

4Continuity of Z implies the smoothness of mean potential outcomes conditional on compliance behavior and

of the shares of subgroups defined upon compliance at the threshold, which is suffi cient for identification.
5Whether it is plausible to assume that all imbalanced covariates affecting the outcome are observed depends

on the empirical problem and the richness of data. In in the context of Urquiola and Verhoogen (2009), for

instance, ambition might (in addition to parents’education and household income) play a role for selectively

(re-)placing students into particular class sizes. One would therefore want to condition on a rich set of socio-

economic household characteristics and personality traits, e.g. provided by means of a household survey.
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i.e. the effect on all compliers without conditioning on X. We identify this effect by first con-

trolling for X and thereafter averaging over X. There are at least three reasons, why estimat-

ing the unconditional effect (6) is interesting (or even more interesting than the conditional

effect (5)). First, for the purpose of evidence-based policy-making a small number of summary

measures can be more easily conveyed to policy makers and the public than a large number of

estimated effects at every value of X. Second, unconditional effects can be estimated more pre-

cisely than conditional effects. Third, the definition of unconditional effects does not depend

on the variables included in X.6 One can therefore consider different sets of control variables

X and still estimate the same object, which is useful for examining robustness of the results

to the set of control variables. See also Frölich (2007).

For showing identification of the unconditional effect (6), we first introduce some further

notation. Let Nε be a symmetric ε neighbourhood about z0 and partition Nε into N+
ε = {z :

z ≥ z0, z ∈ Nε} and N−ε = {z : z < z0, z ∈ Nε}. According to their reaction to the instrument

z over Nε we can partition the population into four subpopulations:

τ i,ε = a if Di(z) = 1 ∀z ∈ N−ε and Di(z) = 1 ∀z ∈ N+
ε

τ i,ε = n if Di(z) = 0 ∀z ∈ N−ε and Di(z) = 0 ∀z ∈ N+
ε

τ i,ε = c if Di(z) = 0 ∀z ∈ N−ε and Di(z) = 1 ∀z ∈ N+
ε

τ i,ε = d if Di(z) = 1 ∀z ∈ N−ε and Di(z) = 0 ∀z ∈ N+
ε .

These subpopulations are a straightforward extension of the LATE concept of Imbens and

Angrist (1994). The first group contains those units that will always be treated (if Z ∈ Nε),

the second contains those that will never be treated (if Z ∈ Nε), and the third and fourth

group contains the units that are treated only on one side of z0.7 We will assume that the

fourth group, i.e. the ‘defiers’, has measure zero for ε suffi ciently small. Note that in the sharp

design, everyone is a complier for any ε > 0.

Under the following assumption, we can identify the treatment effect for the local com-

6This, of course, is only true if X exclusively contains pre-treatment variables.
7 In the appendix we also consider a possible fifth group of indefinite units, for which no left-limit of Di(z)

may exist. We assume this group to not exist, i.e. we require that all units have well defined left-limits of Di(z).

7



pliers, i.e. for those who switch from D = 0 to 1 at z0.8 It is assumed throughout that the

covariates X are continuously distributed with a Lebesgue density. This assumption is made

for convenience to ease exposition, particularly in the derivation of the asymptotic distribu-

tions later on. Discrete covariates can (at the expense of more cumbersome notation) easily be

included in X, as the derivation of the asymptotic distribution only depends on the number of

continuous regressors in X, while discrete variables do not affect the asymptotic properties. In

fact, identification does not require any continuous X variables. Only Z has to be continuous

near z0, but could have masspoints elsewhere.

Assumption 1: For a symmetric neighbourhood Nε about z0 and for almost every X

i) Existence of compliers lim
ε→0

Pr(τ ε = c|Z ∈ Nε) > 0

ii) Monotonicity lim
ε→0

Pr (τ ε = c|Z ∈ Nε) + Pr (τ ε = a|Z ∈ Nε) + Pr (τ ε = n|Z ∈ Nε) = 1

iii) Independent IV lim
ε→0

Pr (τ ε = t|X,Z ∈ N+
ε )− Pr (τ ε = t|X,Z ∈ N−ε ) = 0 for t ∈ {a, n, c}

iv) IV Exclusion lim
ε→0

E
[
Y 1|X,Z ∈ N+

ε , τ ε = t
]
− E

[
Y 1|X,Z ∈ N−ε , τ ε = t

]
= 0 for t ∈ {a, c}

lim
ε→0

E
[
Y 0|X,Z ∈ N+

ε , τ ε = t
]
− E

[
Y 0|X,Z ∈ N−ε , τ ε = t

]
= 0 for t ∈ {n, c}

v) Common support lim
ε→0

Supp(X|Z ∈ N+
ε ) = lim

ε→0
Supp(X|Z ∈ N−ε )

vi) Density at threshold FZ(z) is differentiable at z0 and fZ(z0) > 0

lim
ε→0

FX|Z∈N+
ε

(x) and lim
ε→0

FX|Z∈N−ε (x) exist and are differentiable in x

with pdf f+(x|z0) and f−(x|z0), respectively.

vii) Bounded moments E[Y 1|X,Z] and E[Y 0|X,Z] are bounded away from ± infinity a.s. over Nε
Concerning notation, f+(x, z0) = f+(x|z0)f(z0) refers to the joint density of X and Z whereas

f+(x|z0) refers to the conditional density of X.

This assumption requires that in a neighbourhood about z0, the threshold acts like a local

instrumental variable. Assumptions 1 (i) to (iv) are instrumental variable assumptions for

a binary instrument, as discussed e.g. in Imbens (2001). The monotonicity assumption 1(ii)

rules out defiers at the threshold z0, while 1(i) requires the existence of compliers. We note

that 1(i) and 1(ii) could be relaxed to a local version of the compliers-defiers assumption of

de Chaisemartin (2016), which allows for defiers under particular conditions, at the cost of

8The conditions in Assumption 1 are very similar, but a little weaker, to a conditional-on-X version of (4).
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identifying the effects only for a subset of compliers (the so-called ‘comvivors’). Assumptions

1(iii) and 1(iv) represent the exclusion restriction, conditional on X. Assumption 1(v) requires

common support because we need to integrate over the support of X in (7).9 Assumption 1(vi)

implies positive density at z0, such that observations close to z0 exist.

We also assume the existence of the limit density functions f+(x|z0) and f−(x|z0) at the

threshold z0. So far, we do not assume anything about their continuity with respect to z.

In other words, the conditional density could be discontinuous, i.e. f+(x|z0) 6= f−(x|z0), in

which case controlling for X is important for identification and thus consistent estimation, or

it could be continuous, i.e. f+(x|z0) = f−(x|z0), in which case identification does not hinge on

controlling for observed covariates. The latter may, however, reduce the variance of the point

estimator, as discussed below.10

Assumption (1vii) requires the conditional expectation functions to be bounded from above

and below in a neighbourhood of z0. It is invoked to permit interchanging the operations of

integration and taking limits via the Dominated Convergence Theorem.11

Theorem 1 (Identification of complier treatment effect) Under Assumption 1, the

local average treatment effect γ for the subpopulation of local compliers is nonparametrically

identified as:

γ = lim
ε→0

E
[
Y 1 − Y 0 |Z ∈ Nε, τ ε = c

]
=

∫
(m+(x, z0)−m−(x, z0)) · f

+(x|z0)+f−(x|z0)
2 dx∫

(d+(x, z0)− d−(x, z0)) · f+(x|z0)+f−(x|z0)
2 dx

. (7)

Proof: See the appendix.

Under Assumption 1, the treatment effect for the local compliers is identified as a ratio

of two integrals, as shown in Theorem 1. The numerator in (7) is the intention-to-treat

9 If this assumption is not satisfied, one can redefine (7) by restricting it to the common support.
10Note that Assumption 1 is somewhat stronger than needed for identification. Assumptions (1i) to (1iv) could

be replaced with other assumptions that identify the local treatment effect conditional on X. For instance, if

local compliers and local defiers had the same treatment effect, one could drop the monotonicity assumption.

In addition, the existence of a density function for X is not needed.
11This assumption is certainly stronger than needed and could be replaced with some other smoothness

conditions on E[Y d|X,Z] in a neighbourhood of z0.
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(ITT) effect of Z on Y , weighted by the conditional density of X, at z0. (In the limit, the

density of X conditional on Z being within a symmetric neighbourhood around z0 is given

by f+(x|z0)+f−(x|z0)
2 .) The denominator in (7) gives the effect of Z on D, i.e. the fraction of

compliers, at z0. Thus, the ratio of integrals gives the ITT effect multiplied with the inverse

of the number of compliers, corresponding to the LATE at z0.

The ratio of integrals expression in (7) is obtained by applying iterated expectations to

E
[
Y 1 − Y 0 |Z ∈ Nε, τ ε = c

]
to obtain

=

∫
E
[
Y 1 − Y 0 |X = x, Z ∈ Nε, τ ε = c

]
· fX|Z∈Nε,τε=c (x) dx. (8)

Clearly, the density f (X|Z ∈ Nε, τ ε = c) among the local compliers is not identified since the

type τ ε is unobservable. However, by applying Bayes’ theorem to f (X|Z ∈ Nε, τ ε = c) and

replacing the first term in (8) with (5) (before taking limits), several terms cancel out and we

obtain after various calculations the expression (7), which relies on observed variables only. See

the supplementary appendix for detailed derivations. We thereby have identified the average

effect. Similarly, we could identify Quantile Treatment Effects by combining the previous

derivations with the reasoning in Frölich and Melly (2013) and Frandsen, Frölich, and Melly

(2012).

So far, we have identified the treatment effect for the compliers in the fuzzy design. Without

restrictions on treatment effect heterogeneity, it is impossible to identify the effects for always-

and never-participants since they would never change treatment status in a neighbourhood of

z0. However, in the sharp design, everyone is a complier at z0, i.e. d+(x, z0) − d−(x, z0) = 1,

and the expression (7) simplifies to

lim
ε→0

E
[
Y 1 − Y 0 |Z ∈ Nε

]
=

∫ (
m+(x, z0)−m−(x, z0)

)
· f

+(x|z0) + f−(x|z0)

2
dx. (9)

The estimand (9) in the sharp design is identical to the numerator of (7). The following

discussion focusses on the estimation of (7), where the numerator and denominator of (7)

are analyzed separately. Therefore, the asymptotic distribution of (9) in the sharp design is

10



immediately obtained by using the results for the numerator of (7) only. We also note that the

estimands (7) and (9) bear some resemblance to the partial means estimator of Newey (1994).

Both the numerator and denominator of (7) have a partial means form, in that averages over

the covariates X are taken, at the left and the right limit at z0.

Instead of generalizing assumption (4) to permit for further covariates X, we could alter-

natively start from the conditional independence assumption (3). To conserve space, we, how-

ever, do not analyze this in much detail since most applied work either uses a sharp design

(where (3) is meaningless) or otherwise refers to (4). Consider an extension of (3) by including

covariates X:

Y 1
i − Y 0

i ⊥⊥Di|Xi, Zi for Zi near z0. (10)

Analogously to the derivations in Hahn, Todd, and van der Klaauw (2001) it follows that

E
[
Y 1 − Y 0|X,Z = z0

]
=
m+(X, z0)−m−(X, z0)

d+(X, z0)− d−(X, z0)
.

Similarly to the derivations for Theorem 1, one can show that the unconditional treatment

effect for the population near the threshold is

E
[
Y 1 − Y 0|Z = z0

]
=

∫
m+(x, z0)−m−(x, z0)

d+(x, z0)− d−(x, z0)
· f

+(x|z0) + f−(x|z0)

2
dx. (11)

This expression differs from (7) and (9) in that it is an integral of a ratio and not a ratio

of integrals. The results derived in Section 3 therefore do not apply to (11). In addition,

expression (11) may be diffi cult to estimate in small samples as the denominator can be close

to zero for some values of x.12

Instead of using (10), one might be willing to strengthen the latter assumption to

Y 1
i , Y

0
i ⊥⊥Di|Xi, Zi for Zi near z0. (12)

This permits identifying the treatment effect as

E
[
Y 1 − Y 0|Z = z0

]
=

∫
(E [Y |D = 1, X = x, Z = z0]− E [Y |D = 0, X = x, Z = z0]) · f

+(x|z0) + f−(x|z0)

2
dx,

12This problem is of much less concern for estimators of (7) and (9) as those are based on a ratio of two

integrals and not on an integral of a ratio. For those estimators the problem of very small denominators for

some values of X averages out.
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where E [Y |D,X,Z = z0] can be estimated by a combination of the left and right hand side

limits. This approach does not exclusively rely on comparing observations across the threshold

but also uses variation within either side of the threshold. The estimand has a similar structure

as (7) and (9) and the estimation properties derived later could easily be extended to this case.

3 Estimation

A straightforward estimator of (7) is

γ̂ =

n∑
i=1

(m̂+(Xi, z0)− m̂−(Xi, z0) ) ·Kh

(
Zi−z0
h

)
n∑
i=1

(
d̂+(Xi, z0)− d̂−(Xi, z0)

)
·Kh

(
Zi−z0
h

) , (13)

where m̂ and d̂ are nonparametric estimators and Kh (u) a kernel function.13

For practical convenience, we will mostly work with product kernel functions below.

Product kernel functions also have the advantage that one can easily incorporate discrete X

in the spirit of Racine and Li (2004). Define κ and κ̄ as univariate kernel functions, where κ

is a second-order kernel (assumed to be symmetric and integrating to one) and κ̄ is a kernel

of order λ ≥ 2. The following kernel constants for κ will be used later: µl =
∞∫
−∞

ulκ(u)du

and µ̄l =
∞∫
0

ulκ(u)du and µ̃ = µ̄2
2 − µ̄2

1. (With symmetric kernel µ̄0 = 1
2 .) Furthermore

define µ̈l =
∞∫
0

ulκ2(u)du.14 The kernel constants for κ̄ are defined as ηl =
∞∫
−∞

ulκ̄(u)du and

η̇l =
∞∫
−∞

ulκ̄2(u)du.15

We will consider two different choices for Kh (u) in (13). The conventional choice would be

to use a positive (i.e. second order) and symmetric kernel

Kh (u) =
1

h
κ(u). (14)

However, as shown below, the use of this ‘naive’kernel function (14) leads at best to a conver-

gence rate of n−
1
3 of (13).

13For the sharp design (9) the estimator simplifies to
∑

(m̂+(Xi,z0)−m̂−(Xi,z0) )·Kh

(
Zi−z0

h

)
∑
Kh

(
Zi−z0

h

) .

14For the Epanechnikov kernel with support [−1, 1], i.e. K(u) = 3
4

(
1− u2

)
1 (|u| < 1) the kernel constants

are µ0 = 1, µ1 = µ3 = µ5 = 0, µ2 = 0.2, µ4 = 6/70, µ̄0 = 0.5, µ̄1 = 3/16, µ̄2 = 0.1, µ̄3 = 1/16, µ̄4 = 3/70.
15The kernel function κ̄ being of order λ means that η0 = 1 and ηl = 0 for 0 < l < λ and ηλ 6= 0.
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As an alternative, we consider a boundary kernel

Kh (u) = (µ̄2 − µ̄1 |u|) ·
1

h
κ(u) (15)

in (13), and we will see that this leads to a convergence rate of n−
2
5 of (13), i.e. the rate of

univariate nonparametric regression. This is achieved through smoothing with implicit double

boundary correction.16

In the following, we will refer to estimator (13) with kernel function (14) as γ̂naive. Estimator

(13) with kernel function (15) is denoted as γ̂RDD. Because of the asymptotic properties derived

below we recommend the use of γ̂RDD.

In either case, estimation proceeds in two steps and requires nonparametric first step esti-

mates of m+, m−, d+ and d−.17 These can be estimated nonparametrically by considering only

observations to the right or the left of z0, respectively. Since this corresponds to estimation at

a boundary point, local linear regression is suggested, which is known to display better bound-

ary behaviour than conventional Nadaraya-Watson kernel regression. m+(x, z0) is estimated

by local linear regression as the value of a that solves

arg min
a,b,c

n∑
j=1

(
Yj − a− b (Zj − z0)− c′ (Xj − x)

)2 ·KjI
+
j (16)

where I+
j = 1(Zj > z0) and a product kernel is used

Kj = Kj(x, z0) = κ

(
Zj − z0

hz

)
·
L∏
l=1

κ̄

(
Xjl − xl
hx

)
, (17)

where L is the dimension of X, and κ and κ̄ are univariate kernel functions with κ a second-

order kernel and κ̄ a kernel of order λ ≥ 2.

A result derived later will require higher-order kernels (i.e. λ > 2) if the number of continu-

ous regressors is larger than 3. For applications with at most 3 continuous regressors, a second-

order kernel will suffi ce such that κ̄ = κ can be chosen. Note that three different bandwidths
16See e.g. Jones (1993) or Jones and Foster (1996) for similar boundary kernels, or Gasser and Müller (1979),

Gasser, Müller, and Mammitzsch (1985), Müller (1991) or Tenreiro (2013) for a more general discussion on

various forms of boundary kernels or boundary corrections including the derivation of optimal boundary kernels

for density estimation, estimation of distribution functions or estimation of nonparametric curves etc.
17 In the sharp design (9), d+ and d− are not estimated but set to 1 and 0, respectively.
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hz, hx, h are used. h is the bandwidth in the matching estimator (13) to compare observations

to the left and right of the threshold, whereas hz and hx determine the local smoothing area for

the local linear regression in (16), which uses observations only to the right or only to the left of

the threshold. We need some smoothness assumptions as well as conditions on the bandwidth

values.18

Assumption 2:

i) IID sampling: The data {(Yi, Di, Zi, Xi)} are iid from R× R× R× RL

ii) Smoothness:

- m+(x, z), m−(x, z), d+(x, z), d−(x, z) are λ times continuously differentiable with respect

to x at z0 with λ-th derivative Hölder continuous in an interval around z0,

- f+(x, z) and f−(x, z) are λ− 1 times continuously differentiable with respect to x at z0

with (λ− 1)-th derivative Hölder continuous in an interval around z0,

- m+(x, z), d+(x, z) and f+(x, z) have two continuous right derivatives with respect to z

at z0 with second derivative Hölder continuous in an interval around z0,

- m−(x, z), d−(x, z) and f−(x, z) have two continuous left derivatives with respect to z at z0

with second derivative Hölder continuous in an interval around z0,

iii) the univariate Kernel functions κ and κ̄ in (17) are symmetric, bounded, Lipschitz, integrate

to one and are zero outside a bounded set; κ is a second-order kernel and κ̄ is a kernel of order

λ,

iv) Bandwidths: The bandwidths satisfy h, hz, hx → 0 and nh → ∞ and nhz → ∞ and

nhzh
L
x →∞.

v) Conditional variances: The left and right limits of the conditional variances

lim
ε→0

E
[
(Y −m+(X,Z))

2 |X,Z = z + ε
]
and lim

ε→0
E
[
(Y −m−(X,Z))

2 |X,Z = z − ε
]
exist at z0.

18Note that the above setup includes global linear regression for the special case where all bandwidth values

are set to infinity. In this case, the estimator (16) corresponds to a linear regression using only data points to

the right; and analogously on the left hand side. While a bandwidth value of infinity minimizes variance it could

lead to a large bias if the true regression curve is non-linear. The estimator analyzed below seeks to minimize

mean squared error, i.e. the sum of the squared bias and variance.
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3.1 Properties of γ̂naive

With these preliminaries we consider the properties of γ̂naive and γ̂RDD. The estimator γ̂naive

is, in essence, a combination between local linear regression in the first step and Nadaraya-

Watson regression in the second step. Although this estimator appears to be the most obvious

one for estimating (7), it has worse statistical properties than γ̂RDD in the sense that it achieves

a lower rate of convergence. This is due to the missing boundary correction in the second step.

Proposition 2 (Asymptotic properties of γ̂naive) Under Assumptions 1, 2 and 3, the bias

and variance terms of γ̂naive, which is the estimator (13) with kernel function (14), are of order

Bias(γ̂naive) = O(h+ h2
z + hλx)

V ar(γ̂naive) = O

(
1

nh
+

1

nhz

)
.

For the sharp design (9), the same results apply. The exact expressions for bias and variance

are given in the appendix.

From this result it can be seen that the fastest rate of convergence possible for γ̂naive by

appropriate bandwidth choices is n−
1
3 .19 It is straightforward to show asymptotic normality for

this estimator, but the (first order) approximation may not be very useful in practice as it would

be dominated by the bias and variance terms O(h) and O( 1
nh). The terms corresponding to the

estimation error of m̂+(x, z0), m̂−(x, z0), d̂+(x, z0), d̂−(x, z0) would be of lower order and thus

ignored in the first-order approximation. The bias and variance approximation thus obtained

would be the same as in a situation where m+(x, z0),m−(x, z0), d+(x, z0), d−(x, z0) were known

and not estimated. Hence, such an approximation might not be very accurate in small samples.

A more useful approximation can be obtained by retaining also the lower order terms. However,

it seems more promising to use γ̂RDD instead.

19 In the special case where the density is continuous, i.e. f−(x|z0) = f+(x|z0), the bias term with respect

to the bandwidth h is O(h2) such that a convergence rate of n−
2
5 is possible. In this paper, we focus on the

estimator proposed in the next section, though, because it can obtain n−
2
5 rate irrespective of whether the

density is continuous or not.
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3.2 Properties of γ̂RDD

The estimator γ̂RDD is based on (13), but uses the boundary kernel (15) in the second smooth-

ing step, instead of (14). It thereby attains the convergence rate of a one dimensional non-

parametric regression estimator, irrespective of the dimension of X. It thus obtains the fastest

convergence rate possible and is not affected by a curse of dimensionality. This is achieved by

smoothing over all regressors X and by an implicit boundary adaptation with respect to Z. (In

addition, the bias and variance terms due to estimating m+,m−, d+, d− and due to estimating

the density functions f−(x|z0)+f+(x|z0)
2 by the empirical distribution functions converge at the

same rate.)

We derive the asymptotic distribution of this estimator and show that the asymptotic

variance becomes smaller the more covariates X are included. For the optimal convergence

result further below, we need to be specific about the choice of the bandwidth values.

Assumption 3:

The bandwidths satisfy the following conditions:

lim
n→∞

√
nh5 = r <∞

lim
n→∞

hz
h

= rz with 0 < rz <∞

lim
n→∞

h
λ/2
x

h
= rx <∞.

This assumption ensures that the bias and standard deviation of the estimator converge at

rate n−
2
5 to zero, i.e. at the rate of a univariate nonparametric regression. Note that the last

condition of Assumption 3 provides an upper bound on hx, whereas Assumption (2iv) provides

a lower bound on hx. Suppose that hx depends on the sample size in the following way:

hx ∝ nζ ,

then the bandwidth conditions of Assumption 2 and 3 together require that

− 4

5L
< ζ ≤ − 2

5λ
. (18)

This implies that hx converges at a slower rate to zero than h and hz when L ≥ 4, i.e. when

X contains 4 or more continuous regressors. Therefore, a necessary condition for Assumptions
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2 and 3 to hold jointly is that − 4
5L < − 2

5λ or equivalently λ > L
2 . As further discussed

below, this requires higher-order kernels if X contains 4 or more continuous regressors, whereas

conventional kernels are suffi cient otherwise. Assumption 3 is suffi cient for the bias and variance

to converge at the univariate nonparametric rate, which is summarized in the following theorem.

Theorem 3 (Asymptotic distribution of γ̂RDD) a)Under Assumptions 1 and 2, the bias

and variance terms of γ̂RDD, which is the estimator (13) with kernel function (15), are of order

Bias(γ̂RDD) = O(h2 + h2
z + hλx)

V ar(γ̂RDD) = O

(
1

nh
+

1

nhz

)
b) Under Assumptions 1, 2 and 3 the estimator is asymptotically normally distributed and

converges at the univariate nonparametric rate

√
nh (γ̂RDD − γ)→ N (BRDD,VRDD) .

where BRDD =

r

Γ

µ̄22 − µ̄1µ̄3
4µ̃f(z0)

∫ (
m+(x, z0)−m−(x, z0)− γ

(
d+(x, z0)− d−(x, z0)

))(∂2f+
∂z2

(x, z0) +
∂2f−

∂z2
(x, z0)

)
dx

+
rr2z
Γ

µ̄22 − µ̄1µ̄3
2µ̃

∫ (
∂2m+(x, z0)

∂z2
− ∂2m−(x, z0)

∂z2
− γ ∂

2d+(x, z0)

∂z2
+ γ

∂2d−(x, z0)

∂z2

)
f−(x, z0) + f+(x, z0)

2f(z0)
dx

+
rr2xηλ

Γ

∫ L∑
l=1

{
∂λm+(x, z0)

λ! · ∂xλl
+

λ−1∑
s=1

∂sm+(x, z0)

∂xsl
ω+s −

∂λm−(x, z0)

λ! · ∂xλl
−
λ−1∑
s=1

∂sm−(x, z0)

∂xsl
ω−s

}
f−(x, z0) + f+(x, z0)

2f(z0)
dx

−γrr
2
xηλ

Γ

∫ L∑
l=1

{
∂λd+(x, z0)

λ! · ∂xλl
+

λ−1∑
s=1

∂sd+(x, z0)

∂xsl
ω+s −

∂λd−(x, z0)

λ! · ∂xλl
−
λ−1∑
s=1

∂sd−(x, z0)

∂xsl
ω−s

}
f−(x, z0) + f+(x, z0)

2f(z0)
dx

where Γ =
∫

(d+(x, z0)− d−(x, z0)) · f
−(x|z0)+f+(x|z0)

2 dx

and ω+
s =

{
∂λ−sf+(Xi,z0)

s!(λ−s)!·∂xλ−sl

− ∂λ−1f+(x0,z0)

∂x
λ−1
1

·
(
∂λ−2f+(x0,z0)

∂x
λ−2
l

)−1
(λ−2)!

(λ−1)!s!(λ−1−s)!
∂λ−1−sf+(Xi,z0)

∂xλ−1−sl

}
/f+(Xi, z0)

and ω−s defined analogously

and VRDD =

µ̄2
2µ̈0 − 2µ̄2µ̄1µ̈1 + µ̄2

1µ̈2

Γ24µ̃2f2(z0)
× (

1

rz

∫ (
f+(x, z0) + f−(x, z0)

)2
×
(
σ2+
Y (x, z0)− 2γσ2+

Y D(X, z0) + γ2σ2+
D (x, z0)

f+(x, z0)
+
σ2−
Y (x, z0)− 2γσ2−

Y D(X, z0) + γ2σ2−
D (x, z0)

f−(x, z0)

)
dx

+

∫ {
m+(x, z0)− γd+(x, z0)−m−(x, z0) + γd−(x, z0)

}2 ·
(
f+(x, z0) + f−(x, z0)

)
dx ),
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where σ2+
Y (X, z) = lim

ε→0
E
[
(Y −m+(X,Z))

2 |X,Z = z + ε
]

and σ2+
Y D(X, z) = lim

ε→0
E [(Y −m+(X,Z)) (D − d+(X,Z)) |X,Z = z + ε] and σ2+

D (X, z) =

lim
ε→0

E
[
(D − d+(X,Z))

2 |X,Z = z + ε
]
and analogously for σ2+

Y (X, z), σ2+
Y D(X, z) and

σ2+
D (X, z).

For the sharp design (9), the same results are obtained but the formulae are simpler. d+

and d− are not estimated but set to 1 and 0, respectively. This implies that Γ = 1 and the

terms σ2+
D , σ

2−
D , σ

2+
Y D, σ

2−
Y D and all derivatives of d

+(x, z0) and d−(x, z0) are zero.

Note that Assumption 3 is stronger than needed for the results of Theorem 3. For obtaining

n−
2
5 convergence weaker rate conditions would suffi ce. In other words, it would not be needed

that the ratios of the bandwidths converge to a well defined limit point. Assumption 3 permits

obtaining concise and explicit expressions for bias and variance, though. We also see that

undersmoothing is permitted: For a choice of r = 0 in Assumption 3, the limit bias term is

zero, i.e. BRDD = 0. Such undersmoothing is convenient, e.g. for developing test statistics.20

Part (18) of Assumption 3 requires that λ > L
2 to control the bias due to smoothing in the

X dimension. If X contains at most 3 continuous regressors, a second order kernel λ = 2 can be

used. Otherwise, higher order kernels are required to achieve a n−
2
5 convergence rate. Instead of

using higher order kernels, one could alternatively use local higher order polynomial regression

instead of local linear regression (16). However, when the number of regressors inX is large, this

could be inconvenient to implement in practice since a large number of interaction and higher

order terms would be required, which could give rise to problems of local multicollinearity in

small samples and/or for small bandwidth values. On the other hand, higher order kernels are

very convenient to implement when a product kernel (17) is used. Higher order kernels are

only necessary for smoothing in the X dimension but not for smoothing along Z.

When a second order kernel is used and X contains at most 3 continuous regressors, the

20We thank a referee for pointing this out.

18



bias term BRDD simplifies to

r

Γ

µ̄22 − µ̄1µ̄3
4µ̃f(z0)

∫ (
m+(x, z0)−m−(x, z0)− γ

(
d+(x, z0)− d−(x, z0)

))(∂2f+
∂z2

(x, z0) +
∂2f−

∂z2
(x, z0)

)
dx

+
rr2z
Γ

µ̄22 − µ̄1µ̄3
2µ̃

∫ (
∂2m+(x, z0)

∂z2
− ∂2m−(x, z0)

∂z2
− γ ∂

2d+(x, z0)

∂z2
+ γ

∂2d−(x, z0)

∂z2

)
·f
−(x, z0) + f+(x, z0)

2f(z0)
dx

+
rr2xµ2

2Γ

∫ L∑
l=1

{
∂2m+(x, z0)

∂x2l
− ∂2m−(x, z0)

∂x2l
− γ ∂

2d+(x, z0)

2 · ∂x2l
+ γ

∂2d−(x, z0)

2 · ∂x2l

}
·f
−(x, z0) + f+(x, z0)

2f(z0)
dx.

It remains to be discussed how the bandwidth values h, hz and hx should be chosen in

practice. It is beyond the scope of this paper to develop a data driven bandwidth selector, and

we therefore limit ourselves to a procedure that is rate optimal, i.e. satisfies Assumptions 2 and

3 as n increases to infinity. The first part of Assumption 3 suggests to choose h proportional to

n−
1
5 , which corresponds to the rate for univariate nonparametric regression. A simple procedure

is to choose h via (least squares) cross-validation with respect to a nonparametric regression of

Y on Z (outside of a neighbourhood around z0), which is known to provide a bandwidth that

converges at the desired rate.21

With an estimate for h, we can choose hz = h which is permitted by Assumptions 2 and 3. If

X contains at most three continuous regressors, we can also choose hx = h. On the other hand,

if L ≥ 4, then hx should converge at a slower rate than h and hz. Assumptions 2 and 3 give

us some leeway in the exact choice of hx. If we would like to make the bias small (for reasons

discussed in the next section), we would choose the lower bound of (18) to set hx = c1 ·n−
4
5L

+δ

for a small positive δ and some positive constant c1. This contrasts with the choice for h which

is given as h = c2 · n−
1
5 . We do not know the optimal c1 and c2, but since we only aim for a

rate optimal choice, we can set c1 = c2 to obtain hx = c1 · n−
4
5L

+δ = c1n
− 4
5L

+δ · n 1
5n−

1
5 such

that

hx = n
1−4/L+5δ

5 · h.

We can thus use the bandwidth h obtained via cross-validation and multiply it with n
1−4/L+5δ

5

21At the same time it is known that the bandwidth obtained by cross-validation converges only very slowly to

the true optimal bandwidth. Nevertheless, many applied researchers proceed by using the bandwidth obtained

from cross-validation and then examine the sensitivity of the final estimation results to changes in the bandwidth

values by re-estimating with various multiples and/or fractions of the original bandwidth values.
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for some small δ to obtain the (larger) bandwidth value for hx. Having estimated γ̂RDD with

these bandwidths, one would usually examine the robustness of the results to the bandwidths

values.

3.3 Variance reduction through the use of control variables

In most of the discussion so far it was permitted that f(x|z) is discontinuous at z0 such that

controlling for X allows reducing bias. In the case where f(x|z) is continuous, controlling for

X is still helpful: It can reduce the variance of the estimator, which is shown in the following

theorem. Suppose that the covariates are identically distributed on both sides of the threshold

(i.e. f(x|z) is continuous) such that γ is identified with and without controlling for any X. In

this case one could use γ̂RDD with X being the empty set. This estimator is henceforth denoted

as γ̂noX . Alternatively, one could use a set of control variables X in the estimator, which we

denote as γ̂RDD as before. Suppose that both estimators are consistent for γ. As shown below,

γ̂noX generally has a larger asymptotic variance than γ̂RDD.
22 On the other hand, an ordering

of squared biases seems impossible under general conditions. However, by Assumption 3 we

can set r = 0, i.e. choose a bandwidth sequence such that the ratio of the squared bias to

variance converges to zero. Such undersmoothing implies that the asymptotic bias BRDD is

zero and the mean-squared-error is thus identical to VRDD. With such undersmoothing, we

only need to analyze the asymptotic variance. As outlined below, there are precision gains by

controlling for X even if the RDD estimator would be consistent without covariates.

For stating Theorem 4 in a concise way, some further notation is required. Let

w+(X, z) = lim
ε→0

E [Y − γD|X,Z = z + ε] be the right limit of the difference between Y and

γD, and w+(z) = lim
ε→0

E [Y − γD|Z = z + ε] be the corresponding expression without condi-

tioning on X.23 Define the variance of w+(X, z0) as V + =
∫
{w+(x, z0)− w+(z0)}2 f(x|z0)dx.

22We would like to point out that the result in Theorem 4 only refers to the variance. While we find that

covariates reduce variance, we do not have a corresponding result for the bias. Hence, in certain situations,

asymptotic bias could possibly increase and we, therefore, cannot rule out that the inclusion of covariates X in

certain cases could even increase MSE if in such situations an increase in squared bias is larger than the decrease

of variance due to the inclusion of X.
23This also contains the sharp design (9) as a special case, where w+(X, z) = lim

ε→0
E [Y − γ|X,Z = z + ε] and

w−(X, z) = lim
ε→0

E [Y |X,Z = z − ε].
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Define w−(X, z), w−(z) and V − analogously as the left limits. Theorem 4 shows that there is

a reduction in variance if V + 6= 0 and/or V − 6= 0.

To gain some intuition, note that V + is the variance of the conditional expectation of Y

given X plus the variance of the conditional expectation of γD given X minus the covariance

between these two terms. Hence, V + is usually nonzero if X is a predictor of Y and/or of D.

On the other hand, V + and V − are zero only if X neither predicts Y nor D.24 Define further

the covariance C as
∫

(w+(x, z0)− w+(z0)) (w−(x, z0)− w−(z0)) f(x|z0)dx. For the case where

V + and V − are both non-zero, we define the correlation coeffi cient R = C√
V +V −

. Now, we can

state the result in terms of the variances and the correlation coeffi cient, which also depends on

the bandwidth sequences. The variance of γ̂RDD is a function of smoothing in the Z dimension

via h and hz. The γ̂noX estimator only depends on hz since there is no smoothing in the second

step. A natural choice would thus be h = hz.25 This implies rz = 1 in Assumption 3. Using

this notation, the difference in the asymptotic variances can be written as

VRDD − VnoX =

{
rz − 2

2
V + +

rz − 2

2
V − − rzC

}(
µ̄2

2µ̈0 − 2µ̄2µ̄1µ̈1 + µ̄2
1µ̈2

Γ2µ̃2f(z0)rz

)
or, if V + and V − are both non-zero, as=

{
rz−2

2 V + + rz−2
2 V − − rzR

√
V +V −

}(
µ̄22µ̈0−2µ̄2µ̄1µ̈1+µ̄21µ̈2

Γ2µ̃2f(z0)rz

)
,

as derived in the appendix. This implies the following:

Theorem 4 Let γ̂RDD be the estimator (13) with kernel function (15) using the set of

regressors X, and let γ̂noX be the estimator with X being the empty set. Denote the

asymptotic variance of γ̂noX by VnoX and assume that both estimators consistently estimate γ

and satisfy Assumptions 2 and 3. Assume further that the distribution of X is continuous at

z0, i.e. f+(X, z0) = f−(X, z0) a.s..

(a) If V + = V − = 0 then

VRDD = VnoX .

(b) Under any of the following conditions

VRDD < VnoX ,
24This discussion excludes the unreasonable case where it predicts both but not Y − γD.
25The variance of γ̂RDD can be reduced even further relative to γ̂noX by choosing hz < h, but this would be

more of a technical trick than a substantive result.
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- if V + = 0 and V − 6= 0 or vice versa and rz < 2

- or if V + 6= 0 and V − 6= 0 and R ≥ 0 and rz < 2

- or if V + 6= 0 and V − 6= 0 and −1 < R < 0 and rz < 2 1+R
1−R2 .

- or if V + 6= 0 and V − 6= 0 and R = −1 and rz < 1.

Hence, if, in case (a) of Theorem 4, where X has no predictive power neither for Y nor for

D, the asymptotic variances are the same. On the other hand, if X has predictive power either

for Y or for D and one uses the same bandwidths for both estimators (hz = h), the RDD

estimator with covariates has a strictly smaller variance.26 This holds in all cases except for

the very implausible scenario where w+(X, z0) and w−(X, z0) are negatively correlated with a

correlation coeffi cient of −1. In most economic applications, however, one would rather expect

a positive correlation.2728

4 Simulations

This section presents a simulation study in order to investigate the finite sample performance

of the suggested method in the context of the sharp and fuzzy RDD. Starting with the former,

26 In the sharp design (9), X cannot have predictive power for D (conditional on Z), hence predictive power

for Y is needed.
27 γ̂RDD has a smaller variance than γ̂noX as it exploits the available information more effectively. Consider,

for simplicity, the sharp design. γ̂noX estimates the conditional mean of Y left and right of the threshold. In

terms of iterated expectations, the left limit of the mean of Y at the threshold could be estimated as the left

limit of the mean of Y conditional on X averaged out with respect to the distribution of X, using only data

points to the left of the threshold. In contrast, γ̂RDD estimates the left limit of the mean of Y conditional on X,

but then takes averages with respect to the distribution of X in the neigbourhood of z0. In the case where the

distribution of X is continuous at z0, i.e. f+(X, z0) = f−(X, z0), the estimator γ̂RDD uses the data points Xi

in the left and in the right neigbourhood of z0 in order to estimate f(X, z0), whereas γ̂noX uses only the data

on one side of the threshold. This implies that γ̂RDD uses more information in the estimation of the empirical

distribution function F (X, z0), which leads to the variance reductions in Theorem 4.
28Theorem 4 can easily be extended to show that the RDD estimator with a larger regressor set X, i.e. where

X ⊂ X, has smaller asymptotic variance than the RDD estimator with X. (The proof is analogous and is

omitted.) Hence, one can combine specific covariates for eliminating bias with adding further covariates to

reduce variance. The more variables are included in X the smaller the variance will be.
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we consider the following data generating process (DGP):

Z,U, V,W ∼ N (0, 1) independently of each other, (19)

D = I{Z > 0}, X1 = αD + 0.5U, X2 = αD + 0.5V,

Y = D + 0.5Z − 0.25DZ + 0.25Z2 + β(X1 +X2) +
β

2
(X2

1 +X2
2 ) +W.

Both the running variable Z and the unobservables U, V,W , which affect the covariates X1, X2

and the outcome Y , respectively, are standard normally distributed. The parameter α reflects

the strength of the association between the distributions of X1, X2 and the treatment state

D. β determines the impact of X1, X2 and their higher order terms on Y . In the simulations,

we consider various combinations of α and β. First, we set α = 0 and β = 0.4 such that the

covariates affect the outcome, but are balanced around the threshold. In this case, controlling

for X = (X1, X2) is not necessary for the consistency of RDD, but might reduce the variance.

Second, we set α = 0.2 and β = 0.4, implying that the distribution of X differs across treatment

states at the threshold and that X affects Y .

We run 1000 simulations and consider sample sizes of n = 1000 and 4000 to analyse RDD

estimation based on the boundary kernel γ̂RDD, see (15). Least squares cross-validation (CV)

is used to select the bandwidths for the estimation of m+(x, z) and m−(x, z) (using local linear

regression) as well as Kh(u) required in (13),29 based on the ‘np’package for the statistical

software ‘R’by Hayfield and Racine (2008). In addition, we also make use of undersmoothing

and oversmoothing by taking half or twice the CV bandwidth, respectively (CV/2, 2CV).30

We compare our method to conventional RDD estimation without covariates as

implemented in the ‘rdd’package for ‘R’by Dimmery (2016), which is based on a local linear

regression of Y on Z. We consider several bandwidths choices, namely the values picked

by the CV procedure for γ̂RDD; the method of Imbens and Kalyanaraman (2012) (IK) for

optimal bandwidth selection in RDD; the robust inference approach of Calonico, Cattaneo,

29For m+(X,Z) and m−(X,Z), CV only uses treated and non-treated observations, respectively.
30We also considered a local cross-validation procedure that only used observations with values of the running

variable not smaller than its median among observations below the threshold and not larger than its median

among observations above the threshold, see Ludwig and Miller (2007). For ‘CV’and ‘2CV’, results were similar

to those reported in Tables 1 and 2. Results available upon request.
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Table 1: Simulations - sharp RDD

γ̂RDD RDD without X γ̂RDD RDD without X

bandwidth CV CV/2 2CV CV IK CCT LM CV CV/2 2CV CV IK CCT LM

α = 0, β = 0.4 n=1000 n=4000

bias 0.00 -0.00 0.00 -0.00 0.01 0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00 -0.01 -0.00

sdev 0.15 0.27 0.13 0.43 0.20 0.22 0.15 0.09 0.12 0.09 0.27 0.10 0.10 0.08

rmse 0.15 0.27 0.13 0.43 0.20 0.22 0.15 0.09 0.12 0.09 0.27 0.10 0.10 0.08

α = 0.2, β = 0.4 n=1000 n=4000

bias -0.00 -0.00 -0.01 0.18 0.18 0.18 0.17 -0.00 -0.00 -0.01 0.16 0.17 0.17 0.17

sdev 0.17 0.27 0.14 0.45 0.20 0.22 0.15 0.09 0.13 0.09 0.30 0.10 0.10 0.08

rmse 0.17 0.27 0.14 0.48 0.27 0.28 0.23 0.09 0.13 0.09 0.34 0.20 0.20 0.19

Note: ‘CV’, ‘CV/2’, ‘2CV’ stands for bandwidth selection based on least squares cross-validation, as well as

twice and half that value. ‘IK’ is the optimal Imbens-Kalyanaraman (2012) bandwidth. ‘CCT’ is the robust

inference approach of Calonico, Cattaneo, and Titiunik (2014) (CCT). ‘LM’is the local cross-validation approach

of Ludwig and Miller (2007) based on the median values of the running variable above and below the threshold.

‘bias’, ‘sdev’, and ‘rmse’ report the bias, standard deviation, and root mean squared error of the respective

method.

and Titiunik (2014) (CCT) as implemented as default option in the ‘rdrobust’ package for

‘R’ by Calonico, Cattaneo, and Titiunik (2015); and the local cross-validation approach of

Ludwig and Miller (2007) (LM) based on the median values of the running variable above

and below the threshold. In all estimations, the Epanechnikov kernel is used.

Table 1 reports the bias, standard deviation, and root mean squared error (RMSE) of

the estimators for various choices of α, β in the sharp RDD. When setting α = 0, β = 0.4,

all procedures are unbiased as expected. Under either sample size, γ̂RDD outperforms RDD

without X in terms of precision when using the same CV bandwidth for both estimators.

Furthermore, γ̂RDD with CV is in most cases also more precise than RDD without X based

on the IK, CCT, and LM bandwidths.31 As expected, a smaller bandwidth (CV/2) increases

31Under n = 1000, α = 0, β = 0.4, the means (standard deviations) of the CV, IK, CCT, and LM bandwidths

for Z are 0.16 (0.06), 0.84 (0.29), 0.66 (0.11), 1.58 (0.51), respectively. The means and standard deviations are

24



the standard deviation of γ̂RDD, while a larger bandwidth (2CV) slightly decreases it. For

n = 4000, however, the differences in precision are quite moderate for various bandwidth

choices.

When setting α = 0.2 and β = 0.4, the biases of γ̂RDD are again close to zero, while this is

no longer the case for RDD without X. For n = 1000, γ̂RDD with CV and 2CV dominates any

RDD without X in terms of bias, standard deviation, and root mean squared error (RMSE),

while γ̂RDD with CV/2 is less precise. Under n = 4000, all three versions of γ̂RDD have a

considerably smaller RMSE than any RDD without X.

Table 2: Simulations - fuzzy RDD

γ̂RDD RDD without X γ̂RDD RDD without X

bandwidth CV CV/2 2CV CV IK CCT LM CV CV/2 2CV CV IK CCT LM

α = 0, β = 0.4 n=1000 n=4000

bias -0.01 0.00 -0.02 -0.05 -0.02 -0.01 -0.01 0.01 -0.00 0.01 -0.01 0.00 -0.01 -0.01

sdev 0.27 0.42 0.22 0.76 0.34 0.34 0.24 0.16 0.18 0.14 0.34 0.16 0.16 0.12

rmse 0.27 0.42 0.22 0.76 0.34 0.34 0.24 0.16 0.18 0.14 0.34 0.16 0.16 0.12

α = 0.2, β = 0.4 n=1000 n=4000

bias -0.01 -0.00 -0.03 0.25 0.27 0.27 0.27 0.01 0.01 0.00 0.25 0.28 0.27 0.27

sdev 0.28 0.52 0.23 0.67 0.33 0.34 0.23 0.15 0.20 0.15 0.39 0.16 0.16 0.12

rmse 0.28 0.52 0.23 0.72 0.43 0.43 0.36 0.15 0.20 0.15 0.46 0.32 0.31 0.30

Note: ‘CV’, ‘CV/2’, ‘2CV’ stands for bandwidth selection based on least squares cross-validation, as well as

twice and half that value. ‘IK’ is the optimal Imbens-Kalyanaraman (2012) bandwidth. ‘CCT’ is the robust

inference approach of Calonico, Cattaneo, and Titiunik (2014) (CCT). ‘LM’is the local cross-validation approach

of Ludwig and Miller (2007) based on the median values of the running variable above and below the threshold.

‘bias’, ‘sdev’, and ‘rmse’ report the bias, standard deviation, and root mean squared error of the respective

method.

Secondly, we consider the case of a fuzzy RDD.We modify the DGP by replacingD = I{Z >

0} in (19) with D = I{−1 + 2I{Z > 0} + 0.5U + Q > 0}, with Q ∼ N (0, 1) independently

of any other variable. D is now endogenous even at the threshold due to U entering both

very similar under n = 1000, α = 0.2, β = 0.4.
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the treatment and outcome equation. The bandwidths used for the estimation of d+(x, z) and

d−(x, z) required for the fuzzy RDD method are selected in an analogous way as for m+(x, z)

and m−(x, z). We also consider fuzzy RDD estimation without covariates based on Dimmery

(2016) with CV, IK, CCT, and LM bandwidth choices, repectively.32 The results are reported

in Table 2 and show a qualitatively similar pattern as for the sharp RDD. However, standard

errors are generally larger as estimation is based on the compliers only, which by the definition

of the DGP make up for about 65% of the population.

5 Application

As an empirical illustration of our method we use data from Lalive (2008), who studies a la-

bor market program introduced in June 1988 that extended the maximum duration of unem-

ployment benefits from 30 to 209 weeks for job seekers aged 50 or older in certain regions of

Austria under particular conditions. This suggests the use of a sharp RDD for assessing the

program’s effect on labor market outcomes such as unemployment duration. The treatment

is defined based on the age threshold of 50. As acknowledged by Lalive (2008), however, a

concern is that employees and companies could manipulate age at entry into unemployment,

for example, by postponing a layoff in a way that the age requirement is just satisfied. This

is a common concern in many applications. If such manipulations are selective with respect

to employee characteristics that also affect labor market outcomes, conventional RDD without

covariates fails to identify the effect of the program due to confounding related to an imbal-

ance of the characteristics around the threshold. In contrast, our method remains consistent

if all labor market relevant characteristics are plausibly observed in the data. As a word of

caution, however, we would like to point out that this cannot be taken for granted in our ap-

plication. For instance, unobserved individual characteristics like motivation, (dis-)utility from

work, and self-confidence might predict both manipulation and labor market success. To con-

sistently estimate the program effect by our method, it is required that these factors do not

32Under n = 1000, α = 0, β = 0.4, the means (standard deviations) of the CV, IK, CCT, and LM bandwidths

for Z are 0.23 (0.07), 0.84 (0.29), 0.66 (0.11), 1.73 (0.59), respectively. The means and standard deviations are

very similar under n = 1000, α = 0.2, β = 0.4.
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entail confounding conditional on the socio-economic and employment-related characteristics

available in the data (see the discussion below).

Table 3: Covariate sample means and balance tests at the threshold

IK IK/2

sample mean difference p-value difference p-value

married (binary) 0.75 0.16 0.00 0.16 0.01

single (binary) 0.09 -0.05 0.05 -0.05 0.13

education: medium (binary) 0.22 0.02 0.51 -0.00 0.99

education: high (binary) 0.08 0.04 0.03 0.04 0.14

foreign (binary) 0.02 0.01 0.37 0.01 0.59

replacement rate 0.44 -0.01 0.01 -0.01 0.03

log wage in last job 6.15 0.12 0.00 0.18 0.00

actual to potential work experience 0.89 0.02 0.06 0.00 0.77

white collar worker (binary) 0.32 0.16 0.00 0.15 0.00

industry: agriculture (binary) 0.02 -0.01 0.65 0.02 0.20

industry: utilities (binary) 0.00 0.00 0.32 0.00 0.32

industry: food (binary) 0.05 -0.02 0.31 -0.03 0.44

industry: textiles (binary) 0.12 0.02 0.54 -0.03 0.38

industry: wood (binary) 0.03 0.00 0.82 0.02 0.20

industry: machines (binary) 0.08 0.04 0.05 0.06 0.06

industry: other manufactoring (binary) 0.11 0.03 0.31 0.04 0.33

industry: construction (binary) 0.03 0.03 0.03 0.04 0.02

industry: tourism (binary) 0.32 -0.03 0.46 -0.02 0.73

industry: traffi c (binary) 0.02 -0.03 0.07 -0.02 0.37

industry: services (binary) 0.17 -0.05 0.14 -0.03 0.50

Note: ‘IK’, ‘IK/2’denote the optimal Imbens-Kalyanaraman (2012) bandwidth and half that value in an RDD

estimation when using each of the covariates as outcome. P-values are based on analytic standard errors and

account for clustering of age (measured in months).

Our analysis makes use of the Austrian social security database, which includes information

on job seekers (age, employment, unemployment and earnings history) and the employers

(region and industry), and the Austrian unemployment register, which contains information

on the place of residence and socio-economic characteristics. The universe of inflows into
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unemployment between 1986 and 1995 is covered, and the inflow sample can be followed up

until the end of 1998. We refer to Lalive (2008) for a description of sample adjustments

made to the data set. Specifically, we consider the female subsample in the age bracket 46

to 53 years living in a region where the program had been introduced, consisting of 5659

observations. The outcome variable Y is unemployment duration, measured as weeks registered

at the unemployment offi ce. The running variable Z is distance to the age threshold of 50,

measured in months divided by 12. Table 3 reports sample means and balancing tests at the

threshold for potentially labor market relevant characteristics, which serve as X. The tests

are based on running RDD estimations with the elements in X as outcome variables using

the ‘rdd’ package, which performs local linear regression around the threshold. Estimates,

standard errors, and p-values are reported for the IK bandwidth and half of it. Indeed, several

covariates are imbalanced around the threshold, which concerns among others marital status,

wage in the last job, and being a white collar worker.33 The results therefore suggest that

observations slightly above the age threshold have somewhat more favorable labor market

relevant characteristics than those slightly below.

Our RDD estimator derived from equation (7) controls for differences in X by giving

appropriate weights to each of these characteristics, according to their distribution about

the thresh-old. Consider, for example, the variable marital status, which is significantly

different in Table 3. On average, 75% of the observations in the sample are married, but

the (conditional) probability of being married is discontinuous at the threshold: The

nonparametric estimates of the probability from the left and right are 63.7% and 79.9%,

respectively. In a symmetric neighbourhood about the threshold, the probability of being

married is thus 71.8%. Our method proceeds by estimating the outcome unemployment

duration for married women left and right of the threshold and multiplying with a weight

of 0.718. An analogous approach applies to unmarried women using a weight of 0.282.

33To control the family-wise error rate of multiple testing in Table 3, one may apply the (conservative)

Bonferroni correction: divide the nominal level of significance by the number of tested covariates (in our case

20) and reject an individual null hypothesis of covariate balance if the corresponding p-value is even lower.

For log wage in last job and white collar worker, the null hypothesis is rejected under either bandwidth at the

nominal 5% level of significance.
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Hence, a weighted average with respect to the fraction of married women in a symmetric

neighbourhood about the threshold is taken. This removes the discontinuity in marital status:

The 63.7% married women to the left are up-weighted with 0.718/0.637, while the 79.9%

married women to the right are down-weighted with 0.718/0.799. Accordingly, the 36.3%

unmarried women to the left are down-weighted with 0.282/0.363, while those 20.1% to the

right are up-weighted with 0.282/0.201. In contrast, RDD estimation not controlling for

X compares the unemployment duration left and right of the threshold without weighting,

thereby ignoring that there are for instance fewer married women to the left than to the right

of the threshold.

Table 4 presents the results for γ̂RDD when using cross-validation for the bandwidth se-

lection of hx, hz in the first step estimation of m+ and m−. Different from the simulations

in Section 4, however, the covariates now contain both continuous and discrete elements. We

therefore apply the method of Racine and Li (2004), which allows for both continuous and

discrete regressors by means of product kernels and is implemented in the ‘np’package of Hay-

field and Racine (2008). We use the Epanechnikov, Wang and van Ryzin (1981), and Aitchison

and Aitken (1976) kernel functions for continuous, ordered discrete, and unordered discrete co-

variates, respectively. We consider several choices for bandwidth h in the Epanechnikov-based

boundary kernel function for the running variable in (13): 0.1, 0.2,..., 0.5. We also compare

the results to RDD regression without covariates based on the ‘rdd’package with the same

bandwidth choice h. The standard errors of any method are based on nonparametrically boot-

strapping the respective estimates 999 times, i.e. randomly resampling the original data with

replacement and applying the estimators to the bootstrap samples. The γ̂RDD estimates point

to a substantial increase in unemployment duration by about 110 weeks.

The results are highly significant, as the standard errors of roughly 4 weeks are quite

moderate. When using RDD without X, both the effect of about 140 weeks and the standard

error of about 10 weeks are substantially higher. For each bandwidth value considered, the

estimates are statistically significantly different between the methods (at the 5% level based on

bootstrapping the differences in the estimates 999 times). This indicates that there might be

some confounding due to observed covariates. Also the effects reported in Table 3 columns (3)
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Table 4: Effect estimates

γ̂RDD RDD without X

Bandwidth h 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

treatment effect 115.31 112.74 110.76 109.71 108.64 134.25 143.67 141.41 137.99 132.55

standard error 4.23 4.09 4.14 4.03 4.41 9.72 12.49 9.90 8.45 8.03

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The bandwidths hx, hz for the first step estimates of m+ and m− entering γ̂RDD (see Section 3) are picked

by least squares cross-validation. For bandwidth h on the running variable Z in γ̂RDD and RDD without X,

several values are considered as indicated in the table. Standard errors are based on bootstrapping the estimate

999 times. Sample size is 5659 observations. X includes the variables given in Table 3: marital status, education,

migration status, replacement rate, log wage in last job, actual to potential work experience, white collar worker,

and industry.

and (4) of Lalive (2008) when omitting X and either using a global RDD model with a higher

order polynomial for the running variable or a local linear model with a very small bandwidth

are somewhat higher than γ̂RDD (122 to 126 weeks). In contrast, the effect of 103 weeks

presented in column (6) of Table 3 in Lalive (2008) is based on linearly controlling for covariates.

Our somewhat higher (and at the 5% level statistically significantly different) estimates (when

bootstrapping the differences) are likely due to using a more flexible specification with respect

to the association of Y and X.

6 Conclusion

In this paper, the regression discontinuity design (RDD) has been generalized to incorporate

covariates X in a fully nonparametric way. Including covariates can reduce the variance and

eliminate biases if X is discontinuously distributed at the threshold. It has been shown that

the curse of dimensionality does not apply and that the average treatment effect (on the local

compliers) can be estimated at rate n−
2
5 irrespective of the dimension of X. For achieving

this rate, a boundary RDD estimator has been suggested. We investigated the finite sample
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properties of our estimator in simulations and applied it to estimate the effect of age-dependent

unemployment benefits on unemployment duration in Austrian labor market reform, where

manipulation at the threshold is a potential concern.
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