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Preface/Abstract 

This is a draft of the first half of an open access textbook on game theory. 

I hope to complete the entire book by the end of 2015.  

After teaching game theory (at both the undergraduate and graduate level) 

at the University of California, Davis for 25 years, I decided to organize all 

my teaching material in a textbook. There are many excellent textbooks in 

game theory and there is hardly any need for a new one. However, there 

are two distinguishing features of this textbook: (1) it is open access and 

thus free,
1
 and (2) it contains an unusually large number of exercises (88 

for the first half of the book) with complete and detailed answers.  

I tried to write the book in such a way that it would be accessible to 

anybody with minimum knowledge of mathematics (high-school level 

algebra and some elementary notions of probability) and with no prior 

knowledge of game theory. However, the book is intended to be rigorous 

and it includes several proofs. I believe it is appropriate for an advanced 

undergraduate class in game theory and also for a graduate-level class. 

I expect that there will be some typos and (hopefully minor) mistakes. If 

you, the reader, come across any typos or mistakes, I would be grateful if 

you could inform me: I can be reached at  gfbonanno@ucdavis.edu.   

I will maintain an updated version of the book on my web page at 

http://www.econ.ucdavis.edu/faculty/bonanno/ . I also intend to add, some 

time in the future, a further collection of exercises and exam questions 

with a solution manual to be given only to instructors. Details will appear 

on my web page. 

Davis, May 1, 2015 

 

                                                                        

1 There may be several other free textbooks on game theory available. The only one I am aware 
of is the excellent book by Ariel Rubinstein and Martin Osborne, MIT Press, 1994, which can 
be downloaded for free from Ariel Rubinstein’s web page: 
http://arielrubinstein.tau.ac.il/books.html . In my experience this book is too advanced for an 
undergraduate class in game theory. 
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Introduction 

he discipline of game theory was pioneered in the early 20th  century by 
mathematicians Ernst Zermelo (1913) and John von Neumann (1928). The 
breakthrough came with John von Neumann and Oscar Morgenstern’s 

book, Theory of games and economic behavior, published  in 1944. This was followed 
by important work by John Nash (1950-51) and Lloyd Shapley (1953). Game 
theory had a major influence on the development of several branches of economics 
(industrial organization, international trade, labor economics, macroeconomics, 
etc.). Over time the impact of game theory extended to other branches of the social 
sciences (political science, international relations, philosophy,  sociology, 
anthropology,  etc.) as well as to fields outside the social sciences, such as biology, 
computer science, logic, etc. In 1994 the Nobel prize in economics was given to 
three game theorists, John Nash, John Harsanyi and Reinhardt Selten, for their 
theoretical work in game theory which was very influential in economics. At the 
same time, the US Federal Communications Commission was using game theory to 
help it design a $7-billion auction of the radio spectrum for personal 
communication services (naturally, the bidders used game theory too!). The Nobel 
prize in economics was awarded to game theorists three more times: in 2006 to 
Robert Aumann and Thomas Schelling, in 2007 to Leonid Hurwicz, Eric Maskin 
and Roger Myerson and in 2010 to Lloyd Shapley and Alvin Roth.  

Game theory provides a formal language for the representation and analysis of 
interactive situations, that is, situations where several “entities”,  called players,  take 
actions that affect each other. The nature of the players varies depending on the 
context in which the game theoretic language is invoked: in evolutionary biology 
(see, for example, John Maynard Smith, 1982) players are non-thinking living 

organisms;
2
 in computer science (see, for example, Shoham-Leyton-Brown, 2008) 

players are artificial agents; in behavioral game theory (see, for example, Camerer, 
2003) players are “ordinary” human beings, etc. Traditionally, however, game 

                                                                        

2 Evolutionary game theory has been applied not only to the analysis of animal and insect 
behavior but also to studying the “ most successful strategies”  for tumor and cancer cells (see, 
for example, Gerstung et al., 2011).} 

Chapter 

0 
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theory has focused on interaction among intelligent, sophisticated and rational 
individuals. For example, Aumann describes game theory as follows:  

 “Briefly put, game and economic theory are concerned with the 
interactive behavior of Homo rationalis - rational man. Homo 
rationalis is the species that always acts both purposefully and 
logically, has well-defined goals, is motivated solely by the desire to 
approach these goals as closely as possible, and has the calculating 
ability required to do so.” (Aumann, 1985, p. 35.) 

This book is concerned with the traditional interpretation of game theory.  

Game theory is divided into two main branches. The first is cooperative game 
theory, which assumes that the players can communicate, form coalitions and sign 
binding agreements. Cooperative game theory has been used, for example, to 
analyze voting behavior and other issues in political science and related fields. We 
will deal exclusively with the other main branch, namely non-cooperative game 
theory. Non-cooperative models situations where the players are either unable to 
communicate or are able to communicate but cannot sign binding contracts. An 
example of the latter situation is the interaction among firms in an industry in a 
country where antitrust laws make it illegal for firms to reach agreements 
concerning prices or production quotas or other forms of collusive behavior. 

The book is divided into three parts.  

Part I deals with games with ordinal payoffs, that is, with games where the players’ 
preferences over the possible outcomes are only specified in terms of an ordinal 
ranking (outcome o  is better than outcome o  or o  is just as good as o ). Chapter 
1 covers strategic-form games, Chapter 2 deals with dynamic games with perfect 
information and Chapter 3 with dynamic games with (possibly) imperfect 
information. 

Part II is devoted to games with cardinal payoffs, that is, with games where the 
players’ preferences extend to uncertain prospects or lotteries: here players are 
assumed to have a consistent ranking of the set of lotteries over basic outcomes. 
Chapter 4 reviews the theory of expected utility, Chapter 5 discusses the notion of 
mixed strategy in strategic-form games of mixed-strategy Nash equilibrium , while 
Chapter 6 deals with mixed strategies in dynamic games. 
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Parts III and IV (in preparation) will deal with more advanced topics.  

After the last section of each chapter there is a section containing several exercises, 
culminating into a “challenging question”, which is more difficult and more time 
consuming than the previous exercises. Each chapter ends with a section containing 
complete and detailed answers to the exercises. In game theory, as in mathematics in 
general, it is essential to test one’s understanding of the material by attempting to 
solve exercises and problems. Indeed the reader is encouraged to attempt solving 
exercises after the introduction of every new concept. The exercises have been 
collected according to the subsections of each chapter. 
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PART I 
 
 
 

Games with  
ordinal payoffs 



GAME THEORY – Giacomo Bonanno 

5 

Ordinal games in strategic form  

1.1 Game frames and games 

game theory deals with interactive situations where two or more 
individuals, called players, make decisions that jointly determine the final 
outcome.   To see an example point your browser to the following video 

https://www.youtube.com/watch?v=tBtr8-VMj0E 

(if you search for ‘Split or Steal’ on youtube.com you will find several instances of 
this game). The video shows an excerpt from Golden Balls, a British daytime TV 
game show. In it each of two players, Sarah and Steve, has to pick one of two balls: 
inside one ball appears the word ‘split’ and inside the other the word ‘steal’ (each 
player is first asked to secretly check which of the two balls in front of him/her is 
the split ball and which is the steal ball). They make their decisions simultaneously. 
The possible outcomes are shown in Table 1.1, where each row is labeled with a 
possible choice for Sarah and each column with a possible choice for Steven. Each 
cell in the table thus corresponds to a possible pair of choices and the resulting 
outcome is written inside the cell. 

Split Sarah gets
$50,000

Steven gets
$50,000

Sarah gets
nothing

Steven gets
$100,000

Steal Sarah gets
$100,000

Steven gets
nothing

Sarah gets
nothing

Steven gets
nothing

Steven
Split Steal

Sarah

 
 

Table 1.1 

Chapter 

1 

G 

https://www.youtube.com/watch?v=tBtr8-VMj0E
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What should a rational player do in such a situation?  It is tempting to reason as 
follows.  

Let us focus on Sarah’s decision problem. She realizes that 
her decision alone is not sufficient to determine the outcome. 
She has no control over what Steven will choose to do; 
however, she can envision two scenarios: one where he 
chooses Steal and the other where he chooses Split.    
 If Steven decides to Steal, then it does not matter what 

Sarah does, because she ends up with nothing, no matter 
what she chooses.  

 If Steven picks Split, then Sarah will get either $50,000 (if 
she also picks Split) or $100,000 (if she picks Steal).    

Thus Sarah should choose Steal. 

The trouble with the above argument is that it is not a valid argument because it 
makes an implicit assumption about how Sarah ranks the outcomes, namely that 
she is selfish and greedy, which may or may not be correct. Let us denote the 
outcomes as follows: 

1

2

3

4

o
o
o
o

: Sarah gets $50,000 and Steven gets $50, 000.
: Sarah gets nothing and Steven gets $100,000.
: Sarah gets $100,000 and Steven gets nothing.
: Sarah gets nothing and Steven gets nothing.

  

Table 1.2 

If, indeed, Sarah is selfish and greedy    in the sense that, in evaluating the outcomes, 
she focuses exclusively on what she herself gets and prefers more money to  
less   then her ranking of the outcomes is as follows:  3 1 2 4o o o o    (which reads 
‘ 3o  is better than 1o , 1o  is better than 2o  and 2o  is just as good as 4o ’). But there 
are other possibilities. For example, Sarah might be fair-minded and view the 
outcome where both get $50,000 as better than all the other outcomes. For 
instance, her ranking could be 1 3 2 4o o o o    (according to this ranking, besides 
valuing fairness, she also displays benevolence towards Steven, in the sense  
that – when comparing the two outcomes where she gets nothing, namely 2o  and 

4o    she prefers the one where at least Steven goes home with some money). If, in 
fact, Sarah is fair-minded and benevolent, then the logic underlying the above 
argument would yield the opposite conclusion, namely that she should choose Split.  
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Thus we cannot presume to know the answer to the question “What is the rational 
choice for Sarah?” if we don’t know what her preferences are. It is a common 
mistake (unfortunately one that even game theorists sometimes make) to reason 
under the assumption that players are selfish and greedy. This is, typically, an 
unwarranted assumption. Research in experimental psychology, philosophy and 
economics has amply demonstrated that many people are strongly motivated by 
considerations of fairness. Indeed, fairness seems to motivate not only humans but 
also primates, as shown in the following video: 
https://www.youtube.com/watch?v=GcJxRqTs5nk  (also available at 
http://www.ted.com/talks/frans_de_waal_do_animals_have_morals).  

The situation illustrated in Table 1.1 is not a game as we have no information about 
the preferences of the players; we use the expression “game-frame” to refer to it.  In 
the case where there are only two players and each player has a small number of 
possible choices (or strategies), a game-frame can be represented  as we did in 
Table 1.1 by means of a table, with as many rows as the number of possible 
strategies of Player 1 and as many columns as the number of strategies of Player 2; 
each row is labeled with one choice of Player 1 and each column with one choice of 
Player 2; inside each cell of the table (which corresponds to a pair of choices, one 
for Player 1 and one for Player 2) we write the corresponding outcome. For the 
general case, the definition of game-frame is as follows. First we remind the reader 
of what the Cartesian product of two or more sets is.  Let 1S  and 2S  be two sets. 
Then the Cartesian product of 1S  and 2S , denoted by 1 2S S , is the set of ordered 
pairs 1 2( , )x x  where 1x  is an element of 1S  ( 1 1x S ) and 2x   is an element of 2S  
( 2 2x S ). For example, if 1 { , , }S a b c  and 2 { , }S D E  then 

 1 2 ( , ), ( , ), ( , ), ( , ), ( , ), ( , )S S a D a E b D b E c D c E  . The definition extends to the 

general case of n sets (n  2): an element of 1 2 ... nS S S    is an ordered n-tuple 

1 2( , ,..., )nx x x  where, for each i = 1,…,n,  i ix S .  

Definition 1.1.  A game-frame in strategic form is a list of four items (a quadruple) 
 1 2, , ,..., , ,nI S S S O f  where: 

●   I = {1,2,…,n} is a set of players (n  2). 
●    1 2, ,..., nS S S  is a list of sets, one for each player. For every Player i I , iS  is 

the set of strategies (or possible choices) of Player i. We denote by S the Cartesian 
product of these sets: 1 2 ... nS S S S    ; thus an element s of S  is a list 

1 2( , ,..., )ns s s s  consisting of one strategy for each player. We call S  the set of 
strategy profiles. 

●   O is a set of outcomes. 
●   :f S O  is a function that associates with every strategy profile s an outcome 

( )f s O . 

https://www.youtube.com/watch?v=GcJxRqTs5nk
http://www.ted.com/talks/frans_de_waal_do_animals_have_morals).
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Using the notation of Definition 1.1, the situation illustrated in Table 1.1 is the 
following game-frame in strategic form:  I = {1,2} (letting Sarah be Player 1 and 
Steven Player 2), 1 2 { }S S  Split, Steal  (so that the set of strategy profiles is 

{( ) ( ) ( ) ( )}S  Split,Split , Split,Steal , Steal, Split , Steal,Steal ), O is the set of 
outcomes listed in Table 1.2,   1( )f oSplit,Split ,   2( )f oSplit,Steal , 

  3( )f oSteal,Split  and   4( )f oSteal,Steal .  

From a game frame one obtains a game by adding, for each player, her preferences 
over (or ranking of) the possible outcomes. We use the following notation.  

Notation Meaning 

io o  Player i considers outcome o  to be better than outcome o  

io o  Player i considers o  to be just as good as o  
(that is, Player i is indifferent between o  and o ) 

io o  Player i considers o  to be at least as good as o   
(that is, either better than or just as good as)  

Table 1.3 

Remark 1.2. The “at least as good” relation   is sufficient to capture also strict 
preference   and indifference  . In fact, starting from  , one can define strict 
preference as follows: io o  if and only if io o  and io o   and one can define 
indifference as follows: io o  if and only if io o  and .io o   
We will assume throughout this book that the “at least as good” relation i  of 
Player i    which embodies her preferences over (or ranking of) the outcomes  is 
complete for every two outcomes 1o  and 2o , either 1 2io o  or 2 1io o ) and 

transitive (if 1 2io o  and 2 3io o  then 1 3io o ).1 

                                                                    

1 It can be proved that transitivity of the “at least as good” relation   implies transitivity of the 
indifference relation (if 1 2o o  and 2 3o o  then 1 3o o ) as well as transitivity of the strict 

preference relation (not only in the sense that (1) if 1 2o o  and 2 3o o  then 1 3o o , but 

also (2) if 1 2o o  and 2 3o o  then 1 3o o  and (3) if 1 2o o  and 2 3o o  then 1 3o o ). 



GAME THEORY – Giacomo Bonanno 

9 

A convenient way to represent a complete and transitive ranking  of the 
outcomes is by means of a utility function :U O  (where   denotes the set of 
real numbers), which assigns a number to every outcome in such a way that 

( ) ( )U o U o  if and only if o o  and ( ) ( )U o U o  if and only if o o . Note, 
however, that no significance should be attributed to these numbers, called utilities, 
besides the implied ranking of the outcomes. For example,  all one can deduce from 
the fact that 1( ) 4iU o   and 2( ) 2iU o   is that Player i prefers 1o  to 2o , but not 
that, say, she considers 1o  to be twice as good as 2o . Thus there is an infinite 
number of utility functions that represent the same ranking. For instance, all of the 
following are equivalent  ways of representing the ranking 3 1 2 4o o o o   : 

31 2 4

5 2 10 2
0.8 0.7 1 0.7
27 1 100 1

oo o o

utility function
U
V
W

      outcome

  

Definition 1.3.  An ordinal game in strategic form is a quintuple 
   1 1, , ..., , , , ,...,n nI S S O f    where: 

●    1, ,..., , ,nI S S O f  is a game-frame in strategic form (Definition 1.1) and 

●   for every Player i I ,  i  is a complete and transitive ranking of the set of  
     outcomes O. 
If we replace each ranking  i  with a utility function iU   that represents it and 
define :i S    by  ( ) ( )i is U f s  , then the triple    1 1, ,..., , , ...,n nI S S    

is called a reduced-form ordinal game in strategic form (‘reduced-form’ because some 
information is lost, namely the specification of the possible outcomes). The 
function :i S    is called the payoff  function of Player i. 

For example, take the game-frame illustrated in Table 1.1, let Sarah be Player 1 and 
Steven Player 2 and name the possible outcomes as shown in Table 1.2. Let us add 
the information that both players are selfish and greedy (that is, Player 1’s ranking 
is 3 1 1 1 2 1 4o o o o    and Player 2’s ranking is 2 2 1 2 3 2 4o o o o   ) and let us 
represent their rankings with the following utility functions (note that the choice of 
numbers 2, 3 and 4 for utilities is arbitrary: any other three numbers would do) 



GAME THEORY – Giacomo Bonanno 

10 

1

31 2 4

2

 3 2 4 2
 3 4 2 2

o

U
U

o o o



(Player 1)
(Player 2

         

)

utility function

outcome

 

Then we obtain the following reduced-form game, where in each cell the first 
number is the utility or payoff of Player 1 and the second number is the utility or 
payoff of Player 2. 

Split 3 3 2 4

Steal 4 2 2 2

Player 2 (Steven)
Split Steal

Player 1
(Sarah)

  
 

Table 1.4 

On the other hand, if we add to the game-frame of Table 1.1 the information that 
Player 1 is fair-minded and benevolent (that is, her ranking is 1 1 3 1 2 1 1o o o o   ), 
while Player 2 is selfish and greedy and represent these rankings with the following 
utility functions 

31 4

1

2

2  (Pla
 (Player 1

yer 2) 3 4 2 2
) 4 2 3 1

         outcome oo o o
utility functio

U
n

U





 

then we obtain the following reduced-form game: 

Split 4 3 2 4

Steal 3 2 1 2

Player 2 (Steven)
Split Steal

Player 1
(Sarah)

 
 

Table 1.5 
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In general, a player will act differently in different games even if they are obtained 
from the same game-frame, because her incentives and objectives (as captured by 
her ranking of the outcomes) will be different. For example, one can argue that in 
the game of Table 1.4 a rational Player 1 would choose Steal, while in the game of 
Table 1.5 the rational choice for Player 1 is Split. 

 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 1.E.1 of Appendix 1.E at the 
end of this chapter. 

1.2. Strict and weak dominance 

First we introduce a useful piece of notation. Recall that S denotes the set of strategy 
profiles, that is, an element s of S is a list of strategies 1( ,..., )ns s s , one for each 
player. We will often want focus on one player, say Player i, and view s as a pair 
consisting of the strategy of Player i  and the remaining strategies of all the other 
players. For example, suppose that there are three players and the strategy sets are as 
follows: 1 { , , }S a b c , 2 { , }S d e  and 3 { , }S f g . Then one possible strategy 
profile is ( , , )s b d g  (thus 1s b , 2s d  and 3s g ) . If we focus on, say, Player 
2 then we will denote by 2s  the sub-profile consisting of the strategies of the 
players other than 2: in this case 2 ( , )s b g  . This gives us  an alternative way of 
denoting s, namely as 2 2( , )s s . Continuing our example where ( , , )s b d g , letting 

2 ( , )s b g  , we can denote s  also by 2( , )d s  and we can write the result of 
replacing Player 2’s strategy d with her strategy e in s by 2( , )e s ; thus 

2( , )d s = ( , , )b d g  while 2( , ) ( , , )e s b e g  .  In general, given a Player i,  we denote 
by iS  denote the set of strategy profiles of the players other than i (that is, 

1,...,i jj n
j i

S S 


  ) and we denote an element of iS  by is .  

Definition 1.4.  Fix an ordinal game in strategic form, a Player i and two of her 
strategies, say a and b. We say that 

●   for Player i,  a strictly dominates b (or b is strictly dominated by a) if, in every 
situation (that is, no matter what the other players do), a gives Player i a payoff 
which is greater than the payoff that b gives. Formally: for every i is S  , 

( , ) ( , )i i i ia s b s    (or, stated in terms of rankings instead of payoffs, 
( , ) ( , )i i if a s f b s  ). 

●   for Player i,  a weakly dominates b (or b is weakly dominated by a) if, in every 
situation, a gives Player i a payoff which is greater than or equal to the payoff that 
b gives and, furthermore, there is at least one situation where a gives a greater 
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payoff than b. Formally: for every i is S  , ( , ) ( , )i i i ia s b s    (or, stated in 
terms of rankings, ( , ) ( , )i i if a s f b s  ) and there exists an ˆ i is S   such that 

ˆ ˆ( , ) ( , )i i i ia s b s    (or, stated in terms of rankings, ˆ ˆ( , ) ( , )i i if a s f b s  ). 

●   a is equivalent to b for Player i if, in every situation, a and b give Player i the same 
payoff. Formally: for every i is S  , ( , ) ( , )i i i ia s b s    (or, stated in terms of 
rankings, ( , ) ( , )i i if a s f b s  ). 

For example, consider the following two-player game, where only the payoffs of 
Player 1 are shown: 

A 3 … 2 … 1 …

B 2 … 1 … 0 …

C 3 … 2 … 1 …

D 2 … 0 … 0 …

G

Player  2

Player 1

E F

 
 

Table 1.6 

In this game the following is true for Player 1:  

  A strictly dominates B.  
  A and C are equivalent. 
  A strictly dominates D. 
  B is strictly dominated by C. 
  B weakly (but not strictly) dominates D. 
  C strictly dominates D. 

Note that if strategy a strictly dominates strategy b then it also satisfies the 
conditions for weak dominance, that is, ‘a strictly dominates b’ implies ‘a weakly 
dominates b’. 

Definition 1.5.  Fix an ordinal game in strategic form, a Player i and one of her 
strategies, say a. We say that 
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●   a is a strictly dominant strategy for Player i if a strictly dominates every other 
strategy of Player i. 

●   a is a weakly dominant strategy for Player i if, for every other strategy x of Player 
i, either a weakly dominates x or a is equivalent to x. 

For example, in the game shown in Table 1.6, A and C are both weakly dominant 
strategies for Player 1. It is clear that if a player has two or more strategies that are 
weakly dominant, then any two of those strategies must be equivalent. It is also 
clear that there can be at most one strictly dominant strategy.  

Remark 1.6.  The reader should convince herself/himself that the definition of 
weakly dominant strategy given in Definition 1.5 is equivalent to the following: 

 
 ,

( , ) ( , )   
( , ( , ) ( , )   ).

i

i i

i i i i i i i

i i i i i i

a S
s S

a s s s s S
f a s f s s s S

 
 

 

 




 



is a weakly dominant strategy for Player i, if and only if, 
for every

for every
or stated in terms of rankings for every

  

Note: if you claim that, for some player, “strategy x is (weakly or strictly) 
dominated” then you ought to name another strategy of that player that dominates 
x. Saying “x is dominated” is akin to saying “x is worse”: worse than what? On the 
other hand, claiming that strategy y is dominant is akin to claiming that it is best, 
that is, better than, or just as good as, any other strategy. 

Definition 1.7.  Fix an ordinal game in strategic form, a strategy îs   for every 
Player i and let  1ˆ ˆ ˆ,..., ns s s  be the corresponding strategy profile. We say that 

●   ŝ   is a strict dominant-strategy  equilibrium  if, for every Player i,  îs  is a strictly 
dominant strategy. 

●   ŝ   is a weak dominant-strategy  equilibrium  if, for every Player i,  îs  is a weakly 
dominant strategy and, furthermore, for at least one Player j ,  ˆ js  is not a strictly 
dominant strategy. 

If we refer to a strategy profile as a dominant-strategy equilibrium, without 
qualifying it as weak or strict, then the default interpretation will be ‘weak’. 

In the game shown in Table 1.4, Steal is a weakly dominant strategy for each player 
and thus (Steal,Steal) is a weak dominant-strategy equilibrium. 

In the game shown in Table 1.5, Split is a strictly dominant strategy for Player 1, 
while Steal is a weakly (but not strictly) dominant strategy for Player 2 and thus 
(Split,Steal) is a weak dominant-strategy equilibrium. 
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The Prisoner’s Dilemma is an example of a game with a strict dominant-strategy 
equilibrium. For a detailed account of the history of this game and an in-depth 
analysis of it see http://plato.stanford.edu/entries/prisoner-dilemma and 
http://en.wikipedia.org/wiki/Prisoner's_dilemma. An instance of the Prisoner’s 
Dilemma is the following. Doug and Ed work for the same company and the 
annual party is approaching. They know that they are the only two candidates for 
the best-worker-of-the-year prize and at the moment they are tied; however, only 
one person can be awarded the prize and thus, unless one of them manages to 
outperform the other, nobody will receive the prize. Each chooses between 
exerting Normal effort or Extra effort (that is, works overtime) before the party. 
The game-frame is as shown in Table 1.7 below. 

Normal
effort
Extra 
effort

Player 2 (Ed)
Normal
effort

Extra
effort

Player 1
(Doug)

1o 2o

3o 4o
 

1

2

3

4

o
o
o
o

: nobody gets the prize and nobody sacrifices family time
: Ed gets the prize and sacrifices family time, Doug does not
: Doug gets the prize and sacrifices family time, Ed does not
: nobody gets the prize and both sacrifice family time

  

Table 1.7 

Suppose that both Doug and Ed are willing to sacrifice family time to get the prize, 
but otherwise value family time; furthermore, they are envious of each other, in the 
sense that they prefer nobody getting the prize to the other person’s getting the 
prize (even at the personal cost of sacrificing family time). That is, their rankings are 
as follows:  3 1 4 2Doug Doug Dougo o o o     and  2 1 4 3Ed Ed Edo o o o   . Using utility 
function with values from the set {0,1,2,3} we can represent the game in reduced 
form as follows: 

http://plato.stanford.edu/entries/prisoner-dilemma
http://en.wikipedia.org/wiki/Prisoner's_dilemma.
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Normal
effort 2 2 0 3
Extra 
effort 3 0 1 1

Player 2 (Ed)
Normal

effort
Extra
effort

Player 1
(Doug)

 
 

Table 1.8 
The Prisoner’s Dilemma game 

In this game exerting extra effort is a strictly dominant strategy for every player; 
thus (Extra effort, Extra effort) is a strict dominant-strategy equilibrium.  

Definition 1.8.  Fix an ordinal game in strategic form and two outcomes  and o o . 
We say that o  is strictly Pareto superior  to o   if every player prefers o  to o  (that 
is, if io o  for every Player i). We say that o  is weakly Pareto superior to o  if 
every player considers o  to be at least as good as o  and at least one player prefers 
o  to o  (that is, if io o  for every Player i and there is a Player j such that 

jo o ).  In reduced-form games, this definition can be extended to strategy profiles 
as follows. If s  and s  are two strategy profiles, then s  is strictly Pareto superior to 
s  if ( ) ( )i is s    for every Player i and s  is weakly Pareto superior to s if 

( ) ( )i is s    for every Player i and, furthermore, there is a Player j such that 
( ) ( )j js s   . 

For example, in the Prisoner’s Dilemma game of Table 1.8, outcome 1o  is strictly 
Pareto superior to 2o  or, alternatively, (Normal effort, Normal effort) is strictly 
Pareto superior to (Extra effort, Extra effort). When a player has a strictly dominant 
strategy it would be irrational for that player to choose any other strategy, since she 
would be guaranteed a lower payoff in every possible situation (that is, no matter 
what the other players do). Thus in the Prisoner’s Dilemma individual rationality 
leads to (Extra effort, Extra effort) despite the fact that both players would be better 
off if they both chose Normal effort. It is obvious that if the players could reach a 
binding agreement to exert normal effort then they would do so; however, the 
underlying assumption in non-cooperative game theory is that such agreements are 
not possible (e.g. because of lack of communication or because such agreements are 
illegal or cannot be enforced in a court of law, etc.). Any non-binding agreement to 
choose Normal effort would not be viable: if one player expects the other player to 
stick to the agreement, then he will gain by cheating and choosing Extra effort; on 
the other hand, if a player does not believe that the other player will honor the 
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agreement then he will gain by deviating from the agreement herself. The 
Prisoner’s Dilemma game is often used to illustrate a conflict between individual 
rationality and collective rationality: (Extra effort, Extra effort) is the individually 
rational outcome while (Normal effort, Normal effort) would be the collectively 
rational one.  

 Test your understanding of the concepts introduced in this section, by going 
through the exercises in Section 1.E.2 of Appendix 1.E at the end of this chapter. 

1.3. Second-price auction 
The second-price auction, or Vickrey auction, is an example of a game that has a 
weak dominant-strategy equilibrium. It is a “sealed-bid” auction where bidders 
submit bids without knowing the bids of the other participants in the auction. The 
object which is auctioned is then assigned to the bidder who submits the highest bid 
(the winner), but the winner pays not her own bid but rather the second-highest 
bid, that is the highest bid among the bids that remain after removing the winner’s 
own bid. Tie-breaking rules must be specified for selecting the winner when the 
highest bid is submitted by two or more bidders (in which case the winner ends up 
paying her own bid, because the second-highest bid is equal to the winner’s bid). 
We first illustrate this auction with an example.  

Two oil companies bid for the right to drill a field. The possible bids are $10 
million, $20 million, …, $50 million. In case of ties the winner is Player 2 (this was 
decided earlier by tossing a coin). Let us take the point of view of Player 1. Suppose 
that Player 1 ordered a geological survey and, based on the report, concludes that 
the oil field would generate a profit of $30 million. Suppose also that Player 1 is 
indifferent between any two outcomes where the oil field is given to Player 2 and 
prefers to get the oil field herself if and only if it has to pay not more than $30 
million for it; furthermore, getting the oil field for $30 million is just as good as not 
getting it. Then we can take as utility function for Player 1 the net gain to Player 1 
from the oil field, defined as profits minus the price paid, if Player 1 wins, and zero 
otherwise. In Table 1.8 we have written inside each cell only the payoff of Player 1. 
For example, why is Player 1’s payoff 20 when it bids $30M and Player 2 bids 
$10M? Since Player 1’s bid is higher than Player 2’s bid, Player 1 is the winner and 
thus the drilling rights are assigned to Player 1; hence Player 1 obtains something 
worth $30M and pays, not its own bid of $30M, but the bid of Player 2, namely 
$10M; thus Player 1’s net gain is $(30 10)M=$20M. It can be verified that for 
Player 1 submitting a bid equal to the value it assigns to the object (namely, a bid of 
$30 million) is a weakly dominant strategy: it always gives Player 1 the largest of the 
payoffs that are made possible by the bid of the other player. This does not imply 
that it is the only weakly dominant strategy; indeed, in this example bidding $40M 
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is also a weakly dominant strategy for Player 1 (if fact, it is equivalent to bidding 
$30M).  

$10M $20M $30M $40M $50M
$10M 0 0 0 0 0

Player $20M 20 0 0 0 0
1 $30M 20 10 0 0 0

(value $30M) $40M 20 10 0 0 0
$50M 20 10 0 -10 0

Player 2

 
 

Table 1.9 
A second-price auction where, in case of ties, the winner is Player 2. 

Now we can describe the second-price auction in more general terms. Let n  2 be 
the number of bidders. We assume that all non-negative bids are allowed and that 
the tie-breaking rule favors the player  with the lowest index among those who 
submit the highest bid:  for example, if the highest bid is $250 and it is submitted by 
Players 5, 8 and 10, then the winner is Player 5. We shall denote the possible 
outcomes as pairs ( , )i p , where i is the winner and p is the price that the winner has 
to pay.  Finally we denote by ib  the bid of Player i. We start by describing the case 
where there are only two bidders and then generalize to the case of an arbitrary 
number of bidders. 

The case where n = 2.  In this case we have that I = {1,2}, 1 2 [0, )S S   , 

 ( , ) : {1, 2}, [0, )O i p i p     and :f S O  is given by 

  2 1 2
1 2

1 1 2

(1, ) if 
( , )

(2, ) if 
b b b

f b b
b b b


  

 . 

The case where n  2. In the general case the second-price auction is the following 
game-frame: 
 I = {1,…,n} 
 [0, )iS    for every i = 1,…,n. We denote an element of  iS  by ib . 

  ( , ) : , [0, )O i p i I p      

 :f S O  is defined as follows.  Let  1,..., nH b b  be the set of bidders who 

submit the highest bid:    1,..., :  for all n i jH b b i I b b j I     and let 

 1
ˆ ,..., ni b b  be the smallest number in the set  1,..., nH b b , that is, the winner 
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of the auction. Finally, let maxb  denote the maximum bid (that is, 
 max

1,..., nb b b   1{ ,..., }nMax b b ), and let   1,...,
second

nb b b  be the second-

highest bid (that is,    max
1 1 1,..., { ,..., } \{ ( ,..., )}second

n n nb b b Max b b b b b .
2
  Then 

   1 1 1
ˆ,..., ( ,..., ) , ( ,..., )second

n n nf b b i b b b b b . 

How much should a player bid in a second-price auction? Since what we have 
described is a game-frame and not a game, we cannot answer the question unless we 
specify the player’s preferences over the set of outcomes O.  Let us say that Player i 
in a second-price auction is selfish and greedy if she only cares about whether or not 
she wins and, conditional on winning, prefers to pay less; furthermore, she prefers 
winning to not winning if and only if she has to pay less than the true value of the 
object for her, which we denote by iv , and is indifferent between not winning and 
winning if she has to pay iv . Thus the ranking of a selfish and greedy player is as 
follows (together with everything that follows from transitivity): 

( , ) ( , )  
( , ) ( , )  ,    
( , ) ( , )   
( , ) ( , )  ,     

i

i i

i i

i

i p i p p p
i p j p p v j i p
i v j p j i p
j p k p j i k i p p

 
  
 
  






if and only if
if and only if for all and for all
for all and for all
for all and for all and

  

An ordinal utility function that represents those preferences is3 

  if 
,

0 if 
i

i

v p i j
U j p

i j
 

  
 . 

Using this utility function we get the following payoff function for Player i: 

     
 

1 1
1

1

ˆ,..., if ,...,
,..., ˆ0 if ,...,

second
i n n

i n
n

v b b b i i b b
b b

i i b b


   


 . 

                                                                    

2 For example, if n = 5, 1 2 3 4 510, 14, 8, 14 and 14b b b b b      then 

 10,14,8,14,14 {2, 4,5}H  ,  ˆ 10,14,8,14,14 2i  ,  max 10,14,8,14,14b   

 10,14,8,14,14 14secondb  .  

3 Of course there are many more. For example, also the following utility function represents 

those preferences:  
( ) if 

,
1 if 

iv p

i
e i jU j p

i j

 
 


. 
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We can now prove the following theorem. 

Theorem 1.9 [Vickrey, 1961]. In a second-price auction, if Player i is selfish and 
greedy then it is a weakly dominant strategy for Player i to bid her true value, that 
is, to choose i ib v . 

Proof.  In order to make the notation simpler and the argument more transparent, 
we give the proof for the case where n = 2. We shall prove that bidding 1v  is a 
weakly dominant strategy for Player 1 (the proof for Player 2 is similar). Assume 
that Player 1 is selfish and greedy. Then we can take her payoff function to be as 

follows: 1 2 1 2
1 1 2

1 2

if  
( , )

0 if  
v b b b

b b
b b


 

  
. We need to show that, whatever bid 

Player 2 submits, Player 1 cannot get a higher payoff by submitting a bid different 
from 1v . Two cases are possible (recall that 2b  denotes the actual bid of Player 2, 
which is unknown to Player 1). 

Case 1: b2  v1. In this case, bidding 1v  makes Player 1 the winner and his payoff is 

1 2 0v b  .  Consider a different bid 1b . If 1 2b b then Player 1 is still the winner 
and his payoff is still 1 2 0v b  . Thus such a bid is as good as (hence not better 
than) 1v . If  1 2b b then the winner is Player 2 and Player 1 gets a payoff of 0. Thus 
such a bid is also not better than 1v . 

Case 2: b2 > v1. In this case, bidding 1v  makes Player 2 the winner and thus Player 
1 gets a payoff of 0. Any other bid 1 2b b  gives the same outcome and payoff. On 
the other hand, any bid 1 2b b  makes Player 1 the winner, giving him a payoff of 

1 2 0v b  , thus making Player 1 worse off than with a bid of 1v .  

Note that, for a player who is not selfish and greedy, Theorem 1.7 is not true. For 
example, if a player has the same preferences as above for the case where she wins, 
but, conditional on not winning, prefers the other player to pay as much as possible 
(she is spiteful) or as little as possible (she is generous), then bidding her true value is 
no longer a dominant strategy. 

 Test your understanding of the concepts introduced in this section, by going 
through the exercises in Section 1.E.3 of Appendix 1.E at the end of this chapter. 
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1.4. The pivotal mechanism 
An article in the Davis Enterprise (the local newspaper in Davis, California) on 
January 12, 2001 started with the following paragraph: 

By consensus, the Davis City Council agreed Wednesday to 
order a communitywide public opinion poll to gauge how 
much Davis residents would be willing to pay for a park tax 
and a public safety tax. 

Opinion polls of this type are worthwhile only if there are reasons to believe that 
the people who are interviewed will respond honestly. But will they? If I would like 
more parks and believe that the final tax I will have to pay is independent of the 
amount I state in the interview, I would have an incentive to overstate my 
willingness to pay, hoping to swing the decision towards building a new park. On 
the other hand, if I fear that the final tax will be affected by the amount I report, 
then I might have an incentive to understate my willingness to pay.  

The pivotal mechanism, or Clarke mechanism, is a game designed to give the 
participants an incentive to report their true willingness to pay.  

A public project, say to build a park, is under consideration. The cost of the project 
is $C. There are n individuals in the community. If the project is carried out, 
individual i (i = 1,…, n) will have to pay $ ic  (with 1 2 ... nc c c C    ); these 
amounts are specified as part of the project; we allow for the possibility that some 
individuals might have to contribute a larger share of the total cost C than others 
(e.g. because they leave closer to the projected park and would therefore benefit 
more from it). Individual i has an initial wealth of  $mi  > 0. If the project is carried 
out, individual i receives benefits from it that she values at $ iv . Note that for some 
individual i, iv  could be negative, that is, the individual could be harmed by the 
project (e.g. because she likes peace and quiet and a park close to her home would 
bring extra traffic and noise).  We assume that individual i has the following utility-
of-wealth function: 

if  the project is not carried out
($ )i

i

m
U m

m v


   if the project is carried out
 

The socially efficient decision is to carry out the project if and only if  



n

i
i Cv

1

. 

For example, suppose that n = 2, m1  = 50, m2  = 60, 1v  = 19, 2v  = 15, C = 6,  
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1c  = 6, 2c  = 0. In this case 



n

i
i Cv

1

641519  hence the project should 

not be carried out. To see this consider the following table. 

If the project is 
not carried out

If the project is 
carried out

Utility of 
individual 1

50 50 + 19 6 = 63

Utility of 
individual 2

60 60 15 = 45
 

If the project is carried out, Individual 1 has a utility gain of 13, while Individual 2 
has a utility loss of 15. Since the loss is greater than the gain, we have a Pareto 
inefficient situation. Individual 2 could propose the following alternative to 
Individual 1: let us not carry out the project and I will pay you $14. Then 
Individual 1’s wealth and utility would be 50 + 14 = 64 and Individual 2’s wealth 
and utility would be 60 14 = 46 and thus they would both be better off.  

Thus Pareto efficiency requires that the project be carried out if and only if 





n

i
i Cv

1

. This would be a simple decision for the government if it knew the iv ’s. 

But, typically, these values are private information to the individuals. Can the 
government find a way to induce the individuals to reveal their true valuations? It 
seems that in general the answer is No: those who gain from the project would have 
an incentive to overstate their potential gains, while those who suffer would have 
an incentive to overstate their potential losses. Influenced by Vickrey’s work on 
second-price auctions, Clarke suggested the following procedure or game. Each 
individual i is asked to submit a number iw  which will be interpreted as the (gross) 
benefit (if positive) or harm (if negative) that individual i associates with the project. 
Note that, in principle, individual i can lie and report a value iw  which is different 
from the true value iv . Then the decision will be: 

Carry out the project?   1

1

n

j
j

n

j
j

Yes if w C

No if w C










 





 

However, this is not the end of the story. Each individual will be classified as either 
not pivotal or pivotal. 
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Individual i is not pivotal if    
1

1

n

j j j
j j i j i

n

j j j
j j i j i

either w C and w c

or w C and w c

  

  

  
   

  


    
 

  

  
 

and she is pivotal otherwise. In other words individual i is pivotal if the 
decision about the project that would be made in the restricted society resulting 
from removing individual i is different from the decision that is made when she 
is included. If an individual is not pivotal then she has to pay no taxes. If 

individual i is pivotal then she has to pay a tax in the amount of  j j
j i j i

w c
 

  , 

the absolute value of j j
j i j i

w c
 

  .  

For example, let n = 3, C = 10, 1c  = 3, 2c  = 2, 3c  = 5. Suppose that they state the 
following benefits/losses (which may or may not be the true ones): 1w  = 1,  

2w  = 8 , 3w =  3 . Then 
3

1

10i
i

w C


  . Thus the project will not be carried out. 

Who is pivotal?  

Individual
Swj 

(including i) 

Scj 

(including i)
Decision Swj    j  i

(without i)
Scj    j  i
(without i)

Decision Pivotal? Tax

1 10 10 No 8 + 3 = 11 2 + 5 = 7 Yes Yes 11  7 = 4
2 10 10 No 132 3 5 = 8 No No 0
3 10 10 No 187 3 + 2 = 5 Yes Yes 7  5 = 2

 

It may seem that, since it involves paying a tax, being pivotal is a bad thing and one 
should try to avoid it. It is certainly possible for individual i  to make sure that she 
is not pivotal: all she has to do is to report i iw c ; in fact, if j j

j i j i
w c

 

  then 

adding ic  to both sides yields 
1

n

j
j

w C


 and if j j
j i j i

w c
 

   then adding ic  to 

both sides yields 
1

n

j
j

w C


 .  This intuition, however, is wrong. The following 

example shows that one can gain by being truthful even if it involves being pivotal 
and thus having to pay a tax. Let n = 4, C = 15, 1c  = 5, 2c  = 0, 3c  = 5 and  

4c  = 5. Suppose that m 1 = 40 and 1v  = 25. Imagine that you are individual 1 and, 
for whatever reason, you expect the following reports by the other individuals:  

2w  = 40, 3w  = 15 and 4w  = 20. If you report 1 1 5w c   then you ensure that 
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you are not pivotal. In this case 
4

1

5 40 15 20 0 15j
j

w C


       and thus the 

project is not carried out and your utility is equal to m 1 = 40. If you report 
truthfully, that is, you report 1 1 25w v   then 

4

1

25 40 15 20 20 15j
j

w C


       and the project is carried out; furthermore 

you are pivotal and have to pay a tax t1 equal to 
4 4

2 2
j j

j j
w c

 

    

( 40 15 20) (0 5 5) 15 15          and your utility will be  1 1 1 1m v c t    = 
40 + 25 – 5 – 15 =45; hence you are better off. Indeed, the following theorem states 
that no individual can ever gain by lying. 

Theorem 1.10 [Clarke, 1971]. In the pivotal mechanism (under the assumed 
preferences) truthful revelation (that is,  stating wi = vi) is a weakly dominant 
strategy for every Player i. 

Proof.  Fix an individual i and possible statements wj for j  i. Several cases are 
possible. 

Case 1: j j
j i j i

w c
 

    and i j i j
j i j i

v w c c C
 

     .  Then 

 
 decision i’s tax i’s utility 

if  i states vi  Yes 0 
i i im v c   

if i states wi such that 

i j
j i

w w C


   

Yes 0 
i i im v c   

if i states wi such that 

i j
j i

w w C


   

No 
j j

j i j i
w c

 

   
i j j

j i j i
m w c

 

 
  
 
   

Individual i cannot gain by lying if and only if i i im v c    i j j
j i j i

m w c
 

 
  
 
  , 

i.e. if  i j
j i

v w C


   which is true by our hypothesis 
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Case 2: j j
j i j i

w c
 

  and i j i j
j i j i

v w c c C
 

     . Then 

 decision i’s tax i’s utility 

if  states vi No j j
j i j i

w c
 

   
im  

j j
j i j i

w c
 

 
 

 
   

if states wi such that 

i j
j i

w w C


   

No 
j j

j i j i
w c

 

   im   
j j

j i j i
w c

 

 
 

 
   

if states wi such that 

i j
j i

w w C


   

Y e s  0 
i i im v c   

Individual i cannot gain by lying if and only if i j j
j i j i

m w c
 

 
  
 
   i i im v c   , 

i.e. if  i j
j i

v w C


   which is true by our hypothesis 

Case 3: j j
j i j i

w c
 

  and i j i j
j i j i

v w c c C
 

     . Then 

 decision i’s tax i’s utility 

if  i states vi No 0 
im  

if i states wi such that 

i j
j i

w w C


   
No 0 

im  

if i states wi such that 

i j
j i

w w C


   

Y e s  
j j

j i j i
c w

 

 
 

 
   

(recall that 

j j
j i j i

w c
 

  ) 

i i i j j
j i j i

m v c c w
 

 
    

 
   

Individual i cannot gain by lying if and only if  im   i i i j j
j i j i

m v c c w
 

 
    

 
  , 

i.e. if i j
j i

v w C


  , which is our hypothesis 
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Case 4: j j
j i j i

w c
 

  and i j i j
j i j i

v w c c C
 

     . Then 

 decision i’s tax i’s utility 

if i states vi Yes 
j j

j i j i
c w

 

 
 

 
   

(recall that 

j j
j i j i

w c
 

  ) 

i i i j j
j i j i

m v c c w
 

 
    

 
   

if i states wi such that 

i j
j i

w w C


   

Yes 
j j

j i j i
c w

 

 
 

 
   

(recall that 

j j
j i j i

w c
 

  ) 

i i i j j
j i j i

m v c c w
 

 
    

 
   

if i states wi such that 

i j
j i

w w C


   

N o  0 
im  

Individual i cannot gain by lying if and only if   i i i j j
j i j i

m v c c w
 

 
    

 
    im , 

i.e. if i j
j i

v w C


  , which is true by our hypothesis. 

Since we have covered all the possible cases, the proof is complete.   

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 1.E.4 of Appendix 1.E at the end of this 
chapter. 
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1.5. Iterated deletion procedures  
If in a game a player has a (weakly or strictly) dominant strategy then the player 
ought to choose that strategy: in the case of strict dominance choosing any other 
strategy guarantees that the player will do worse and in the case of weak dominance 
no other strategy can give a better outcome, no matter what the other players do. 
Unfortunately, games that have a dominant-strategy equilibrium are not very 
common. What should a player do when she does not have a dominant strategy? 
We shall consider two iterative deletion procedures that can help solve some games. 

1.3.1. IDSDS. The Iterated Deletion of Strictly Dominated Strategies (IDSDS) is the 
following procedure or algorithm. Given a finite ordinal strategic-form game G, let 
G

1
 be the game obtained by removing from G, for every Player i, those strategies of 

Player i (if any) that are strictly dominated in G by some other strategy; let G
2
 be 

the game obtained by removing from G
1
, for every Player i, those strategies of 

Player i (if any) that are strictly dominated in G
1  

by some other strategy, and so on. 
Let G  be the output of this procedure. Since the initial game G is finite, G  will 
be obtained in a finite number of steps. Figure 1.9 illustrates this procedure. If 
G contains a single strategy profile (this is not the case in the example of Figure 
1.9) then we call that strategy profile the iterated strict dominant-strategy equilibrium. 
If G contains of two or more strategy profiles then we refer to those strategy 
profiles merely as the output of the IDSDS procedure. For example, in the example of 
Figure 1.9 the output of the IDSS procedure applied to game G is the set of strategy 
profiles  ( , ), ( , ), ( , ), ( , )A e A f B e B f .  

What is the significance of the output of the IDSDS procedure? Consider game G of 
Figure 1.9. Since, for Player 2, h is strictly dominated by g, if Player 2 is rational she 
will not play h. Thus, if Player 1 believes that Player 2 is rational then he believes 
that Player 2 will not play h, that is, he restricts attention to game 1G ; since, in 1G , 
D is strictly dominated by C for Player 1, if Player 1 is rational he will not play D. 
It follows that if Player 2 believes that Player 1 is rational and that Player 1 believes 
that Player 2 is rational, then Player 2 restricts attention to game 2G  where 
rationality requires that Player 2 not play g, etc. It will be shown in a later chapter 
that if the players are rational and there is common belief of rationality4 then only 
strategy profiles that survive the IDSDS procedure can be played; the converse is 
also true: any strategy profile that survives the IDSDS procedure is compatible with 
common belief of rationality.  

                                                                    

4 An event E is commonly believed if everybody believes E and everybody believes that 
everybody believes E and everybody believes that everybody believes that everybody believes 
E, and so on. 
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Figure 1.10 

Remark 1.11 . In finite games, the order in which strictly dominated strategies are 
deleted is irrelevant, in the sense that any sequence of deletions of strictly 
dominated strategies leads to the same output. 
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1.3.1. IDWDS. The Iterated Deletion of Weakly Dominated Strategies (IDWDS) is a 
weakening of IDSDS in that it allows the deletion also of weakly dominated 
strategies. However, this procedure has to be defined carefully, since in this case the 
order of deletion can matter. To see this, consider the game shown in Figure 1.10. 

L R

A 4  ,  0 0  ,  0

T 3  ,  2 2  ,  2

M 1  ,  1 0  ,  0

B 0  ,  0 1  ,  1

Player 2

Player
1

 
 

Figure 1.11 

Since M is strictly dominated by T for Player 1, we can delete it and obtain 

L R

A 4  ,  0 0  ,  0

T 3  ,  2 2  ,  2

B 0  ,  0 1  ,  1

Player 2

Player
1

 

Now L is weakly dominated by R for Player 2. Deleting L we are left with 

Player 2
R

A 0  ,  0

T 2  ,  2

B 1  ,  1

Player
1

 
Now A and B are strictly dominated by T. Deleting them we are left with  
(T,R)   with corresponding payoffs (2,2). 
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Alternatively, going back to the game of Figure 1.10, we could note that B is 
strictly dominated by T; deleting B we are left with 

L R

A 4  ,  0 0  ,  0

T 3  ,  2 2  ,  2

M 1  ,  1 0  ,  0

Player 2

Player
1

 

Now R is weakly dominated by L for Player 2. Deleting R we are left with 

Player 2
L

A 4  ,  0

T 3  ,  2

M 1  ,  1

Player
1

 

Now T and M are strictly dominated by A and deleting them leads to  (A,L)    
with corresponding payoffs (4,0). Since one order of deletion leads to (T,R) with 
payoffs (2,2)  and  the other to  (A,L) with payoffs (4,0)., the procedure is not well 
defined: the output of a well-defined procedure should be unique. 

Definition 1.12 (IDWDS). In order to avoid the problem illustrated above, the 
IDWDS procedure is defined as follows: at every step identify, for every player, all the 
strategies that are weakly dominated and then delete all such strategies in that step. If the 
output of the IDWDS procedure is a single strategy profile then we call that 
strategy profile the iterated weak dominant-strategy equilibrium (otherwise we just 
use the expression ‘output of the IDWDS procedure’). 

For example, the IDWDS procedure when applied to the game of Figure 1.10 leads 
to the following output: 

L R

A 4  ,  0 0  ,  0

T 3  ,  2 2  ,  2

Player 2

Player
1

 

Hence the game of Figure 1.10 does not have a weak iterated dominant-strategy 
equilibrium. 
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The interpretation of the output of the IDWDS procedure is not as simple as that 
of the IDSDS procedure: certainly common belief of rationality is not sufficient. In 
order to delete weakly dominated strategies one needs to appeal not only to 
rationality but also to some notion of caution: a player should not completely rule 
out any of her opponents’ strategies. However, this notion of caution is in direct 
conflict with the process of deletion of strategies. In this book we shall not address 
the issue of how to justify the IDWDS procedure. 

 Test your understanding of the concepts introduced in this section, by going 
through the exercises in Section 1.E.5 of Appendix 1.E at the end of this chapter. 

1.6. Nash equilibrium 
Games where either the IDSDS procedure or the IDWDS procedure lead to a 
unique strategy profile are not very common. How can one then “solve” games that 
are not solved by either procedure? The notion of Nash equilibrium offers a more 
general alternative. We first define Nash equilibrium for a two-player game. 

Definition 1.13. Given an ordinal game in strategic form with two players, a 
strategy profile  * * *

1 2 1 2,s s s S S    is a Nash equilibrium if the following two 

conditions are satisfied: 

(1) for every 1 1s S ,    * * *
1 1 2 1 1 2, ,s s s s   (or stated in terms of outcomes and  

      preferences,    * * *
1 2 1 1 2, ,f s s f s s ) and 

(2) for every 2 2s S ,    * * *
2 1 2 1 1 2, ,s s s s   (or,    * * *

1 2 2 1 2, ,f s s f s s ). 

For example, in the game of Figure 1.12 there are two Nash equilibria: (T, L) and 
(B, C). 

   Player 2 

  L C R 

Player T 3  ,  2 0  ,  0 1  ,  1 

1 M 3  ,  0 1  ,  5 4  ,  4 

 B 1  ,  0 2  ,  3 3  ,  0 
 

Figure 1.12 
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There are several possible interpretations of this definition.  

‘No regret’ interpretation: *s  is a Nash equilibrium if there is no player who, after 
observing the opponent’s choice, regrets his own choice (in the sense that he could 
have done better with a different strategy of his, given the observed strategy of the 
opponent). 

‘Self-enforcing agreement’ interpretation: imagine that the players are able to 
communicate before playing the game and reach a non-binding agreement 
expressed as a strategy profile *s ; then no player will have an incentive to deviate 
from the agreement, if she believes that the other players will follow the agreement, 
if and only if  *s  is a Nash equilibrium. 

‘Viable recommendation’ interpretation: imagine that a third party makes a 
public recommendation to each player on what strategy to play; then no player will 
have an incentive to deviate from the recommendation, if she believes that the other 
players will follow the recommendation, if and only if the recommended strategy 
profile is a Nash equilibrium. 

‘Transparency of reason’ interpretation: if players are all “equally rational” and 
Player 2 reaches the conclusion that she should play y, then Player 1 must be able to 
duplicate Player 2’s reasoning process and come to the same conclusion; it follows 
that Player 1’s choice of strategy is not rational unless it is a strategy x that is 
optimal against y. A similar argument applies to Player 2’s choice of strategy (y must 
be optimal against x) and thus (x,y) is a Nash equilibrium. 

It is clear that all of the above interpretations are mere rewording of the formal 
definition of Nash equilibrium in terms of the inequalities of Definition 1.9. 

The generalization of Definition 1.9 to games with more than two players is 
straightforward.  

Definition 1.14. Given an ordinal game in strategic form with n  players, a strategy 
profile *s S  is a Nash equilibrium if the following inequalities are satisfied: 

for every Player i, * * * * *
1 1 1( ) ( ,..., , , ,..., )i i i i i ns s s s s s     for all i is S . 

The reader should convince himself/herself that a dominant strategy equilibrium is 
a Nash equilibrium and the same is true of a (weak or strict) iterated dominant-
strategy equilibrium. 
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Definition 1.15. Fix an ordinal game in strategic form, a Player i and a strategy 
profile ˆ i is S   of the players other than i. A strategy i is S  of Player i is a best 
reply (or response) to ˆ is  if ˆ ˆ( , ) ( , )i i i i i is s s s    for every i is S . 

For example, in the game of Figure 1.11, for Player 1 there are two best replies to L, 
namely M and T, while the unique best reply to C is B and the unique best reply to 
R is M; for Player 2 the best reply to T is L, the best reply to M is C and the best 
reply to B is C. 

Using the notion of best reply, an alternative definition of Nash equilibrium is as 
follows: *s S  is a Nash equilibrium if and only if, for every Player i, *

i is S  is a 

best reply to *
i is S

  .  

A quick way to find the Nash equilibria of a two-player game is as follows: in each 
column of the table underline the largest payoff of Player 1 in that column (if there 
are several instances, underline them all) and in each row underline the largest 
payoff of Player 2 in that row; if a cell has both payoffs underlined then the 
corresponding strategy profile is a Nash equilibrium. Underlining of the maximum 
payoff of Player 1 in a given column identifies the best reply of Player 1 to the 
strategy of Player 2 that labels that column and similarly for Player 2. This 
procedure is illustrated in Figure 1.12, where there is a unique Nash equilibrium, 
namely (B,E). 

   Player 2  

  E F G H 

 A 4 ,  0 3 ,  2 2 ,  3 4 ,  1 

Player B 4 ,  2 2 ,  1 1 ,  2 0 ,  2 

1 C 3 ,  6 5 ,  5 3 ,  1 5 ,  0 

 D 2 ,  3 3 ,  2 1 , 2 3 ,  3 
 

Figure 1.13 

Exercise 1.2 in Appendix 1.E explains how to represent a three-player game by 
means of a set of tables. In a three-player game the procedure for finding the Nash 
equilibria is the same, with the necessary adaptation for Player 3: in each cell 
underline the payoff of Player 3 if and only if her payoff is the largest of all her 
payoffs in the same cell across different tables. This is illustrated in Figure 1.13, 
where there is a unique Nash equilibrium, namely (B,R,W ). 
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                        Player 2                          Player 2    

  L R    L R 

Player T 0  ,  0  ,  0 2  ,  8  ,  6  T 0  ,  0  ,  0 1  ,  2  ,  5 

1 B 5  ,  3  ,  2 3  ,  4  ,  2  B 1  ,  6  ,  1 0  ,  0  ,  1 

         

Player 3 chooses W   Player 3 chooses E 
 

Figure 1.14 

Unfortunately, when the game has too many players or too many strategies and it 
is thus impossible or impractical to represent it as a set of tables, there is no quick 
procedure for finding the Nash equilibria: one must simply apply the definition of 
Nash equilibrium. For example, consider the following game. 

Example 1.16. There are 50 players. A benefactor asks them to simultaneously and 
secretly write on a piece of paper a request, which must be a multiple of $10 up to a 
maximum of $100 (thus the possible strategies of each player are $10, $20, …, $90, 
$100). He will then proceed as follows: if not more than 10% of the players ask for 
$100 then he will grant every player’s request, otherwise every player will get 
nothing. Assume that every player is selfish and greedy (only cares about how 
much money she gets and prefers more money to less). What are the Nash 
equilibria of this game? There are several: 

 every strategy profile where 7 or more players request $100 is a Nash 
equilibrium (everybody gets nothing and no player can get a positive 
amount by unilaterally changing her request, since there will still be more 
than 10% requesting $100; on the other hand, convince yourself that a 
strategy profile where exactly 6 players request $100 is not a Nash 
equilibrium), 

 every strategy profile where exactly 5 players request $100 and the 
remaining players request $90 is a Nash equilibrium. 

Any other strategy profile is not a Nash equilibrium: (1) if fewer than 5 players 
request $100, then a player who requested less than $100 can increase her payoff by 
switching to a request of $100, (2) if exactly 5 players request $100 and among the 
remaining players there is one who is not requesting $90, then that player can 
increase her payoff by increasing her request to $90. 

We conclude this section by noting that, since so far we have restricted attention to 
ordinal games, there is no guarantee that an arbitrary game will have at least one 
Nash equilibrium. An example of a game that has no Nash equilibria is the 
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Matching Penny game. This is a simultaneous two-player game where each player 
has a coin and decides whether to show the Heads face or the Tails face. If both 
choose H or both choose T then Player 1 wins, otherwise Player 2 wins. Each 
player strictly prefers the outcome where she herself wins to the alternative 
outcome. The game is illustrated in Figure 1.14. 

H 1 0 0 1

T 0 1 1 0

Player 2

H T

Player 1

 
 

Figure 1.15 

 Test your understanding of the concepts introduced in this section, by going 
through the exercises in Section 1.E.6 of Appendix 1.E at the end of this chapter. 

1.7. Games with infinite strategy sets  
Games where the strategy set of one or more players is infinite cannot be 
represented using a tale or set of tables. However, all the concepts introduced in this 
chapter can still be applied. In this section we will focus on the notion of Nash 
equilibrium. We start with an example. 

Example 1.17. There are two players. Each player has to write down a real number 
(not necessarily an integer) greater than or equal to 1; thus the strategy sets are 

1 2 [0, )S S   . Payoffs are as follows (1 is the payoff of Player 1, 2 the payoff of 
Player 2, x is the number written by Player 1 and y the number written by Player 
2): 

1(x,y) = 
1

0
x if x y

if x y
 

 
,       2(x,y) = 

1
0
y if x y

if x y
 

 
 

What are the Nash equilibria of this game?  

There is only one Nash equilibrium, namely (1,1) with payoffs (0,0). First of all, we 
must show that (1,1) is indeed a Nash equilibrium.  If Player switched to some  
x > 1 then her payoff would remain 0 and the same is true for Player 2 if he 
unilaterally switched to some y > 1: 1( ,1) 0x  , for all [0, )x   and 

2 (1, ) 0y  , for all [0, )y  . Now we show that no other pair (x,y) is a Nash 
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equilibrium. Consider first an arbitrary pair (x,y) with x = y > 1. Then 1(x,y) = 0, 
but if Player 1 switched to an x̂  strictly between 1 and x ( ˆ1 x x  ) her payoff 
would be  1 ˆ ˆ( , ) 1 0x y x     (recall that, by hypothesis, x = y). Now consider an 
arbitrary (x,y) with x < y. Then 1(x,y) = x 1 , but if Player 1 switched to an x̂  
strictly between x and y ( ˆx x y  ) her payoff would be  1 ˆ ˆ( , ) 1 1x y x x     . 
The argument for ruling out pairs  (x,y) with y < x is similar. 

Note the interesting fact that, for Player 1, x = 1 is a weakly dominated strategy: 
indeed it is weakly dominated by any other strategy: x = 1 guarantees a payoff of 0 
for Player 1, while any ˆ 1x   would yield a positive payoff to Player 1 in some cases 
(against any y > x̂ ) and 0 in the remaining cases.  The same is true for Player 2. 
Thus in this game there is a unique Nash equilibrium where the strategy of each player 
is weakly dominated! 

[Note: the rest of this section makes use of calculus. The reader who is not familiar 
with calculus should skip this part.] 

We conclude this section with an example based on the analysis of competition 
among firms proposed by Augustine Cournot in a book published in 1838. In fact, 
Cournot is the one who invented what we now call Nash equilibrium, although his 
analysis was restricted to a small class of games. In the following we will make use 
of calculus. Readers who are not familiar with calculus can skip the rest of this 
section. Consider n  2 firms which produce an identical product. Let iq  be the 
quantity produced by Firm i (i =1,…,n). For Firm i  the cost of producing iq  units 
of output is i ic q , where ic  is a positive constant. For simplicity we will restrict 
attention to the case of two firms (n = 2) and identical cost functions: 1 2c c c  . 
Let Q be total industry output, that is, 1 2Q q q  . The price at which each firm 
can sell each unit of output is given by the inverse demand function P a bQ   
where a and b are positive constants. Cournot assumed that each firm was only 
interested in its own profit and preferred higher profit to lower profit (that is, each 
firm is “selfish and greedy”). The profit function of Firm 1 is given by 

  2
1 1 2 1 1 1 1 2 1 1 1 2 1( , ) ( ) ( ) ( )q q Pq cq q a b q q cq a c q bq q b q           . 

Similarly, the profit function of Firm 2 is given by 

2
2 1 2 2 1 2 2( , ) ( ) ( )q q a c q bq q b q      

Cournot defined an equilibrium as a pair  * *
1 2,q q  such that  
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   

   

* * *
1 1 2 1 1 2 1

* * *
2 1 2 1 1 2 2

, , ,  for every 0        ( )

and

, , ,  for every 0         ( )

q q q q q

q q q q q

 

 

 

 





 

Of course, this is the same as saying that  * *
1 2,q q  is a Nash equilibrium of the game 

where the players are the two firms, the strategy sets are 1 2 [0, )S S    and the 
payoff functions are the profit functions. How do we find a Nash equilibrium? 
First of all, note that the profit functions are differentiable. Secondly note that ( )  

says that, having fixed the value of *
2 2 at q q ,  the function  *

1 2, q   viewed as a 

function of 1q   alone is maximized at the point *
1 1q q . A necessary condition for 

this (if  *
1 0q  ) is that the derivative of this function be zero at the point *

1 1q q , 

that is, it must be that  * *1
1 2

1

, 0.q q
q





 This condition is also sufficient since the 

second derivative of this function is always negative (  
2

1
1 22

1

, 2q q b
q


 


 for every 

1 2( , )q q ). Similarly, by ( ) , it must be that  * *2
1 2

2

, 0.q q
q





 Thus the Nash 

equilibrium is found by solving the system of two equations 1 2

2 1

2 0
2 0

a c bq bq
a c bq bq
   
   

. 

The solution is * *
1 2 3

a cq q
b


  . The corresponding price is 

* 22
3 3

a c a cP a b
b b
     

 
 and the corresponding profits are 

2

1 23 3 3 3
( )( , ) ( , )

9
a c a c a c a c

b b b b
a c

b
     

  . For example, if  25, 2, 1a b c    then the 

Nash equilibrium is given by (4,4) with corresponding profits of 32 for each firm. 
The analysis can easily be extended to the case of more than two firms. The reader 
who is interested in pursuing the topic of competition among firms further can 
consult any textbook on Industrial Organization. 

 

 Test your understanding of the concepts introduced in this section, by going 
through the exercises in Section 1.E.7 of Appendix 1.E at the end of this chapter. 
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Appendix 1.E: Exercises  

1.E.1 .  Exerc ise s for  Sec t ion 1 .1 :   
         Game frames and games  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 1.1. Antonia and Bob cannot decide where to go to dinner. Antonia 
proposes the following procedure: Antonia will write on a piece of paper either the 
number 2 or the number 4 or the number 6, while Bob will write on his piece of 
paper either the number 1 or 3 or 5. They will write their numbers secretly and 
independently. They then will show each other what they wrote and choose a 
restaurant according to the following rule: if the sum of the two numbers is 5 or 
less, they will go to a Mexican restaurant, if the sum is 7 they will go to an Italian 
restaurant and if the number is 9 or more they will go to a Japanese restaurant. 
(a) Let Antonia be Player 1 and Bob Player 2. Represent this situation as a game 

frame, first by writing out each element of the quadruple of Definition 1.1 and 
then by using a table (label the rows with Antonia’s strategies and the columns 
with Bob’s strategies, so that we can think of Antonia as choosing the row and 
Bob as choosing the column). 

(b) Suppose that Antonia and Bob have the following preferences (where M stands 
for ‘Mexican’, I for ‘Italian’ and J for ‘Japanese). For Antonia: 

Antonia AntoniaM I J  ; for Bob:  Bob BobI M J  . Using utility function with 
values 1, 2 and 3 represent the corresponding reduced-form game as a table. 

Exercise 1.2. Consider the following two-player game-frame where each player is 
given a set of cards and each card has a number on it. The players are Antonia 
(Player 1) and Bob (Player 2). Antonia’s cards have the following numbers (one 
number on each card):  2, 4 and 6, whereas Bob’s cards are marked 0, 1 and 2 (thus 
different numbers from the previous exercise). Antonia chooses one of hers own 
cards and Bob chooses one of his own cards: this is done without knowing the 
other player’s choice. The outcome depends on the sum of the points of the chosen 
cards, as follows. If the sum of points on the two chosen cards is greater than or 
equal to 5, Antonia gets $10 minus that sum; otherwise (that is, if the sum is less 
than 5) she gets nothing; furthermore, if the sum of points is an odd number, Bob 
gets as many dollars as that sum; if the sum of points turns out to be an even 
number and is less than or equal to 6, Bob gets $2; otherwise he gets nothing. 
(a) Represent the game-frame described above by means of a table. As in the 

previous exercise, assign the rows to Antonia and the columns to Bob. 
(b) Using the game-frame of part (a) obtain a reduced-form game by adding the 

information that each player is selfish and greedy. This means that each player 
only cares about how much money he/she gets and prefers more money to less. 
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Exercise 1.3. Alice (Player 1), Bob (Player 2), and Charlie (Player 3) play the 
following simultaneous game. They are sitting in different rooms facing a keyboard 
with only one key and each has to decide whether or not to press the key. Alice 
wins if the number of people who press the key is odd (that is, all three of them or 
only Alice or only Bob or only Charlie) , Bob wins if exactly two people (he may 
be one of them) press the key and Charlie wins if nobody presses the key.  

(a) Represent this situation as a game-frame. Note that we can represent a three-
player game with a set of tables: Player 1 chooses the row, Player 2 chooses the 
column and Player 3 chooses the table (that is, we label the rows with Player 1’s 
strategies, the columns with Player 2’s strategies and the tables with Player 3’s 
strategies). 

(b) Using the game-frame of part (a) obtain a reduced-form game by adding the 
information that each player prefers winning to not winning and is indifferent 
between any two outcomes where he/she does not win. For each player use a 
utility function with values from the set {0,1}. 

(c) Using the game-frame of part (a) obtain a reduced-form game by adding the 
information that (1) each player prefers winning to not winning,  (2) Alice is 
indifferent between any two outcomes where she does not win, (3)  conditional 
on not winning, Bob prefers if Charlie wins rather than Alice, (4)  conditional 
on not winning, Charlie prefers if Bob wins rather than Alice. For each player 
use a utility function with values from the set {0,1,2}. 

1.E.2 .  Exerc ise s for  Sec t ion 1 .2 :  
         Str ic t and  weak dominance  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 1.4. There are two players. Each player is given an unmarked envelope 
and asked to put in it either nothing or $300 of his own money or $600. A referee 
collects the envelopes, opens them, gathers all the money, then adds 50% of that 
amount (using his own money) and divides the total into two equal parts which he 
then distributes to the players.  
(a) Represent this game frame with two alternative tables: the first table showing in 

each cell the amount of money distributed to Player 1 and the amount of 
money distributed to Player 2, the second table showing the change in wealth of 
each player (money received minus contribution). 

(b) Suppose that Player 1 has some animosity towards the referee and ranks the 
outcomes in terms of how much money the referee loses (the more, the better), 
while Player 2 is selfish and greedy and ranks the outcomes in terms of her own 
net gain. Represent the corresponding game using a table. 

(c) Is there a strict dominant-strategy equilibrium? 
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Exercise 1.5. (a) For the game of Part (b) of Exercise 1.1 determine, for each player, 
whether the player has strictly dominated strategies. 
(b) For the game of Part (b) of Exercise 1.1 determine, for each player, whether the 
player has weakly dominated strategies. 

Exercise 1.6. There are three players. Each player is given an unmarked envelope 
and asked to put in it either nothing or $3 of his own money or $6 of his own 
money. A referee collects the envelopes, opens them, gathers all the money and 
then doubles the amount (using his own money) and divides the total into three 
equal parts which he then distributes to the players. For example, if Players 1 and 2 
put nothing and Player 3 puts $6, then the referee adds another $6 so that the total 
becomes $12, divides this sum into three equal parts and gives $4 to each player. 
Each player is selfish and greedy, in the sense that he ranks the outcomes 
exclusively in terms of his net change in wealth (what he gets form the referee 
minus what he contributed).  

(a) Represent this game by means of a set of tables. (Do not treat the referee as a 
player.) 

(b) For each player and each pair of strategies determine if one of the two 
dominates the other and specify if it is weak or strict dominance. 

(c) Is there a strict dominant-strategy equilibrium? 

1.E.3 .  Exerc ise s for  Sec t ion 1 .3 :  
         Second pr ice  auc tion  
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 1.7. For the second-price auction partially illustrated in Table 1.9, 
complete the representation by adding the payoffs of Player 2, assuming that Player 
2 assigns a value of $50M to the field and, like Player 1, ranks the outcomes in terms 
of the net gain from the oil field (defined as profits minus the price paid, if Player 2 
wins, and zero otherwise). 

Exercise 1.8. Consider the following “third-price” auction. There are n  3 bidders. 
A single object is auctioned and Player i values the object $vi , with  vi > 0. The bids 
are simultaneous and secret. The utility of Player i is: 0 if she does not win and 
 iv p  if she wins and pays $p. Every non-negative number is an admissible bid. 
Let ib  denote the bid of Player i. The winner is the highest bidder. In case of ties 
the bidder with the lowest index among those who submitted the highest bid wins 
(e.g. if the highest bid is $120 and it is submitted by players 6, 12 and 15, then the 
winner is Player 6). The losers don’t get anything and don’t pay anything. The 
winner gets the object and pays the third highest bid, which is defined as follows. 
Let i be the winner and fix a Player j such that 1max({ ,..., } \{ })j n ib b b b  [if 



GAME THEORY – Giacomo Bonanno 

40 

1max({ ,..., } \{ })n ib b b  contains more than one element, then we pick one of them]. 
Then the third price is defined as  1max({ ,..., } \{ , })n i jb b b b . For example, if n = 3 
and the bids are 1 30b  ,  2 40b   and 3 40b   then the winner is Player 2 and she 
pays $30; if 1 2 3 50b b b    then the winner is Player 1 and she pays $50.  

For simplicity, let us restrict attention to the case where n = 3 and 1 2 3 0v v v   . 
Does Player 1 have a weakly dominant strategy in this auction? 

 

1.E.4 .  Exerc ise s for  Sec t ion 1 .4 :  
         The pivota l  mechanism 
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 1.9. The pivotal mechanism is used to decide whether a new park should 
be built. There are 5 individuals. According to the proposed project, the cost of the 
park would be allocated as follows: 

 

individual 1 2 3 4 5 

share of cost c1 = $30 c2= $25 c3 = $25 c4 = $15 c5 = $5 

For every individual i = 1, .., 5, let vi be the perceived gross benefit (if positive; 
perceived gross loss, if negative) from having the park built. The vi’s are as follows: 

individual 1 2 3 4 5 

gross benefit v1 = $60 v2= $15 v3 = $55 v4 = $25 v5 = $20 

(Thus the net benefit (loss) to individual i is  vi ci.). Individual i  has the 
following utility of wealth function (where mi denotes the wealth of individual 
i):  

if the project is not carried out
if the project is carried out

i
i

i i

m
U

m v


  
 

(Let im  be the initial endowment of money of individual i and assume that im  
is large enough that it exceeds ci plus any tax that the individual might have to 
pay.) 

(a) What is the Pareto-efficient decision: to build the park or not? 
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Assume that the pivotal mechanism is used, so that each individual i is asked to 
state a number wi which is going to be interpreted as the gross benefit to 
individual i from carrying out the project. The are no restrictions on the 
number wi: it can be positive, negative or zero. Suppose that the individuals 
make the following announcements: 
 

individual 1 2 3 4 5 

stated benefit w1 = 
$70 

w2= $10 w3 = $65 w4 =  $30 w5 = $5 

(b) Would the park be built based on the above announcements? 

(c) Using the above announcements and the rules of the pivotal mechanism, fill 
in the following table: 
 

individual 1 2 3 4 5 

Pivotal?       

Tax       

(d) As you know, in the pivotal mechanism each individual has a dominant 
strategy. If all the individuals played their dominant strategies, would the 
park be built?  

(e) Assuming that all the individuals play their dominant strategies, find out 
who is pivotal and what tax (if any) each individual has to pay? 

(f) Show that if every other individual reports his/her true benefit, then it is 
best for Individual 1 to also report his/her true benefit. 

1.E.5 .  Exerc ise s for  Sec t ion 1 .5 :  
         I tera ted  de le tion procedures  
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 1.10. (a) Apply the IDSDS procedure (Iterated Deletion of Strictly 
Dominated Strategies) to the game of Part (b) of Exercise 1.1. 
(b) Apply the IDWDS procedure (Iterated Deletion of Weakly Dominated 
Strategies) to the game of Part (b) of Exercise 1.1. 
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Exercise 1.11. Apply the IDSDS procedure to the following game. Is there a strict 
iterated dominant-strategy equilibrium? 

 
  Player 2  
  d e f 

Player a  8  ,  6 0  ,  9 3  ,  8 
1 b 3  ,  2 2  ,  1 4  ,  3 
 c 2  ,  8 1  ,  5 3  ,  1 

 

Exercise 1.12. Consider the following game. There is a club with three members: 
Ann, Bob and Carla. They have to choose which of the three is going to be 
president next year. Currently Ann is the president. Each member is both a 
candidate and a voter. Voting is as follows: each member votes for one candidate 
(voting for oneself is allowed); if two or more people vote for the same candidate 
then that person is chosen as the next president; if there is complete disagreement, 
in the sense that there is exactly one vote for each candidate, then the person from 
whom Ann voted is selected as the next president.  

(a) Represent this voting procedure as a game frame, indicating inside each cell of 
each table which candidate is elected. 

(b) Assume that the players’ preferences are as follows: Ann AnnAnn Carla Bob  ,   

Bob BobCarla Bob Ann  ,   Carla CarlaBob Ann Carla  . 
Using utility values 0, 1 and 2, convert the game frame into a game. 

(c) Apply the IDWDS to the game of part (b). Is there a weak iterated dominant-
strategy equilibrium? 

(d) Does the extra power given to Ann (in the form of tie-breaking in case of 
complete disagreement) benefit Ann? 

Exercise 1.13. Consider the following game: 
Player 2

a 2 3 2 2 3 1

Player 1 b 2 0 3 1 1 0

c 1 4 2 0 0 4

D E F

 
(a) Apply the IDSDS procedure to it. Is there a strict iterated dominance 

equilibrium? 
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(b) Apply the IDWDS procedure to it. Is there a weak iterated dominance 
equilibrium? 

1.E.6 .  Exerc ise s for  Sec t ion 1 .6 :  
         Nash equil ibr ium.  
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 1.14. Find the Nash equilibria of the game of Exercise 1.2. 
Exercise 1.15. Find the Nash equilibria of the games of Exercise 1.3 (b) and (c). 
Exercise 1.16. Find the Nash equilibria of the games of Exercise 1.4 (b). 
Exercise 1.17. Find the Nash equilibria of the game of Exercise 1.6. 
Exercise 1.18. Find the Nash equilibria of the game of Exercise 1.7. 
Exercise 1.19. Find a Nash equilibrium of the game of Exercise 1.8 for the case 

where n = 3 and 1 2 3 0v v v   . 

Exercise 1.20. Find the Nash equilibria of the game of Exercise 1.12. 
Exercise 1.21. Find the Nash equilibria of the game of Exercise 1.13. 

1.E.7 .  Exerc ise s for  Sec t ion 1 .6 :  
         Games with  inf in i te  s trategy se t s.  

Exercise 1.22. Consider a simultaneous n-player game where each player i chooses 
an effort level ai  [0,1]. Efforts are complementary and each player’s cost per unit 
of effort is 2. The payoff to player i is given by 1 24min{ , ,..., } 2i n ia a a a   . 

(a) Find all the pure-strategy Nash equilibria and prove that they are indeed Nash 
equilibria. 

(b) Are any of the Nash equilibria Pareto efficient? 
(c) Find a Nash equilibrium where each player gets a payoff of 1. 
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◊◊◊◊◊◊◊◊◊◊◊◊ 

Exercise 1.23: Challenging Question. The Mondevil Corporation operates a 
chemical plant, which is located on the banks of the Sacramento river. Downstream 
from the chemical plant is a group of fisheries. The Mondevil plant emits by-
products that pollute the river, causing harm to the fisheries. The profit Mondevil 
obtains from operating the chemical plant is $ > 0. The harm inflicted on the 
fisheries due to water pollution is equal to $L > 0 of lost profit [without pollution 
the fisheries’ profit is $A, while with pollution it is $(A L)]. Suppose that the 
fisheries collectively sue the Mondevil Corporation. It is easily verified in court that 
Mondevil's plant pollutes the river. However, the values of  and L cannot be 
verified by the court, although they are commonly known to the litigants. Suppose 
that the court requires the Mondevil attorney (player 1) and the fisheries’ attorney 
(player 2) to play the following litigation game. Player 1 is asked to announce a 
number x  0, which the court interprets as a claim about the plant’s profits. Player 
2 is asked to announce a number y  0, which the court interprets as the fisheries' 
claim about their profit loss. The announcements are made simultaneously and 
independently. Then the court uses Posner's nuisance rule to make its decision (R. 
Posner, Economic analysis of Law, 9th edition, 1997). According to the rule, if  
y > x, then Mondevil must shut down its chemical plant. If x y , then the court 
allows Mondevil to operate the plant, but the court also requires Mondevil to pay 
the fisheries the amount y. Note that the court cannot force the attorneys to tell the 
truth (in fact, it would not be able to tell whether or not the lawyers were reporting 
truthfully). Assume that the attorneys want to maximize the payoff (profits) of 
their clients. 
(a) Represent this situation as a normal-form game by describing the strategy 

set of each player and the payoff functions. 
(b) Is it a dominant strategy for the Mondevil  attorney to make a truthful 

announcement (i.e. to choose x = )? [Prove your claim.] 
(c) Is it a dominant strategy for the fisheries’ attorney to make a truthful 

announcement (i.e. to choose y = L)? [Prove your claim.] 
(d) For the case where   > L  (recall that  and L denote the true amounts), 

find all the Nash equilibria of the litigation game. [Prove that what you 
claim to be Nash equilibria are indeed Nash equilibria and that there are no 
other Nash equilibria.] 

(e) For the case where   < L  (recall that  and L denote the true amounts), 
find all the Nash equilibria of the litigation game. [Prove that what you 
claim to be Nash equilibria are indeed Nash equilibria and that there are no 
other Nash equilibria.] 

(f) Does the court rule give rise to a Pareto efficient outcome? [Assume that the 
players end up playing a Nash equilibrium.] 
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Appendix 1.S: Solutions to exercises  

Exercise 1.1.  (a) {1, 2}I  , 1 2{2, 4,6}, {1,3,5}S S  , { , , }O M I J (where M 
stands for ‘Mexican’, I for ‘Italian’ and J for ‘Japanese); the set of strategy 
profiles is {(2,1),(2,3), (2,5), (4,1), (4,3), (4,5), (6,1), (6,3), (6,5)}S  ; the 
outcome function is  (2,1) (2,3) (4,1)f f f M   ,  (2,5) (4,3)f f   

(6,1)f I  and (4,5) (6,3) (6,5)f f f J   .  The representation as a table is 
as follows: 

1 3 5

2 M M I

Player 1
(Antonia)

4 M I J

6 I J J

Player 2 (Bob)

 

(b) Using values 1, 2 and 3, the utility functions are as follows, where 1U  is 
the utility function of Player 1 (Antonia) and 2U  is the utility function of 

Player 2 (Bob): 1

2 : 2 3 1
: 3 2 1

M I J

U
U
 
 
 
 
 

. The reduced-form game is as follows: 

2 3 2 3 2 2 3

4 3 2 2 3 1 1

6 2 3 1 1 1 1

1 3 5

Player 1
(Antonia)

Player 2 (Bob)
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Exercise 1.2.   
(a) The game-frame is as follows: 

2 Antonia
gets nothing Bob gets $2 Antonia

gets nothing Bob gets $3 Antonia
gets nothing Bob gets $2

4 Antonia
gets nothing Bob gets $2 Antonia

gets $5 Bob gets $5 Antonia
gets $4 Bob gets $2

6 Antonia
gets $4 Bob gets $2 Antonia

gets $3 Bob gets $7 Antonia
gets $2

Bob 
gets nothing

Player 1
(Antonia)

2

Player  2 (Bob)

0 1

 
(b) When the outcomes are sums of money and Player i is selfish and greedy 
then we can take the following as i’s utility function: ($ )iU x x  (other utility 
functions would do too: the only requirement is that the utility of a larger sum 
of money is larger than the utility of a smaller sum of money). Thus the 
reduced-form game is as follows: 

2 0 2 0 3 0 2

4 0 2 5 5 4 2

6 4 2 3 7 2 0

Player 1
(Antonia)

2

Player  2 (Bob)

0 1

 

Exercise 1.3.   
 (a) The game-frame is as follows: 

P = Press

P not P
P

Alice not P

Charlie: P

P not P
P

Alice not P

Charlie: not P

Alice wins
Charlie wins

Bob

Bob

Alice wins Bob wins
Bob wins Alice wins

Bob wins
Alice wins
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(b) The reduced-form game is as follows: 

P = Press

P not P
P 1 0 0 0 1 0

Alice not P 0 1 0 1 0 0

Charlie: P

P not P
P 0 1 0 1 0 0

Alice not P 1 0 0 0 0 1

Charlie: not P

Bob

Bob

 

(c) The reduced-form game is as follows: 

P = Press

P not P
P 1 0 0 0 2 1

Alice not P 0 2 1 1 0 0

Charlie: P

P not P
P 0 2 1 1 0 0

Alice not P 1 0 0 0 1 2

Charlie: not P

Bob

Bob
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Exercise 1.4.   (a) The tables are as follows: 

Distributed money

0 0 0 225 225 450 450
300 225 225 450 450 675 675
600 450 450 675 675 900 900

Net amounts

0 0 0 225 -75 450 -150
300 -75 225 150 150 375 75
600 -150 450 75 375 300 300

0 300 600

Player
1

Player  2
0 300 600

Player
1

Player  2

 

(b) For Player 1 we can take as his payoff the total money lost by the referee 
and for Player 2 her own net gain: 

0 0 0 150 -75 300 -150
300 150 225 300 150 450 75
600 300 450 450 375 600 300

0 300 600

Player
1

Player  2

 

(c) For Player 1 contributing $600 is a strictly dominant strategy and for Player 
2 contribution $0 is a strictly dominant strategy. Thus ($600,$0) is the strict 
dominant-strategy equilibrium. 

Exercise 1.5.   The game under consideration is the following: 

2 3 2 3 2 2 3

4 3 2 2 3 1 1

6 2 3 1 1 1 1

1 3 5

Player 1
(Antonia)

Player 2 (Bob)

 

(a) For Player 1, 6 is strictly dominated by 4 and is also strictly dominated by 2. 
There is no other strategy which is strictly dominated. Player 2 does not 
have any strictly dominated strategies. 
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(b) For Player 1, 6 is strictly (and thus weakly) dominated by 4 and also by 2; 4 
is weakly dominated by 2.  Player 2 does not have any weakly dominated 
strategies. 

Exercise 1.6.   (a) The game is as follows: 

0 0 0 0 2 -1 2 4 -2 4 0 2 2 -1 4 1 1 6 0 3 0 4 4 -2 6 3 0 8 2 2

3 -1 2 2 1 1 4 3 0 6 3 1 4 1 3 3 3 5 2 5 3 3 6 0 5 5 2 7 4 4

6 -2 4 4 0 3 6 2 2 8 6 0 6 3 2 5 5 4 4 7 6 2 8 2 4 7 4 6 6 6

60 3

Pla
yer
1

3 60 3 6 0
Player   2 Player   2 Player   2

 
(b) For Player 1, 3 strictly dominates 6, 0 strictly dominates 6, 0 strictly 

dominates 3 (the same is true for every player). 

(d) The strict dominant-strategy equilibrium is (0,0,0) (everybody contributes 
0). 

Exercise 1.7.  The game is as follows: 

$10M $20M $30M $40M $50M
$10M 0 , 40 0 , 40 0 , 40 0 , 40 0 , 40

Player $20M 20 , 0 0 , 30 0 , 30 0 , 30 0 , 30

1 $30M 20 , 0 10 , 0 0 , 20 0 , 20 0 , 20
(value $30M) $40M 20 , 0 10 , 0 0 , 0 0 , 10 0 , 10

$50M 20 , 0 10 , 0 0 , 0 -10 , 0 0 , 0

 
Exercise 1.8.  No. Suppose, by contradiction, that 1̂b  is a dominant strategy 

for Player 1. It cannot be that 1 1b̂ v , because when 2 3 1̂b b b   Player 1 wins 

and pays 1̂b , thereby obtaining a payoff of 1 1̂ 0v b  , whereas bidding 0 

would give him a payoff of 0. It cannot be that 1 1b̂ v  because when 2 1̂b b  
and 3 1b v  the auction is won by Player 2 and Player 1 gets a payoff of 0, 
while a bid of Player 1 greater than 2b  would make him the winner with a 

payoff of 1 3 0v b  . Similarly, it cannot be that 1 1b̂ v  because when 2 1̂b b  
and 3 1b v  then the auction is won by Player 2 and Player 1 gets a payoff of 
0, while a bid greater than 2b  would make him the winner with a payoff of 

1 3 0v b  . 
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Exercise 1.9.   (a) Since 
5 5

1 1
i i

i i
v c

 

   the Pareto efficient decision is not to 

build the park. 

(b)  Since 
5 5

1 1
i i

i i
w c

 

   the park would be built. 

(c) Individuals 1 and 3 are pivotal and each of them has to pay a tax of $20. 
The other individuals are not pivotal and thus are not taxed. 

(d) For each individual i it is a dominant strategy to report iv  and thus, by 
part (a), the decision will be the Pareto efficient one, namely not to build the 
park. 

(e) When every individual reports truthfully, Individuals 4 and 5 are pivotal 
and Individual 4 has to pay a tax of $25, while individual 5 has to pay a tax of 
$10. The others are not pivotal and do not have to pay a tax. 

(f) Assume that all the other individuals report truthfully; then if Individual 1 
reports truthfully, he is not pivotal, the project is not carried out and his 
utility is 1m . Any other 1w  that leads to the same decision (not to build the 
park) gives him the same utility. If, on the other hand, he chooses a 1w  that 
leads to a decision to build the park, then Individual 1 will become pivotal 
and will have to pay a tax of $45 with a utility of 

1 1 1 145 30 45 15m v m m       , so that he would be worse off relative to 
reporting truthfully.  

Exercise 1.10.  The game under consideration is the following: 

2 3 2 3 2 2 3

4 3 2 2 3 1 1

6 2 3 1 1 1 1

1 3 5

Player 1
(Antonia)

Player 2 (Bob)

 

(a) The first step of the procedure eliminates 6 for Player 1. After this step the 
procedure stops and thus the output is 
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2 3 2 3 2 2 3

4 3 2 2 3 1 1

Player 1
(Antonia)

1 3 5
Player 2 (Bob)

 

(b) The first step of the procedure eliminates 4 and 6 for Player 1 and nothing 
for Player 2. The second step of the procedure eliminates 1 and 3 for 
Player 2. Thus the output is the strategy profile (2,5). 

Exercise 1.11.  In this game c is strictly dominated by b; after deleting c, d 
becomes strictly dominated by f; after deleting d, a becomes strictly 
dominated by b; after deleting a, e becomes strictly dominated by f; deletion 
of e leads to only one strategy profile, namely (b,f ). Thus (b,f ) is the strict 
iterated dominance equilibrium.  

Exercise 1.12.  (a) The game frame is as follows: 

A

B

C

A B C

A
N
N

BOB

CARLA votes for A

A

B

C

A B C

A
N
N

BOB

CARLA votes for B

A

B

C

A B C

A
N
N

BOB

CARLA votes for C

A A A

A

A

B B B

B

B

C

C

CC C

B

C

A

C

A

B

C

B

C

A

B

A
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(b) The game is as follows: 

A

B

C

A B C

A
N
N

BOB

CARLA votes for A

A

B

C

A B C

A
N
N

BOB

CARLA votes for B

A

B

C

A B C

A
N
N

BOB

CARLA votes for C

2 , 0, 1 2 , 0, 1 2 , 0, 1

2 , 0, 1

2 , 0, 1

2 , 0, 1 2 , 0, 1 2 , 0, 1 2 , 0, 1

0, 1, 2 0, 1, 2

0, 1, 2

0, 1, 2 0, 1, 2 0, 1, 2
0, 1, 2 0, 1, 2

0, 1, 21, 2, 0 1, 2, 0 1, 2, 0 1, 2, 0 1, 2, 0 1, 2, 0 1, 2, 0

1, 2, 0

1, 2, 0

 

(c) For Ann, both B and C are weakly dominated by A, while the other two 
players do not have any dominated strategies. Thus in the first step of the 
IDWDS we delete B and C for Ann. Hence the game reduces to: 

A

B

C

A B C

C
A
R
L
A

BOB

1 1 1

11

1 121

2

 

In this game, for Carla, B weakly dominates both A and C and for Bob A is 
weakly dominated by B (and also by C). Thus in the second step of the 
IDWDS we delete A and B for Carla and A for Bob. In the third and final 
step we delete C for Bob. Thus we are left with a unique strategy profile, 
namely (A,B,B), that is, Ann votes for herself and Bob and Carla vote for 
Bob. This is the weak iterated dominant-strategy equilibrium.  

(d) The elected candidate is Bob, who is Ann’s least favorite; thus the extra 
power given to Ann (tie breaking in case of total disagreement) turns out to 
be detrimental for Ann! 
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Exercise 1.13.  (a) The output of the IDSDS is as follows (first delete c and then 
F ): 

Player 2

a 2 3 2 2
Player 1 b 2 0 3 1

D E

 

Thus there is no strict dominant strategy equilibrium. 

(b) The output of the IDWDS is (b,E) (in the first step delete c and F, in the 
second step delete a and in the third step delete D). Thus (b,E) is the weak 
iterated dominant strategy equilibrium. 

Exercise 1.14.  There is only one Nash equilibrium, namely (4,1) with payoffs 
(5,5). 

Exercise 1.15.  For the game of part (b) there is only one Nash equilibrium, 
namely (not P, P, not P). The game of part (c) does not have Nash equilibria. 

Exercise 1.16.  There is only one Nash equilibrium, namely (600,0). 

Exercise 1.17.  There is only one Nash equilibrium, namely (0,0,0). 

Exercise 1.18.  There are 15 Nash equilibria: (10,30), (10,40), (10,50), (20,30), 
(20,40), (20,50), (30,30), (30,40), (30,50), (40,40), (40,50), (50,10), (50,20), (50,30), 
(50,50). 

Exercise 1.19.  A Nash equilibrium is 1 2 3 1b b b v    (with payoffs (0,0,0)). 

Exercise 1.20.  There are 5 Nash equilibria: (A,A,A), (B,B,B), (C,C,C), (A,C,A) 
and (A,B,B). 

Exercise 1.21.  There are 2 Nash equilibria: (a,D) and (b,E). 

Exercise 1.22.  (a) For every [0,1]e , ( , ,..., )e e e  is a Nash equilibrium. 
( , ,..., ) 2i e e e e  : if player i increases her effort to a > e (of course, this can 

only happen if e < 1), then her payoff decreases to 4e 2a and if she decreases 
her effort to a < e (of course, this can only happen if e > 0), then her payoff 
decreases to 2a. 
There is no Nash equilibrium where two players choose different levels of 
effort. Proof: suppose there is an equilibrium 1 2( , ,..., )na a a  where i ja a  for 
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two players i and j. Let min 1min{ ,..., }na a a  and let k be a player such that 

minka a  (such a player exists by our supposition). Then the payoff to player k  
is min4 2k ka a    and if she reduced her effort to mina  her payoff would 
increase to min2a . 

(b) Any symmetric equilibrium with e < 1 is Pareto inefficient, because all the 
players would be better off if they simultaneously switched to (1,1,…,1).  On 
the other hand, the symmetric equilibrium (1,1,…,1) is Pareto efficient.  

(c) The symmetric equilibrium  1 1 1
2 2 2, ,..., . 

Exercise 1.23.  (a) The strategy sets are S1 = S2 = [0,). The payoff functions 
are as follows: 

1( , )
0

y if x y
x y

if y x


  
  

     and  2 ( , )
A L y if x y

x y
A if y x


  

  
 

(b) Yes, for player 1 choosing x =  is a dominant strategy. Proof. Fix an 
arbitrary y. We must show that x =  gives at least as high a payoff against 
y as any other x. Three cases are possible. Case 1: y < . In this case x =  
or any other x such that x  y yields 1 =  y > 0, while x < y yields  
1 = 0. Case 2: y = . In this case 1’s payoff is zero no matter what x he 
chooses. Case 3: y > . In this case x =  or any other x such that x < y 
yields1 = 0, while x  y yields.1 =  y < 0. 

(c) No, choosing y = L is not a dominant strategy for player 2. For example, if 
x > L then choosing y = L yields 2 = A while choosing a y such that  
L < y   x yields 2 = A L + y > A. 

(d) Suppose that  > L. If (x,y) is a Nash equilibrium with x  y then it must 
be that y   (otherwise player 1 could increase its payoff by reducing x 
below y) and y  L (otherwise player 2 would be better off by increasing y 
above x). Thus it must be L  y  , which is possible, given our 
assumption. However, it cannot be that x > y, because player 2 would be 
getting a higher payoff by increasing y to x. Thus it must be x  y, which 
implies that x = y. Thus the following are Nash equilibria: 

all the pairs (x,y) with L  y   and x = y. 
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Now consider pairs (x,y) with x < y. Then it cannot be that y < , 
because player 1 could increase its payoff by increasing x to y. Thus it must 
be y   (hence   by our supposition   y > L). Furthermore, it must be 
that x  L (otherwise player 2 could increase its profits by  reducing y to (or 
below) x.  Thus  

(x,y) with x < y  is a Nash equilibrium if and only if x  L and y  . 

(e) Suppose that  < L. For the same reasons given above, an equilibrium 
with x  y requires L  y  . However, this is not possible given that  
 < L. Hence, 

there is no Nash equilibrium (x,y) with x  y. 

Thus we must restrict attention to pairs (x,y) with x < y. As explained 
before, it must be that y   and x  L.  Thus, 

(x,y) with x < y  is a Nash equilibrium if and only if   y and  x  L. 

  (f) Pareto efficiency requires that the chemical plant be shut down if  < L 
and that it remain operational if  > L. Now, when  < L all the 
equilibria have x < y which leads to shut-down, hence a Pareto efficient 
outcome. When  > L, there are two types of equilibria: one where x = y 
and the plant remains operational (a Pareto efficient outcome) and the other 
where x < y in which case the plant shuts down, yielding a Pareto 
inefficient outcome.  
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Dynamic games with 
perfect information  

2.1 Trees, frames and games 

ften interactions are not simultaneous but sequential. For example, in the 
game of Chess the two players, White and Black, take turns moving 
pieces on the board, having full knowledge the opponent’s (and their 

own) past moves. Games with sequential interaction are called dynamic  games or 
games in extensive form. This chapter is devoted to the subclass of dynamic games 
characterized by perfect information, namely the property that, whenever it is her 
turn to move, a player knows all the preceding moves. Perfect-information games 
are represented by means of rooted directed trees.  

A rooted directed tree consists of a set of nodes and directed edges joining them. The 
root of the tree has no directed edges leading to it (has indegree 0), while every 
other node has exactly one directed edge leading to it (has indegree 1). There is a 
unique path (that is, a unique sequence of directed edges) leading from the root to 
any other node. A node that has no directed edges out of it (has outdegree 0) is 
called a terminal node, while every other node is called a decision node. We shall 
denote the set of nodes by X, the set of decision nodes by D and the set of terminal 
nodes by Z. Thus X D Z  .  

Definition 2.1. A finite extensive form (or frame) with perfect information consists of 
the following items. 
 A finite rooted directed tree. 
 A set of players {1,..., }I n  and a function that assigns one player to every 

decision node. 
 A set of actions A and a function that assigns an action to every directed edge, 

satisfying the restriction that no two edges out of the same node are assigned the 
same action. 

 A set of outcomes O and a function that assigns an outcome to every terminal 
node. 

Chapter 

2 

O 
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Example 2.2. Amy (Player 1) and Beth (Player 2) have decided to dissolve a 
business partnership whose assets have been valued $100,000. The charter of the 
partnership prescribes that the senior partner, Amy, make an offer concerning the 
division of the assets to the junior partner, Beth. The junior partner can Accept, in 
which case the proposed division is implemented, or Reject, in which case the case 
goes to litigation. Litigating involves a cost of $20,000 in legal fees for each partner 
and the typical verdict assigns 60% of the assets to the senior partner and the 
remaining 40% to the junior partner. Suppose, for simplicity, that there is no 
uncertainty about the verdict (how to model uncertainty will be discussed in a later 
chapter). Suppose also that there are only two possible offers that Amy can make: a 
50-50 split or a 70-30 split. This situation can be represented as a finite extensive 
form with perfect information as shown in Figure 2.1. Each outcome is represented 
as two sums of money: what Player 1 gets and what Player 2 gets. 

o  :

2 2

1

RejectAcceptRejectAccept

Offer
50-50

Offer
70-30

o  : o  : o  :
1 2

$50,000
$50,000

$40,000
$20,000

$40,000
$20,000

43

$70,000
$30,000  

 
Figure 2.1 

A perfect-information extensive form representing  
the situation described in Example 2.2 

What should we expect the players to do in the above game? Consider the 
following reasoning, which is called backward induction reasoning, because it starts 
from the end of the game and proceeds backwards towards the root:  

If Player 2 is offered a 50-50 split then, if she accepts, she will 
get $50,000, while, if she rejects, she will get $20,000 (the 
court-assigned 40% minus legal fees in the amount of $20,000); 
thus, if rational, she will accept. Similarly, if Player 2 is offered 
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a 70-30 split then, if she accepts, she will get $30,000, while, if 
she rejects, she will get $20,000 (the court-assigned 40% minus 
legal fees in the amount of $20,000); thus, if rational, she will 
accept. Anticipating all of this, Player 1 realizes that, if she 
offers a 50-50 split then she will end up with $50,000, while if 
she offers a 70-30 split then she will end up with $70,000; thus, 
if Player 1 is rational and believes that Player 2 is rational, she 
will offer a 70-30 split and Player 2, being rational, will accept. 

The above reasoning suffers from the same flaws as the reasoning described in 
Chapter 1 (Section 1.1): it is not a valid argument because it is based on an 
implicit assumption about how Player 2 ranks the outcomes, which may or 
may not be correct. For example, Player 2 may feel that she worked as hard 
as her partner and the only fair division is a 50-50 split; indeed she may feel so 
strongly about this that  – if offered an unfair 70-30 split  she would be 
willing to sacrifice $10,000 in order to “teach a lesson to Player 1”; in other 
words, she ranks outcome 4o  above outcome 3o .  

Using the terminology introduced in Chapter 1, we say that the situation 
represented in Figure 2.1 is not a game but a game-frame. In order to convert 
that frame into a game we need to add a ranking of the outcomes for each 
player. 

Definition 2.3. A  finite extensive game with perfect information is a finite 
extensive form with perfect information together with a ranking i  of the 
set of outcome O, for every player i I .  

As usual, it is convenient to represent the ranking of Player i by means of an 
ordinal utility function :iU O   . For example, take the extensive form of 
Figure 2.1 and assume that Player 1 is selfish and greedy, that is, her ranking 
is 3 1 1 1 2 1 4o o o o   , while Player 2 is concerned with fairness and her 
ranking is 1 2 2 2 4 2 3o o o o   . Then we can represent the players’ preferences 
using the following utility functions:  

31

2

1

2 4 

 2 1 3
 3 2 1

   

2

   

1

 

U

o

U

oo o


(Player

outcome

(

utility function

Player 2)
 1)  

and replace each outcome in Figure 2.1 with a pair of utilities or payoffs, as 
shown in Figure 2.2, thereby obtaining one of the many possible games based 
on the frame of Figure 2.1. 
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2 2

1

RejectAcceptRejectAccept

Offer
50-50

Offer
70-30

2
3

1
2

1
2

3
1  

 
Figure 2.2 

A perfect-information game based on the extensive form of Figure 2.1. 

Now that we have a game, rather than just a game-frame, we can indeed apply 
the backward-induction reasoning and conclude that Player 1 will offer a 50-
50 split, anticipating that Player 2 would reject the offer of a 70-30 split, and 
Player 2 will accept Player 1’s offer. The choices selected by the backward-
induction reasoning have been highlighted in Figure 2.2 by doubling the 
corresponding edges.  

 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 2.E.1 of Appendix 2.E at the 
end of this chapter. 

 

2.2 Backward induction 
The backward-induction reasoning mentioned above can be formalized as an 
algorithm for solving any perfect-information game, as follows. We say that a 
node is marked if a payoff or utility vector is associated with it. Initially all 
and only the terminal nodes are marked; the following procedure provides a 
way of marking all the nodes. 
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Definition 2.4.  The backward-induction algorithm is the following procedure 
for solving a finite perfect-information game. 

1. Fix a decision node x whose immediate successors are all marked. Let i be 
the player who moves at x. Select a choice that leads to an immediate 
successor of x with the highest payoff or utility for player i (highest among 
the utilities associated with the immediate successors of x) . Mark x with 
the payoff vector associated with the node following the selected choice. 

2. Repeat the above step until all the nodes have been marked. 

Note that, since the game is finite, the above procedure is well defined. In the 
initial steps one starts at those decision nodes that are followed only by 
terminal nodes, call them penultimate nodes. After all the penultimate nodes 
have been marked, there will be unmarked nodes whose immediate successors 
are all marked and thus the step can be repeated.  

Note also, in general, at a decision node there may be several choices that 
maximize the payoff of the player who moves at that node. If that is the case 
then the procedure requires that one such choice be selected. This arbitrary 
choice may lead to the existence of several backward-induction  solutions. For 
example, consider the game of Figure 2.3.  

yx

1

3

a b

g h

2 2

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

Player 3's payoff
Player 2's payoff
Player 1's payoff

 

Figure 2.3 
A perfect-information game with multiple backward-induction solutions. 

In this game, starting at node x of Player 2 we select choice c. Then we move 
on to Player 3’s node and we find that both choices there are payoff 
maximizing for Player 3; thus there are two ways to proceed. In Figure 2.4 
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we show the steps of the backward-induction algorithm with the selection of 
choice g, while Figure 2.5 shows the steps of the algorithm with the selection 
of choice h. As before, the selected choices are shown by double edges. In 
Figures 2.4 and 2.5 the marking of nodes is shown explicitly, but later on we 
will represent the backward-induction solution more succinctly by merely 
highlighting the selected choices. 

yx

1

3

a b

g h

2

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

STEP 1 

yx

1

3

a b

g h

2

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

2
1

1

STEP 2 

yx

3

a b

g h

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

2
1

1

2
1

12

2
1
0

1

STEP 3 

yx

3

a b

g h

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

2
1

1

2
1

12

2
1
0

1

LAST STEP 

 
Figure 2.4 

One possible application of the backward-induction  
algorithm to the game of Figure 2.3 

. 
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yx

1

3

a b

g h

2

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

 
STEP 1 

yx

3

a b

g h

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

0
1

0

2

1

 
STEP 2 

yx

3

a b

g h

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

0
1

0

1
3

0

2

1

 
STEP 3 

yx

3

a b

g h

c d e f

0 32

1 0

1 0 1

02

0 2 0

11

2
1
0

2

0
1

0

1
3

0

2

1
1
3

0

 
LAST STEP 

 

Figure 2.5 
Another possible application of the backward-induction  

algorithm to the game of Figure 2.3 

How should one define the output of the backward-induction algorithm and 
the notion of backward-induction solution? What kind of objects are they? 
Before we answer this question we need to introduce the notion of strategy in 
a perfect-information game. 
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 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 2.E.2 of Appendix 2.E at the 
end of this chapter. 

 

2.3 Strategies in perfect-information 
games 

A strategy for a player in a perfect-information game is a complete, contingent 
plan on how to play the game. Consider, for example, the game of Figure 2.3 
and let us focus on Player 2. Before the game is played, Player 2 does not know 
what Player 1 will do and thus a complete plan needs to specify what she will 
do if Player 1 decides to play a and what she will do if Player 1 decides to play b. 
A possible plan is “if a then c and if b then e”, which we can denote more succinctly 
as (c,e). The other possible plans, or strategies, for Player 2 are (c,f), (d,e) and (d,f). 
The formal definition of strategy is as follows. 

Definition 2.5.  A  strategy for a player in a perfect-information game is a list of 
choices, one for each decision node of that player.  

For example, suppose that Player 1 has three decision nodes in a given game: at one 
node she has three possible choices, 1 2 3,  and a a a , at another node she has two 
possible choices,  1 2 and b b , and at the third node she has four possible choices, 

1 2 3 4, , c  and c c c . Then a strategy for Player 1 in that game can be thought of as a 

way of filling in three blanks: 
1 2 3 1 2 1 2 3 4one of , , one of , one of , , ,

_______ , _______ , _______
a a a b b c c c c

 
 
 
 
   . Since there are 3 

choices for the first blank, 2 for the second and 4 for the third, the total number of 
possible strategies for Player 1 in this case would be 3 2 4 24   . One strategy is 
 2 1 1, ,a b c , another strategy is   1 2 4, ,a b c , etc.  

It should be noted that the notion of strategy involves redundancies. To see this, 
consider the game of Figure 2.6 below. In this game a possible strategy for Player 1 
is (a,g), which means that Player 1 is planning to choose a at the root of the tree and 
would choose g at her other node. But if Player 1 indeed chooses a, then her other 
node will not be reached and thus why should Player 1 make a plan on what to do 
there? One could justify this redundancy in the notion of strategy in a number of 
ways:  Player 1 is so cautious that she wants her plan to cover also the possibility 
that she might make mistakes in the implementation of parts of her plan (in this 
case, she allows for the possibility that – despite her intention to play a  she might 
end up playing b) or we can think of a strategy as a set of instructions given to a 
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third party on how to play the game on Player 1’s behalf, in which case Player 1 
might indeed be worried about the possibility of mistakes and thus want to cover 
all contingencies, etc. An alternative justification relies on a different interpretation 
of the notion of strategy: not as a plan of Player 1 but as a belief in the mind of 
Player 2 concerning what Player 1 would do. For the moment we will set this issue 
aside and simply use the notion of strategy as given in Definition 2.5. 

yx

1
a b

g h

c d e f

0 32

1 1

1 0 1

02

1

2 2

 
Figure 2.6 

A perfect-information game. 

Using Definition 2.5, one can associate with every perfect-information game a 
strategic-form (or normal-form) game: a strategy profile determines a unique 
terminal node that is reached if players act according to that strategy profile and 
thus a unique vector of payoffs. Figure 2.7 shows the strategic-form associated with 
the perfect-information game of Figure 2.6 with the Nash equilibria highlighted. 
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ag 2 1 2 1 0 0 0 0

ah 2 1 2 1 0 0 0 0

bg 3 1 1 2 3 1 1 2

bh 3 1 1 0 3 1 1 0

de df
Player  2

Player 1

ce cf

 
Figure 2.7 

The strategic form of the perfect-information game of Figure 2.6 
with the Nash equilibria highlighted. 

Because of the redundancy discussed above, the strategic form also displays 
redundancies: in this case the top two rows are identical. 
Armed with the notion of strategy, we can now revisit the notion of backward-
induction solution. Figure 2.8 shows the two backward-induction solutions of the 
game of Figure 2.6. 
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Figure 2.8 
The backward-induction solutions of the game of Figure 2.6. 

It is clear from the definition of the backward-induction algorithm (Definition 2.4) 
that the procedure selects a choice at every decision node and thus yields a strategy 
profile for the entire game: the backward-induction solution shown in Panel a of 
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Figure 2.8 is the strategy profile  ( , ), ( , )a g c f , while the backward-induction 

solution shown in Panel b is the strategy profile  ( , ), ( , )b h c e . Both of them are 
Nash equilibria of the strategic form, but not all the Nash equilibria correspond to 
backward -induction solutions. The relationship between the two concepts will be 
explained in the following section. 

Remark 2.6.  A backward-induction solution is a strategy profile. Since strategies 
contain a description of what a player actually does and also of what the player 
would do in circumstances that do not arise, one often draws a distinction 
between the backward-induction solution and the backward-induction outcome 
which is defined as the history of actual moves. For example, the backward-
induction outcome associated with the solution  ( , ), ( , )a g c f  is the play ac with 
corresponding payoff (2,1), while the backward-induction outcome associated 
with the solution  ( , ), ( , )b h c e  is the play be with corresponding payoff (3,1). 

 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 2.E.3 of Appendix 2.E at the 
end of this chapter. 

 

2.4 Relationship between backward 
induction and other solutions  

If you have gone through the exercises for the previous three sections, you will 
have seen that in all those games the backward-induction solutions are also 
Nash equilibria. This is always true, as stated in the following theorem, whose 
proof we shall omit. 

Theorem 2.7.  Every backward-induction solution of a perfect-information 
game is a Nash equilibrium of the associated strategic form.  

In some games the set of backward-induction solutions coincides with the set of 
Nash equilibria (see, for example, Exercise 2.9), but typically the set of Nash 
equilibria is larger than (is a proper superset of) the set of backward-induction 
solutions (see, for example, Exercise 2.6). Nash equilibria that are not backward-
induction solutions often involve incredible threats. To see this, consider the 
following game. An industry is currently a monopoly and the incumbent 
monopolist is currently making a profit of $5 million. A potential entrant is 
considering whether or not to enter this industry. If she does not enter then she 
makes $1 million in an alternative investment; if she does enter, then the incumbent 
can either fight entry with a price war whose outcome is that both firms make zero 
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profits, or it can accommodate entry by sharing the market with the entrant, in 
which case both firms make a profit of $2 million. This situation is illustrated in 
Figure 2.9  with the associated strategic form. Note that we are assuming that each 
player is selfish and greedy, that is, cares only about its own profit and prefers more 
money to less. 

in

out fight

1 0

2
2

05

accommodate

IncumbentPotential
entrant

 

fight accommodate

In 0 , 0 2 , 2

Out 1 , 5 1 , 5

Potential
entrant

Chain store

 

Figure 2.9 
The entry game. 

The backward-induction solution is (in,accommodate) and it is also a Nash 
equilibrium. However, there is another Nash equilibrium, namely (out,fight). The 
latter should be discarded as a “rational solution” because it involves an incredible 
threat of the part of the incumbent, namely that it will fight entry if the potential 
entrant enters. It is true that, if the potential entrant believes the incumbent’s threat, 
then she is better off staying out; however, she should ignore the incumbent’s 
threat because she should realize that   when faced with the fait accompli of entry 
 the incumbent would not want to carry out the threat. 

Reinhard Selten (who shared the 1994 Nobel prize in economics  with two other 
game theorists, John Harsanyi and John Nash) discussed a repeated version of the 
above entry game, which has become known as Selten’s Chain Store Game. The 
story is as follows. A chain store is a monopolist in an industry. It owns stores in m 
different towns (m  2). In each town the chain store makes $5 million if left to 
enjoy its privileged position undisturbed. In each town there is a businesswoman 
who could enter the industry in that town, but earns $1 million if she chooses not 
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to enter; if she decides to enter, then the monopolist can either fight the entrant, 
leading to zero profits for both the chain store and the entrant in that town, or it 
can accommodate entry and share the market with the entrant, in which case both 
players make $2 million in that town. Thus, in each town the interaction between 
the incumbent monopolist and the potential entrant is as illustrated in Figure 2.9 
above. However, decisions are made sequentially, as follows. At date t (t = 1, ..., m) 
the businesswoman in town t decides whether or not to enter and if she enters then 
the chain store decides whether or not to fight in that town. What happens in town 
t at date t becomes known to everybody. Thus, for example, the businesswoman in 
town 2 at date 2 knows what happened in town 1 at date 1 (either there was no 
entry or entry was met with a fight or entry was accommodated). Intuition suggests 
that in this game the threat by the incumbent to fight early entrants might be 
credible, for the following reason. The incumbent could tell businesswoman 1 the 
following. 

“It is true that, if you enter and I fight, I will make zero 
profits, while by accommodating your entry I would make 
$2 million and thus it would seem that it cannot be in my 
interest to fight you. However, somebody else is watching 
us, for instance businesswoman 2. If she sees that I have 
fought your entry then she might fear that I would do the 
same with her and decide to stay out, in which case in town 
2  I would make $5 million, so that may total profits in 
towns 1 and 2 would be $(0+5) = $5 million. On the other 
hand, if I accommodate your entry, then she will be 
encouraged to entry herself and I will make $2 million in 
each town, for a total profit of $4 million. Hence as you 
can see  it is indeed in my interest to fight you and thus you 
should stay out.” 

Does the notion of backward induction capture this intuition? To check this, let us 
consider the case where m = 2, so that the extensive game is not too large to draw. 
It is shown in Figure 2.10, where in each payoff vector the top payoff is that of the 
incumbent monopolist (and is the sum of the profits in the two towns), the middle 
is the payoff of businesswoman 1 and the bottom is business woman 2’s payoff. All 
payoffs are expressed in millions of dollars. 
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Figure 2.10 
Selten’s Chain-Store game. 

If we assume that each player is selfish and greedy then we can take the profit of 
each player to be that player’s payoff. The backward-induction solution is unique 
and is shown by the thick directed edges in Figure 2.10. The corresponding 
outcome is that both businesswomen will enter and the incumbent accommodates 
entry in both towns. Thus the backward-induction solution does not capture the 
“reputation” argument outlined above. However, the backward-induction solution 
does seem to capture the notion of rational behavior in this game. Indeed, 
businesswoman 1 could reply to the incumbent with the following counter-
argument: 
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“Your reasoning is not valid. Whatever happens in town 1, it 
will be common knowledge between you and 
businesswoman 2 that your interaction in town 2 will be the 
last; in particular, nobody else will be watching and thus 
there won’t be an issue of establishing a reputation in the 
eyes of another player. Hence in town 2 it will be in your 
interest to accommodate entry, since you will in essence be 
playing the one-shot entry game of Figure 2.9. Hence a 
rational businesswoman 2 will decide to enter in town 2 
whatever happened in town 1: what you do against me will 
have no influence on her decision. Thus your “reputation” 
argument does not apply and it will in fact be in your 
interest not to fight my entry: your choice will be between a 
profit of $(0+2) = $2 million, if you fight me, and a profit 
of $(2+2) = $4 million, if you don’t fight me. Hence I will 
enter and you will not fight me.” 

In order to capture the reputation argument described above we need to allow for 
some uncertainty in the mind of some of the players, as we will show in a later 
chapter. In a perfect-information game uncertainty is ruled out by definition. 

By Theorem 2.7 the notion of backward induction can be seen as a refinement of 
the notion of Nash equilibrium. Another solution concept that is related to 
backward induction is the iterated elimination of weakly dominated strategies. 
Indeed the backward-induction algorithm could be viewed as a step-wise procedure 
that eliminates dominated choices at decision nodes, and thus strategies that contain 
those choices. What is the relationship between the two notions? In general this is 
all that can be said: applying the iterated deletion of weakly dominated strategies to 
the strategic form associated with a perfect-information game leads to a set of 
strategy profiles that contains at least one backward-induction solution; however, 
(1) it may also contain strategy profiles that are not backward-induction solutions 
and (2) it may fail to contain all the backward-induction solutions, as shown in 
Exercise 2.8.  
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2.5 Perfect-information games with 
two players  

We conclude this chapter with a discussion of finite two-player extensive games 
with perfect information.  

We will start with games that have only to outcomes:, namely Player 1 wins 
(denoted by 1W ) and Player 2 wins (denoted by 2W ). We assume that Player 1 
strictly prefers 1W  to 2W  and Player 2 strictly prefers 2W  to 1W . Thus we can 
use utility functions with values 0 and 1 and with each terminal node is 
associated either the payoff vector (1,0) (if the outcome is 1W ) or the payoff 
vector (0,1) (if the outcome is 2W ). We call these games win-lose games. An 
example of such a game is the following.  

Example 2.8.  Two players take turns choosing a number from the set 
{1,2,…,10}, with Player 1 moving first. The first player who brings the sum of 
all the chosen numbers to 100 or more wins.  

The following is one possible play of the game (the red numbers are the ones 
chosen by Player 1 and the blue numbers the ones chosen by Player 2): 

10, 9, 9, 10, 8, 7, 10, 10, 1, 8, 1, 7,  6, 4 

In this play Player 2 wins: at her last move the sum is 96 and with her choice of 4 
she brings the total to 100. However, in this game Player 1 has a winning strategy, 
that is, a strategy that guarantees that he will win, no matter what numbers Player 2 
chooses. To see this, we can use backward-induction reasoning. Drawing the tree is 
not a practical option, since the number of nodes is very large: one needs 10,000 
nodes just to represent the first 4 moves! But we can imagine drawing the tree, 
placing ourselves towards the end of the tree and ask what partial sum represents a 
“losing position”, in the sense that whoever is choosing in that position cannot win, 
while the other player can then win with his subsequent choice. With some 
thought one can see that 89 is the largest losing position: whoever moves there can 
take the sum to any number in the set {90, 91, …, 99}, thus coming short of 100, 
while the other player can then take the sum to 100  with an appropriate choice. 
What is the largest losing position that precedes 89? The answer is 78: whoever 
moves at 78 must take the sum to a number in the set {79, 80, …, 88} and then from 
there the other player can make sure to take the sum to 89 and then we know what 
happens from there! Repeating this reasoning we see that the losing positions are: 
89, 78, 67, 56, 45, 34, 23, 12, 1. Since Player 1 moves first he can choose 1 and put 
Player 2 in the first losing position; then whatever Player 2 chooses Player 1 can 
put her in the next losing position, namely 12, etc. Recall that a strategy for Player 1 
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must specify what to do in every possible situation in which he might find himself. 
In his game Player 1’s winning strategy is as follows: 

Start with the number 1. Then, at every turn, choose 
the number (11 n), where n is the number that was 
chosen by Player 2 in the immediately preceding turn. 

Here is an example of a possible play of the game where Player 1 employs the 
winning strategy and does in fact win: 

1, 9, 2, 6, 5, 7, 4, 10, 1, 8, 3, 3, 8, 9, 2, 5, 6, 1, 10. 

We can now state a general result about this class of games. 

Theorem 2.9.  In every finite two-player, win-lose game with perfect 
information one of the two players has a winning strategy.  

Although we will not give a detailed proof, the argument of the proof is rather 
simple. By applying the backward-induction algorithm we assign to every decision 
node either the payoff vector (1,0) or the payoff vector (0,1). Imagine applying the 
algorithm up to the point where the immediate successors of the root have been 
assigned a payoff vector. Two cases are possible. Case 1: at least one of the 
immediate successors of the root has been assigned the payoff vector (1,0). In this 
case Player 1 is the one who has a winning strategy and his initial choice should be 
such that a node with payoff vector (1,0) is reached and then his future choices 
should also be such that only nodes with payoff vector (1,0)  are reached. Case 2: all 
the immediate successors of the root have been assigned the payoff vector (0,1). In 
this case it is Player 2 who has a winning strategy. An example of a game where it is 
Player 2 who has a winning strategy is given in Exercise 2.11. 

We now turn to finite two-player games where there are three possible outcomes: 
Player 1 wins ( 1W ), Player 2 wins ( 2W ) and a draw (D). We assume that the 
rankings of the outcomes are as follows: 1 1 1 2W D W   and 2 2 2 1W D W  . 
Examples of such games are Tic-Tac-Toe (http://en.wikipedia.org/wiki/Tic-tac-toe) 
, Draughts or Checkers (http://en.wikipedia.org/wiki/Draughts) and Chess 
(although there does not seem to be agreement as to whether the rules of Chess 
guarantee that every possible play of the game is finite). What can we say about 
such games? The answer is provided by the following theorem. 

http://en.wikipedia.org/wiki/Tic-tac-toe)
http://en.wikipedia.org/wiki/Draughts)
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Theorem 2.10.  Every finite two-player, perfect-information game with three 
outcomes: Player 1 wins ( 1W ), Player 2 wins ( 2W ) and Draw (D) falls within 
one of the following three categories: 

(1) Player 1 has a strategy that guarantees outcome 1W . 

(2) Player 2 has a strategy that guarantees outcome 2W . 

(3) Player 1 has a strategy that guarantees that the outcome will be 1W  or D and 
Player 2 has a strategy that guarantees that the outcome will be 2W  or D, so 
that, if both players employ these strategies, the outcome will be D.  

The logic of the proof is as follows. By applying the backward-induction algorithm 
we assign to every decision node either the payoff vector (2,0) (corresponding to 
outcome 1W ) or the payoff vector (0,2) (corresponding to outcome 2W )  or the 
payoff vector (1,1) (corresponding to outcome D).  Imagine applying the algorithm 
up to the point where the immediate successors of the root have been assigned a 
payoff vector. Three cases are possible. Case 1: at least one of the immediate 
successors of the root has been assigned the payoff vector (2,0); in this case Player 1 
is the one who has a winning strategy.  Case 2: all the immediate successors of the 
root have been assigned the payoff vector (0,2);  in this case it is Player 2 who has a 
winning strategy. Case 3:  there is at least one immediate successor of the root to 
which the payoff vector  (1,1)  has been assigned and all the other immediate 
successors of the root have been assigned either (1,1) or (0,2). In this case we fall 
within the third category of Theorem 2.10.  

Both Tic-Tac-Toe and Draughts fall within the third category 
(http://en.wikipedia.org/wiki/Solved_game#Solved_games). As of 2015 it is not 
known to which category the game of Chess belongs. 

 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 2.E.5 of Appendix 2.E at the 
end of this chapter. 

http://en.wikipedia.org/wiki/Solved_game#Solved_games).
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Appendix 2.E: Exercises  

2.E.1 .  Exerc ise s for  Sec t ion 2 .1 :  tree s,  frames a nd 
games  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 2. 1. How could they do that! They abducted Speedy, your favorite 
tortoise! They asked for $1,000 in unmarked bills and threatened to kill 
Speedy if you don’t pay. Call the tortoise-napper Mr. T.  Let the possible 
outcomes be as follows:  

1

2

3

4

:
:
:
:

o
o
o
o

you don't pay and speedy is released
you pay $1,000 and speedy is released
you don't pay and speedy is killed
you pay $1,000 and speedy is killed

  

You are attached to Speedy and would be willing to pay $1,000 to get it back. 
However, you also like your money and you prefer not to pay, conditional 
on the two separate events “Speedy is released” and “Speedy is killed”: your 
ranking of the outcomes is  1 2 3 4you you youo o o o   .  On the other hand, you 
are not quite sure of what Mr. T’s ranking is. 

(a)  Suppose first that Mr T has communicated that he wants you to go to 
Central Park tomorrow at 10:00am and leave the money in a garbage can; 
he also said that, two miles to the East and at the exact same time, he will 
free Speedy in front of the police station and then go and collect his 
money in Central Park. What should you do? 

(b)  Suppose that Mr T is not as dumb as in part (a) and he instead gives you 
the following instructions: first you leave the money in a garbage can in 
Central Park and then he will go there to collect the money. He also told 
you that if you left the money there then he will free Speedy, otherwise 
he will kill it. Draw an extensive form or frame to represent this situation. 

(c)  Now we want to construct a game based on the extensive form of part (b). 
For this we need Mr T’s preferences. There are two types of criminals in 
Mr T’s line of work: the professionals and the one-timers. Professionals 
are in the business for the long term and thus worry about reputation; 
they want it to be known that (1) every time they were paid they honored 
their promise to free the hostage  and (2) their threats are to be taken 
seriously, in the sense that every time they were not paid, the hostage was 
killed. The one-timers hit once and then they disappear; they don’t try to 
establish a reputation and the only thing they worry about, besides 
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money, is not to be caught: whether or not they get paid, they prefer to 
kill the hostage in order to eliminate any kind of evidence (DNA traces, 
fingerprints, etc.). Construct two games based on the extensive form of 
part (b) representing the two possible types of Mr T. 

Exercise 2.2. A three-man board, composed of A, B, and C, has held hearings 
on a personnel case involving an officer of the company.  This officer was 
scheduled for promotion but, prior to final action on his promotion, he took 
a decision that cost the company a good deal of money.  The question is 
whether he should be (1) promoted anyway, (2) denied the promotion, or (3) 
fired. The board has discussed the matter at length and is unable to reach 
unanimous agreement.  In the course of the discussion it has become clear to 
all three of them that their separate opinions are as follows: 
 A considers the officer to have been a victim of bad luck, not bad 

judgment, and wants to go ahead and promote him but, failing that, would 
keep him rather than fire him. 

 B considers the mistake serious enough to bar promotion altogether; he’d 
prefer to keep the officer, denying promotion, but would rather fire than 
promote him. 

 C thinks the man ought to be fired but, in terms of personal policy and 
morale, believes the man ought not to be kept unless he is promoted, i.e., 
that keeping an officer who has been declared unfit for promotion is even 
worse than promoting him.  
To recapitulate, their preferences among the three outcomes are 

 PROMOTE KEEP FIRE 

A: best middle worst 

B: worst  best middle 

C: middle worst best 

Assume that everyone’s preferences among the three outcomes are fully evident 
as a result of discussion. The three must proceed to a vote.   
Consider the following voting procedure.  First A proposes an action (either 
promote or keep or fire). Then it is B’s turn. If B accepts A’s proposal, then this 
becomes the final decision. If B disagrees with A’a proposal, then C makes the 
final decision (which may be any of the three: promote, keep of fire). Represent 
this situation as an extensive game with perfect information. 
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2.E.2 .  Exerc ise s for  Sec t ion 2 .2 :  backward induct ion.  
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 2.3. Apply the backward-induction algorithm to the two games of 
Exercise 2.1 Part c.  

Exercise 2.4. Apply the backward-induction algorithm to the game of Exercise 2.2. 

2.E.3 .  Exerc ise s for  Sec t ion 2 .3 :  s trategie s  
         in  per fec t - information games.  
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 2.5. Write the strategic form of the game of Figure 2.2, find all the 
Nash equilibria and verify that the backward-induction solution is a Nash 
equilibrium. 

Exercise 2.6. Write the strategic form of the game of Figure 2.3, find all the 
Nash equilibria and verify that the backward-induction solutions are Nash 
equilibria. 

Exercise 2.7. (a) Write down all the strategies of Player B in the game of 
Exercise 2.2.  
(b) How many strategies does Player C have? 

Exercise 2.8. Consider the following perfect-information game: 
1

2 2

1

L R

EW

a b c d e

2
1

2
0

3
2

1
2

0
3

4
0

 
(a) (Find the backward-induction solutions.  
(b) Write down all the strategies of Player 1. 
(c) Write down all the strategies of Player 2. 
(d) Write the strategic form  associated with this game. 
(e) Does Player 1 have a dominant strategy? 
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(f) Does Player 2 have a dominant strategy? 
(g) Is there a dominant-strategy equilibrium? 
(h) Does Player 1 have any dominated strategies? 
(i) Does Player 2 have any dominated strategies? 
(j) What do you get when you apply the iterative elimination of weakly 

dominated strategies? 
(k) What are the Nash equilibria? 

Exercise 2.9. Consider an industry where there are two firms, a large firm, 
Firm 1, and a small firm, Firm 1. The two firms produce identical products. 
Let x be the output of Firm 1 and y the output of Firm 2. Industry output is 
Q x y  . The price P at which each unit of output can be sold is determined 
by the inverse demand function  130 10P Q  . For example, if Firm 1 
produces 4 units and Firm 2 produces 2 units, then industry output is 6 and 
each unit is sold for P = 130 60 = $70. For each firm the cost of producing 
each q units of output is ( ) 10 62.5C q q  . Each firm is only interested in its 
own profits. The profit of Firm 1 depends on both x and y and is given by 

 1

cosrevenue

( , ) 130 ( ) (10 62.5)
t

x y x x y x       and similarly the profit function of 

Firm 2 is given by  2

cosrevenue

( , ) 130 ( ) (10 62.5)
t

x y y x y y      . The two firms 

play the following sequential game. First Firm 1 chooses its own output x and 
commits to it; then Firm 2, after having observed Firm 1’s output, chooses its 
own output y;  then the price is determined according to the demand function 
and the two firms collect their own profits. In what follows assume, for 
simplicity, that x can only be 6 or 6.5 units and y can only be 2.5 or 3 units. 

(a)  Represent this situation as an extensive game with perfect information. 

(b)  Solve the game using backward induction. 

(c)  Write the strategic form associated with the perfect-information game. 

(d)  Find the Nash equilibria of this game and verify that the backward-
induction solutions are Nash equilibria. 
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Exercise 2.10. Consider the following perfect-information game where x is an 
integer. 

A B

C D E F

1

2 2

Player 1's payoff   2
Player 2's payoff   5

1
0

1
0

x
2

 

(a) For every value of x find the backward induction solution(s). 

(b) Write the corresponding strategic-form and find all the Nash equilibria. 
 

2.E.5 .  Exerc ise s for  Sec t ion 2 .5 :  two-p layer  games.  
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 2.11. Consider the following perfect-information game. Player 1 
starts by choosing a number from the set {1,2,3,4,5,6,7}, then Player 2 
chooses a number from this set, then Player 1 again, followed by Player 2, 
etc. The first player who brings the cumulative sum of all the numbers 
chosen (up to and including the last one) to 48 or more wins. By Theorem 2.9 
one of the two players has a winning strategy. Find out who that player is 
and fully describe the winning strategy. 

Exercise 2.12. Consider the following two-player, perfect-information game. 
A coin is placed in the cell marked ‘START’ (cell A1). Player 1 moves first 
and can move the coin one cell up (to A2) or one cell to the left (to B1) or one 
cell diagonally in the left-up direction (to B2). Then Player 2 moves, 
according to the same rules (e.g. if the coin is in cell B2 then the admissible 
moves are shown by the directed edges). The players alternate moving the 
coin. Black cells are not accessible (so that, for example, from A3 the coin can 
only be moved to A4 or B3 and from F3 it can only be moved to G4, as 
shown by the directed edge). The player who manages to place the coin in 
the cell marked ‘END’ wins.  
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(a) Represent this game by means of an extensive form with perfect 
information by drawing the initial part of the tree that covers the first 
two moves (the first move of Player 1 and the first move of Player 2). 

(b) Suppose that the coin is currently in cell G4 and it is Player 1’s turn to 
move. Show that Player 1 has a strategy that allows her to win the game 
starting from cell G4. Describe the strategy in detail.  

(c) Describe a play of the game (from cell A1) where Player 1 wins 
(describe it by means of the sequence of cells visited by the coin). 

(d) Describe a play of the game (from cell A1) where Player 2 wins 
(describe it by means of the sequence of cells visited by the coin). 

(e) Now go back to the beginning of the game. The coin is in cell A1 and 
player 1 has the first move. By Theorem 2.9 one of the two players has 
a winning strategy. Find out who that player is and fully describe the 
winning strategy. 
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◊◊◊◊◊◊◊◊◊◊◊◊ 

Exercise 2.13: Challenging Question.  Two women, Anna and Bess, claim 
to be the legal owners of a diamond ring that – each claims – has great 
sentimental value. Neither of them can produce evidence of ownership and 
nobody else is staking a claim on the ring. Judge Sabio wants the ring to go to 
the legal owner, but he does not know which of the two women is in fact the 
legal owner.  He decides to proceed as follows. First he announces a fine of $F 
> 0 and then asks Anna and Bess to play the following game. 
Move 1:  Anna moves first. Either she gives up her claim to the ring (in which 
case Bess gets the ring, the game ends and nobody pays the fine) or she asserts 
her claim, in which case the game proceeds to Move 2. 
Move 2: Bess either accepts Anna’s claim (in which case Anna gets the ring, the 
game ends and nobody pays the fine) or challenges her claim. In the latter case, 
Bess must put in a bid, call it B, and Anna must pay the fine of $F to Sabio. The 
game goes on to Move 3. 
Move 3: Anna now either matches Bess’s bid (in which case Anna gets the ring, 
Anna pays $B to Sabio    in addition to the fine that she already paid   and 
Bess pays the fine of $F to Sabio) or chooses not to match (in which case Bess 
gets the ring and pays her bid of $B to Sabio and, furthermore, Sabio keeps the 
fine that Anna already paid). 

Denote by CA the monetary equivalent of getting the ring for Anna (that is, 
getting the ring is as good, in Anna’s mind, as getting $CA) and CB the 
monetary equivalent of getting the ring for Bess.  Not getting the ring is 
considered by both as good as getting zero dollars. 
(a) Draw an extensive game with perfect information to represent the above 

situation, assuming that there are only two possible bids: B1 and B2. Write 
the payoffs to Anna and Bess next to each terminal node. 

(b) Find the backward-induction solution of the game you drew in part (a) for 
the case where   B1 > CA > CB > B2 > F > 0. 

Now consider the general case where the bid B can be any non-negative 
number and assume that both Anna and Bess are very wealthy. Assume also 
that CA, CB and F are positive numbers and that CA and CB are common 
knowledge between Anna and Bess . We want to show that, at the backward-
induction solution of the game, the ring always goes to the legal owner. Since 
we (like Sabio) don’t know who the legal owner is, we must consider two cases. 
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Case 1: the legal owner is Anna. Let us assume that this implies that CA > CB.  

Case 2: the legal owner is Bess. Let us assume that this implies that CB > CA.  

(c) Find the backward-induction solution for Case 1 and show that it implies 
that the ring goes to Anna. 

(d) Find the backward-induction solution for Case 2 and show that it implies 
that the ring goes to Bess. 

(e) How much money does Sabio make in equilibrium? How much money do 
Ann and Bess end up paying in equilibrium? (By ‘equilibrium’ we mean 
‘backward induction solution’.)  
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Appendix 2.S: Solutions to exercises  

Exercise 2.1.  (a) For you it is a strictly dominant strategy to not pay and 
thus you should not pay. 

(b) The extensive form is as follows: 

kill

Mr T Mr T

not
pay

pay

release release kill

You

1o 2o3o 4o
 

(c) For the professional, concern with reputation implies that 2 4MrTo o  and 

3 1MrTo o . If we add the reasonable assumption that  after all   money is 
what they are after, then we can take the full ranking to be 

2 4 3 1MrT MrT MrTo o o o   . Representing preferences with ordinal utility 
functions with values in the set {1,2,3,4}, we have 

31 2 4         

4 3 
1 4 2

1
3

2

MrT

you

U

oo o o

U





outcome

utility function
 

The corresponding game is as follows: 

kill

Mr T Mr T

not
pay

pay

release release kill

You

21 4 3

4 2 3 1
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For the one-timer, the ranking can be taken to be (although this is not the 
only possibility) 4 2 3 1MrT MrT MrTo o o o   , with corresponding utility 
representation: 

31 2 4         

4 3 
1 3 2

1
4

2

MrT

you

U

oo o o

U





outcome

utility function
 

and extensive game: 

kill

Mr T Mr T

not
pay

pay

release release kill

You

21 3 4

4 2 3 1

 
Exercise 2.2.   

The game is as follows (“P” stands for promote, “K” for keep (without 
promoting), “F” for fire): 

PP F F F

A

B

B

B

C C C

P
K

F

accept

accept
reject reject reject

accept
 F

P K F P K F P K F

KK PK

P3
1
2

3
1
2

3
1
2

3
1
2

2
3
1

2
3
1

2
3
1

1
2
3

1
2
3

1
2
3

1
2
3

K
2
3
1
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Exercise 2.3.  The application of the backward-induction algorithm is shown 
by double edges in the following games, the first refers to the professional 
MrT and the second to the one-timer.  

releasekill

Mr T Mr T

not
pay

pay

release kill

You

21 4 3

4 2 3 1

 

releasekill

Mr T Mr T

not
pay

pay

release kill

You

21 3 4

4 2 3 1

 
Thus, against a professional you would pay and against a one-timer you 
would not pay. With the professional you would get Speedy back, with the 
one-timer you will hold a memorial service for Speedy. 

Exercise 2.4.  The backward-induction algorithm yields two solutions, shown 
below. The difference between the two solutions lies in what Player B would 
do if Player A proposed F. In both solutions the officer is kept without 
promotion. 
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PP F F F

A

B

B

B

C C C

P F

accept

accept
reject reject reject

accept

KK PK

3
1
2

3
1
2

3
1
2

2
3
1

2
3
1

2
3
1

1
2
3

1
2
3

1
2
3

3
1
2

1
2
3

2
3
1

K

 

reject

PP F F F

A

B

B

B

C C C

P F

accept

accept
reject reject

accept

KK PK

3
1
2

3
1
2

3
1
2

2
3
1

2
3
1

2
3
1

1
2
3

1
2
3

1
2
3

3
1
2

1
2
3

2
3
1

K

 
Exercise 2.5.  The strategic form is as follows: 

offer 50-50 2 3 2 3 1 2 1 2

offer 70-30 3 1 1 2 3 1 1 2
Player 1

Player  2

(Accept,Accept) (Accept,Reject) (Reject,Accept) (Reject,Reject)

 
Exercise 2.6.  The strategic form is as follows. The Nash equilibria are 
highlighted. The backward-induction solutions are (a,(c,f),g) and (b,(c,e),h) and 
both of them are Nash equilibria.  
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Player a 2 1 0 2 1 0 0 0 2 0 0 2
1 b 3 1 0 1 2 1 3 1 0 1 2 1

Player 3: g

Player a 2 1 0 2 1 0 0 0 2 0 0 2
1 b 3 1 0 0 0 1 3 1 0 0 0 1

Player 3: h

Player 2
ce cf de df

Player 2
ce cf de df

 
Exercise 2.7.  (a) All the possible strategies of Player B are shown in the 
following table: 

 If A chooses P If A chooses K If A chooses F 

1 accept accept accept 

2 accept accept reject 

3 accept reject accept 

4 accept reject reject 

5 reject accept accept 

6 reject accept reject 

7 reject reject accept 

8 reject reject reject 
(b) Player C has three decision nodes and three choices at each of her nodes. 

Thus she has 3 3 3 27    strategies. 

Exercise 2.8.   

(a)  One backward-induction solution is the strategy profile  ( , ), ( , )L W a e   
shown in the following figure. The corresponding backward-induction 
outcome is the play La with associated  payoff vector (2,1). 
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1

2 2

1

L R

EW

a b c d e

2
1

2
0

3
2

1
2

0
3

4
0

 
The other backward-induction solution is the strategy profile 
 ( , ), ( , )R W a d   shown in the following figure. The corresponding 
backward-induction outcome is the play Rd with associated  payoff vector 
(3,2). 

1

2 2

1

L R

EW

a b c d e

2
1

2
0

3
2

1
2

0
3

4
0

 
(b) Player 1 has four strategies are: LW, LE, RW, RE. 
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(c) Player 2 has six strategies: ac, ad, ae, bc, bd, be. 

(d) The strategic form is as follows: 

 

 

 

1 
 

2 

 ac ad ae bc bd be 

LW 2  ,  1 2  ,  1 2  ,  1 4  ,  0 4  ,  0 4  ,  0 

LE 2  ,  1 2  ,  1 2  ,  1 4  ,  0 4  ,  0 4  ,  0 

RW 2  ,  0 3  ,  2 1  ,  2 2  ,  0 3  ,  2 1  ,  2 

RE 2  ,  0 3  ,  2 0  ,  3 2  ,  0 3  ,  2 0  ,  3 

 
(e) Player 1 does not have a dominant strategy. 

(f) For Player 2 ae is a weakly dominant strategy. 

(g) There is no dominant strategy equilibrium. 

(h) For Player 1 RE is weakly dominated by RW (and LW and LE are 
equivalent). 

(i) For Player 2 ac is weakly dominated by ad (or ae), ad is weakly 
dominated by ae, bc is (strictly or weakly) dominated by every other 
strategy, bd is weakly dominated by be (and by ae and ad), be is weakly 
dominated by ae. Thus the dominated strategies are: ac, ad, bc, bd and be.  

(j) The iterative elimination of weakly dominated strategies yields the 
following reduced game(first eliminate RE for Player 1 and ac, ad, bc, bd 
and be for Player 2; then eliminate RW for Player 1: 

 ae 

LW 2  ,  1 

LE 2  ,  1 

Thus we are left with one of the two backward-induction solutions, 
namely  ( , ), ( , )L W a e but also with  ( , ), ( , )L E a e  which is not a 
backward-induction solution. 

(k) The Nash equilibria are highlighted in the following table. There are 
five Nash equilibria: (LW,ac), (LE,ac), (RW,ad), (LW,ae) and (LE,ae). 
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1 
 

2 

 ac ad ae bc bd be 

LW 2  ,  1 2  ,  1 2  ,  1 4  ,  0 4  ,  0 4  ,  0 

LE 2  ,  1 2  ,  1 2  ,  1 4  ,  0 4  ,  0 4  ,  0 

RW 2  ,  0 3  ,  2 1  ,  2 2  ,  0 3  ,  2 1  ,  2 

RE 2  ,  0 3  ,  2 0  ,  3 2  ,  0 3  ,  2 0  ,  3 

Exercise 2.9.  (a)  The extensive game is as follows: 

22

1

x=6 x=6.5

y=2.5 y=2.5y=3 y=3

147.5
25

117.5
27.5

132.5
12.5

100
12.5  

(b) There are two backward-induction solutions. The first is the strategy profile 
 6, (3,3)  shown in the following figure. The corresponding backward-
induction outcome is given by Firm 1 producing 6 units and Firm 2 
producing 3 units with profits 117.5 for Firm 1 and 27.5 for Firm 2. 

22

1

x=6 x=6.5

y=2.5 y=2.5y=3 y=3

147.5
25

117.5
27.5

132.5
12.5

100
12.5  
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The other backward-induction solution is the strategy profile  6.5, (3, 2.5)  
shown in the following figure. The corresponding backward-induction 
outcome is given by Firm 1 producing 6.5 units and Firm 2 producing 2.5 
units with profits 132.5 for Firm 1 and 12.5 for Firm 2. 

22

1

x=6 x=6.5

y=2.5 y=2.5y=3 y=3

147.5
25

117.5
27.5

132.5
12.5

100
12.5  

(c) The strategic form is as follows. 

6 147.5 25 147.5 25 117.5 27.5 117.5 27.5

6.5 132.5 12.5 100 12.5 132.5 12.5 100 12.5
Firm 1

Firm  2

(2.5,2.5) (2.5,3) (3,2.5) (3,3)

 
(d) The Nash equilibria are highlighted in the above table. In this game the set 

of Nash equilibria coincides with the set of backward-induction solutions. 

Exercise 2.10.   

(a)  The backward-induction strategy of Player 2 is the same, no matter what x 
is, namely (C,F). Thus the backward induction solutions are as follows. 

 If x < 2, there is only one: (A, (C,F)). 

 If x = 2 there are two: (A, (C,F)) and (B, (C,F)). 

 If x > 2, there is only one: (B, (C,F)). 

(b)  The strategic form is as follows: 
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A 2 5 2 5 1 0 1 0

B 1 0 x 2 1 0 x 2
Player 1

Player  2

CE CF DE DF

 
First note that (A, (C,E)) is a Nash equilibrium for every value of x. 
Now, depending on the value of x the other Nash equilibria are as 
follows: 

 If x < 1, (A, (C,F)). 

 If 1   x < 2, (A, (C,F)) and (B, (D,F)). 

 If x = 2, (A, (C,F)), (B, (C,F)) and (B, (D,F)). 

 If x > 2, (B, (C,F)) and (B, (D,F)). 

Exercise 2.11.  Let us find the losing positions. If  player i, with his choice, 
can bring the sum to 40 then he can win (the other player with her next 
choice will take the sum to a number between 41 and 47 and then player i can 
win with his next choice). Working backwards, the previous losing position is 
32 (from here the player who has to move will take the sum to a number 
between 33 and 39 and after this the opponent can take it to 40). Reasoning 
backwards, the earlier losing positions are 24, 16, 8 and 0. Thus Player 1 starts 
from a losing position and therefore it is Player 2 who has a winning strategy. 
The winning strategy is: at every turn if Player 1’s last choice was n then 
Player 2 should choose (8 -n). 

Exercise 2.12.  (a) The initial part of the game is shown below. 

1

2 2 2
A2 B1

B2

A3
B2 B3 B2 C2 B3 C2

C3

C1

 
(b) From G4 Player 1 should move the coin to H5. From there Player 2 has to 

move it to H6 and Player 1 to H7 and Player 2 to H8 and from there Player 
1 wins by moving it to H9. 
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(c) 
1 2 1 2 1 2 1 2 1

1 2 3 4 5 5 6 7 8 9A B C D E F G H H H          

(d)  
1 2 1 2 1 2 1 2 1 2

1 2 3 4 5 5 6 7 7 8 9A B C D E F G G H H H           
(e) Using backward induction we can label each cell with a W (meaning that the 

player who has to move when the coin is there has a winning continuation 
strategy) or with an L (meaning that the player who has to move when the 
coin is there can be made to lose). If all the cells that are accessible from a 
given cell are marked with a W then that cell must be marked  with an L. If 
from a cell there is an accessible cell marked with an L then that cell is 
should be marked with a W. See the following picture. 

 
From the picture it is clear that it is Player 1 who has a winning strategy. 
The winning strategy of player 1 is: move the coin to cell B1 and from then 
on, after every move of Player 2, move the coin to a cell marked L. 
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Exercise 2.13.  (a) The game is as follows: 

Anna

Anna Anna

Bess

give up
claim

assert
claim

accept

challenge and 
choose B challenge and 

choose B2
1

don't
match

don't
match match match

0
CB

C
0

A

F

C    B

C    B    F1A

1B F

F

C    B 2B

C    B    F2A

F
 

(b) The backward-induction solution is marked by thick arrows in the above 
figure. 

(c) The structure of the game is as follows: 
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Anna

Anna

Bess

give up
claim

assert
claim

accept

don't
match

match

0
C B

C
0

A

F

C    BB

C    B   F

F

challenge and 
choose B

A

 

Suppose that Anna is the legal owner and she thus values the ring more than 
Bess does: CA > CB.  At the last node Anna will choose “match” if CA > B and 
“don’t match” if B  CA. In the first case Bess’s payoff will be F, while in the 
second case it will be CB B which is negative since B  CA and CA > CB. Thus 
in either case Bess’s payoff would be negative. Hence at her decision node Bess 
will choose “accept” (Bess can get the ring at this stage only if she bids more 
than the ring is worth to her). Anticipating this, Anna will assert her claim at 
the first decision node. Thus at the backward-induction solution the ring goes 
to Anna, the legal owner. The payoffs are CA for Anna and 0 for Bess. Note 
that no money changes hands. 

(d) Suppose that Bess is the legal owner and she thus values the ring more than 
Anna does: CB > CA.  At the last node Anna will choose “match” if CA > 
B and “don’t match” if B  CA. In the first case Bess’s payoff will be F, 
while in the second case it will be CB B, which will be positive as long as 
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CB > B. Hence at her decision node Bess will choose to challenge and bid 
any amount B such that  CB > B > CA. Anticipating this, at her first 
decision node Anna will give up (and get a payoff of 0), because if she 
asserted her claim then her final payoff would be F. Thus at the backward-
induction solution the ring goes to Bess, the legal owner. The payoffs are 0 
for Anna and CB for Bess. Note that no money changes hands. 

(e) As pointed out above, in both cases no money changes hands at the 
backward-induction solution. Thus Sabio collects no money at all and both 
Ann and Bess pay nothing. 
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General dynamic games 

3.1 Imperfect information 

here are many situations where players have to make decisions with only 
partial information about previous moves by other players. Here is an 
example from my professional experience: in order to discourage copying 

and cheating in exams, I prepare two versions of the exam, print one version on 
white paper and the other on pink paper and distribute the exams in such a way 
that if a student gets, say, the white version then the students on his left and right 
have the pink version. For simplicity let us assume that there is only one question 
in the exam. What matters for my purpose is not that the question is indeed 
different in the two versions, but that the students believe that they are different and 
thus refrain from copying from their neighbors. The students, however, are not 
naïve ad realize that I might be bluffing; indeed, introducing small differences 
between the two versions of the exam involves extra effort on my part. Consider a 
student who finds himself in the embarrassing situation of not having studied for 
the final exam and is tempted to copy from his neighbor, whom he knows to be a 
very good student. Let us assume that, if he does not copy, then he turns in a blank 
exam; in this case, because of his earlier grades in the quarter, he will get a C; on the 
other hand, if he copies he will get an A if the two versions are identical but will be 
caught cheating and get an F if the two versions are slightly different. How can we 
represent such a  situation? Clearly this is a situation in which decisions are made 
sequentially: first the Professor decides whether to write identical versions (albeit 
printed on different-color paper) or different versions and then the Student chooses 
between copying and leaving the exam blank. We can easily represent this situation 
using a tree as we did with the case of perfect-information games, but the crucial 
element here is the fact that the Student does not know whether the two versions are 
identical or different. In order to represent this uncertainty (or lack of information) 
in the mind of the Student, we use the notion of information set. An information set 
for a player is a collection of decision nodes of that player and the interpretation is 
that the player does not know at which of these nodes he is making his decision. 

Chapter 

3 

T 
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Graphically, we represent an information set by enclosing the corresponding nodes 
in  a rounded rectangle. Figure 3.1 represents the situation described above. 

identical
versions

different
versions

STUDENT

copy blank copy blank

Student
gets C

Student
gets A

Student caught
cheating, gets F

Student
gets C

PROFESSOR

 

Figure 3.1 
An extensive form, or frame, with imperfect information 

As usual we need to distinguish between a game-frame and a game. Figure 3.1 
depicts a game-frame: in order to obtain a game from it  we need to add a ranking of 
the outcomes for each player. For the moment we shall ignore payoffs and focus on 
frames. A game-frame such as the one shown in Figure 3.1 is called an extensive form 
(or frame) with imperfect information: in this example it is the Student who has 
imperfect information, or uncertainty, about the earlier decision of the Professor.  

We now give a general definition of extensive form that allows for perfect 
information (Definition 2.1, Chapter 2) as a special case. The first four items of 
Definition 3.1, marked by the bullet symbol , coincide with Definition 2.1; what is 
new are the additional item marked by the symbol .  

First some additional terminology and notation. Given a directed tree and two 
nodes x and y we say that y is a successor of x or x is a predecessor of y if there is a 
sequence of directed edges from x to y (if the sequence consists of a single directed 
edge then we say, as before, that y is an immediate successor of x or x is the immediate 
predecessor of y). A partition of a set H is a collection  1,..., ( 1)mH H m H of 

non-empty subsets of H such that (1) any two elements of H  are disjoint (if 
,j kH H H  with j k  then j kH H  ) and (2) together the elements of 

H cover H: 1 ... .mH H H     
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Definition 3.1. A finite extensive  form  (or frame)  with perfect recall consists of the 
following items. 
 A finite rooted directed tree. 
 A set of players {1,..., }I n  and a function that assigns one player to every 

decision node. 
 A set of actions A and a function that assigns an action to every directed edge, 

satisfying the restriction that no two edges out of the same node are assigned the 
same action. 

 A set of outcomes O and a function that assigns an outcome to every terminal 
node. 

 For every player i I , a partition  1,..., ( 1)
ii i im iD D m D  of the set Di of 

decision nodes assigned to player i. Each element of  iD  is called an information 
set of player i.  The elements of iD  satisfy the following restrictions:  

(1) the actions available at any two nodes in the same information set must be 
the same (that is, for every ij iD D , if  , ijx y D  then the outdegree of x is 
equal to the outdegree of y and the set of actions assigned to the directed 
edges out of x is equal to the set of actions assigned to the directed edges out 
of y), 

(2) if x and y are two nodes in the same information set then it is not the case 
that one node is a predecessor of the other, 

(3) each player has perfect recall in the sense that if node ij ix D D  is a 

predecessor of node ik iy D D  (thus, by (2), j k ), and a is the action 
assigned to the directed edge out of x in the sequence of edges leading from x 
to y, then for every node ikz D  there is a predecessor ijw D  such that the 
action assigned to the directed edge out of w in the sequence of edges leading 
from w to z is that same action a. 

The perfect-recall restriction says that if a player takes action a at an information set 
and later on has to move again, then at the later time she remembers that she took 
action a at that particular information set (because every node she is uncertain about 
at the later time comes after taking action a at that information set). Perfect recall 
can be interpreted as requiring that a player always remember what she knew in the 
past and what actions she herself took in the past. Figure 3.2 shows two examples of 
violation of perfect recall. In the frame shown in Panel (i) Player 1 first chooses 
between a and b and then chooses between c and d having forgotten his previous 
choice: he does not remember what he chose previously. In the frame shown in 
Panel (ii) when Player 2 has to choose between e and f she is uncertain whether this 
is the first time she moves (left node) or the second time (right node): she is 
uncertain whether she moved in the past.   
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a b

c c dd

1

1

 

(i) 

2
e e ff

c

b
a 2

1

d

 

(ii) 

 
Figure 3.2 

Examples of violations of perfect recall 

If every information set of every player consists of a single node, then the frame is 
said to be a perfect-information frame: it is easy to verify that, in this case, the last 
item of Definition 3.1 (marked by the symbol ) is trivially satisfied and thus 
Definition 3.1 coincides with Definition 2.1 (Chapter 2). Otherwise, that is, if at 
least one player has at least one information set that consists of at least two nodes, 
the frame is said to have imperfect information. An example of an extensive frame 
with imperfect information is the one shown in Figure 3.1. We now give two more 
examples. When representing an extensive frame we enclose an information set in a 
rounded rectangle if and only if that information set contains at least two nodes. 

Example 3.2. There are three players, Ann, Bob and Carla. Ann moves first, 
chooses a card from a full deck of cards, looks at it and puts it, face down, on the 
table. Bob picks the card, looks at it and them puts it back, face down, on the table. 
All this happens while Carla is in a different room. Now Carla enters the room and 
Bob makes a statement to Carla: he either says “Ann chose a Red card” or he says 
“Ann chose a Black card”; thus Bob could be lying or could be telling the truth. 
After hearing Bob’s statement Carla guesses the color of the card. The card is then 
turned and if Carla’s guess was correct Ann and Bob give $1 each to Carla, 
otherwise Carla gives $1 each to Ann and Bob. When drawing an extensive frame 
to represent this situation, it is important to be careful about what Carla knows, 
when she makes her guess, and what she is uncertain about. The extensive frame is 
shown in Figure 3.3. 
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Red Black Red Black

Red RedBlack Black

Red Black

CARLA

ANN

BOBBOB

CARLA

Red Black Red Black

$1
$1
$2

$1
$1
$2

$1
$1
$2

$1
$1
$2

$1
$1
$2

$1
$1
$2

$1
$1
$2

$1
$1
$2

 

Figure 3.3 
The extensive form, or frame, representing Example 3.2. 

Carla’s top information set captures the situation she is in after hearing Bob say 
“Ann chose a red card” and not knowing if he is telling the truth (left node) or he is 
lying (right node). Carla’s bottom information set captures the alternative situation 
where she hears Bob say “Ann chose a black card” and does not know if he is lying 
(left node) or telling the truth (right node). In both situations Carla knows 
something (what Bob tells her) but lacks information about something else (what 
Ann chose). Note that Bob has two information sets, each consisting of a single 
node: Bob knows what Ann did when it is his turn to move. 

Example 3.3. Yvonne and Fran were both interviewed for the same job, but only 
one person can be hired. The employer told each candidate: “don’t call me, I will 
call you if I want to offer you the job”. He also told them that he desperately needs 
to fill the position and thus, if turned down by one candidate, he will automatically 
make the offer to the other candidate, without revealing whether he is making a 
first offer or a “recycled” offer.  This situation is represented in the extensive frame 
shown in Figure 3.4.  
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first call 
Yvonne

first call 
Fran

Fran

yes

no

yes no

no

Yvonne

Employer

yes noyes

 

Figure 3.4 
The extensive form, or frame, representing Example 3.3. 

As before, in order to obtain a game from an extensive frame all we need to do is 
add a ranking of the outcomes for each player. As usual, the best way to represent 
such rankings is by means of an ordinal utility function for each player and thus 
represent an extensive-form game by associating a vector of utilities with each 
terminal node. For instance, expanding on Example 3.3, suppose that the employer 
only cares about whether the position is filled or not,  prefers filling the position to 
not filling it, but is indifferent between filling it with Yvonne or with Fran; thus we 
can assign a utility of 1 for the employer to every outcome where one of the two 
candidates accepts the offer and a utility of 0 to every other outcome. Yvonne’s 
favorite outcome is to be hired if she was the recipient of the first call by the 
employer, but prefers not to be hired (either because the job was offered first to 
Fran and Fran accepted it or because if was offered – first or second - to her and she 
turned it down) to being hired as the recipient of a recycled offer (in the latter case 
Fran would have a blast telling Yvonne “You took that job?! It was offered to me 
but I turned it down. Who in her right mind would want that job? What’s wrong 
with you?!”). Thus for Yvonne we can use utilities of 2 (if she accepts a first offer), 1 
(if she is not hired) and 0 (if she accepts a recycled offer). Finally, suppose that Fran 
has preferences similar (but symmetric) to Yvonne’s. Then the extensive frame of 
Figure 3.4 gives rise to the extensive game shown in Figure 3.5. 
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first call 
Yvonne

first call 
Fran

Fran

yes

no

yes no

no

Yvonne

Employer

yes noyes

1
0
1

0
1
1

1 Employer's utility
2 Yvonne's utility
1 Fran's utility

0
1
1

1
1
2

1
1
0  

Figure 3.5 
A game based on the extensive form of Figure 3.4. 

 

 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 3.E.1 of Appendix 3.E at the 
end of this chapter. 
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3.2. Strategies  

The notion of strategy for general extensive games is the same as before: a strategy 
for player i is a complete, contingent plan that covers all the possible situations 
player i might find herself in. In the case of perfect-information game a “possible 
situation” for a player is a decision node of that player; in the general case, where 
there may be imperfect information, a “possible situation” for a player is an 
information set of that player. The following definition reduces to Definition 2.5 
(Chapter 2) if the game is a perfect-information game (where each information set 
consists of a single node). 

Definition 3.4.  A  strategy for a player in an extensive-form game is a list of 
choices, one for every information set of that player.  

For example, in the game of Figure 3.5, Yvonne has only one information set and 
thus a strategy for her is what to do at that information set, namely either say Yes 
or say No. Yvonne cannot make the plan “if the employer calls me first I will say 
Yes and if he calls me second I will say No”, because when she receives the call she 
is not told if this is a first call or a recycled call and thus she cannot make her 
decision depend on information she does not have. 

As in the case of perfect-information games, the notion of strategy allows us to 
associate with every extensive-form game a strategic-form game. For example, the 
strategic form associated with the game of Figure 3.5 is shown in Table 3.6 with the 
Nash equilibria highlighted. 

Yes No
first call 
Yvonne 1 2 1 1 1 0
first call 

Fran 1 1 2 1 1 2

Fran: Yes

Yes No
first call 
Yvonne 1 2 1 0 1 1
first call 

Fran 1 0 1 0 1 1

Fran: No

Employer

Yvonne

Employer

Yvonne

 

Table 3.6 
The strategic form of the game of Figure 3.5  

with the Nash equilibria highlighted. 
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As another example, consider the extensive form of Figure 3.3 and view it as a game 
by assuming that each player is selfish and greedy (only cares about how much 
money he/she gets and prefers more money to less). Then the associated strategic 
forms is shown in Table 3.7, where Bob’s strategy (x,y) means “I say x if Ann chose 
a black card and I say y if Ann chose a red card”. Thus (R,B) means “if Ann chose a 
black card I say Red and if Ann chose a red card I say Black” (that is, Bob plans to 
lie in both cases). Similarly, Carla’s strategy (x,y) means “I guess x if Bob tells me 
Black and I guess y if Bob tells me Red”. Thus (B,R) means “if Bob tells me Black I 
guess Black and if Bob tells me Red I guess Red” (that is, Carla plans to repeat what 
Bob says).   

BOB

B

R

B

R

B

R

B

R

 B,B           R,R          B,R          R,B  B,B           R,R          B,R          R,B

 B,B           R,R          B,R          R,B  B,B           R,R          B,R          R,B

-1,-1,2 -1,-1,2 -1,-1,2 -1,-1,2

1,1,-21,1,-21,1,-21,1,-2 -1,-1,2 -1,-1,2 -1,-1,2 -1,-1,2

1,1,-21,1,-21,1,-21,1,-2

-1,-1,2 1,1,-2 -1,-1,2 1,1,-2

1,1,-2 -1,-1,2 -1,-1,2 1,1,-2

1,1,-2 -1,-1,2 1,1,-2 -1,-1,2

-1,-1,2 -1,-1,21,1,-2 1,1,-2

A
N
N

A
N
N

A
N
N

BOB BOB

BOB

CARLA: B, B CARLA: R, R

CARLA: B, R CARLA: R, B

A
N
N

 

Table 3.7 
The strategic form of the game of Figure 3.3. 

In order to “solve” an extensive-form game we could simply construct the 
associated strategic-form game and look for the Nash equilibria. However, we saw 
in Chapter 2 that, in the case of perfect-information games, not all Nash equilibria 
of the associated strategic form can be considered “rational solutions: we want a 
generalization of the notion of backward induction that can be applied to general 
extensive-form games. This generalization is called subgame-perfect equilibrium. First 
we need to define the notion of subgame. 

 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 3.E.2 of Appendix 3.E at the 
end of this chapter. 
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3.3. Subgames 

Roughly speaking, a subgame of an extensive-form game is a portion of the game 
that could be a game in itself. What we need to be precise about is the meaning of 
“portion of the game”.  

Definition 3.5.  A  proper subgame  of an extensive-form game is obtained as 
follows: 

(1) start from a decision node x, different from the root, whose information set 
consists of node x only and enclose in an oval node x and all its successors, 

(2) if the oval does not “cut” any information set (that is, these is no 
information set S  and two nodes ,y z S  such that y is a successor of x 
while z is not) then what is included in the oval is a proper subgame, 
otherwise it is not.  

The reason why we use the qualifier ‘proper’ is that one could start from the root, 
in which case one would end up taking the entire game and consider this as a 
(trivial) subgame (just like any set is a subset of itself; a proper subgame is analogous 
to a proper subset).  

Consider, for example, the extensive-form game of Figure 3.8 below. There are 
three possible starting points for identifying a proper subgame: nodes x, y and z. 
Starting from node x and including all its successors, we do indeed obtain a proper 
subgame, which is the portion included in the blue oval on the left. Starting from 
node y and including all its successors we obtain the portion of the game that is 
included in the red oval on the right; in this case, condition (2) of Definition 2.5 is 
violated, since we are cutting the top information set of Player 3; hence the portion 
of the game inside the red oval is not a proper subgame. Finally, starting from node 
z and including all its successors, we do obtain another proper subgame, which is 
the portion included in the purple oval at the bottom. 
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d

e f
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2
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4
4
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2
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2
0
2

1
1
0

 

Figure 3.8 
An extensive-form game and its proper subgames. 

Definition 3.6.  A  proper subgame  of an extensive-form game is called 
minimal if there it does not strictly contain another proper subgame (that is, if 
there is no other proper subgame which is contained in it and does not coincide 
with it). 

For example, the game shown in Figure 3.9 below has three proper subgames, one 
starting at node x, another at node y and the third at node z. The ones starting at 
nodes x and z are minimal subgames, while the one that starts at node y is not a 
minimal subgame, since it contains the one that starts at node z. 
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Figure 3.9 
An extensive-form game with three proper subgames, two of which are minimal. 

 

 This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 3.E.3 of Appendix 3.E at the 
end of this chapter. 
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3.4. Subgame-perfect equilibrium 

A subgame-perfect equilibrium of an extensive-form game is a Nash equilibrium of 
the entire game which remains an equilibrium in every proper subgame. Fix an 
extensive-form game and let s be a strategy profile for that game. Let G be a proper 
subgame. Then the restriction of s to G, denoted by |Gs ,  is that part of s which 
prescribes choices at every information set of G and only at those information sets. 
For example, consider the extensive-form game of Figure 3.9 above and the strategy 

profile  
1's strategy 3's strategy2's strategy

( , ) , ( , , ) , ( , )a C d f E h B
 
 
 
 

 . Let G be the subgame  that starts at node y of 

Player 2. Then   
3's strategy1's strategy 2's strategy

| , ( , ) ,Gs C f E B
 
 
 
 

.  

Definition 3.7.  Given an extensive-form game, let s be a strategy profile for 
the entire game. Then s is a subgame-perfect equilibrium  if  

(1) s is a Nash equilibrium of the entire game and  

(2) for every proper subgame G, |Gs  (the restriction of s to G) is a Nash 
equilibrium of G. 

For example, consider again the extensive-form game of Figure 3.9 and the strategy 
profile  ( , ), ( , , ), ( , )s a C d f E h B . Then s is a Nash equilibrium of the entire 
game: Player 1’s payoff is 2 and, if he were to switch to any strategy where he plays 
b, his payoff would be 0; Player 2’s payoff is 1 and if she were to switch to any 
strategy where she plays c he payoff would be 0; Player 3’s payoff is 2 and if he were 
to switch to any strategy where he plays g his payoff would be 0. However, s is not 
a subgame-perfect equilibrium, because the restriction of s to the proper subgame 
that starts at node z of Player 1, namely ( , )C E , is not a Nash equilibrium of that 
subgame: for Player 2 the unique best reply to C is F. 

One way of finding the subgame-perfect equilibria of a given game is to first find 
the Nash equilibria and then, for each of them, determine if it satisfies condition (2) 
of Definition 3.7. However, this is not a practical way to proceed. A quicker and 
easier way is to apply the following algorithm, which generalizes the backward-
induction algorithm for games with perfect information (Definition 2.4, Chapter 2). 

Definition 3.8. Fix an extensive-form game. The subgame-perfect equilibrium 
algorithm is the following procedure. 

1. Start with a minimal proper subgame and select a Nash equilibrium of it.  
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2. Delete the selected proper subgame and replace it with the payoff vector 
associated with the selected Nash equilibrium, making a note of the strategies 
that constitute the Nash equilibrium. This yields a smaller extensive-form 
game. 

3. Repeat Steps 1 and 2 in the smaller game thus obtained. 

For example, let us apply the algorithm  to the game of Figure 3.9. Begin with the 
proper subgame that starts at node x of Player 2, shown below with its associated 
strategic form, where the Nash equilibrium ( , )d h  is highlighted. Note that this is a 
game only between Players 2 and 3 and thus in Figure 3.10 we only show the 
payoffs of these two players. 

3

c d

g h g h

2 0 3 1

2

3 2 1 2  

 

 

c 2 3 0 2

d 3 1 1 2

Player 3

g h

Player 2

 

 
Figure 3.10 

A minimal proper subgame of the game of Figure 3.9 and its strategic form. 

Now we delete the proper subgame thereby turning node x  into a terminal node 
with which we associate the full payoff vector associated, in the original game, with 
the terminal node following history adh, namely (2,1,2). Hence we obtain the 
smaller game shown in Figure 3.11. 
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(d,h)

 

Figure 3.11 
The reduced game after replacing a proper minimal subgame 

in the game of Figure 3.9. 

Now, in the reduced game of Figure 3.11 we select the only minimal proper 
subgame, namely the one that starts at the bottom decision node of Player 1. This 
subgame is shown in Figure 3.12 together with its associated  strategic form. The 
unique Nash equilibrium of that subgame is ( , )C F . 

2

C D

E F E F

3 1 1 1

1

0 1 1 0  

 

C 3 0 1 1

D 1 1 1 0

Player 3

E F

Player 2

 

Figure 3.12 
A minimal proper subgame of the game of Figure 3.11 and its strategic form. 
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Then, in the reduced game of Figure 3.11, we replace the selected proper subgame 
with the payoff vector associated with the history beACF, namely (1,1,1), thus 
obtaining the smaller game shown in Figure 3.13. 

1

2

3

b

e f

A B A B

2
1
2

1
1
1

0
2
0

3
2
1

0
0
1

a

(C,F)

(d,h)

 

Figure 3.13 
The reduced game after replacing a proper minimal subgame in the game of Figure 3.11. 

The game of Figure 3.13 has a unique proper  subgame, which has a unique Nash 
equilibrium, namely ( , )f A . Replacing the subgame with the payoff vector 
associated with the history bfA we get the following smaller game. 

1

2
1
2

3
2
1

a b

(d,h)
(f,A)
(C,F)

 

Figure 3.14 
The reduced game after replacing the subgame in the game of Figure 3.13. 
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In the reduced game of Figure 3.14 the unique Nash equilibrium is b. Now patching 
together the choices selected during the application of the algorithm we get the 
following subgame-perfect equilibrium for the game of Figure 3.9: 
 ( , ), ( , , ), ( , )b C d f F h A . 

As a second example, consider the game of Figure 3.15, which reproduces the game 
of Figure 3.8. 

1

3

2

3

x

y
2

z

1
L

R U

D

a a

b b

c

d

e f

g gh h

4
1
2

1
2
4

2
0
3

3
1
2

0
4
4

4
3
0

3
2
1

2
0
2

1
1
0  

 Figure 3.15 
Reproduction of the game of Figure 3.8. 

Begin with the subgame that starts at node x and replace it with the payoff vector 
(3,1,2). Next replace the subgame that starts at node z with the payoff vector (3,2,1) 
which corresponds to the Nash equilibrium (e,h) of that subgame, so that the game 
is reduced to the one shown in Figure 3.16, together with its strategic form. 
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U D
L 3 1 2 3 1 2
R 4 1 2 1 2 4

Player 3:  a

U D
L 3 2 1 3 2 1
R 4 1 2 2 0 3

Player 3:  b

Player  1

Player  1

Player 2

Player 2

 

Figure 3.16 
The game of Figure 3.15 reduced after solving the proper subgames and the associated 

strategic form with the Nash equilibria highlighted. 
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The reduced game of Figure 3.16 has two Nash equilibria: (L,D,a) and (R,U,b). Thus 
the game of Figure 3.15 has two subgame-perfect equilibria: 

  
1 2 3

( , ) , ( , ) , ( , )
Player Player Player

L c D e a h
 
 
 
 

 and    
1 2 3

( , ) , ( , ) , ( , )
Player Player Player

R c U e b h
 
 
 
 

. 

Remark 3.9. As shown in the last example, it is possible that – when applying 
the subgame-perfect equilibrium algorithm – one encounters a proper subgame 
or a reduced game that has several Nash equilibria. In this case one Nash 
equilibrium must be selected to continue the procedure and in the end one 
obtains one subgame-perfect equilibrium. One then has to repeat the procedure 
by selecting a different Nash equilibrium and thus obtain a different subgame-
perfect equilibrium, and so on. This is similar to what happens with the 
backward-induction algorithm in perfect-information games. 

Remark 3.10. It is also possible that – when applying the subgame-perfect 
equilibrium algorithm – one encounters a proper subgame or a reduced game 
that has no Nash equilibria.5 In such a case the game under consideration does 
not have any subgame-perfect equilibria. 

Remark 3.11. When applied to perfect-information games, the notion of 
subgame-perfect equilibrium coincides with the notion of backward-induction 
solution. Thus subgame-perfect equilibrium is a generalization of backward 
induction.   

Remark 3.12. For extensive-form games that have no proper subgames (for 
example, the game of Figure 3.3) the set of Nash equilibria coincides with the 
set of subgame-perfect equilibria. In general, however, the notion of subgame-
perfect equilibrium is a refinement of the notion of Nash equilibrium. 

 

  This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 3.E.4 of Appendix 3.E at the 
end of this chapter. 

                                                                    

5 We will see in Part II that, when payoffs are cardinal and one allows for mixed strategies, then 
every finite game has at least one Nash equilibrium in mixed strategies.  
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3.5. Games with chance moves  

So far we have only considered games where the outcomes do not involve any 
uncertainty.  As a way of introducing the topic discussed in Part II, in this section 
we consider games where uncertain, probabilistic events are incorporated in the 
extensive form.  

We begin with an example. There are three cards, one black and two red. They are 
shuffled  well and put face down on the table. Adele picks the top card, looks at it 
without showing it to Ben and then tells Ben either “the top card is black” or “the 
top card is red”: she could be telling the truth or she could be lying. Then Ben then 
has to guess the true color of the top card. If he guesses correctly he gets $9 from 
Adele, otherwise he gives her $9. How can we represent this situation? Whether the 
top card is black or red is not the outcome of a player’s decision, but the outcome a 
random even, namely the shuffling of the cards. In order to capture this random 
event we introduce a fictitious player called Nature or Chance. We assign a 
probability distribution to Nature’s “choices”. In this case, since one card is black 
and the other two are red, the probability that the top card is black is 1

3  and the 
probability that the top card is red is 2

3 . Note that we don’t  assign payoffs to 
Nature and thus the only “real” players are Adele and Ben. Thus the situation can 
be represented as shown in Figure 3.17, where the numbers associated with the 
terminal nodes are dollar amounts.  

Clearly the notion of strategy is not affected by the presence of chance moves. In 
the game of Figure 3.17 Adele has four strategies and so does Ben. However, we do 
encounter a difficulty when we try to write the associated strategic game-frame. For 
example, consider the following strategy profile:  ( , ), ( , )B R B B  where Adele’s 
strategy is to be truthful (say Black is she sees a black card and Red if she sees a red 
card) and Ben’s strategy is to guess Black no matter what Adele says. What is the 
outcome in this case? It depends on what the true color of the top card is and thus 
the outcome is a probabilistic one: 

Adele gives $9 to Ben Ben gives $9 to Adele
1 2
3 3

outcome

probability

 
 
  
 

  

We call such probabilistic outcomes lotteries. In order to convert the game-frame 
into a game we need to specify how the players rank probabilistic outcomes. 
Consider the case where Adele is selfish and greedy, in the sense that she only cares 
about her own wealth and she prefers more money to less. Then, from her point of 
view, the above probabilistic outcome reduces to the following monetary lottery 
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1 2
3 3

$9 $9  
 
 

. If Ben is also selfish and greedy, then he views the same outcome as 

the lottery 
1 2
3 3

$9 $9  
 
 

.  

 

NATURE

2/ 31/ 3

Black Red

ADELEADELE

Black Black

RedRed

Red Red

BEN

BEN

Black
Black

Black BlackRed Red

 





















  

Figure 3.17 
An extensive form with a chance move. 

How do we convert a lottery into a payoff or utility? The general answer to this 
question will be provided in Chapter 4. Here we consider one possibility, which is 
particularly simple. 
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Definition 3.13.  Given a lottery whose outcomes are sums of money 

1 2

1 2

$ $ ... $
...

n

n

x x x
p p p

 
 
 

  ( 1 20,  for all 1, 2,...,  and ... 1i np i n p p p      )  

the expected value of the lottery is the sum of money  

 1 1 2 2$ ... n nx p x p x p   . 

For example, the expected value of the lottery 
1 2 2
5 5 5

$5 $15 $25 
 
 

 is 

       1 2 2
5 5 5$ 5 15 25 $ 1 6 10 $17         and the expected value of the lottery 

1 2
3 3

$9 $9  
 
 

 is $3. 

We call lotteries whose outcomes are sums of money, money lotteries. 

Definition 3.14.  A player is defined to be risk neutral if she considers a money 
lottery to be just as good as its expected value. Hence a risk neutral person 
ranks money lotteries according to their expected value. 

For example, consider the following money lotteries: 1 1 2 2
5 5 5

$5 $15 $25
L

 
  
 

,  

2

$16
1

L  
  
 

 and 3 5 1 1
8 8 4

$0 $32 $48
L

 
  
 

. The expected value of 1L  is $17 and the 

expected value of both 2 3 and L L  is $16. Thus a risk-neutral player would have 
the following ranking: 1 2 3L L L  , that is, she would prefer 1L  to 2L  and be 
indifferent between 2L  and 3L .  

For a selfish and greedy player who is risk neutral we can take the expected value of 
a money lottery as the utility of that lottery. For example, if we make the 
assumption that, in the extensive form of Figure 3.17, Adele and Ben are selfish, 
greedy and risk neutral then we can associate a strategic-form game to it as shown in 
Table 3.18. Note that inside each cell we have two numbers: the first is the utility 
(= expected  value) of the underlying money lottery as perceived by Adele and the 
second number is the utility (= expected value) of the underlying money lottery as 
perceived by Ben.  
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   Ben   

  B always B if B 
R if R 

R if B 
B if R 

R always 

 B always 
 

3 , 3 3 , 3 3 , 3 3 , 3 

Adele B if B 
R if R 

3 , 3 9 , 9 9, 9 3, 3 

 R if B 
B if R 

3, 3 9 , 9 9 , 9 3 , 3 

 R always 
 

3 , 3 3 , 3 3 , 3 3 , 3 

  B,B      BR      RB      RR

B,B

B,R

R,B

R,R
 

Figure 3.18 
The strategic form of the game of Figure 3.17 when the two players are selfish, 

greedy and risk neutral. 

We conclude this section with one more example. 

Example 3.15.  There are three unmarked, opaque envelopes. One contains 
$100, one contains $200 and the third contains $300. They are shuffled well and 
then one envelope is given to Player 1 and another is given to Player 2 (the 
third one remains on the table). Player 1 opens her envelope and checks its 
content without showing it to Player 2. Then she either says “pass”, in which 
case each player gets to keep his/her envelope, or she asks Player 2 to trade his 
envelope for hers. Player 2 is not allowed to see the content of his envelope and 
has to say either Yes or No. If he says No, then the two players get to keep 
their envelopes. If, on the other hand, Player 2 says Yes, then they trade 
envelopes and the game ends. Each player is selfish, greedy and risk neutral. 

This situation is represented by the extensive-form game shown in Figure 3.19, 
where ‘12’ means “Player 1 gets the envelope with $100 and Player 2 gets the 
envelope with $200”, ‘13’ means “Player 1 gets the envelope with $100 and 
Player 2 gets the envelope with $300”, etc. P stands for “pass” and T for 
“suggest a trade”, Y for “Yes” and N for “No”. 
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1 1 1

2

12 32
31

NATURE

232113

100
200 100

300
200
100

200
300

300
200

300
100

Y Y Y Y YN N N N N N

300
200

300
100

200
300

200
100

100
300

300
100

100
200

300
200

100
300

200
300

(all hoices have an equal
probability of 1/6)

P
P

P
P P P

T T T

T TT

Y

100
200

200
100  

Figure 3.19 
The extensive-form game of Example 3.15 

In this game Player 1 has eight strategies. One possible strategy is: “if I get $100 I 
will pass, if I get $200 I will propose a trade, if I get $300 I will pass”: we will use the 
shorthand PTP for this strategy. Similarly for the other strategies. Player 2 has only 
two strategies. The strategic form associated with the game of Figure 3.19 is shown 
in Table 3.20, where the Nash equilibria are highlighted. 

 
 

P 
l 
a 
y 
e 
r 
 
1 

Player 2 
 Y N 

PPP 200 , 200 200 , 200 
PPT 150 , 250 200 , 200 
PTP 200 , 200 200 , 200 
PTT 150 , 250 200 , 200 
TPP 250 , 150 200 , 200 
TPT 200 , 200 200 , 200 
TTP 250 , 150 200 , 200 
TTT 200 , 200 200 , 200 

 
Table 3.20 

The strategic form of the game of Figure 3.19 
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How did we get those payoffs? Consider,  for example, the first cell. Given the 
strategies PPP and Y, the outcomes are ($100,$200) with probability 1/6, 
($100,$300) with probability 1/6, ($200,$100) with probability 1/6, ($200,$300) 
with probability 1/6, ($300,$100) with probability 1/6, ($300,$200) with 
probability 1/6. Being risk neutral,  Player 1  views his corresponding money 
lottery as equivalent to getting its expected value  $(100 + 100 + 200 + 200 + 300 
+ 300) (1/6) = $200. Similarly for the Player 2 and for the other cells. 

Since the game of Figure 3.19 has no proper subgames, all the Nash equilibria are 
also subgame-perfect equilibria. Are some of the Nash equilibria more plausible 
than others? For Player 1 all the strategies are weakly dominated, except for TPP 
and TTP.  Elimination of the weakly dominated strategies leads to a game where Y 
is strictly dominated for Player 2. Thus we are left with (TPP, N) and  
(TTP, N) as the most plausible equilibria. In both of them Player 2 refuses to trade. 

 

  This is a good time to test your understanding of the concepts introduced in 
this section, by going through the exercises in Section 3.E.5 of Appendix 3.E at the 
end of this chapter. 
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Appendix 3.E: Exercises  

3.E.1 .  Exerc ise s for  Sec t ion 3 .1 :   
         Imperfec t informat ion  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 2.1. Amy and Bill simultaneously write a bid on a piece of paper. The bid 
can only be either $2 or $3. A referee then looks at the bids, announces the amount 
of the lowest bid (without revealing who submitted it) and invites Amy to pass or 
double her initial bid. If Amy’s final bid and Bill’s bid are equal then Bill gets the 
object (and pays his bid), otherwise Amy gets the object (and pays her bid). 
Represent this situation by means of two alternative extensive frames. Note: (1) 
when there is a simultaneous move we have a choice of which player we have as 
moving first: the important thing is that the second player does not know what the 
first player did; (2) when representing, by means of information sets, what a player 
is uncertain about we typically assume that a player is smart enough to deduce 
relevant information, even if that information is not explicitly given to her.  

Exercise 2.2. Consider the following situation. An incumbent monopolist decides 
at date 1 whether to build a small plant or a large plant. At date 2 a potential entrant 
observes the plant built by the incumbent and decides whether or not to enter. If he 
does not enter then her profits are 0 while the incumbent’s profits are $25 million 
with a small plant and $20 million with a large plant. If the potential entrant decides 
to enter, she pays a cost of entry equal to $K million and at date 3 the two firms 
simultaneously decide whether to produce high output or low output. The profits 
of the firms are as follows (these figure do not include the cost of entry for the 
entrant; thus you need to subtract that cost for the entrant). In each cell, the first 
number is the profit of the entrant in millions of dollars and the second is the profit 
of the incumbent. 

  incumbent   incumbent 

 

 
Entrant 

 low 
output 

high 
output 

Error! 
Not a 
valid 
link. 

 low 
output 

high 
output 

low 
output 

10 , 10 7 , 7 low 
output 

10 , 7 5 , 9 

high 
output 7 , 6 4 , 3 high 

output 
7 , 3 4 , 5 

If incumbent has small plant If incumbent has large plant 

Draw an extensive form that represents this situation. 
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3.E.2 .  Exerc ise s for  Sec t ion 3 .2 :  Stra tegie s  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 3.3. Write the strategic-form game-frame of the extensive form of Exercise 
2.1 (that is, instead of writing payoffs in each cell you write the outcome). Verify 
that the strategic forms of the two possible versions of the extensive form are 
identical.  

Exercise 3.4. Consider the extensive-form game of Exercise 2.2.  

(a) Write down in words one of the strategies of the potential entrant. 

(b) How many strategies does the potential entrant have? 

(c) Write the strategic-form game associated with the extensive-form game.  

(d) Find the Nash equilibria for the case where K = 2. 
 

3 .E .3 .  Exerc ise s for  Sec t ion 3 .3 :  Subgames  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 3.5. How many proper subgames does the extensive form of Figure 3.3 
have? 

Exercise 3.6. How many proper subgames does the extensive game of Figure 3.5 
have? 

Exercise 3.7. (a) How many proper subgames does the extensive game of Figure 2.3 
(Chapter 2) have? 
(b) How many of those proper subgames are minimal? 
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3.E.4 .  Exerc ise s for  Sec t ion 3 .4 :  Subgame-per fect  
equil ibr ium 

Exercise 3.8. Find the Nash equilibria and the subgame-perfect equilibria of the 
following game. 

A

1

2

3

B

C D

F FE E

0
2
1

2
3
0

3
3
0

0
0
2

1
4
3

 

Exercise 3.9. Find the Nash equilibria and the subgame-perfect equilibria of the 
following game.  
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Exercise 3.10. Find the subgame-perfect equilibria of the following extensive-form 
game. 

1 2
3

2

3

B

C E
D

F F F
G G G

H H H

1
0
0

5
2
0

1
1
1

2
1
0

0
1
2

3
2
1

0
0
1

1
0
1

2
3
2

1
2
1

5
1
0

6
0
0

4
1
1

L

M

P

R

P

R

A

Player 1's payoff
Player 2's payoff
Player 3's payoff  

 

3.E.5 .  Exerc ise s for  Sec t ion 3 .5 :  Games  with chance 
moves   

Exercise 3.11. Modify the game of Example 3.15 as follows: Player 2 is allowed to 
secretly check the content of his envelope before he decides whether or not to 
accept Player 1’s proposal. 
(a) Represent this situation as an extensive-form game. 
(b) List all the strategies of Player 1 and all the strategies of Player 2. 

Exercise 3.12. Three players, Avinash, Brian and John, play the following game. 
Two cards, one red and the other black, are shuffled well and put face down on the 
table. Brian picks the top card, looks at it without showing it to the other players 
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(Avinash and John) and puts it back face down. Then Brian whispers either “Black” 
or “Red” in Avinash’s ear, making sure that John doesn’t hear. Avinash then tells 
John either “Black” or “Red”. Finally John announces either “Black” or “Red” and 
this exciting game ends. The payoffs are as follows: if John’s final announcement 
matches the true color of the card Brian looked at, then Brian and Avinash give $2 
each to John. In every other case John gives $2 each to Brian and Avinash. 
(a) Represent this situation as an extensive-form game. 
(b) Write the corresponding strategic form (or normal form) assuming that the 

players are selfish, greedy and risk neutral. 

Exercise 3.13. Consider the following highly simplified version of Poker. There are 
three cards, marked  A, B and C.  A beats B and C,  B beats C. There are two 
players, Yvonne and Zoe. Each player contributes $1 to the pot before the game 
starts. The cards are then shuffled and the top card is given, face down, to Yvonne 
and the second card (face down) to Zoe. Each player looks at, and only at, her own 
card: she does not see the card of the other player nor the remaining card. 
Yvonne, the first player, may pass, or bet $1. If she passes, the game ends, the cards 
are turned and the pot goes to the high-card holder (recall that A beats B, B beats 
C). If Yvonne bets, then Zoe can fold, in which case the game ends and the pot goes 
to Yvonne, or see by betting $1. If Yvonne sees the game ends, the cards are turned 
and the pot goes to the high-card holder. Both players are selfish, greedy and risk 
neutral. 
(a) Draw the extensive-form game.  
(b) How many strategies does Yvonne have? 
(c)  How many strategies does Zoe have? 
(d) Fix the following strategies.    

For Yvonne: If A pass, if B pass, if C bet.  
For Zoe: if Yvonne bets and I get an A I will fold, if Yvonne bets and I get 
a B I will fold, if Yvonne bets and I get a C I will fold. 
Calculate the payoff of each player 

(e) Redo the same with the following strategies. 
For Yvonne: If A pass, if B pass, if C bet.  
For Zoe: see always (i.e. no matter what card she get). 

(f) Now that you have understood how to calculate the payoffs, represent 
the entire game as a normal form game, assigning the rows to Yvonne and 
the columns to Zoe.  [This might take you the entire night, but at your 
age sleep is not that important and also it will keep you out of trouble.] 

(g) What strategies of Yvonne are weakly dominated? What strategies of Zoe 
are weakly dominated? 

(h) What do you get when you apply the procedure of iterative elimination 
of weakly dominated strategies? 
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◊◊◊◊◊◊◊◊◊◊◊◊ 

Exercise 3.14: Challenging Question. In an attempt to reduce the deficit, the 
government of Italy has decided to sell a 14

th 
century palace near Rome. The palace is in 

disrepair and is not generating any revenue for the government. From now on we’ll call the 
government Player G. A Chinese millionaire has offered to purchase the palace for $p. 
Alternatively, Player G can organize an auction among n interested parties (n  2). The 
participants to the auction (we’ll call them players) have been randomly assigned labels 
1,2,…,n. Player i is willing to pay up to $pi for the palace, where pi is a positive integer. For 
the auction assume the following: (1) it is a simultaneous, sealed-bid second-price auction, (2) 
bids must be non-negative integers, (3) each player only cares about his own wealth, (4) the 
tie-breaking rule for the auction is that the palace is given to that player who has the lowest 
index (e.g. if the highest bid was submitted by Players 3, 5 and 12 then the palace is given to 
Player 3). All of the above is commonly known among everybody involved, as is the fact 
that for every , {1,..., }i j n  with , i ji j p p  . We shall consider various scenarios. In 

all scenarios you can assume that the pi‘s are common knowledge. 
Scenario 1. Player G first decides whether to sell the palace to the Chinese millionaire 
or make a public and irrevocable decision to auction it.  
(a) Draw the extensive form of this game for the case where n = 2 and the only 

possible bids are $1 and $2. [List payoffs in the following order: first G then 1 then 
2.] 

(b) For the general case where n  2 and every positive integer is a possible bid, find a 
pure-strategy subgame-perfect equilibrium of this game. What are the players’ 
payoffs at the equilibrium?  

Scenario 2. Here we assume that n = 2, and p1 > p2 + 1 > 2 . First Player G decides 
whether to sell the palace to the Chinese or make a public and irrevocable decision to 
auction it. In the latter case he first asks Player 2 to publicly announce whether or not 
he is going to participate in the auction. If Player 2 says Yes then he has to pay $1 to 
Player G  as a participation fee, which is non-refundable. If he says No then she is out 
of the game. After player 2 has made his announcement (and paid his fee if he decided 
to participate) Player 1 is asked to make the same decision (participate and pay a non-
refundable fee of $1 to Player G or stay out); Player 1 knows player 2’s decision when 
he makes his own decision. After both players have made their decisions, player G 
proceeds as follows: (1) if both 1 and 2 said Yes then he makes them play a 
simultaneous second-price auction, (2) if only one player said Yes then he is asked to 
put an amount $x of his choice in an envelope (where x is a  positive integer) and give 
it to Player G in exchange for the palace, (3) if both 1 and 2 said No then G is no 
longer bound by his commitment to auction the palace and he sells it to the Chinese. 

(c) Draw the extensive form of this game for the case where the only possible bids are 
$1 and $2 and also x  {1,2} [List payoffs in the following order: first G then 1 
then 2.] 
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(d) For the general case where all possible bids are allowed (subject to being positive 
integers) and x can be any positive integer, find a pure-strategy subgame-perfect 
equilibrium of this game. What are the players’ payoffs at the equilibrium?  

Scenario 3. Same as Scenario 2; the only difference is that if both Players 1 and 2 
decide to participate in the auction then Player G gives to the loser the fraction a (with 
0 < a < 1) of the amount paid by the winner in the auction (note that player G still 
keeps 100% of the participation fees). This is publicly announced at the beginning and 
is an irrevocable commitment. 

(e) For the general case where all possible bids are allowed (subject to being positive 
integers) find a subgame-perfect equilibrium of this game. What are the players’ 
payoff at the equilibrium?  

Scenario 4. Player G tells the Chinese millionaire the following:  

“First you (= the Chinese) say Yes or No; if you say No I will sell you 
the palace for the price that you offered me, namely $100 (that is, we now 
assume that p = 100); if you say Yes then we play the following perfect 
information game. I start by choosing a number from the set {1,2,3}, then 
you (= the Chinese) choose a number from this set, then I choose again, 
followed by you, etc. The first player who brings the cumulative sum of all 
the numbers chosen (up to and including the last one) to 40 wins. If you 
win I will sell you the palace for $50, while if I win I will sell you the 
palace for $200.”  Thus there is no auction in this scenario. Assume that 
the Chinese would actually be willing to pay up to $300 for the palace. 

(f) Find a pure-strategy subgame-perfect equilibrium of this game.  
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Appendix 3.S: Solutions to exercises  
Exercise 3.1.  One possible extensive frame is as follows, where Amy moves 
first. Note that we have only one non-trivial information set for Amy, while 
each of the other three consists of a single node. The reason is as follows: if 
Amy initially bids $3 and Bill bids $2 then the referee announces “the lowest 
bid was $2”; this announcement does not directly reveal to Amy that Bill’s 
bid was $2, but she can figure it out from her knowledge that her own bid 
was $3; similarly, if the initial two bids are both $3 then the referee 
announces “the lowest bid was $3”, in which case Amy is able to figure out 
that Bill’s bid was also $3. If we included those two nodes in the same 
information set for Amy we would not show much faith in Amy’s reasoning 
ability! 

AMY

BILL

$2 $3

$2 $3 $2 $3

AMY AMY AMY

$4 $4 $6 $6

Bill
wins
and
pays
$2

Amy
wins
and
pays
$3

Amy
wins
and 
pays
$4

Amy
wins
and
pays
$6

Bill
wins
and
pays
$3

Amy
wins
and 
pays
$4

Bill
wins
and
pays
$3

Amy
wins
and
pays
$6

pass pass pass pass
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Another possible extensive frame is as follows, where Bill moves first. 
BILL

AMY

$2 $3

$2 $3 $2 $3

AMY

$4

$4

$6

$6
Bill
wins
and
pays
$2

Bill
wins
and
pays
$3

Amy
wins
and 
pays
$4

Amy
wins
and
pays
$6

Amy
wins
and
pays
$3

Amy
wins
and 
pays
$4

Bill
wins
and
pays
$3

Amy
wins
and
pays
$6

pass

pass

pass

pass

AMY

AMY

 
 
Exercise 3.2.  The extensive form is as follows. 

INCUMBENT

INCUMBENT

INCUMBENT

ENTRANT

ENTRANT

ENTRANT

ENTRANT

small
plant

in

large
plant

out
out

in

25
0

20
0

low
output

low
output

low
output

low
output

low
output

low
output

high
output

high
output

high
high
outputhigh high

output

10 - K
7

10 - K
10

4 - K
3

7 - K
6

7 - K
7

7 - K
3

5 - K
9

4 -K
5
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Exercise 3.3.  Amy’s strategy (x,y,w,z) means: at the beginning I bid $x, at the 
non-trivial information set on the left I choose y, at the singleton node in the 
middle I choose w and at the singleton node on the right I choose z. The 
numbers are bid amounts and P stands for “Pass”. 

                                                                               BILL 

  bid $2 bid $3 

 $2, P, P, $P Bill wins pays 2 Bill wins pays 3 

 2 , P, P, 6 Bill wins pays 2 Bill wins pays 3 

 2, P, 6, P Bill wins pays 2 Bill wins pays 3 

 2, P, 6, 6 Bill wins pays 2 Bill wins pays 3 

A 2, 4, P, P Amy wins pays 4 Amy wins pays 4 

M 2, 4, P, 6 Amy wins pays 4 Amy wins pays 4 

Y 2, 4, 6, P Amy wins pays 4 Amy wins pays 4 

 2, 4, 6, 6 Amy wins pays 4 Amy wins pays 4 

 3, P, P, P Amy wins pays 3 Bill wins pays 3 

 3 , P, P, 6 Amy wins pays 3 Amy wins pays 6 

 3, P, 6, P Amy wins pays 6 Bill wins pays 3 

 3, P, 6, 6 Amy wins pays 6 Amy wins pays 6 

 3, 4, P, P Amy wins pays 3 Bill wins pays 3 

 3, 4, P, 6 Amy wins pays 3 Amy wins pays 6 

 3, 4, 6, P Amy wins pays 6 Bill wins pays 3 

 3, 4, 6, 6 Amy wins pays 6 Amy wins pays 6 

 

Exercise 3.4.  (a) The potential entrant has four information sets, hence a 
strategy has to say what she would do in each of the four situations. A 
possible strategy is: “if the incumbent chooses a small plant I stay out, if the 
incumbent chooses a large plant I enter, if small plant and I entered then I 
choose low output, if large plant and I entered then I choose high output”.  

(b) The potential entrant has 2
4
 = 16  strategies. 
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(c) The strategic form is as follows. 
    INCUMBENT   
  SLL SLH SHL SHH LLL LLH LHL LHH 
 OOLL 0 , 25 0 , 25 0 , 25 0 , 25 0 , 20 0 , 20 0 , 20 0 , 20 
 OOLH 0 , 25 0 , 25 0 , 25 0 , 25 0 , 20 0 , 20 0 , 20 0 , 20 
 OOHL 0 , 25 0 , 25 0 , 25 0 , 25 0 , 20 0 , 20 0 , 20 0 , 20 
 OOLH 0 , 25 0 , 25 0 , 25 0 , 25 0 , 20 0 , 20 0 , 20 0 , 20 
E OILL 0 , 25 0 , 25 0 , 25 0 , 25 10K

, 7 
5K, 

9 
10K

, 7 
5K, 

9 
N OILH 0 , 25 0 , 25 0 , 25 0 , 25 7K, 

3 
4K, 

5 
7K, 

3 
4K, 

5 
T OIHL 0 , 25 0 , 25 0 , 25 0 , 25 10K

, 7 
5K, 

9 
10K

, 7 
5K, 

9 
R OIHH 0 , 25 0 , 25 0 , 25 0 , 25 7K, 

3 
4K, 

5 
7K, 

3 
4K, 

5 
A IOLL 10K, 

10 
10K, 

10 
7K, 7 7K, 

7 
0 , 20 0 , 20 0 , 20 0 , 20 

N IOLH 10K, 
10 

10K, 
10 

7K, 7 7K, 
7 

0 , 20 0 , 20 0 , 20 0 , 20 

T IOHL 7K, 6 7K, 6 4K,3 4K,
3 

0 , 20 0 , 20 0 , 20 0 , 20 

 IOHH 7K, 6 7K, 6 4K,3 4K,
3 

0 , 20 0 , 20 0 , 20 0 , 20 

 IILL 10K, 
10 

10K, 
10 

7K, 7 7K, 
7 

10K
, 7 

5K, 
9 

10K
, 7 

5K, 
9 

 IILH 10K, 
10 

10K, 
10 

7K, 7 7K, 
7 

7K, 
3 

4K, 
5 

7K, 
3 

4K, 
5 

 IIHL 7K, 6 7K, 6 4K,3 4K,
3 

10K
, 7 

5K, 
9 

10K
, 7 

5K, 
9 

 IIHH 7K, 6 7K, 6 4K,3 4K,
3 

7K, 
3 

4K, 
5 

7K, 
3 

4K, 
5 

 

(d) For the case where K =2 the Nash equilibria are highlighted in the above 
table.  

Exercise 3.5.  None. 

Exercise 3.6.  None. 

Exercise 3.7.  (a) Three: one starting from node x,  one starting from node y  and 
one starting at the node of Player 3. 

(b) Two: the one starting from node x and the one starting at the decision node 
of Player 3. In a perfect-information game a minimal proper subgame is one that 
starts at a decision node followed only by terminal nodes. 

Exercise 3.8.  The Nash equilibria are (B,C,E) and (B,D,F). There are no 
subgame-perfect equilibria since the proper subgame has no Nash equilibria. 
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Exercise 3.9.  The strategic form is as follows: 

A

B

2, 2, 4 2, 2, 4 2, 0, 1 2, 0, 1

1, 4, 3 4, 3, 2 1, 4, 3 4, 3, 2

A

B

4, 5, 3 4, 5, 3 0, 6, 0 0, 6, 0
P
l
a
y
e
r
1

Player 2 Player 2

Player 3 chooses E Player 3 chooses F

GC          GD        HC        HD GC          GD        HC        HD

1, 4, 3 4, 3, 2 1, 4, 3 4, 3, 2

 

The Nash equilibria are: (A,(G,C),E) and (B,(H,C),F).  

The extensive-form game has two proper subgames. The one on the left has a 
unique Nash equilibrium, (G,E), and the one on the right has a unique Nash 
equilibrium, C. Hence the game reduces to: 

 

where A is the uniquely optimal choice. Hence there is only one subgame-
perfect equilibrium, namely (A,(G,C),E). 

Exercise 3.10. Consider first the subgame that starts at Player 2’s decision 
node coming after choice A of Player 1 (only the payoff of Players 2 and 3 are 
shown in the following table): 

 
 
 

Player  
2 

 
Player   3 

 F G H 
C 0 , 0 2 , 0 1 , 1 
D 1 , 0 1 , 2 2 , 1 
E 0 , 1 0 , 1  3 , 2.    

The unique Nash equilibrium is (E, H). 

Now consider the subgame that starts at Player 2’s decision node coming after choice B 
of Player 1  

 
 

Player  2 

 
Player   3 

 P R 
L  2  ,  1.  1  ,  0 
M 0  ,  0  1  ,  1.  
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There are two Nash equilibria: (L, P) and (M, R). 

Thus there are two subgame-perfect equilibria of the entire game: 

(1)  , ( , ), (( , )A E L H P . Player 1’s strategy: A,  Player 2’s strategy: E if A and L if B, 
Player 3’s strategy: H if A and P if B:  

(2)  , ( , ), (( , )B E M H R . Player 1’s strategy: B,  Player 2’s strategy: E if A and M if B, 
Player 3’s strategy: H if A and R if B. 

The first equilibrium seems more sensible, since in the second Player 2’s strategy is 
weakly dominated (by E if A and L if B).  

Exercise 3.11. (a) The game is as follows. 

1 1 1

12 32
31

NATURE

232113

100
200 100

300
200
100

200
300

300
200

300
100

Y

Y

Y

Y

YN

N

N

N

N

N

300
200

300
100

200
300

200
100

100
300

300
100

100
200

300
200

100
300

200
300

(all choices have an equal
robability of 1/6)

P
P

P
P P P

T T T

T TT

Y

100
200

200
100

2

2
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(b) Player 1’s strategies are the same as in Example 3.15. Player 2 now has 8 
strategies. Each strategy has to specify how to reply to Player 1’s proposal 
depending on the sum he (Player 2) has. Thus one possible strategy is: if I 
have $100 I say No, if I have $200 I say Yes and if I have $300 I say No. 

Exercise 3.12.  (a) The game is as follows. 

Nature

1/2

1/2

Red

Black

Brian

Brian

A
v
i
n
a
s
h

A
v
i
n
a
s
h

R B

R B

R

R

R

R

B

B

B

B

J
o
h
n

J
o
h
n

R

R

R

R

R

R

R

R

B

B

B

B

B

B

B

B

22

22

22

22

22

2222

22

22

22

22

22

22

22

22

22

 
(b) Each player has two information sets, two choices at each information set, 
hence four strategies. The strategic form is given by the following set of tables. 

   Avinash   

  if B, B, 
if R, R 

if B, B, 
if R, B 

if B, R, 
if R, R 

if B, R, 
if R, B 

 if B, B, 
if R, R 

2,2, 4 0, 0, 0 0, 0, 0 2, 2, 4 

Brian if B, B, 
if R, B 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, R 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, B 

2, 2, 4 0, 0, 0 0, 0, 0 2,2, 4 

John chooses: if B, B and if R, R  
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   Avinash   

  if B, B, 
if R, R 

if B, B, 
if R, B 

if B, R, 
if R, R 

if B, R, 
if R, B 

 if B, B, 
if R, R 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

Brian if B, B, 
if R, B 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, R 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, B 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

John chooses: if B, B and if R, B  
  

 

   Avinash   

  if B, B, 
if R, R 

if B, B, 
if R, B 

if B, R, 
if R, R 

if B, R, 
if R, B 

 if B, B, 
if R, R 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

Brian if B, B, 
if R, B 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, R 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, B 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

John chooses: if B, R and if R, R  
  
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   Avinash   

  if B, B, 
if R, R 

if B, B, 
if R, B 

if B, R, 
if R, R 

if B, R, 
if R, B 

 if B, B, 
if R, R 

2, 2, 4 0, 0, 0 0, 0, 0 2,2, 4 

Brian if B, B, 
if R, B 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, R 

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

 if B, R, 
if R, B 

2,2, 4 0, 0, 0 0, 0, 0 2, 2, 4 

John chooses: if B, R and if R, B  

How can we fill in the payoffs without spending more than 24 hours on this 
problem? There is a quick way of doing it.  Start with the two colors, B and R. 
Under B write T (for true) if Brian’s strategy says “if B then B” and write F (for 
false) if Brian’s strategy says “if B then R”; similarly, under R write T (for true) if 
Brian’s strategy says “if R then R” and write F (for false) if Brian’s strategy says “if R 
then B”. In the next row, in the B column rewrite what is in the previous row if  
Avinash’s strategy says “if B then B” and change a T into an F or an F into a T if 
Avinash’s strategy says “if B then R”. Similarly for the R column. Now repeat the 
same for John (in the B column a T remains a T and an F remains an F is John’s 
strategy is “if B then B”, while a T is changed into an F and an F is changed into a T 
if John’s strategy is “if B then R”). Now in each column the payoffs are (2, 2, 4) 
if the last row has a T and (2, 2, 4) if the last row has an F. The payoffs are then 
given by 1

2  the payoff in the left column plus 1
2  the payoff in the right column.    

For example, for the cell in the second row, third column of the third table we have 
the following. 
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 B R  

Brian’s strategy: 
if B, B  and if R, B 

T F  

Avinash’s 
strategy: 

if B, R  and if R, 
R 

F T  

John’s strategy: 
if B, R  and if R, 

R 

F T Payoffs: 

Payoffs (2, 2, 4) (2, 2, 4)  1
2 (2, 2, 4) + 1

2 (2, 2, 4) = (0, 0, 0) 

 

Exercise 3.13.  (a) The extensive-form representation of the simplified poker 
game is as follows (the top number is Yvonne’s net take in dollars and the 
bottom number is Zoe’s net take). 

ABC (1/6)
CBA (1/6)

CAB (1/6)

BCA (1/6)
BAC (1/6)

ACB (1/6)

Y YY

Pass PassPassPassPass
Pass

1
-1 1

-1
1
-1

-1
1

-1
1

-1
1

Zoe

Fold See
Fold See

1
-1

-2
2

1
-1

2
-2

Zoe

Fold See Fold
See

1
-1

1
-1

2
-2

2
-2

Bet

Bet

Zoe
Fold S F See

1
-1

1
-1

-2
2

-2
2

Bet

Bet

NATURE

Bet

Bet
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(b) and (c) Each player has eight strategies (three information sets, two 
choices at each information set, thus 2  2  2 = 8 possibilities). 

(d) Yvonne uses the strategy “If A pass, if B pass, if C bet” and Zoe uses the 
strategy “If A fold, if B fold, if C fold”). We calculate the expected net payoff 
for Yvonne. Zoe’s expected net payoff is the negative of that. 

 
Possible 

Cases 
Top card is A 

Second is B 

A 

C 

B 

A 

B 

C 

C 

A 

C 

B  

Sum Probability 
of each 

Expected 
payoff 

Y’s payoff 1 1 1 1 1 1 4 1
6   

4
6   

Explain pass pass pass pass bet + 
fold 

bet + 
fold 

   

 

(e) Yvonne uses the strategy “If A pass, if B pass, if C bet” and Zoe uses the 
strategy “see with any card”. Once again, we calculate the expected net payoff 
for Yvonne. Zoe’s expected net payoff is the negative of that. 

 
Possible 

Cases 
Top card is A 

Second is B 

A 

C 

B 

A 

B 

C 

C 

A 

C 

B  

Sum Probability 
of each 

Expected 
payoff 

Y’s payoff 1 1 1 1 2 2 2 1
6   

2
6   

Explain pass pass pass pass bet + 
see 

bet + 
see 
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(f) The strategic form is as follows. 
    

ZOE 
    

 If A fold, 
If B fold, 
If C fold 

If A see, 
If B see, 
If C see 

If A see, 
If B fold, 
If C fold 

If A fold, 
If B see, 
If C fold 

If A fold, 
If B fold, 
If C see 

If A see, 
If B see, 
If C fold 

If A see, 
If B fold, 
If C see 

If A fold, 
If B see, 
If C see 

If A pass, 
if B pass 
if C pass 

0,  0 0,  0 0,  0 0,  0 0,  0 0,  0 0,  0 0,  0 

If A bet, 
if B bet 
if C bet 

1,  - 1 0,   0 0,   0 4/6, - 4/6 8/6, - 8/6 - 2/6, 2/6 2/6, - 2/6 1, - 1 

If A bet, 
 if B pass 
if C pass 

0,  0 2/6, - 2/6 0,  0 1/6, - 1/6 1/6, - 1/6 1/6, - 1/6 1/6, - 1/6 2/6, - 2/6 

If A pass, 
if B bet 
if C pass 

2/6, - 2/6 0,  0 - 1/6, 1/6 2/6, - 2/6 3/6, - 3/6 - 1/6, 1/6 0,  0 3/6, - 3/6 

If A pass, 
if B pass 
if C bet 

4/6, - 4/6 - 2/6, 2/6 1/6, - 1/6 1/6, - 1/6 4/6, - 4/6 - 2/6, 2/6 1/6, - 1/6 1/6, - 1/6 

If A bet, 
if B bet 
if C pass 

2/6, - 2/6 2/6, - 2/6 - 1/6, 1/6 3/6, - 3/6 4/6, - 4/6 0,  0 1/6, - 1/6 5/6, - 5/6 

If A bet, 
if B pass 
if C bet 

4/6, - 4/6 0,  0 1/6, - 1/6 2/6, - 2/6 5/6, - 5/6 - 1/6, 1/6 2/6, - 2/6 3/6, - 3/6 

if A Pass, 
If B or C, 
Bet, 

1,  - 1 - 2/6, 2/6 0,  0 3/6, - 3/6 7/6, - 7/6 - 3/6, 3/6 1/6, - 1/6 4/6, - 4/6 

(g) Let  denote weak dominance, that is, a  b means that a weakly dominates b. 

FOR YVETTE (row player):  3
rd

 row  1
st
 row,     6

th
  4

th
,  7

th
  4

th
,    7

th
  5

th
,    

2
nd

  8
th

. 

FOR ZOE (column player):   3
rd

 col  1
st 

col,    3
rd

  4
th

,   3
rd

  5
th

,    3
rd

  7
th

,    
3

rd
  8

th
, 2

nd
  8

th
,    4

th
  5

th
,    4

th
  8

th
,    6

th
  2

nd
,    6

th
  4

th
,     6

th
  5

th
,     

6
th

  7
th

,    6
th

  8
th

, 7
th

  4
th

,     7
th

  5
th

,    7
th

  8
th

. 
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(h) Eliminating rows 1, 4, 5 and 8 and all columns except 3 and 6 we are left with: 
   Zoe 

  See only if 
A 

See with A or 
B 

 Bet always 0,   0 - 2/6, 2/6 

Y If A, Bet, 
otherwise 
pass 

0,  0 1/6, - 1/6 

 If A or B, 
Bet, 
if C Pass 

- 1/6, 1/6 0,  0 

 If A or C, 
Bet, 
if B Pass 

1/6, - 1/6 - 1/6, 1/6 

In the above table, the second row dominates the first and the third. Eliminating 
them we have the following, which is a remarkable simplification of the original 
strategic form: 

   Zoe 

  See only if 
A 

See with A or 
B 

Y If A, Bet, 
otherwise 
pass 

0,  0 1/6, - 1/6 

 If A or C, 
Bet, 
if B Pass 

1/6, - 1/6 - 1/6, 1/6 
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Exercise 3.14.  (a) The extensive form is as follows: 

1

2

G

auction

$1 $2

$1 $2 $1 $2

p
0
0

1
p11

0

G
pl. 1
pl. 2

1
p11

0

1
0

p21

2
p12

0

sell to Chinese

 

(b) In the auction subgame for every player it is a weakly dominant strategy to 
bid his own value. Let  

1,...,
maxj ii n

p p


  be the highest value and 

 
1,...,

maxk ii n
i j

p p



 be the second highest value. Then the auction, if it takes 

place, will be won by Player j and he will pay kp . Hence there are three 
cases. Case 1: kp p . In this case Player G will sell to the Chinese (and the 
strategy of player i in the subgame is to bid ip ), G’s payoff is p and the 
payoff of player i is 0. Case 2: kp p . In this case Player G announces the 
auction, the strategy of player i in the subgame is to bid ip , the winner is 
player j and he pays kp , so that the payoff of G is kp , the payoff of player j 
is j kp p  and the payoff of every other player is 0. Case 3: kp p . In this 
case there are two subgame-perfect equilibria: one as in Case 1 and the other 
as in Case 2 and G is indifferent between the two.  

(c) The game is as follows: 
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1

2

$1 $2

$1 $2 $1 $2

3
p12
1

G
pl. 1
pl. 2

3
p12
1

3
1

p22

4
p13
1

1
Yes

No 2 $1

$2

Yes
2
0

p22

3
0

p23

2NoNo 1

G
p
0
0auction

sell  to Chinese

1$1

$22
p12

0

Yes

3
p13

0

p
0
0

 
(d) In the simultaneous subgame after both players have said Yes, the 

participation fee paid is a sunk cost and for every player bidding the true 
value is a weakly dominant strategy. Thus the outcome there is as follows: 
player 1 bids p1, gets the palace by paying p2, G’s payoff is (p2 + 2), 1’s 
payoff is (p1   p2 1) and 2’s payoff is 1. In the subgames where one player 
said No and the other said Yes the optimal choice is obviously x = 1, with 
payoffs of 2 for Player G, 0 for the player who said No and pi 2 for the 
player who said Yes. Thus the game reduces to the one shown in Figure A: 

1
Yes

No

Yes

2NoNo 1

G
p
0
0auction

sell to Chinese

Yes

p
0
0

p22
p1p21

1

2
0

p22

G
pl. 1
pl.  2

2
p12

0
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2No

G
p
0
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2
p12

0

sell to Chinese

p22
p1p21

1  

Figure A Figure B 
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By assumption, p1 > p2 + 1 > 2, so that p1   p2   1 > 0 and p1   2 > 0. Thus 
at the bottom node and at the left node player 1 prefers Yes to No.  Thus the 
game reduces to the one shown in Figure B. 
Hence player 2 will say No. Thus the subgame-perfect equilibrium is as 
follows:  
(1) if p > 2 then player G will sell to the dealer (and the choices off the 
equilibrium path are as explained above) and the payoffs are (p, 0 , 0);  
(2) if p < 2  then G chooses to auction, 2 says No, 1 says Yes and then offers $1 
and the payoffs are (2, p1 2,0) (and the choices off the equilibrium path are as 
explained above); 
(3) if p = 2 then there are two equilibria: one as in (1) and the other as in (2). 

(e) When the loser is given the fraction a of the amount paid by the winner 
(that is, the loser is given the fraction a of his own bid), it is no longer true 
that bidding one’s true value is a dominant strategy. In fact,  1 2,p p  is not 
even a Nash equilibrium any more. To see this, imagine that 1’s true value is 10 
and 2’s true value is 6 and a = 50%. Then if player 1 bids 10 and 2 bids 6, player 
2 ends up losing the auction but being given $3, while if he increased his bid to 
8 then he would still lose the auction but receive $4. This shows that there 
cannot be a Nash equilibrium where player 2 bids less than player 1. Now there 
are several Nash equilibria of the auction, for example, all pairs  1 2,b b  with  

1 2b b b   and 2 1p b p    provided that 1 ( 1)p b a b   , that is, 1

1
p ab

a





  

(but there are more: for example all pairs  1 2,b b  with  1 2b b b   and 2b p   

provided that 1 ( 1)p b a b    and 2ab p b  ). Thus to find a subgame-perfect 
equilibrium of the game one first has to select a Nash equilibrium of the 
auction game and then apply backward induction to see if the players would 
want to say Yes or No to the auction, etc. 

(f) Let us start by considering the perfect-information game that is played if the 
Chinese says Yes. This is a game discussed in class. We first determine the 
losing positions. Whoever has to move when the sum is 36 cannot win. Thus 36 
is a losing position. Working backwards, the losing positions are 32, 28, 24, 20, 
16, 12, 8 and 4. Thus, whatever the initial choice of the first player (= player 
G), he can be made to choose the second time when the sum is 4. Hence the 
second player (= the Chinese) has a winning strategy, which is as follows: if 
Player G just chose n, then choose (4 n). If the Chinese says Yes and then 
follows this strategy he can guarantee that he will buy the palace for $50. Thus 
the subgame-perfect equilibrium of this game is: the Chinese says Yes and uses 
the winning strategy in the ensuing game, while Player G makes any arbitrary 
choices. 
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Expected Utility 

4.1 Money lotteries and 
attitudes to risk 

t the end of Chapter 3 we showed how to incorporate random events in 
extensive forms by means of chance moves. The introduction of chance 
moves gives rise to probabilistic outcomes, which we called lotteries. In 

Chapter 3 we restricted attention to lotteries whose outcomes are sums of money 
(money lotteries) and to one possible way of ranking such lotteries, based on the 
notion of risk neutrality. In this section we will continue to focus on money 
lotteries and define other possible attitudes to risk. In the next section we will 
consider more general lotteries, where the outcomes need not be sums of money, 
and introduce the theory of expected utility which will then be used in the context 
of games in Chapters 5 and 6. 

Throughout this chapter we will restrict attention to finite lotteries. Recall that a 
money lottery is a probability distribution of the form  

1 2

1 2

$ $ ... $
...

n

n

x x x
p p p

 
 
 

  ( 1 20,  for all 1, 2,...,  and ... 1i np i n p p p      ) 

and that (Definition 3.13, Chapter 3) its expected value is the number 
 1 1 2 2 ... n nx p x p x p   . If L is a money lottery, we will denote by [ ]L  the 

expected value of L. Thus, for example, if 
51 1

3 9 9

$30 $45 $90
L

 
  
 

 then [ ]L =45. 

Recall also (Definition 3.14, Chapter 3) that a person is said to be risk neutral if she 
considers a money lottery to be just as good as its expected value for sure. We can 
now extend the definition by considering different attitudes to risk, besides risk 
neutrality. 

Chapter 

4 

A 
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Definition 4.1.  Let L be a money lottery and consider the choice between L 

and the degenerate lottery 
$ [ ]

1
L 

 
 


 (that is, the choice between facing the 

lottery L or getting the expected value of L for sure). Then 

 An individual who prefers $ [ ]L  for sure to L is said to be risk averse. 

 An individual who is indifferent between $ [ ]L  for sure and L is said to 
be risk neutral. 

 An individual who prefers L to $ [ ]L  for sure is said to be risk loving. 

Note the following important facts. First of all, if an individual is risk neutral, has 
transitive preferences over money lotteries and prefers more money to less, then we 
can tell how that individual ranks any two money lotteries. For example, how 

would such an individual rank the two lotteries 1 51 1
3 9 9

$30 $45 $90
L

 
  
 

 and 

2 3 2
5 5

$5 $100
L

 
  
 

? Since 1[ ] 45L   and the individual is risk neutral, 1 $45L  ; 

since  2[ ] 43L   and the individual is risk neutral, 2$43 L ; since the individual 
prefers more money to less, $45 $43 ; thus, by transitivity, 1 2L L . On the other 
hand, knowing that an individual is risk averse, has transitive preferences over 
money lotteries and prefers more money to less is not sufficient to predict how she 
will choose between two arbitrary money lotteries. For example, as we will see 

later (Exercise 4.11), it is possible that one such individual will prefer 3

$28
1

L  
  
 

 to 

4 1 1
2 2

$10 $50
L

 
  
 

, while another such individual will prefer 4L   to 3L . Similarly, 

knowing that an individual is risk loving, has transitive preferences over money 
lotteries and prefers more money to less is not sufficient to predict how she will 
choose between two arbitrary money lotteries. 

Remark 4.2.  Note that rationality does not and cannot dictate whether an 
individual should be risk neutral, risk averse or risk loving: an individual’s 
attitude to risk is merely a reflection of that individual’s preferences. It is a 
generally accepted principle that de gustibus non est disputandum (in matters of 
taste, there can be no disputes). According to this principle, there is no such 
thing as an irrational preference and thus there is no such thing as an irrational 
attitude to risk. As a matter of fact, most people reveal through their choices 
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(e.g. the decision to buy insurance) that they are risk averse, at least when the 
stakes are high. 

As noted above, with the exception of risk-neutral individuals, even if we restrict 
attention to money lotteries we are not able to say much about how an individual 
would choose among lotteries. What we need is a theory of “rational” preferences 
over lotteries that is general enough to cover lotteries whose outcomes are not just 
sums of money and is capable of accounting for different attitudes to risk in the case 
of money lotteries. One such theory is the theory of expected utility, to which we 
now turn. 

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 4.E.1 of Appendix 4.E at the end of this 
chapter. 
 

 

4.2 Expected utility: theorems 

The theory of expected utility was developed by the founders of game theory, 
namely John Von Neumann and Oskar Morgenstern, in their 1944 book Theory of 
Games and Economic Behavior. In a rather unconventional way, we shall first (in 
this section) state the main result of the theory (which we split into two theorems) 
and then (in the following section) explain the assumptions (or axioms) behind that 
result. The reader who is not interested in understanding the conceptual foundation 
of expected utility theory but wants to understand what the theory says and how it 
can be used can thus study this section and skip the next. First we review the 
notation. 

Let O be a set of basic outcomes. Note that a basic outcome need not be a sum of 
money: it could be the state of an individual’s health, or whether the individual 
under consideration receives an award, or whether it will rain on the day of her 
planned outdoor party, etc. Let ( )OL  be the set of simple lotteries (or probability 
distributions) over O. We will assume throughout that O is a finite set: 

1 2{ , ,..., )mO o o o . Thus an element of ( )OL  is of the form 1 2

1 2

...

...
m

m

o o o
p p p

 
 
 

 

with 1 20,  for all 1, 2,...,  and ... 1i mp i m p p p      . We will use the symbol 
L (with or without subscript) to denote an element of ( )OL . Lotteries are used to 
represent situations of uncertainty. For example, if m = 4 and the individual faces 
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the lottery 1 2 3 4
2 1 2
5 5 50
o o o o

L
 

  
 

 then she knows that eventually the outcome will 

be one and only one of 1 2 3 4, , ,o o o o , but does not know which one; furthermore, 
she is able to quantify her uncertainty by assigning probabilities to these outcomes. 
We take these probabilities either as objectively obtained from relevant past data or 
as subjective estimates by the individual. For example, an individual who is 
considering whether or not to insure her bicycle against theft for the following 12 
months, knows that there are two relevant basic outcomes: either the bicycle will 
be stolen or it will not be stolen. Furthermore she can look up data about past 
bicycle thefts in her area and us the proportion of bicycles that was stolen as an 
“objective” estimate of the probability that her bicycle will be stolen; alternatively, 
she can use a more subjective estimate: for example she might use a lower 
probability of theft than suggested by the data because she knows herself to be very 
conscientious and – unlike other people – to always lock her bicycle when left 
unattended.  

The assignment of zero probability to a particular basic outcome is taken to be an 
expression of belief not of impossibility: the individual is confident that the outcome 
will not arise, but she cannot rule that outcome out on logical grounds or by 
appealing to the laws of physics. 

Among the elements of ( )OL  there are the degenerate lotteries that assign 
probability 1 to one basic outcome, for example if m = 4, one degenerate lottery is 

1 2 3 4

0 0 1 0
o o o o 
 
 

. To simplify the notation we will often denote degenerate 

lotteries as basic outcomes, that is, instead of writing 1 2 3 4

0 0 1 0
o o o o 
 
 

 we will 

simply write 3o . Thus, in general, the degenerate lottery  

1 1 1... ...
0 0 0 1 0 0 0

i i i mo o o o o  
 
 

 will be denoted by io . As another simplification, 

we will often omit those outcomes that are assigned zero probability. For example, 

if m = 4, the lottery 1 2 3 4
1 2
3 30 0

o o o o 
 
 

 will be written more simply as 1 3
1 2
3 3

o o 
 
 

. 

Throughout this chapter we shall call the individual under consideration the 
Decision-Maker, or DM for short. The theory of expected utility assumes that the 
DM has a complete and transitive ranking  of the elements of ( )OL  (indeed, this 
is one of the axioms listed in the next section). By completeness, given any two 
lotteries L  and L , either L L  (the DM prefers L  to L ) or L L   (the DM 
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prefers L  to L ) or L L  (the DM is indifferent between L  and L ). 
Furthermore, by transitivity, for any three lotteries 1 2 3,  and L L L , if 1 2L L  (the 
DM considers 1L  to be at least as good as 2L ) and  2 3L L  then 1 3L L .  Besides 
completeness and transitivity, a number of other “rationality” constraints are 
postulated on the ranking  of the elements of ( )OL ; these constraints are the so-
called Expected Utility Axioms and are discussed in the next section. 

Definition 4.3.  A ranking  of the elements of ( )OL  that satisfies the 
Expected Utility Axioms is called a von Neumann-Morgenstern ranking. 

The following two theorems are the key results in the theory of expected utility. 

Theorem 4.4 [von Neumann-Morgenstern, 1944].  Let  1 2, ,..., mO o o o  be a 

set of basic outcomes and ( )OL  the set of lotteries over O. If    is a von 
Neumann-Morgenstern ranking of the elements of ( )OL  then there exists a 
function :U O   ,  called a von Neumann-Morgenstern utility function, that 
assigns a number (called utility) to every basic outcome and is such that, for any 

two lotteries 1 2

1 2

...

...
m

m

o o o
L

p p p
 

  
 

 and 1 2

1 2

...

...
m

m

o o o
L

q q q
 

   
 

,  

L L   if and only if  [ ( )] [ ( )]U L U L �   and 

L L   if and only if  [ ( )] [ ( )]U L U L �  
where 

 1 2

1 2

( ) ( ) ... ( )
( )

...
m

m

U o U o U o
U L

p p p
 

  
 

, 1 2

1 2

( ) ( ) ... ( )
( )

...
m

m

U o U o U o
U L

q q q
 

   
 

, 

[ ( )]U L  is the expected value of the lottery ( )U L  and [ ( )]U L  is the expected 
value of the lottery ( )U L , that is,  

1 1 2 2[ ( )] ( ) ( ) ... ( )m mU L p U o p U o p U o     

1 1 2 2[ ( )] ( ) ( ) ... ( )m mU L q U o q U o q U o     . 

[ ( )]U L  is called the expected utility of lottery L  (and [ ( )]U L  the expected utility 
of lottery L ). We say that any function :U O    that satisfies the property that, 
for any two lotteries  and L L , L L  if and only if [ ( )] [ ( )]U L U L �  
represents the preferences (or ranking) .  

Before we comment on Theorem 4.4 we give an example of how one can make use 
of it. Theorem 4.4 sometimes allows us to predict an individual’s choice between 
two alternatives C and D if we know how that individual ranks two different 
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alternatives A and B.  For example, suppose  we observe that Susan is faced with the 
choice between lotteries A and B below and she says that she prefers A to B 

A  =  1 2 3

0 0.25 0.75
o o o 
 
 

                    B  = 1 2 3

0.2 0 0.8
o o o 

 
 

 . 

With this information we can predict which of the following two lotteries C and D 
she will choose, if she has von Neumann-Morgenstern preferences. 

C  =  1 2 3

0.8 0 0.2
o o o 

 
 

                    D  = 1 2 3
20 1 0

o o o
o 

 
 

 . 

Applying the theorem, let U be a von Neumann-Morgenstern utility function 
whose existence is guaranteed by Theorem 4.4. Let U(o1) = a, U(o2) = b and U(o3) = 
c (where a, b and c are numbers). Then, since Susan prefers A to B, the expected 
utility of A must be greater than the expected utility of B:  0.25b+0.75c  0.2a+0.8. 
This inequality is equivalent to  0.25 b  0.2 a + 0.05 c  or, dividing both sides by 
0.25,  b  0.8 a+0.2 c. It follows from this and Theorem 4.4 that Susan prefers D to 
C, because the expected utility of D is b and the expected utility of C is 0.8a+0.2c. 
Thus in this example we merely have used the fact that a von Neumann-
Morgenstern utility function exists, even though we don’t know what the values of 
this function are.  

Theorem 4.4 is an example of a representation theorem and is a generalization of a 
similar result for the case of the ranking of finite set of basic outcomes O. It is not 
difficult to prove that if  a complete and transitive ranking of O then there exists 
a function :U O   , called a utility function (see Chapter 1), such that, for any 
two basic outcomes ,o o O , ( ) ( )U o U o  if and only if o o . Now, it is quite 
possible that an individual has a complete and transitive ranking of O, is fully aware 
of her ranking  and yet she is not able to answer the question “what is your utility 
function?”, perhaps because she has never heard about utility functions. A utility 
function is a tool that we use to represent her ranking, nothing more than that. The 
same applies to von Neumann-Morgenstern rankings: Theorem 4.4 tells us that that 
if an individual has a von Neumann-Morgenstern ranking of the set of lotteries 

( )OL  then there exists a von Neumann-Morgenstern utility function that we can 
use to represent her preferences, but would not make sense for us to ask the 
individual “what is your von Neumann-Morgenstern utility function?” (indeed this 
was a question that could not even be conceived before von Neumann and 
Morgenstern stated and proved Theorem 4.4 in 1944!). Theorem 4.4 tells us that 
such a function exists. The next theorem can be used to actually construct such a 
function by asking the individual to answer a few questions, formulated in a way 
that is fully comprehensible to her (that is, without using the word ‘utility’). 
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The next theorem says that, although there are many utility functions that 
represent a given von Neumann-Morgenstern ranking, once you know one 
function you know them all, in the sense that there is a simple operation that takes 
you from one function to the other. 

Theorem 4.5 [von Neumann-Morgenstern, 1944].  Let    be a von 
Neumann-Morgenstern ranking of the set of lotteries ( )OL , where 

 1 2, ,..., mO o o o . Then the following are true. 

(A) If :U O    is a von Neumann-Morgenstern utility function that 
represents  , then, for any two real numbers a and b with a > 0, the 
function :V O    defined by ( ) ( )i iV o aU o b   ( i = 1,2,…,m) is also a 
von Neumann-Morgenstern utility function that represents  . 

 (B) If :U O    and :V O    are two von Neumann-Morgenstern utility 
functions that represent  , then there exist two real numbers a and b with  
a > 0 such that ( ) ( )i iV o aU o b   ( i = 1,2,…,m). 

Proof. The proof of (A) of Theorem 4.5 is very simple. Fix two numbers a and b 
with a > 0. The hypothesis is that :U O    is a von Neumann-Morgenstern 
utility function that represents  , that is, that, for any two lotteries 

1

1

...

...
m

m

o o
L

p p
 

  
 

 and 1

1

...

...
m

m

o o
L

q q
 

   
 

,  

1 1 1 1

                     if and only if
( ) ... ( ) ( ) ... ( )m m m m

L L
p U o p U o q U o q U o



    


     (1) 

Multiplying both sides of the above inequality by a > 0 and adding  1 ... mp p b   
to both sides we obtain  

       

1 1 1 1

1 1 1 1

( ) ... ( ) ( ) ... ( )
if and only if

( ) ... ( ) ( ) ... ( )

m m m m

m m m m

p U o p U o q U o q U o

p aU o b p aU o b q aU o b q aU o b

    

        

     (2) 

Defining ( ) ( )i iV o aU o b  , it follows from (1) and (2) that  

1 1 1 1

                     if and only if
( ) ... ( ) ( ) ... ( )m m m m

L L
p V o p V o q V o q V o



    


 

That is, the function V is a von Neumann-Morgenstern utility function that 
represents the ranking  represents the ranking .  
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The proof of Part (B) will be given later, after introducing some more notation and 
some observations.   

Since among the lotteries there are the degenerate ones that assign probability 1 to a 
single basic outcome, this implies that the DM has a complete and transitive 
ranking of the basic outcomes. We shall write besto  for a best basic outcome, that is, 
a basic outcome which is at least as good as any other outcome 
( , for every besto o o O ) and worsto  for a worst basic outcome, that is, a basic 
outcome such that every other outcome is at least as good as it 
( , for every worsto o o O ). Note that there may be several best outcomes (then the 
DM would be indifferent among them) and several worst outcomes. We shall 
assume throughout that the DM is not indifferent among all the outcomes, that is, 
we shall assume that best worsto o . 

We now show that, in virtue of Theorem 4.5, among the von Neumann-
Morgenstern utility functions that represent a given von Neumann-Morgenstern 
ranking  of ( )OL , there is one that assigns the value 1 to the best basic 
outcome(s) and the value 0 to the worst basic outcome(s). To see this, fix an 
arbitrary von Neumann-Morgenstern utility function :F O    that represents  
and define :G O    as follows: for every o O , ( ) ( ) ( )worstG o F o F o  . Then, 
by Theorem 4.5, G is also a utility function that represents  and, by construction, 

( ) 0worstG o  ; note also that, since best worsto o , it follows that ( ) 0bestG o  . Finally, 

define :U O    as follows: for every o O , ( )( )
( )best

G oU o
G o

  . Then, by 

Theorem 4.5, U is a utility function that represents  and, by construction, 
( ) 0worstU o   and ( ) 1bestU o  .  For example, if there are six basic outcomes and the 

ranking of the basic outcomes is 3 6 1 4 2 5o o o o o o     , then one can take as 

besto  either 3 6 or o o  and as worsto  either 2 5 or o o ; furthermore, if F is given by 

1 2 3 4 5 6outcome
2 2 8 0 2 8
o o o o o o

F  
 

  then G is the function  1 2 3 4 5 6

4 0 10 2 0 10
o o o o o o

  and U is the function  

1 2 3 4 5 6

0.4 0 1 0.2 0 1
o o o o o o

. 

Definition 4.6.  Let :U O    be a utility function that represents a given von 
Neumann-Morgenstern ranking  of the set of lotteries ( )OL . We say that U 
is the normalized utility function if ( ) 0worstU o   and ( ) 1bestU o  . 
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The transformations described above show how to normalize any given utility 
function. Armed with the notion of normalized utility function we can now 
complete the proof of Theorem 4.5. 

Proof of Part (B) of Theorem 4.5. Let :F O    and :G O    be two von 
Neumann-Morgenstern utility functions that represent a given von Neumann-
Morgenstern ranking of ( )OL . Let :U O    be the normalization of F and  

:V O    be the normalization of G. First we show that it must be that U = V, 
that is, ( ) ( ) for every U o V o o O  . Suppose not, that is, suppose there is an 
ô O  such that ˆ ˆ( ) ( )U o V o . Without loss of generality we can assume that 

ˆ ˆ( ) ( )U o V o . Construct the following lottery: 
ˆ ˆ1

best worsto o
L

p p
 

   
 with ˆ ˆ( )p U o . 

Then  ˆ[ ( )] [ ( )] ( )U L V L U o   . Hence, according to U it must be that ô L , 
while according to V it must be that ˆL o  (since ˆ ˆ( ) ( )U o V o ). Then U and V 
cannot be two representations of the same ranking.  

Now let 1
1

( ) ( )best worst

a
F o F o




  and 1
( )

( ) ( )
worst

best worst

F ob
F o F o

 


 . Note that 1 0a  . 

Then it is easy to verify that, for every o O , 1 1( ) ( )U o a F o b  . Similarly let 

2
1

( ) ( )best worst

a
G o G o




  and 2
( )

( ) ( )
worst

best worst

G ob
G o G o

 


; again, 2 0a   and, for 

every o O , 2 2( ) ( )V o a G o b  . We can invert the latter transformation and 

obtain that, for every o O , 2

2 2

( )( ) bV oG o
a a

  . Thus we can transform F into U, 

which  as proved above  is the same as V, and then transform V into G  as 

follows: ( ) ( )G o aF o b   where 1

2

0aa
a

   and 1 2

2

b bb
a


 .    

Remark 4.7.  Theorem 4.5 is often stated as follows: utility function that 
represents a von Neumann-Morgenstern ranking  of ( )OL  is “unique up to a 
positive affine transformation”.1 Because of Theorem 4.5 a von Neumann-
Morgenstern utility function is usually referred to as a cardinal utility function. 

Theorem 4.4 guarantees the existence of a utility function that represents a given 
von Neumann-Morgenstern ranking  of ( )OL  and Theorem 4.5 characterizes the 
set of such functions. Can one actually construct a utility function that represents a 

                                                

1 An affine transformation is a function :f    of the form ( )f x ax b   with ,a b . 
The affine transformation is positive if  a > 0. 
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given ranking? The answer is affirmative: if there are m basic axioms one can 
construct an individual’s von Neumann-Morgenstern utility function by asking her 
at most ( 1)m . The first question is “what is your ranking of the basic outcomes?”. 
Then we can construct the normalized utility function and assign the value 1 to the 
best outcome(s) and the value 0 to the worst outcome(s). This leaves us with at most 
( 2)m  values to determine. For this we appeal to one of the axioms discussed in 
the next section, namely the Continuity axiom, which says that, for every basic 
outcome io  there is a probability [0,1]ip   such that the DM is indifferent 
between io  for sure and the lottery that gives a best outcome with probability ip  

and a worst outcome with probability  1 ip :  
1

best worst
i

i i

o o
o

p p
 
  

 . Thus, for each 

basic outcome io  for which a utility has not been determined yet, we should ask 

the individual to tell us the value of such that 
1

best worst
i

i i

o o
o

p p
 
  

 ; we can then set 

( )i i iU o p , because the expected utility of the lottery  
1

best worst

i i

o o
p p

 
  

 is 

   ( ) 1 ( ) (1) 1 0i i best i i worst i i ipU o p U o p p p      .  

Example 4.8.  Suppose that there are five basic outcomes, that is, 
 1 2 3 4 5, , , ,O o o o o o  and the DM, who has von Neumann-Morgenstern 

preferences, tells us that her ranking of the basic outcomes is as follows:  

2 1 5 3 4o o o o o    . 
Then we can begin by assigning utility 1 to the best outcome 2o  and utility 0 to the 

worst outcomes 3 4 and o o :  1 2 3 4 5outcome
utility ? 1 0 0 ?

o o o o o 
 
 

. There is only one 

value left to be determined, namely the utility of  1 5 and o o . To find this value, we 
ask the DM to tell us the value of p that makes her indifferent between the lottery 

2 3

1
o o

L
p p

 
   

. Suppose that her answer is: 0.4. Then her normalized von 

Neumann-Morgenstern utility function is 1 2 3 4 5outcome
utility 0.4 1 0 0 0.4

o o o o o 
 
 

.  

Knowing this, we can predict her choice among any set of lotteries over the five 
basic outcomes. 
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 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 4.E.2 of Appendix 4.E at the end of this 
chapter. 
 

 

4.3 Expected utility: the axioms 

We can now turn to the list of “rationality” axioms proposed by von Neumann and 
Morgenstern. Let  1 2, ,..., mO o o o   be the set of basic outcomes and ( )OL  the set 

of simple lotteries, that is, the set of probability distributions over O. Let  be a 
binary relation on ( )OL . We say that  is a von Neumann-Morgenstern ranking 
of ( )OL  if it satisfies the following axioms or properties. 

Axiom 1 [Completeness and transitivity].  is complete and transitive. 

As noted in the previous section, Axiom 1 implies that there is a complete and 
transitive ranking of the basic outcomes. Recall that besto  denotes a best basic 
outcome and worsto  denotes a basic worst outcome and that we are assuming that 

best worsto o , that is, that the DM is not indifferent among all the basic outcomes. 

Axiom 2 [Monotonicity]. 
1 1

best worst best worsto o o o
p p q q

   
       

  if and only if p  q. 

Axiom 3 [Continuity]. For every basic axioms io  there is a [0,1]ip   such that 

1
best worst

i
i i

o o
o

p p
 
  

 .  

Before we introduce the last axiom we need one more definition.  

Definition 4.9.  A compound lottery is a lottery of the form 1 2

1 2

...

...
r

r

x x x
p p p

 
 
 

 

where each ix  is either an element of O or an element of ( )OL  and at least one ix  

is an element of ( )OL . Given a compound lottery 1 2

1 2

...

...
r

r

x x x
p p p

 
  
 

C  the 

corresponding simple lottery 1 2

1 2

...
( )

...
m

m

o o o
L

q q q
 

  
 

C  is defined as follows. First of 

all, for i = 1,…,m and j = 1,…,r, define  
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1 1 1

1 1 12

1 if 
( ) 0 if  with 

... ...
if 

... ...

j i

i j j k

i i i m
i j

i i i m

x o
o x x o k i

o o o o o
s x

s s s s s
 

 




  
       

. 

Then 
1

( )
r

i j i j
j

q p o x


 . 

For example, let m = 4. Then 1 2 3 4
2 1 2
5 5 50
o o o o

L
 

  
 

 is a simple lottery (an element 

of ( )OL ), while 

1 2 3 4 1 2 3 4
1 31 1 1 1 1 1

3 6 3 6 5 5 50
1 1 1
2 4 4

o o o o o o o o
o

    
    
    
 
 
 

C  is a compound 

lottery (with r = 3).  The compound lottery C  can be viewed graphically as a tree, 
as shown in Figure 4.1. 

o1 o1 o1o o2 3 o3o4 o4

1
2

1
4

1
4

1
3 1

3

1
6

1
6

1
5

1
5

3
5

 

Figure 4.1 
The compound lottery C . 

Then 1 1
1 1 1 2 1 33 5( ) , ( ) 1 and ( )o x o x o x    so that    1 1 1 1 1

1 2 3 4 4 5(1)+q    7
15 . 

Similarly,    1 1 1 1 1
2 2 6 4 4 12(0)+ 0q    ,      131 1 1 1 1

3 2 3 4 4 5 60(0)+q     and 

   3 71 1 1 1
4 2 6 4 4 5 30(0)+q    .  These numbers correspond to multiplying the 

probabilities along the edges of the tree of Figure 4.1 leading to an outcome, as 
shown in Figure 4.2 (a) and then adding up the probabilities of each outcome, as 
shown in Figure 4.2 (b). Thus the simple lottery ( )L C  that corresponds to C  is 

1 2 3 4
7 13 71

15 12 60 30

( )
o o o o

L
 

  
 

C , namely the lottery shown in Figure 4.2 (b).  
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o1 o1 o1o o2 3 o3o4 o4

1
4

1
6 1

6
1

12
1

12 1
20

1
20

3
20

 

(a) Simplification of Figure 4.1 obtained by condensing paths into simple edges and 
associating with the simple edges the products of the probabilities along the path. 

o1 o o2 3 o4

7
30

13
60

1
12

7
15

 
(b) Simplification of Part (a) obtained by adding, for each outcome,  

the probabilities of that outcome. 

Figure 4.2 

Axiom 4 [Independence or substitutability]. Fix an arbitrary basic outcome io  

and an arbitrary simple lottery 1 1 1

1 1 1

... ...

... ...
i i i m

i i i m

o o o o o
L

p p p p p
 

 

 
  
 

. If L̂  is a 

simple lottery such that ˆ
io L  then L M  where M is the simple lottery 

corresponding to the compound lottery 1 1 1

1 1 1

ˆ... ...
... ...

i i m

i i i m

o o L o o
p p p p p

 

 

 
   
 

C  

(Definition 4.9) obtained by replacing io  with L̂  in L. 
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We can now prove the first result of the previous section. 

Proof of Theorem 4.5. To simplify the notation, throughout this proof we will 
assume that we have renumbered the basic outcomes in such a way that  

1besto o  and worst mo o . 

First of all, for every basic outcome io , let [0,1]iu   be such that 1

1
m

i
i i

o o
o

u u
 
  

 .                                             

The existence of such values 'iu s  is guaranteed by the Continuity axiom (Axiom 

3); clearly 1 1 and 0mu u  .  Now fix an arbitrary lottery 1
1

1

...

...
m

m

o o
L

p p
 

  
 

. 

First we show that 

1

1

1 1
1

m
m m

i i i i
i i

o o
L

p u p u
 

 
 
  
 
 

                                             (*) 

This is done through a repeated application of the Independence axiom (Axiom 4), 

as follows. Consider the compound lottery 
1

1 3
2 22

1 2 3

...
1

...

m
m

m

o o
o o o

u u
p p p p

  
     
 
 

C  

obtained by replacing 2o  in lottery 1L   with the lottery 1

2 21
mo o

u u
 
  

 that the DM 

considers to be just as good as 2o . The simple lottery corresponding to 2C  is 

1 3
2

1 2 2 3 2 2

...

... (1 )
m

m

o o o
L

p p u p p p u
 

     
. Note that 2o  is assigned probability 0 

in 2L  and thus we have omitted it. By Axiom 4, 1 2L L .  Now apply the same 

argument to 2L : let 
1

1
3 33

1 2 2 3 2 2

...
1

... (1 )

m
m

m

o o
o o

u u
p p u p p p u

  
     
    

C  whose 

corresponding simple lottery is 

1
3

1 2 2 3 3 3 3 2 2

...

... (1 ) (1 )
m

m

o o
L

p p u p u p p u p u
 

        
. 

Note, again, that  3o  is assigned probability zero in 3L . By Axiom 4, 2 3L L ; thus, 
by transitivity (since  1 2L L  and 2 3L L ) we get that 1 3L L . Repeating this 
argument we get that 1 1mL L  , where 
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1
1

1 2 2 1 1 1 1 2 2... (1 ) ... (1 )
m

m
m m m m m

o o
L

p p u p u p p u p u
   

 
          

. 

Since 1 1u   and 0mu  ,   

1 2 2 1 1 1 1 2 2 1 1
1

... ...
m

m m m m m m i i
i

p p u p u p u p u p u p u p u   


          

and 

1

1

1 1

1 1 2 2 1 1
2 2 2 2

1

1 1since 1
1 2 1since 1and 0

(1 ) ... (1 )

1
m

im
i

m m m m

m m m i i i i i i
i i i i

m m m

i i i m m i iu i i ipu

p p u p u p p u p p p u p

p p u p u p u p u



 

 
   




  

          

   


 

   

  
 

Thus 
1

1

1 1
1

m
m m

m
i i i i

i i

o o
L

p u p u

 

 
    
 
 

, which proves (*).  

Now define the following utility function  1: ,..., [0,1]mU o o  : ( )i iU o u , 

where, as before, for every basic outcome io ,  [0,1]iu   is such that 

1

1
m

i
i i

o o
o

u u
 
  

 . Fix two arbitrary lotteries 1

1

...

...
m

m

o o
L

p p
 

  
 

 and 

1

1

...

...
m

m

o o
L

q q
 

   
 

. We want to show that L L  if and only if 

   ( ) ( )U L U L  , that is, if and only if 
1 1

m m

i i i i
i i

p u q u
 

  . By (*), L M , 

where  
1

1 1
1

m
m m

i i i i
i i

o o
M

p u p u
 

 
    
 
 

 and also L M  , where  

1

1 1
1

m
m m

i i i i
i i

o o
M

q u q u
 

 
     
 
 

. Thus, by transitivity of ,  L L  if and only if 

M M  ; by the Monotonicity axiom (Axiom 2), M M   if and only if 

1 1

m m

i i i i
i i

p u q u
 

  .   
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The following example, known as the Allais paradox,2 suggests that one should view 
expected utility theory as a prescriptive or normative theory (that is, as a theory 
about how rational people should choose) rather than as a descriptive theory ((that 
is, as a theory about the actual behavior of individuals). In 1953 the French 
economist Maurice Allais published a paper regarding a survey he had conducted in 
1952 concerning a hypothetical decision problem. Subjects “with good training in 
and knowledge of the theory of probability, so that they could be considered to 
behave rationally” were asked to rank the following pairs of lotteries: 

89 11
100 100

$5 million $0
A

 
  
 

  versus  
90 10

100 100

$1 million $0
B

 
  
 

 

and 

89 10 1
100 100 100

$5 million $1 million $0
C

 
  
 

  versus  
$1 million

1
D  
  
 

. 

Most subjects reported the following ranking:  

A B  and D C . 

Such ranking violates the axioms of expected utility. To see this, let  1 2 3, ,O o o o  

with 1 $5 milliono  ,  2 $1 milliono   and 3 $0o  . Let us assume that the 
individual in question prefers more money to less: 1 2 3o o o   and has a von 
Neumann-Morgenstern ranking of the lotteries over O .  Let 2 (0,1)u   is such that 

2 2

$5 million $0
1

D
u u

 
  
  (the existence of such 2u  is guaranteed by the Continuity 

axiom). Then, since D C , by transitivity  

2 2

$5 million $0
1

C
u u

 
  

                                          (1) 

Let C  be the simple lottery corresponding to the compound lottery 

2 2

89 10 1
100 100 100

$5 million $0
$5 million $0

1u u
  
    
 
 

. Then  89 10 89 10
2 2100 100 100 100

$5 million $0
1

C
u u

 
      

. 

By the Independence axiom, C C  and thus, by (1) and transitivity,  
                                                

2 See http://en.wikipedia.org/wiki/Allais_paradox . 

http://en.wikipedia.org/wiki/Allais_paradox
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 89 10 89 10
2 2100 100 100 1002 2

$5 million $0$5 million $0
11 u uu u

  
        

                   (2) 

Hence, by the Monotonicity axiom, 89 10
2 2100 100u u  , that is,  

2
89
90

u                                                                    (3) 

Let B  be the simple lottery corresponding to the compound lottery 

2 2

90 10
100 100

$5 million $0
$0

1u u
  
    
 
 

. Then 
90 90

2 2100 100

$5 million $0
1

B
u u

 
    

. By the 

Independence axiom, B B ; thus, since A B , by transitivity A B  and 
therefore, by the Monotonicity axiom, 89 90

2100 100 u , that is. 89
2 90u  , contradicting 

(3).  Thus, if one finds the expected utility axioms compelling as axioms of 
rationality, then one cannot consistently express a preference for A over B  and also 
a preference for D over C.  

Another well-known paradox is the Ellsberg paradox. Suppose you are told that an 
urn contains many balls, which can only be Red, Blue or Yellow. You are not given 
any further information; thus it is possible that the balls are all red or that some are 
red and some are blue or that there are some balls of each color, etc. You are given a 
choice between the bets A and B, where 

A = you get $100 if you pick a red ball and nothing otherwise, 

B = you get $100 if you pick a red ball and nothing otherwise. 

Suppose that you state a strict preference for A over B: A B .  Let 

C = you get $100 if you pick a red or yellow ball and nothing otherwise, 

D = you get $100 if you pick a red or yellow ball and nothing otherwise. 

Do the axioms of expected utility constrain your ranking of C and D? Many 
subjects in experiments state the following ranking: A B  and D C ; others state 
the following ranking:  B A  and C D . All such people violate the axioms of 
expected utility. To see this, Let 1p  be the fraction of Red balls, 2p  the fraction of 
Blue balls and 3p  the fraction of Yellow balls (any of these can be zero). Then A, B, 
C and D can be viewed as the following lotteries: 
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1 2 3

$100 $0
A

p p p
 

   
 

2 1 3

$100 $0
B

p p p
 

   
 

1 3 2

$100 $0
C

p p p
 

   
 

2 3 1

$100 $0
D

p p p
 

   
 

Then there is a von Neumann-Morgenstern utility function that represents the 
individual’s ranking. We can set ($100) 1U   and (0) 0U  . Then   1( )U A p , 

  2( )U B p ,   1 3( )U C p p   and   2 3( )U D p p  . Thus, A B  if and 

only if 1 2p p , which implies that    ( ) ( )U C U D   and thus C D ; 

similarly, B A  if and only if 1 2p p , which implies that    ( ) ( )U C U D   
and thus D C . 

 

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 4.E.3 of Appendix 4.E at the end of this 
chapter. 
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Appendix 4.E: Exercises  

4.E.1 .  Exerc ise s for  Sec t ion 4 .1 :   
Money lotter ie s and  a tt itudes  to  r i sk .  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 4.1. What is the expected value of the lottery: 
24 12 48 6
1 2 1 2
6 6 6 6

 
 
  
 

? 

Exercise 4.2. Consider the following lottery:  1 2 3
1 1 1
4 2 4

o o o 
 
 

, where  

o1 = you get an invitation to have dinner at the White House 
o2 = you get (for free) a puppy of your choice 
o3 = you get $600.  What is the expected value of this lottery? 

Exercise 4.3. Consider the following money lottery 

3 3 31 2
12 12 12 12 12

$10 $15 $18 $20 $25 $30 $36
0 0

L
 

  
 

. 

(a) What is the expected value of the lottery? 

(b) Ann says that, between getting $20 for sure and playing the above 
lottery, she would prefer the $20 for sure. What is her attitude to risk? 

(c) Bob prefers more money to less and has transitive preferences. He says 
that, given the same choice as Ann, he would prefer playing the lottery. 
What is his attitude to risk? 

Exercise 4.4. Sam has a debilitating illness and has been offered two mutually 
exclusive courses of action: (1) take some well-known drugs which have been 
tested for a long time and (2) take a new experimental drug. If he chooses (1) 
then for sure his pain will be reduced to a bearable level. If he chooses (2) 
then he has a 50% chance of being completely cured and a 50% chance of no 
benefits from the drug and possibly some mildly harmful side effects. He 
chose (1). What is his attitude to risk? 
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4.E.2 .  Exerc ise s for  Sec t ion 4 .2 :   
Expec ted uti l i ty  theory .  

Exercise 4.5. Ben is offered a choice between  A = 
$4,000 $0

0.8 0.2
 
 
 

    and    B 

= 
$3,000

1
 
 
 

. He says he strictly prefers B to A. Which of the following two 

lotteries, C and D, will Ben choose if he satisfies the axioms of expected utility 
and prefers more money to less? 

C = 
$4,000 $0

0.2 0.8
 
 
 

            D = 
$3,000 $0

0.25 0.75
 
 
 

 

Exercise 4.6. There are three basic outcomes, 1 2 3,  and o o o . Ann satisfies the 
axioms of expected utility and her preferences over lotteries involving these 
three outcomes can be represented by the following von Neumann-
Morgenstern utility function: 2 1 3( ) ( ) ( ) .V o a V o b V o c     Normalize 
the utility function. 

Exercise 4.7. Consider the following lotteries: 

L1 = 15
66

$3000 $2000 $1000 $500
0 0

 
  
 

,   L2 = 
$3000 $2000 $1000 $500

0 02
3

1
3









  

L3 = 
$3000 $2000 $1000 $500

1
4

1
4

1
4

1
4









 ,   L4 = 

$3000 $2000 $1000 $500
01

2
1
2

0








  

Jennifer says that she is indifferent between lottery L1 and getting $2,000 for 
sure. She is also indifferent between lottery L2 and getting  $1,000 for sure. 
Finally, she says that between L3 and L4 she would choose L3.  Is she rational 
according to the theory of expected utility? [Assume that  she prefers more 
money to less.] 

Exercise 4.8. Consider the following basic outcomes: o1 = a Summer 
internship at the White House,  o2 = a free 1-week vacation in Europe,   
o3 = $800,  o4 = a free ticket to a concert. Rachel says that her ranking of 
these outcomes is 1 2 3 4o o o o   . She also says that (1) she is indifferent 

between 2

1
o 
 
 

 and 1 4
4 1
5 5

o o 
 
 

 and (2) she is indifferent between 3

1
o 
 
 

 and 
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1 4
1 1
2 2

o o 
 
 

. If she satisfies the axioms of expected utility theory, which of the 

two lotteries 
1 2 3 4

1 1 2 3 2
8 8 8 8

o o o o
L

 
 
  
 

  and 
1 2 3

2 1 3 1
5 5 5

o o o
L

 
 
  
 

  will she choose? 

Exercise 4.9. Consider the following lotteries: 

1

$30 $28 $24 $18 $8
2 1 1 2 4

10 10 10 10 10
L

 
 
  
 

  and  2

$30 $28 $8
1 4 5

10 10 10
L

 
 
  
 

 

(a) Which lottery would a risk neutral person choose?  

(b) Paul’s von Neumann-Morgenstern utility-of-money function is  
U(m) = ln(m), where ln denotes the natural logarithm. Which lottery 
would Paul choose? 

Exercise 4.10. There are five basic outcomes. Jane has a von Neumann-
Morgenstern ranking of the set of lotteries over the set of basic outcomes that 
can be represented by either of the utility functions U and V given below: 

1 2 3 4 5

: 44 170 10 26 98
: 32 95 5 23 59

o o o o o
U
V

 
  
 
 

. 

(a) Show how to normalize each of U and V and verify that you get the same 
normalized utility function. 

(b) Give show how to transform U into V with a positive affine 
transformation of the form x ax b  with ,a b  and a > 0. 

Exercise 4.11. Consider the following lotteries: 3

$28
1

L  
  
 

,  

4 1 1
2 2

$10 $50
L

 
  
 

.  

(a) Ann has the following von Neumann-Morgenstern utility function: 
( )AnnU m m . How does she rank the two lotteries? 

(b) Bob has the following von Neumann-Morgenstern utility function: 
4

3( ) 0.8 2
100Bob
mU m m

 
  

 
. How does he rank the two lotteries? 
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4.E.2 .  Exerc ise s for  Sec t ion 4 .3 :   
Expec ted uti l i ty  ax ioms.  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 4.12. Let  1 2 3 4, , ,O o o o o . Find the simple lottery corresponding 
to the following compound lottery  

1 2 3 4 1 3 4 2 3
23 32 1 1 1 1 1 2

5 10 10 5 5 5 5 3 3

1 1 1 1
8 4 8 2

o o o o o o o o o
o

      
      
      
 
 
 

 

Exercise 4.13. Let  1 2 3 4, , ,O o o o o . Suppose that the DM has a von 
Neumann-Morgenstern ranking of ( )OL  and states the following 

indifference: 2 4
1 31

4 4

o o
o

 
 
 
   and 3 4

2 3 2
5 5

o o
o

 
 
 
 . Find a lottery that the DM 

considers just as good as 1 2 3 4
1 2 1 1
3 9 9 3

o o o o
L

 
  
 

.  

◊◊◊◊◊◊◊◊◊◊◊◊ 

Exercise 4.14: Challenging Question.  Your friend Vladimir has decreed that 
you have to play Russian Roulette with a revolver that has one bullet (and five 
empty slots). You beg to be exempted and he asks you “what is the largest 
amount of money that you would be willing to pay to remove one bullet from 
the revolver (and thus play with an unloaded revolver)?”. Interpret this 
question as “what sum of money x makes you indifferent between (1) playing 
the roulette with the one bullet and (2) reducing your wealth by $x and playing 
the roulette with no bullets”. Your answer is: $X. Then he asks you “suppose 
that instead of one bullet there had been four bullets in the revolver (and two 
empty slots); what is the largest amount of money that you would be willing to 
pay to remove one bullet from the revolver (and thus play with 3 bullets and 3 
empty slots)?”. Your answer is: $Y.  Show that if X Y  then you do not satisfy 
the axioms of Expected Utility Theory. 

[Hint: think about what the basic outcomes are. Assume that you do not care 
about how much money is left in your estate if you (play the roulette and) die 
and that you prefer more money to less.] 
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Appendix 4.S: Solutions to exercises  

Exercise 4.1.  The expected value of the lottery  
24 12 48 6
1 2 1 2
6 6 6 6

 
 
  
 

  is  

1 2 1 224 12 48 6 18
6 6 6 6

     

Exercise 4.2.  This was a trick question! There is no expected value because the 
basic outcomes are not numbers. 

Exercise 4.3. (a) The expected value is 
3 1 3 2 3 263[ ] 10 15 18(0) 20 25 30(0) 36 $21.917

12 12 12 12 12 12
L          . 

(b) Presumably Ann prefers more money to less, so that she prefers $21.917 to 
$20. She said that she prefers $20 to the lottery L. Thus, assuming that her 
preferences are transitive, she prefers $21.917 to L. Hence she is risk averse. 

(c) The answer is: we cannot tell. First of all, since Bob prefers more money to 
less, he prefers $21.917 to $20. Bob could be risk neutral, because a risk neutral 
person would be indifferent between L and $21.917; since Bob prefers $21.917 
to $20 and has transitive preferences, if risk neutral he would prefer L. 
However, Bob could also be risk loving: a risk-loving person prefers L to 
$21.917 and we know that he prefers $21.917 to $20; thus, by transitivity, if 
risk loving he would prefer L.  But Bob could also be risk averse: he could 
consistently prefer $21.917 to L and L to $20 (for example, he could consider L 
to be just as good as $20.50). 

Exercise 4.4.  Just like Exercise 4.2, this was a trick question! Here the basic 
outcomes are not sums of money but states of health. Thus the described choice 
is not one between money lotteries and hence the definitions of risk 
aversion/neutrality/love are not applicable. 

Exercise 4.5.  Since Ben prefers B to A, he must prefer D to C. 

Proof:  Let  U  be a von Neumann-Morgenstern utility function that represents 
Ben's preferences. Let U($4,000) = a, U($3,000) = b and U($0) = c. Since Ben 
prefers more money to less, a > b > c.  Now, ( ) 0.8 ($4,000) 0.2 ($0)EU A U U   

0.8 0.2a c   and ( ) ($3,000)EU B U b  . Since Ben prefers B to A, it must be that 
0.8 0.2b a c  .  Let us now compare C and D: ( ) 0.2 0.8EU C a c   and 
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( ) 0.25 0.75EU D b c  . Since 0.8 0.2b a c  , 0.25 0.25(0.8 0.2 )b a c    
0.2 0.05a c  and thus, adding 0.75c to both sides, we get that 
0.25 0.75 0.2 0.8b c a c   , that is, EU(D) > EU(C). 

Exercise 4.6.  Define the function U as follows: 

U(x)  =  1 ( )( ) c V x cV x
a c a c a c


 

  
  . 

Then U represents the same preferences as V. Now, 

2
2

( )( ) V o cU o
a c





 = a c

a c



 = 1,   1
1

( )( ) V o c b cU o
a c a c

 
 

 
 ,   and 

3
3

( )( ) 0V o c c cU o
a c a c

 
  

 
.  Note that, since a b c  ,  0 1b c

a c


 


. 

Exercise 4.7.  Suppose that there is a von Neumann-Morgenstern utility 
function U that represents Jennifer’s preferences. We can normalize it so that  
U($3000)=1 and U($500)=0.  Since Jennifer is indifferent between L1 and 

$2000,  U($2000) = 
 5 
 6 .  Since she is indifferent between L2 and $1000,  

U($1000) = 
 2 
 3 .  Thus EU(L3) = 

 1 
 4  (1)+

 1 
 4  




 5 

 6 +
 1 
 4 




 2 

 3 + 
 1 
 4 (0) = 

 5 
 8     and   

EU(L4) = 0(1)+
 1 
 2 




 5 

 6 +
 1 
 2 




 2 

 3 +0(0) = 
 3 
 4  . Since  

 3 
 4  > 

 5 
 8 ,  Jennifer should 

prefer L4 over L3.  Hence she is not rational according to the theory of 
expected utility. 

Exercise 4.8.  Normalize her utility function so that U(z1) = 1 and U(z4) = 0. 

Then, since Rachel is indifferent between 2

1
o 
 
 

 and 1 4
4 1
5 5

o o 
 
 

, we have that 

U(z2) = 4
5

. Similarly, since she is indifferent between 3

1
o 
 
 

 and 1 4
1 1
2 2

o o 
 
 

, U(z3) 

= 1
2

. Then the expected utility of 
1 2 3 4

1 1 2 3 2
8 8 8 8

o o o o
L

 
 
  
 

  is  

1 2 8 3 1 2 411 0 0.5125
8 8 10 8 2 8 80
          while the expected utility of 
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1 2 3

2 1 3 1
5 5 5

o o o
L

 
 
  
 

  is  1 3 8 1 1 391 0.78
5 5 10 5 2 50
       .  Hence she prefers L2 to 

L1. 

Exercise 4.9.  (a) The expected value of L2 is 1 4 530 28 8 18.2
10 10 10

   . The 

expected value of L1 is 2 1 1 2 430 28 24 18 8 18
10 10 10 10 10

     . Hence a risk-

neutral person would prefer L2 to L1. 

(b) The expected utility of L2 is 
1
10

ln 30( )
2
5

ln 28( )
1
2

ln 8( ) 2.713   while the 

expected utility of  L1 is 1
5

ln 30( )
1
10

ln 28( )
1
10

ln 24( )
1
5

ln 18( )
2
5

ln 8( ) 2.741 . 

Thus Paul prefers L1 to L2. 

Exercise 4.10.  (a) To normalize U first add 10 to each value and then divide by 
180. Denote the normalization of U by U . Then  

1 2 3 4 5
54 180 0 36 108

180 180 180 180 180: 0.3 1 0 0.2 0.6
o o o o o

U
 
      

.  

To normalize V first subtract 5 to each value and then divide by 100. Denote 
the normalization of V by V . Then  

1 2 3 4 5
27 90 0 18 54
90 90 90 90 90: 0.3 1 0 0.2 0.6

o o o o o
V
 
      

. 

(b) The transformation is of the form ( ) ( )V o aU o b  . To find the values of a 
and b plug in two sets of values and solve the system of equations 

44 32
170 95

a b
a b
 

  
.  The solution is 1

2 , 10a b  . Thus 1
2( ) ( ) 10V o U o  . 

Exercise 4.11.  (a) Ann prefers 3 4 to L L . In fact,  3( ) 28 5.2915AnnU L    

while    1 1
4 2 2( ) 10 50 5.1167AnnU L    . 

(b) Bob prefers 4 3 to L L . In fact,  
4

3 3

28( ) 0.8 2(28) 44.3083
100BobU L

 
   

 
  

while   
4 4

1 1
4 2 23 3

10 50( ) 0.8 2(10) 0.8 2(50) 45.496
100 100BobU L

   
       

   
 . 
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Exercise 4.12.  1 2 3 4
3 103 19 1

40 240 48 10

o o o o 
 
 

.  For example, the probability of 2o  is 

computed as follows:     1031 1 1 1 1
8 10 4 2 3 240   .  

Exercise 4.13.  Using the stated indifference, construct the following 

compound lottery: 
3 42 4

3 433 21
5 54 4

1 2 1 1
3 9 9 3

o oo o
o o

   
   
    
 
 

, whose corresponding 

simple lottery is 1 2 3 4
1 11 121

12 45 1800
o o o o

L
 

   
 

. The, by the Independence axiom, 

L L .  

Exercise 4.14. Let W be your initial wealth. The basic outcomes are: 

1. you do not pay any money, play the roulette and live to enjoy your wealth 
W (denote this outcome by A0), 

2. you pay $Y, play the roulette and live to enjoy your remaining wealth W Y 
(call this outcome AY), 

3. you pay $X, play the roulette and live to enjoy your remaining wealth W X 
(call this outcome AX), 

4. (4a) you do not pay any money, play the roulette and die, or (4b) you pay 
$X, play the roulette and die, or (4c) you pay $Y, play the roulette and die; 
we assume that your consider these three to be the same outcome, which we 
denote by D (or you are indifferent among these three outcomes). 

Since, by hypothesis, X Y , your ranking of these outcomes must be 
0 Y XA A A D   . If you satisfy the von Neumann-Morgenstern axioms, then 

your preferences can be represented by a von Neumann-Morgenstern utility 
function U defined on the set of basic outcomes. We can normalize your utility 
function by setting 0( ) 1U A   and ( ) 0U D  . Furthermore, it must be that  

( ) ( )Y XU A U A      (*) 

The maximum amount p that you are willing to pay is that amount that makes 
you indifferent between (1) playing the roulette with the initial number of 
bullets and (2) giving up $p and playing with one less bullet. Thus   based on 

your answers   you are indifferent between the following lotteries: 0
51

6 6

D A 
 
 
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and  
1

XA 
 
 

 and you are indifferent between the following lotteries: 0
4 2
6 6

D A 
 
 

 

and 
3 3
6 6

YD A 
 
 

.  Thus 

5 51
6 6 6

0

0 1

1 5( ) ( ) ( )
6 6 XU D U A U A

  

 


 and 

4 2 2 3 3
6 6 6 6 6

0

0 1 0 ( )

4 2 3 3( ) ( ) ( ) ( )
6 6 6 6

Y

Y

U A

U D U A U D U A

    

  
 

. Hence 5( )
6XU A   and 2 4( )

3 6YU A   , 

so that ( ) ( )X YU A U A , contradicting (*). 
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Mixed strategies in  
strategic-form games 

5.1 Strategic-form games with  
     cardinal payoffs  

t the end of Chapter 3 we discussed the possibility of incorporating 
random events in extensive forms by means of chance moves. The 
introduction of chance moves gives rise to probabilistic outcomes 

and thus to the issue of how a player might rank such outcomes. Random events 
can also occur in strategic-form games, as the following example illustrates.  

Example 5.1. Consider the following, very simple, first-price auction. Two 
players simultaneously submit a bid for a painting. Only two bids are possible: 
$100 and $200. If one player bids $200 and the other $100 then the higher bidder 
wins the painting and has to pay her own bid. If the two players bid the same 
amount then a fair coin is tossed and if the outcome is Heads the winner is Player 
1, who then has to pay her own bid, while if the outcome is Tails the winner is 
Player 2 and she has to pay her own bid. Define the following basic outcomes: 

1

2

3

4

:
:
:
:

o
o
o
o

Player 1 gets the painting and pays $100
Player 2 gets the painting and pays $100
Player 2 gets the painting and pays $200
Player 1 gets the painting and pays $200

 

Then this situation can be represented by means of the game-frame in strategic 
form shown in Table 5.1. 

Chapter 

5 

A 
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bid 
$100

bid
$200

Player 2

bid $100 bid $200

Player 1
3o

4o

1 2
1 1
2 2

o o 
 
 

3 4
1 1
2 2

o o 
 
 

 
where 

1

2

3

4

:
:
:
:

o
o
o
o

Player 1 gets the painting and pays $100
Player 2 gets the painting and pays $100
Player 2 gets the painting and pays $200
Player 1 gets the painting and pays $200

 

Table 5.1 
A game-frame in strategic form representing Example 5.1 

Suppose that Player 1 ranks the basic outcomes as follows: 1 4 2 3o o o o   , that 
is, she prefers winning to not winning and, conditional on winning, she prefers 
to pay less and, conditional on not winning, she is indifferent as to how much 
Player 2 pays. Suppose also that Player 1 believes that Player 2 is going to submit 
a bid of $100 (perhaps she has been informed of this by somebody spying on 
Player 2). What should we expect Player 1 to do? Knowing her ranking of the 
basic outcomes is of no help, because we need to know how she ranks the 

probabilistic outcome 1 2
1 1
2 2

o o 
 
 

 relative to the basic outcome 4o .  The theory of 

expected utility introduced in Chapter 4 provides one possible answer to the 
question of how players should rank probabilistic outcomes. With the aid of 
expected utility theory we can now generalize the definition strategic-form game. 
First we generalize the notion of game-frame in strategic form (Definition 1.1, 
Chapter 1) by allowing probabilistic outcomes, or lotteries, to be associated with 
strategy profiles.  
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Definition 5.2.  A game-frame in strategic form is a quadruple  , , ,i i I
I S O f


 

where: 

●   I = {1,…,n} is a set of players (n  2). 

●  For every Player i I , iS  is the set of strategies (or choices) of Player i. As 
before, we denote by 1 ... nS S S    the set of strategy profiles. 

●  O is a set of basic outcomes. We denote by ( )OL  the set of lotteries (or 
probability distributions) over O.  

●  : ( )f S O L  is a function that associates with every strategy profile s a lottery 
over the set of basic outcomes O. 

If,  for every s S , ( )f s  is a degenerate lottery (that is, a basic outcome) then 
we are back to Definition 1.1 (Chapter 1). 

From a game-frame one obtains a game by adding, for every player i I  , a von 
Neumann-Morgenstern ranking i  of the elements of ( )OL . It is more 
convenient to represent such a ranking by means of a von Neumann-
Morgenstern utility function :iU O  . We denote by [ ( ( ))]iU f s  the 
expected utility of lottery ( ) ( )f s OL  for Player i.  The following definition 
mirrors Definition 1.2 of Chapter 1. 

Definition 5.3.  An game in strategic form with cardinal payoffs is a quintuple 
   , , , ,i ii I i I

I S O f
 

  where: 

●    , , ,i i I
I S O f


 is a game-frame in strategic form (Definition 5.1) and 

●   for every Player i I ,  i  is a von Neumann-Morgenstern ranking of the set 
of lotteries ( )OL . 

If we represent each ranking  i  by means of a von Neumann-Morgenstern 
utility function iU   and define :i S   by ( ) [ ( ( ))]i is U f s   , then the 

triple    1 1, ,..., , ,...,n nI S S    is called a reduced-form game in strategic form 

with cardinal payoffs (‘reduced-form’ because some information is lost, namely 
the specification of the possible outcomes). The function :i S   is called the 
von Neumann-Morgenstern payoff  function of Player i. 

For example, consider the first-price auction of Example 5.1 whose game-frame 
in strategic form was shown in Table 5.1.  Let 1 2 3 4{ , , , }O o o o o  and suppose 
that Player 1 has a von Neumann-Morgenstern ranking of ( )OL  that is 
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represented by the following von Neumann-Morgenstern utility function 1U  
(note that the implied ordinal ranking of the basic outcomes is indeed 

1 4 2 3o o o o   ): 

1 2 3 4

1 : 4 1 1 2
o o o

U
ooutcome :

  

Then, for Player 1, the expected utility of lottery 1 2
1 1
2 2

o o 
 
 

 is 2.5 and the 

expected utility of lottery 3 4
1 1
2 2

o o 
 
 

 is 1.5. Suppose also that Player 2 has 

(somewhat spiteful) preferences represented by the following von Neumann-
Morgenstern utility function 2U   

1 2 3 4

2 : 1 6 4 5
o o o

U
ooutcome :

 

Hence, for Player 2, the expected utility of lottery 1 2
1 1
2 2

o o 
 
 

 is 3.5 and the 

expected utility of lottery 3 4
1 1
2 2

o o 
 
 

 is 4.5. Then we can represent the game in 

reduced form as shown in Table 5.2. 

$100 2.5 3.5 1 4

$200 2 5 1.5 4.5

Player 2

$100 $200

Player 1

 

Table 5.2 
A cardinal game in reduced form based on the game-frame of Table 5.1 

The game of Table 5.2 does not have any Nash equilibria. However, we will 
show in the next section that if we extend the notion of strategy, by allowing 
players to choose randomly, then that game does have a Nash equilibrium. 

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 5.E.1 of Appendix 5.E at the end of this 
chapter. 
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5.2 Mixed strategies  

Definition 5.4.  Fix a game in strategic form with cardinal payoffs and recall that 
iS  denotes the set of strategies of Player i. From now on, we shall call iS  the set 

of pure strategies of  Player i. Assume that iS  is a finite set (for every i I ). A 
mixed strategy of Player i is a probability distribution over the set of pure 
strategies iS . The set of mixed strategies of Player i is denoted by i .  

Remark 5.5.  Since among the mixed strategies of Player i there are the 
degenerate strategies that assign probability 1 to a pure strategy, the set of mixed 
strategies includes the set of pure strategies (viewed as degenerate probability 
distributions).  

For example, one possible mixed strategy for Player 1 in the game of Table 5.2 is 

1 2
3 3

$100 $200 
 
 

. The traditional interpretation of a mixed strategy is in terms of 

objective randomization: the player, instead of choosing a pure strategy herself, 
delegates the choice to a random device.3 For example, Player 1 choosing the 

mixed strategy 
1 2
3 3

$100 $200 
 
 

 is interpreted as a decision to let, say, a die 

determine whether she will bid $100 or $200: Player 1 will roll a die and if the 
outcome is 1 or 2 then she will bid $100, while if the outcome is 3, 4, 5 or 6 then 
she will bid $200. Suppose that Player 1 chooses this mixed strategy and Player 2 

chooses the mixed strategy 
3 2
5 5

$100 $200 
 
 

. Since the players rely on 

independent random devices, this pair of mixed strategies gives rise to the 
following probabilistic outcome: 

1 2 3 4
3 41 1 1 1

2 2 2 2

3 3 3 61 1 2 2 2 2 2 4
3 5 15 3 5 15 3 5 15 3 5 15

($100,$100) ($100,$200) ($200,$100) ($200,$200)
o o o o

o o

 
 

    
             

strategy profile

outcome

probability

  

                                                
3 An alternative interpretation of mixed strategies in terms of beliefs will be discussed in a later 

chapter. 



GAME THEORY – Giacomo Bonanno 

177 

 

If the two players have von Neumann-Morgenstern preferences, then - by the 
Compound Lottery Axiom (Chapter 4) – they will view the above as the 
following lottery: 

1 2 3 4
3 3 8 16

30 30 30 30

o o o o 
 
 

outcome
probability

, 

which, using the von Neumann-Morgenstern utility functions postulated above, 
namely 

1 2 3 4

1

2

: 4 1
: 6

1
4

2
1 5U

U
o o o ooutcome :

 , 

has an expected utility of 3 3 8 16 55
30 30 30 30 304 1 1 2     for Player 1 and 

3 3 8 16 133
30 30 30 30 301 6 4 5     for Player 2.  Thus we can define the payoffs of the 
two players from this mixed strategy profile by 

1 31 2 2
3 3 5 5

$100 $200 $100 $200 55,
30

    
     

    
 and 2 31 2 2

3 3 5 5

$100 $200 $100 $200 133,
30

    
     

    
. 

Note that we can calculate these payoffs in a different   but equivalent   way by 
using the reduced-form game of Table 5.2, as follows.  

3 3 3 61 1 2 2 2 2 2 4
3 5 15 3 5 15 3 5 15 3 5 15

2
($100,$100) ($100,$200) ($200,$100) ($200,$200)

( , ) ( , ) ( ,3.5 4 5 4.5 1 2 .5, )5) (1.
 
 
 
     

strategy profile
expected utilities

probability
 

so that the payoff of Player 1 is 3 6 552 4
15 15 15 15 30(2.5) (1) (2) (1.5)     and the 

expected payoff of Player 2 is 3 6 1332 4
15 15 15 15 30(3.5) (4) (5) (4.5)    .  

The above example motivates the following definition. First some notation. Let 
i i   be a mixed strategy of player i; then, for every pure strategy i is S  of 

Player i, we denote by ( )i is  the probability that i  assigns to is .4 Let   be the 
set of mixed-strategy profiles, that is, 1 ... n     . Fix a mixed-strategy profile 

1( ,..., )n     and a pure-strategy profile 1( ,..., )ns s s S  . Then we 

                                                

4 In the above example, if 
1 1 2

3 3

$100 $200


 
  
 

 then 1
2($200)
3

  . 
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denote by ( )s  the product of the probabilities ( )i is , that is, 

1

( ) ( )
n

i i
i

s s 


 .5 

Definition 5.6.  Fix a reduced-form game in strategic form with cardinal payoffs 
   1 1, , ..., , ,...,n nG I S S    (Definition 5.3), where, for every Player i I , 

the set of pure strategies iS  is finite. Then the mixed-strategy extension of G is the 

reduced-form game in strategic form    1 1, , ..., , , ...,n nI      where, for 

every Player i I , 

●  i  is the set of mixed strategies of Player i in G (that is, i  is the set of 
probability distributions over iS ).  

●   The payoff function :i    is defined by ( ) ( ) ( )i i
s S

s s  


  .6 

Definition 5.7.  Fix a reduced-form game in strategic form with cardinal payoffs 
   1 1, , ..., , ,...,n nG I S S    (Definition 5.3), where, for every i I , the set of 

pure strategies iS  is finite. A Nash equilibrium in mixed-strategies of G is a Nash 
equilibrium of the mixed-strategy extension of G. 

For example, consider the reduced-form game of Table 5.2, which is reproduced 
in Table 5.3 below with all the payoffs multiplied by 10 (this corresponds to 
representing the preferences of the players with different utility functions that 
are a obtained from the ones used above by multiplying them by 10). Is 

1 2( , )    with 1 1 2
3 3

$100 $200


 
  
 

 and 2 3 2
5 5

$100 $200


 
  
 

 a mixed-strategy Nash 

equilibrium of this game? 

                                                

5 In the above example, if 1 2( , )    with 1 1 2
3 3

$100 $200


 
  
 

 and 2 3 2
5 5

$100 $200


 
  
 

then 

2
1 3($200)  , 3

2 5($100)   and thus   3 62
3 5 15($200,$100)   . 

6 In the above example,  if  1 1 2
3 3

$100 $200


 
  
 

 and 2 3 2
5 5

$100 $200


 
  
   

then 

3 6 552 4
1 1 2 15 15 15 15 30( , ) (2.5) (1) (2) (1.5)       . 
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$100 25 35 10 40

$200 20 50 15 45

Player 2

$100 $200

Player 1

 

Table 5.3 
The game of Table 5.2 with the payoffs multiplied by 10 

The payoff of Player 1 is 3 6 552 4
1 1 2 15 15 15 15 3( , ) (25) (10) (20) (15)        

18.33 . If Player 1 switched from 1 1 2
3 3

$100 $200


 
  
 

 to 1

$100 $200
ˆ

1 0


 
  
 

, that is, to 

the pure strategy $100, then Player 1’s payoff would be larger: 
3 2

1 1 2 5 5ˆ( , ) (25) (10) 19     . Thus 1 2( , )   is not a Nash equilibrium.  

John Nash, who shared the 1994 Nobel prize in economics with John Harsanyi 
and Reinhard Selten, proved the following theorem. 

Theorem 5.8 [Nash, 1951].  Every reduced-form game in strategic form with 
cardinal payoffs    1 1, ,..., , ,...,n nI S S    (Definition 5.3), where, for every 

Player i I , the set of pure strategies iS  is finite, has at least one Nash 
equilibrium in mixed-strategies. 

We will not give the proof of this theorem, since it is rather complex (it requires 
the use of fixed-point theorems).  

Going back to the game of Table 5.3, let us verify that, on the other hand, 

 * * *
1 2,    with * *

1 2 1 1
2 2

$100 $200
 

 
   

 
 is a Nash equilibrium in mixed 

strategies. The payoff of Player 1 is 
* * 701 1 1 1

1 1 2 4 4 4 4 4( , ) (25) (10) (20) (15) 17.5        . 

Could Player 1 obtain a larger payoff with some other mixed strategy 

1

$100 $200

1p p


 
   

 for some 1
2p  ? Fix an arbitrary [0,1]p  and let us compute 
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Player 1’s payoff if she uses the strategy 1

$100 $200

1p p


 
   

 against Player 2’s mixed 

strategy *
2 1 1

2 2

$100 $200


 
  
 

: 

   

1 1 1 1
1 2 2 2 21 1

2 2

351 1 1 1
2 2 2 2 2

$100 $200$100 $200
, (25) (10) (1 )(20) (1 )(15)

1

25 10 (1 ) 20 15 17.5

p p p p
p p

p p

   
              

     

 

Thus if  Player 2 uses the mixed strategy *
2 1 1

2 2

$100 $200


 
  
 

, then Player 1 gets the 

same payoff not matter what mixed strategy she employs. It follows that any mixed 

strategy of Player 1 is a best reply to *
2 1 1

2 2

$100 $200


 
  
 

; in particular, 

*
1 1 1

2 2

$100 $200


 
  
 

 is a best reply to *
2 1 1

2 2

$100 $200


 
  
 

. It is easy to verify that the 

same applies to Player 2: any mixed strategy of Player 2 is a best reply to Player 

1’s mixed strategy *
1 1 1

2 2

$100 $200


 
  
 

. Hence  * * *
1 2,    is a Nash equilibrium 

in mixed strategies.  

We will see in the next section that this “indifference” phenomenon is true in 
general. 

Remark 5.9.  Since, among the mixed strategies of Player i there are the 
degenerate strategies that assign probability 1 to a pure strategy (Remark 5.5), 
every Nash equilibrium in pure strategies is also a Nash equilibrium in mixed 
strategies. That is, the set of mixed-strategy Nash equilibria includes the set of 
pure-strategy Nash equilibria. 

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 5.E.2 of Appendix 5.E at the end of this 
chapter. 
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5.3 Computing the mixed-strategy  
Nash equilibria  

How can we find the mixed-strategy equilibria of a given game? The first 
important observation is that if a pure strategy is strictly dominated by another 
pure strategy then it cannot be played with positive probability at a Nash 
equilibrium. Thus, for the purpose of finding Nash equilibria, one can delete all 
the strictly dominated strategies and focus on the resulting game. But then the 
same reasoning applies to the resulting game and one can delete all the strictly 
dominated strategies in that game, and so on. Thus we have the following 
observation. 

Remark 5.10.  In order to find the mixed-strategy Nash equilibria of a game one 
can first apply the iterated deletion of strictly dominated strategies (IDSDS: 
Section 1.5.1, Chapter 1) and then find the Nash equilibria of the resulting game 
(which can then be viewed as Nash equilibria of the original game where all the 
pure strategies that were deleted are assigned zero probability). Note, however, 
that – as we will see in Section 5.4 - one can perform more deletions than allowed 
by the IDSDS procedure. 

For example, consider the game of Table 5.4. 

Player 2

A 2 4 3 3 6 0
B 4 0 2 4 4 2
C 3 3 4 2 3 1
D 3 6 1 1 2 6

Player 
1

E F G

 

Table 5.4 
A reduced-form game with cardinal payoffs 

In this game there are no pure-strategy Nash equilibria; however, by Nash’s 
theorem there will be at least one mixed-strategy equilibrium. To find it we can 
first note that, for Player 1, D is strictly dominated by B; deleting D we get a 
smaller game where, for Player 2, G is strictly dominated by F. Deleting G we are 
left with a smaller game where A is strictly dominated by C. Deleting A we are 
left with the game shown in Table 5.5. 
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B 4 0 2 4
C 3 3 4 2

Player 
1

E F
Player  2

 

Table 5.5 
The result of applying the IDSDS procedure to the game of Table 5.4. 

We will see below that the game of Table 5.5 has a unique Nash equilibrium in 

mixed strategies given by 
1 4 2 1
5 5 3 3

,
B C E F    

    
    

. Thus the game of Table 5.4 has a 

unique  Nash equilibrium in mixed strategies given by 

1 4 2 1
5 5 3 3

,
0 0 0
A B C D E F G    

    
    

. 

Once we have simplified the game as suggested in Remark 5.10, in order to find 
the mixed-strategy Nash equilibria we can use of the following result. First we 
recall some notation that was introduced in Chapter 1. Given a mixed-strategy 
profile 1( ,..., )n    and a Player i, we denote by 1 1 1( ,..., , ,..., )i i i n        

the profile of strategies of the players other than i and use  ,i i    as an 

alternative notation for  ; furthermore,  ,i i    denotes the result of replacing 

 with  in i i   , that is,   ,i i   = 1 1 1( ,..., , , ,..., )i i i n      . 

Theorem 5.11.  Fix a reduced-form game in strategic form with cardinal payoffs. 
Suppose that * * *

1( ,..., )n    is a Nash equilibrium in mixed strategies. Fix an 

arbitrary Player i. Let * *( )i i     be the payoff of Player i at this Nash 
equilibrium and let ,ij ik is s S  be two pure strategies of Player i  such that 

*( ) 0i ijs   and *( ) 0i iks  , that is, ijs  and iks  are two pure strategies to which 

the mixed strategy *
i  of Player i assigns positive probability. Then 

   * * *( , ) ( , )i ij i i ik i is s     . In other words, when the other players use 

the mixed-strategy profile *
i  , Player i gets the same payoff no matter whether 

she plays the mixed strategy *
i  or the pure strategy ijs  or the pure strategy iks . 

The details of the proof of Theorem 5.11 will be omitted, but the idea is simple: 
if ijs  and iks  are two pure strategies to which the mixed strategy *

i  of Player i 
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assigns positive probability and    * *( , ) ( , )i ij i i ik is s     , then Player i can 

increase her payoff from * *( )i i     to a larger number by reducing the 

probability of iks  to zero and adding that probability to *( )i ijs , that is, by 

switching from *
i  to the mixed strategy ˆi  obtained as follows: ˆ ( ) 0i iks  , 

* *ˆ ( ) ( ) ( )i ij i ij i iks s s     and, for every other i is S , *ˆ ( ) ( )i i i is s  . But this 

would contradict the hypothesis that * * *
1( ,..., )n    is a Nash equilibrium. 

Let us now go back to the game of Table 5.5, reproduced below, and see how we 
can use Theorem 5.11 to find the Nash equilibrium in mixed strategies. 

B 4 0 2 4
C 3 3 4 2

Player 
1

E F
Player  2

 

We want to find values of p and q, strictly between 0 and 1, such that 

,
1 1

B C E F
p p q q

    
         

 is a Nash equilibrium. By Theorem 5.11, if Player 1 

played the pure strategy B against 1
E F
q q

 
  

  she should get the same payoff as if 

she were to play the pure strategy C. The former would give her a payoff of 
4 2(1 )q q   and the latter a payoff of 3 4(1 )q q  . Thus we need q to be such 
that 4 2(1 )q q  = 3 4(1 )q q  , that is, 2

3q  . When 2
3q  , both B and C give 

Player 1 a payoff of 10
3  and thus any mixture of B and C would also give the same 

payoff of 10
3 . In other words, Player 1 is indifferent among all her mixed 

strategies and thus any mixed strategy is a best response to 2 1
3 3

E F 
 
 

. Similar 

reasoning for Player 2 reveals that, by Theorem 5.11, we need p to be such that 

0 3(1 )p p  = 4 2(1 )p p  , that is, 1
5p  . Against 1 4

5 5

B C 
 
   

any mixed strategy 

of Player 2 gives him the same payoff of 12
5 ; thus any mixed strategy of Player 2 

is a best reply to 1 4
5 5

B C 
 
 

. It follows that 
1 4 2 1
5 5 3 3

,
B C E F    

    
    

 is a Nash 

equilibrium.  
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Remark 5.12.  It follows from Theorem 5.11, and was illustrated in the above 
example, that at a mixed strategy Nash equilibrium where Player i plays two or 
more pure strategies with positive probability, Player i does not have an 
incentive to use that mixed strategy: she would get the same payoff if, instead of 
randomizing, she played with probability 1 one of the pure strategies in the 
support of her mixed strategy (that is, if she increased the probability of any pure 
strategy from a positive number to 1).7 The only purpose of randomizing is to make 
the other player indifferent among two or more of his own pure strategies. 

Theorem 5.11 provides a necessary, but not sufficient, condition for a mixed-
strategy profile to be a Nash equilibrium. To see that the condition is not 
sufficient, consider the game of Table 5.6 and the mixed-strategy profile 

1 1 1 1
2 2 2 2

,
0

A B C D E    
    
    

. 

A 3 0 0 2
Player 1 B 0 2 3 0

C 2 0 2 1

D E

Player 2

 

Table 5.6 
A reduced-form game with cardinal payoffs 

Given that Player 2 plays the mixed strategy 1 1
2 2

D E 
 
 

, Player 1 is indifferent 

between the two pure strategies that are in the support of her own mixed 
strategy, namely A and B: the payoff from playing A for sure is 1.5 and so is 
the payoff from playing B for sure (and 1.5 is also the payoff associated with 
the mixed strategy under consideration). However, the profile 

1 1 1 1
2 2 2 2

,
0

A B C D E    
    
    

 is not a Nash equilibrium, because Player 1 could get a 

payoff of 2 by switching to the pure strategy C.  We know from Theorem 
5.8 that this game does have a mixed-strategy Nash equilibrium. How can we 
find it?  

                                                
7 The support of a mixed strategy is the set of pure strategies that are assigned positive 

probability by that mixed strategy. 
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Let us calculate the best response of Player 1 to every possible mixed strategy 

1
D E
q q

 
  

 of Player 2 (with [0,1]q ). For Player 1 the payoff from playing A 

against 
1

D E
q q

 
  

 is 3q , the payoff from playing B is 3 3q  and the payoff 

from playing C is constant and equal to 2. These functions are shown in 
Figure 5.7.   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

A q( )

B q( )

C q( )

1

3

2

3

q

 

 
Figure 5.7 

Player 1’s payoff from each pure strategy against an arbitrary  
mixed strategy of Player 2. 

The red upward-sloping line plots the function ( ) 3A q q , the blue 
downward-sloping  line plots the function ( ) 3 3B q q   and the horizontal 
green dotted line the function ( ) 2C q  . The blue and green lines intersect 
when 1

3q   and the red and green lines intersect when 2
3q  . The maximum 

payoff is given by the blue line up to 1
3q  , then by the green line up to 

2
3q   and then by the red line. Thus the best reply function of Player 1 is as 

follows: 



GAME THEORY – Giacomo Bonanno 

186 

 

1
3

1
3

1 2
3 3

2
3

2
3

if 0

 for any [0,1] if 
1

if Player1's best reply =

 for any [0,1] if 
1

if 1

B q
B C

p q
p p

C q
A C

p q
p p

A q

 

      

 
      


 

 

Hence if there is a mixed-strategy equilibrium it is either of the form 

1 2
3 3

,
0 1

D EA B C
p p

   
       

 or of the form 
2 1
3 3

,
0 1

D EA B C
p p

   
       

. The 

second cannot be a Nash equilibrium for any p, because when Player 1 plays 
B with probability 0, E strictly dominates D for Player 2 and thus Player 2’s 

mixed strategy 2 1
3 3

D E 
 
 

 is not a best reply (E is the unique best reply). In the 

first case, by Theorem 5.11, we need p to be such that Player 2 is indifferent 
between D and E: we need 2 1p p  , that is, 1

3p  . Thus the Nash 

equilibrium is 
1 2 1 2
3 3 3 3

,
0
A B C D E    

    
    

.  

In games where the number of strategies or the number of players are larger than 
in the examples we have considered, finding the Nash equilibria involves 
lengthier calculations.  However, computer programs have been developed that 
can be used to compute all the Nash equilibria of a finite game in a “small” 
amount of time. 

 

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 5.E.3 of Appendix 5.E at the end of this 
chapter. 
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5.4 Strict dominance and rationalizability  

We saw in the previous section that a pure strategy that is strictly dominated by 
another pure strategy cannot be played with positive probability at a Nash 
equilibrium. Thus, when looking for a Nash equilibrium, one can first simplify 
the game by applying the IDSDS procedure (Section 1.5.1, Chapter 1). When 
payoffs are cardinal (von Neumann-Morgenstern payoffs) it turns out that, in a 
two-person game, a pure strategy cannot be a best response to any mixed-strategy 
of the opponent not only when it is strictly dominated by another pure strategy 
but also when it is strictly dominated by a mixed strategy.  To see this, consider 
the game of Figure 5.8 below.  

A 0 1 4 0
Player 1 B 1 2 1 4

C 2 0 0 1

D E

Player 2

 

Table 5.8 
A strategic-form game with cardinal payoffs. 

The pure strategy B of Player 1 is not strictly dominated by another pure 
strategy and yet it cannot be a best reply to any mixed strategy of Player 2. Fix 

an arbitrary mixed strategy 
1

D E
q q

 
  

 of Player 2 with [0,1]q  . If Player 1 

plays B against it, she gets a payoff of 1; if, instead, she plays the mixed strategy  

1 2
3 30
A B C 

 
 

 then her payoff is 1 2 44(1 ) 2 1
3 3 3

q q    .   

Theorem 5.13 [Pearce, 1984].  Fix a two-player reduced-form game in strategic 
form with cardinal payoffs, an arbitrary Player i and a pure strategy is  of Player 
i. Then there is no mixed-strategy  of the opponent to which is  is a best 
response, if and only if is  is strictly dominated by a mixed strategy i  of Player i 
(that is, there is a i i   such that ( , ) ( , )i i j i i js     , for every j j  ). 

Note that, since the set of mixed strategies includes the set of pure strategies, 
strict dominance by a mixed strategy includes as a sub-case strict dominance by a 
pure strategy.  

For general n-player games with cardinal payoffs we can refine the IDSDS 
procedure (Section 1.5.1, Chapter 1) as follows. 
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Definition 5.14 [Cardinal IDSDS]. The cardinal Iterated Deletion of Strictly 
Dominated Strategies is the following algorithm. Given a finite n-player (n  2) 
strategic-form game with cardinal payoffs G, let G

1
 be the game obtained by 

removing from G, for every Player i, those pure strategies of Player i (if any) that 
are strictly dominated in G by some mixed strategy of Player i; let G

2
 be the game 

obtained by removing from G
1
, for every Player i, those pure strategies of Player i 

(if any) that are strictly dominated in G
1  

by some mixed strategy of Player i, and so 
on. Let G  be the output of this procedure. Since the initial game G is finite, G  
will be obtained in a finite number of steps. For every Player i, the pure strategies of 
Player i  in G are called her rationalizable strategies. 

Figure 5.9 illustrates this procedure as applied to the game in Panel (i).  

A 3 4 2 1 1 2
B 0 0 1 3 4 1
C 1 4 1 4 2 6

F

Player
1

Player  2
D E

 

(i) The game G
0
 = G 

A 3 4 2 1
B 0 0 1 3

Player 
1

Player 2
D E

 

(iii) The game G
2
 after Step 2 

 

 

A 3 4 2 1 1 2
B 0 0 1 3 4 1

Player 2

Player 
1

D E F

 

(ii) The game G
1
  after Step 1 

Player 1 A 3 4 2 1

Player 2
D E

 

 

Player 1 A 3 4
D

Player 2

 

(iv) The game G
3
 at the top.  

The game 4G = G at the bottom 

 

Figure 5.9 
Application of the cardinal IDSDS procedure. 
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In the first step, the pure strategy C of Player 1 is deleted, because it is strictly 

dominated by the mixed strategy 1 1
2 2

A B 
 
 

  thus yielding game G
1
 shown in Panel 

(ii).  In the second step, the pure strategy F of Player 2 is deleted, because it is strictly 

dominated by the mixed strategy 1 1
2 2

D E 
 
 

  thus yielding game G
2
 shown in Panel 

(iii).  In the third step, B is deleted because it is strictly dominated by A thus yielding 
game G

3
 shown in the top part of Panel (iv). In the final step, E is deleted because it 

is strictly dominated by D so that the final output is the strategy profile (A,D). 
Hence the only rationalizable strategies are A for Player 1 and D for Player 2. 

Note that, in the game of Figure 5.9 (i), since the only rationalizable strategy profile 
is (A,D), it follows that (A,D) is also the unique Nash equilibrium. 

As noted in Chapter 1 (Section 1.5.1) the significance of the output of the IDSDS 
procedure is as follows. Consider game G in Panel (i) of Figure 5.9. Since, for Player 
1, C is strictly dominated, if Player 1 is rational she will not play C. Thus, if Player 
2 believes that Player 1 is rational then he believes that Player 1 will not play C, that 
is, he restricts attention to game 1G ; since, in 1G , F is strictly dominated for Player 
2, if Player 2 is rational he will not play F. It follows that if Player 1 believes that 
Player 2 is rational and that Player 2 believes that Player 1 is rational, then Player 1 
restricts attention to game 2G  where rationality requires that Player 1 not play B, 
etc.  

Remark 5.15. Define a player to be rational if her chosen pure strategy is a best 
reply to her belief about what the opponent will do. In a two-player game a belief 
of Player 1 about what Player 2 will do can be expressed as a probability 
distribution over the set of pure strategies of Player 2; but this is the same object as a 
mixed strategy of Player 2. Thus, by Theorem 5.13, a rational Player 1 cannot 
choose a pure strategy that is strictly dominated by one of her own mixed 
strategies. The iterated reasoning outlined above can be captured by means of the 
notion of common belief of rationality. Indeed, it will be shown in a later chapter 
that if the players are rational and there is common belief of rationality then only 
rationalizable strategy profiles can be played.  In a game with more than two 
players a belief of Player i about her opponents is no longer the same object as a 
mixed-strategy profile of the opponents, because a belief can allow for correlation in 
the behavior of the opponents, while the notion of  mixed-strategy profile rules out 
such correlation (see Exercise 5.14).  
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Remark 5.16. The iterated reasoning outlined above requires that the von Neumann-
Morgenstern preferences of both players be common knowledge between them. For 
example, if Player 2 believes that Player 1 is rational but only knows her ordinal 
ranking of the outcomes, then Player 2 will not be able to deduce that it is irrational 
for Player 1 to play C and thus it cannot be irrational for him to play F. Expecting a 
player to know the von Neumann-Morgenstern preferences of another player is 
often very unrealistic! Thus one should be aware of the implicit assumptions that 
one makes (and one should question the assumptions made by others in their 
analyses).  

 

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 5.E.4 of Appendix 5.E at the end of this 
chapter. 
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Appendix 5.E: Exercises  

5.E.1 .  Exerc ise s for  Sec t ion 5 .1 :  Stra tegic - form  
         games  with cardina l  payoff s   
The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 5.1. Consider the following game-frame in strategic form, where 
1 2 3 4, ,  and o o o o  are basic outcomes: 

a

b

Player 2

c d

Player 1
1o 2o

3o 4o
 

Both players satisfy the axioms of expected utility. The best outcome for 
Player 1 is 3o ; she is indifferent between outcomes 1 4 and o o  and ranks them 
both as worst; she considers 2o  to be worse than 3o  and better than 4o ; she is 

indifferent between 2o  for sure and the lottery 3 1

0.25 0.75
o o 

 
 

. The best outcome 

for Player 2 is 4o , which he considers just as good as 1o ; he considers 2o  to be 
worse than 1o  and better than 3o ; he is indifferent between 2o  for sure and the 

lottery 1 3

0.4 0.6
o o 

 
 

. 

Find von Neumann-Morgenstern utility functions for the two players and 
write the corresponding reduced-form game. 
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Exercise 5.2. Consider the following game-frame, where 1 4,...,o o  are basic 
outcomes. 

A

B

Player 2

C D

Player 1

3o

1 4
31

4 4

o o 
 
 

3 4
32

5 5

o o 
 
 

1 2
1 1
2 2

o o 
 
 

 

Both players have von Neumann-Morgenstern rankings of the basic 
outcomes. The ranking of Player 1 can be represented by the following von 

Neumann-Morgenstern utility function  1 2 3 4

1

outcome:
: 12 10 6 16

o o o o
U

  and the 

ranking of Player 2 can be represented by the following von Neumann-

Morgenstern utility function  1 2 3

2

4o
: 6 14 8 10

utcome: o o o
U

o
.   Write the 

corresponding reduced-form game. 

 

5.E.2 .  Exerc ise s for  Sec t ion 5 .2 :  Mixed strategie s .  
The answers to the following exercises are in Appendix S at the end of this 
chapter. 

Exercise 5.3. Consider the following reduced-form game with cardinal payoffs: 

Player 2

A 0 1 6 3
Player 1 B 4 4 2 0

C 3 0 4 2

D E

 

(a) Calculate the player’s payoffs from the mixed strategy 
31 1 1

4 4 2 20
A B C D E   

   
   

. 
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(b) Is 
31 1 1

4 4 2 20
A B C D E   

   
   

 a Nash equilibrium? 

Exercise 5.4. Consider the following reduced-form game with cardinal payoffs: 

Player 2

A 2 3 8 5
B 6 6 4 2

D E

Player 1

 

Prove that 
2 1 1 1
3 3 2 2

A B D E    
    

   
 is a Nash equilibrium. 

5.E.3 .  Exerc ise s for  Sec t ion 5 .3 :  Computing the 
mixed -s tra tegy Nash equi l ibr ia .  

The answers to the following exercises are in Appendix S at the end of this 
chapter. 

Exercise 5.5. Find all the mixed-strategy Nash equilibria of the game of 
Exercise 5.1. Calculate the payoffs of both players at every Nash equilibrium 
that you find. 

Exercise 5.6. Find all the mixed-strategy Nash equilibria  of the game of 
Exercise 5.2. Calculate the payoffs of both players at every Nash equilibrium 
that you find. 

Exercise 5.7. Find all the mixed-strategy Nash equilibria of the game of 
Exercise 5.4. Calculate the payoffs of both players at every Nash equilibrium 
that you find. 

Exercise 5.8. Find the mixed-strategy Nash equilibria of the following game: 

 

 

 

Player  1 

 Player   2 

 L R  

T 1 , 4 4 , 3  

C 2 , 0 1 , 2  

B 1 , 5 0 , 6  
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Exercise 5.9. Consider the following two-player game, where z1, z2, …, z6 are 
basic outcomes. 

Player 2

d e

a z1 z2

Player 1 b z3 z4

c z5 z6
 

Player 1 ranks the outcomes as indicated by A below and Player 2 ranks the 
outcomes as indicated by B below (if outcome x is above outcome y then x is 
strictly preferred to y, and if x and y are written next to each other then the 
player is indifferent between the two). 

1

6

4 2

5

3

,

z
z

A z z
z
z

 
 
 
 
 
 
 
 

               

3 4

2

1 5

6

,

,

z z
z

B
z z

z

 
 
 
 
 
 

 

(a) One player has a strategy that is strictly dominated. Identify the player and 
the strategy. 

[Hint: in order to answer the following questions, you can  make your life a lot 
easier if you simplify the game on the basis of your answer to part (a).]   

Player 1 satisfies the von Neumann-Morgenstern axioms and is indifferent 

between z6 and the lottery 1 5
4 1
5 5

z z 
 
 

 and is indifferent between z2 and the 

lottery 6 5
1 1
2 2

z z 
 
 

.  

(b) Suppose that Player 1 believes that Player 2 is going to play d with 
probability 1

2  and e with probability 1
2 . Which strategy should he play? 

Player 2 satisfies the von Neumann-Morgenstern axioms and is indifferent 

between z5 and the lottery 2 6
31

4 4

z z 
 
 

.  

(c) Suppose that Player 2 believes that Player 1 is going to play a with 
probability 1

4  and c with probability 3
4 . Which strategy should she play? 
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(d) Find all the (pure- and mixed-strategy) Nash equilibria of this game. 

Exercise 5.10. Consider the following game (where the payoffs are von 
Neumann-Morgenstern payoffs): 

A x y 3 0

B 6 2 0 4

Player 2

C D

Player 1

 
(a) Suppose that x = 2 and y = 2. Find the mixed-strategy Nash equilibrium 

and calculate the payoffs of both players at the Nash equilibrium.  

(b) For what values of x and y is 
31 4 1

5 5 4 4

,
A B C D    

    
   

 a Nash equilibrium? 

Exercise 5.11. Find the mixed-strategy Nash equilibria of the game of 
Exercise 5.3. Calculate the payoffs of both players at every Nash equilibrium 
that you find. 

5.E.4 .  Exerc ise s for  Sec t ion 5 .4 :  
Str ict  dominance  and ra t ional izabi l i ty  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 5.12. In the following game, for each player, find all the 
rationalizable pure strategies. 

  Player 2  
  L M R 

Player A  3  ,  5 2  ,  0   ,  2 
1 B 5  ,  2 1  ,  2 2  ,  1 
 C 9  ,  1  ,  5   ,  2 

Exercise 5.13. Is the following statement true or false? (Either prove that it is 
true or give a counterexample.) 

“Consider a two-player strategic-form game with cardinal 
payoffs. Let A and B be two pure strategies of Player 1. 
Suppose that both A and B are rationalizable. Then any mixed 
strategy that attaches positive probability to both A and B and 
zero to every other strategy is a best reply to some mixed 
strategy of Player 2.” 
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Exercise 5.14. Consider the following three-player game, where only the 
payoffs of Player 1 are shown. 

E F E F
A 3 0 A 0 0
B 0 3 B 3 0
C 0 0 C 0 3
D 2 0 D 0 2

Player 2

Player 3: H

Player
1

Player  
1

Player 2

Player 3: G  

(a) Show that if Player 1 assigns probability 1
2  to the event that Player 2 will 

play E and Player will play G and probability 1
2  to the event that Player 2 

will play F and Player will play H , then playing D is a best reply. 

Next we want to show that there is no the mixed-strategy profile 

1 ,
1 1

E F G H
p p q q

 

    
          

 of Players 2 and 3 against which D is a best 

reply for Player 1. We do this in steps. First define the following functions: 
1 1( , ) ( , )A p q A     (that is, ( , )A p q  is Player 1’s expected payoff if she plays 

the pure strategy A against 1  ), 1 1( , ) ( , )B p q B    , 1 1( , ) ( , )C p q C     
and 1 1( , ) ( , )D p q D    .  

(b) In the (p,q) plane (with 0  p  1 and 0  q  1) draw the curve 
corresponding to the equation ( , ) ( , )A p q D p q  and identify the region 
where ( , ) ( , )A p q D p q . 

(c) In the (p,q) plane draw the curve corresponding to the equation 
( , ) ( , )C p q D p q  and identify the region where ( , ) ( , )C p q D p q . 

(d) In the (p,q) plane draw the two curves corresponding to the equation 
( , ) ( , )B p q D p q  and identify the region where ( , ) ( , )B p q D p q . 

(e) Infer from parts (b)-(c) that there is no mixed-strategy profile of Players 2 
and 3 against which D is a best reply for Player 1. 
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◊◊◊◊◊◊◊◊◊◊◊◊ 

Exercise 5.15: Challenging Question. A team of n professional swimmers  
(n  2)   from now on called players   are partying on the bank of the 
Sacramento river on a cold day in January. Suddenly a passerby shouts “Help! 
My dog fell into the water!”. Each of the swimmers has to decide whether or 
not to jump into the icy cold water to rescue the dog. One rescuer is sufficient: 
the dog will be saved if at least one player jumps into the water; if nobody does, 
then the dog will die. Each player prefers somebody else to jump in, but each 
player prefers to jump in himself if nobody else does.  Let us formulate this as a 
game. The strategy set of each player i is { , }iS J J  , where J stands for ‘jump 
in’ and J   for ‘not jump in’. The possible basic outcomes can be expressed as 
subsets of the set {1,..., }I n  of players: outcome N I  is interpreted as ‘the 
players in the set N jump into the water’; if N    the dog dies, while if 
N    the dog is saved. Player i has the following ordinal ranking of the 
outcomes: (1) N N  , for every ,N N     with  and i N i N   ,  
(2) N N   for every ,N N     with  and i N i N   , (3) { }i  . 

(a) Find all the pure-strategy Nash equilibria. 

(b) Suppose that each player i has the following von Neumann-Morgenstern 
payoff function (which is consistent with the above ordinal ranking):  

if  and 
( ) if  and 

0 if 
i

v N i N
N v c N i N

N


  
    
 

 with 0 c v  . 

Find the symmetric mixed-strategy Nash equilibrium (symmetric means 
that all the players use the same mixed strategy). [Hint: at the mixed-
strategy Nash equilibrium each player must be indifferent between 
jumping and not jumping.] 

(c) Assuming that the players behave according to the symmetric mixed-
strategy Nash equilibrium of part (b), is it better for the dog if n is large 
or if n is small? Calculate the probability that the dog is saved at the 
mixed-strategy Nash equilibrium as a function of n, for all possible 
values of c and v (subject to 0 c v  ), and plot it for the case where   
c = 10 and v = 12. 
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Appendix 5.S: Solutions to exercises  

Exercise 5.1.  The normalized von Neumann-Morgenstern utility functions 
are: 

Player 1: 3

2

4

1

1

outcome

,

1
0.25

0

o
o

o o

U

                     Player 2: 1

2

2

4

3

outcome
, 1

0.4
0

o o
o
o

U

 

Thus the reduced-form game is as follows: 

a 0 1 0.25 0.4
b 1 0 0 1

Player 2
c d

Player 1
 

Exercise 5.2.  The expected utility of the lottery 1 4
31

4 4

o o 
 
 

 is 15 for Player 1 

and 9 for Player 2. The expected utility of the lottery 1 2
1 1
2 2

o o 
 
 

 is 11 for 

Player 1 and 10 for Player 2. The expected utility of the lottery 3 4
32

5 5

o o 
 
 

 is 

12 for Player 1 and 9.2 for Player 2. Thus the reduced-form game is as 
follows.  

A 15 9 11 10

B 6 8 12 9.2

Player 2

C D

Player 1

 

Exercise 5.3.  (a) 3 31 1
1 8 8 8 80 6 4 2 3       and 3 31 1

2 8 8 8 81 3 4 0 2      .  

(b) No, because if Player 1 switched to the pure strategy C then her payoff 
would be 1 1

2 23 4 3.5  .  
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Exercise 5.4.  Player 1’s payoff is  2 2 1 1
1 6 6 6 62 8 6 4 5      . If Player 1 

switches to any other mixed strategy 
1

A B
p p

 
  

, while Player 2’s strategy is 

kept fixed at 
1 1
2 2

C D 
 
 

, then her payoff is 

1 1 1 1
1 2 2 2 22 8 (1 )6 (1 )4 5p p p p        . Thus any mixed strategy of 

Player 1 is a best response to 
1 1
2 2

C D 
 
 

. Similarly, Player 2’s payoff is 

2 2 1 1
2 6 6 6 63 5 6 2 4      . If Player 2 switches to any other mixed strategy 

1
C D
q q

 
  

, while Player 1’s strategy is kept fixed at 
2 1
3 3

A B 
 
 

, then her 

payoff is 2 2 1 1
2 3 3 3 33 (1 )5 6 (1 )2 4q q q q        . Thus any mixed strategy 

of Player 2 is a best response to 
2 1
3 3

A B 
 
 

. Hence 
2 1
3 3

A B 
 
 

 is a best reply to 

1 1
2 2

C D 
 
 

 and 
1 1
2 2

C D 
 
 

 is a best reply to 
2 1
3 3

A B 
 
 

, that is, 

2 1 1 1
3 3 2 2

,
A B C D    

    
   

 is a Nash equilibrium. 

Exercise 5.5.  We have to find the Nash equilibria of the following game.  

a 0 1 0.25 0.4
b 1 0 0 1

Player 2
c d

Player 1
 

To make calculations easier, let us multiply all the payoffs by 100: 

a 0 100 25 40
b 100 0 0 100

Player 2
c d

Player 1
 

There are no pure-strategy Nash equilibria. To find the mixed-strategy Nash 
equilibrium, let p be the probability with which Player 1 chooses a and q be 
the probability with which Player 2 chooses c. Then, for Player 1, the payoff 

from playing a against 
1

c d
q q
 
  

 must be equal to the payoff from playing b 
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against 
1

c d
q q
 
  

. That is, it must be that   05 1 102 qq  , which yields 

1
5q  .  Similarly, for Player 2, the payoff from playing c against 

1
a b
p p

 
  

 

must be equal to the payoff from playing d against 
1

a b
p p

 
  

. This requires 

100 40 100(1 )p p p   , that is, 5
8p   .  Thus the Nash equilibrium is 

5 3 1 4
8 8 5 5

,
a b c d    

    
    

 with payoff of 20 for Player 1 and 62.5 for Player 2. (If 

you worked with the original payoffs, then the Nash equilibrium payoffs 
would be would be 0.2 for Player 1 and 0.625 for Player 2. 

Exercise 5.6.  We have to find the Nash equilibria of the following game. 

A 15 9 11 10

B 6 8 12 9.2

Player 2

C D

Player 1

 
For Player 2 D is a strictly dominant strategy, thus at a Nash equilibrium 
Player 2 must play D with probability 1. For Player 1, the unique best reply 
to D is B. Thus the pure-strategy profile (B,D) is the only Nash equilibrium.  

Exercise 5.7.  We have to find the Nash equilibria of the following game. 

Player2

A 2 3 8 5
B 6 6 4 2

D E

Player 1
 

(B,D) and (A,E) are both Nash equilibria. To see if there is also a mixed-
strategy equilibrium we need to solve the following equations, where p is the 
probability of A and q is the probability of D: 2 8(1 ) 6 4(1 )q q q q      and 
3 6(1 ) 5 2(1 )p p p p     . The solution is 2

3p    and 1
2q    and indeed we 

verified in Exercise 5.4 that 
2 1 1 1
3 3 2 2

,
A B C D    

    
   

 is a Nash equilibrium. 
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Exercise 5.8.  Since B is strictly dominated (by C), it cannot be assigned 
positive probability at a Nash equilibrium. Let p be the probability of T and 
q the probability of L. Then p must be such that 4p+0(1p) = 3p+2(1 p) 
and q must be such that q+4(1q)=2q+(1 q). Thus 32

3 4 and p q  . Hence 

there is only one mixed-strategy equilibrium, namely 32 1 1
3 3 4 4

,
0

T C B L R    
    

   
. 

Exercise 5.9.  (a) Since Player 1 prefers z5 to z3 and prefers z6 to z4, strategy b  
is strictly dominated by strategy c. Thus Player 1 will not play b with 
positive probability and from now on we can simplify the game to 

d e
a z1 z2
c z5 z6

Player 2

Player 1
 

(b) Of the remaining outcomes, for Player 1  z1 is the best (we can assign 
utility 1 to it) and z5 is the worst (we can assign utility 0 to it). Since he is 

indifferent between z6 and the lottery 1 5
4 1
5 5

z z 
 
 

, the utility of z6 is 4
5 . 

Hence the expected utility of  6 5
1 1
2 2

z z 
 
 

 is 1 4 1 20
2 5 2 5

   and thus the 

utility of z2 is also 2
5 . So playing a gives a payoff of  1 1 2 71

2 2 5 10
  , while 

playing c gives a payoff of 1 1 4 40
2 2 5 10

  . Hence he should play a.   [If 

you did not take the hint to simplify the analysis as was done above, then 
you can still reach the same answer, although in a lengthier way. You 
would still set 1( ) 1U z  . Then the expected payoff from playing a is  

                                    1 1 2 2
1 1 1 1( ) ( ) ( ) ( )
2 2 2 2

a U z U z U z                  (*) 

Since 2z  is as good as 6 5
1 1
2 2

z z 
 
 

,  

                                               2 6 5
1 1( ) ( ) ( )
2 2

U z U z U z                         (**) 

Since 6z  is as good as 1 5
4 1
5 5

z z 
 
 

,  
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                                               6 5
4 1( ) ( )
5 5

U z U z                                (***) 

Replacing (***) in (**) we get 32
2 55 5( ) ( )U z U z   and replacing this 

expression in (*) we get 1 5
7 3( ) ( )

10 10
a U z   .  Similarly, 

1 5 6 5 5 5
1 1 1 1 4 1 4 6( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 5 5 10 10

c U z U z U z U z U z         
 

. 

Now, 1 1( ) ( )a c   if and only if 5 5
7 3 4 6( ) ( )

10 10 10 10
U z U z    if and 

only if 53 3 ( )U z  if and only if 5( ) 1U z   which is the case because 5z  is 
worse than 1z  and 1( ) 1U z  . Similar steps would be taken to answer (c) 

and (d).] 

(c) In the reduced game, for Player 2  z2 is the best outcome (we can assign 
utility 1 to it) and z6 is the worst (we can assign utility 0 to it). Thus, since 

she is indifferent between z5 and the lottery 2 6
31

4 4

z z 
 
 

, the utility of z5 is 

1
4

 and so is the utility of z1. Thus playing d gives an expected payoff of 

1 1 3 1 1
4 4 4 4 4

  , while playing e gives an expected utility of  1 3 11 0
4 4 4

  . 

Thus she is indifferent between playing d and playing e. 

(d) Using the calculations of parts (b) and (c) the game is as follows: 

1 2
4 5
1 4
4 5

1, ,1
0, ,0

d e
a
c

 

There is no pure-strategy Nash equilibrium. At a mixed-strategy Nash 
equilibrium, each player must be indifferent between his/her two 
strategies. From part (c) we already know that Player 2 is indifferent if 
Player 1 plays a with probability 1

4  and c with probability 3
4 . Now let q 

be the probability with which Player 2 plays d. Then we need 
2 4(1 ) (1 )
5 5

q q q    , hence 2
7

q  . Thus the Nash equilibrium is 
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3 51 2
4 4 7 70
a b c d e 
 
 

 which can be written more succinctly as 

3 51 2
4 4 7 7

a c d e 
 
 

. 

Exercise 5.10.  (a) Let p be the probability of A and q the probability of B. 
Then, Player 1 must be indifferent between playing A for sure and playing B 
for sure: 2 3(1 ) 6q q q   . This gives 3

7q  . Similarly, Player 2 must be 
indifferent between playing C for sure and playing D for sure: 2 4(1 )p  . 

This gives 1
2p  . Thus the Nash equilibrium is given by 3 41 1

7 72 2

,
C DA B   

   
    

. 

The equilibrium payoffs are 18
7  = 2.57 for Player 1 and 2 for Player 2. 

(b) Player 1 must be indifferent between playing A for sure and playing B for 
sure: 3 31

4 4 43 6x   . Thus x = 5. Similarly, Player 2 must be indifferent 
between playing C for sure and playing D for sure: 1 4 4

5 5 52 4y   . Thus y = 8. 

Exercise 5.11.  We have to find the Nash equilibria of the following game. 

Player 2

A 0 1 6 3
Player 1 B 4 4 2 0

C 3 0 4 2

D E

 

There are two pure-strategy equilibria, namely (B,D) and (A,E). To see if 
there is a mixed-strategy equilibrium we calculate the best response of Player 

1 to every possible mixed strategy 
1

D E
q q

 
  

 of Player 2 (with [0,1]q ). For 

Player 1 the payoff from playing A against 
1

D E
q q

 
  

 is 6 6q , the payoff 

from playing B is 4 2(1 ) 2 2q q q     and the payoff from playing C is 
3 4(1 ) 4q q q    .  

These functions are shown in the following diagram.   
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0 0.2 0.4 0.6 0.8 1
0

2

4

6

A q( )

B q( )

C q( )

2

5

2

3

q

 

 
The red downward-sloping line plots the function where ( ) 6 6A q q  , the 
blue upward-sloping line plots the function ( ) 2 2B q q   and the green 
dotted line the function ( ) 4C q q  . It can be seen from the diagram that 

2
5

2
5

2 2
5 3

2
3

2
3

if 0

 for any [0,1] if 
1

if Player1's best reply =

 for any [0,1] if 
1

if 1

A q
A C

p q
p p

C q
B C

p q
p p

B q

 

      

 
      


 

  

Thus if there is a mixed-strategy equilibrium it is either of the form 

32
5 5

,
1

D EA C
p p

   
       

 or of the form 
2 1
3 3

,
1

D EB C
p p

   
       

. In the first 

case, where Player 1 chooses B with probability zero, E strictly dominates D 

for Player 2 and thus 32
5 5

D E 
 
   

is not a best reply for Player 2, so that 

32
5 5

,
1

D EA C
p p

   
       

 is not a Nash equilibrium for any p. In the second case 

we need we need ( ) ( )D p E p , that is, 4 2(1 )p p  , which yields 1
3p  . 



GAME THEORY – Giacomo Bonanno 

205 

 

Thus the mixed-strategy Nash equilibrium is 
1 2 2 1
3 3 3 3

,
B C D E    

    
    

 with 

payoffs of 10
3  for Player 1 and 4

3  for Player 2. 

Exercise 5.12.  For Player 1, B is strictly dominated by 
1 1
2 2

A C 
 
 

;  for Player 2 

R is strictly dominated by 
1 1
2 2

L M 
 
 

.  Eliminating B and R we are left with 

  Player 2 

  L M 

Player A  3  ,  5 2  ,  0 

1 C 9  ,  1  ,  5 

In this game no player has a strictly dominated strategy. Thus for Player 1  
both A and C are rationalizable and for Player 2 both L and M  are 
rationalizable.  

Exercise 5.13.  The statement is false. Consider, for example, the following 
game: 

  Player 2 

  L R 

 A  3  ,  1 0  ,  0 

Player 1 B 0  ,  0 3  ,  1 

 C 2  ,  1 2  ,  1

Here both A and B are rationalizable (indeed, they are both part of a Nash 

equilibrium). However, the mixture 1 1
2 2

A B 
 
 

  (which gives Player 1 a payoff 

of 1.5, no matter what Player 2 does) cannot be a best reply to any mixed 
strategy of Player 2, since it is strictly dominated by C.  



GAME THEORY – Giacomo Bonanno 

206 

 

Exercise 5.14.  (a) A gives Player 1 an expected payoff of 1.5, B an expected 
payoff of 0, C and expected payoff of 1.5 and D an expected payoff of 2. Thus D 
is a best reply to those beliefs. 
The functions are as follows: ( , ) 3A p q pq , ( , ) 3(1 ) 3 (1 )B p q p q p q    , 

( , ) 3(1 )(1 )C p q p q   , ( , ) 2 2(1 )(1 )D p q pq p q    .  

(b) ( , ) ( , )A p q D p q  at those points (p,q) such that 2 2
2

pq
p





. The set of such 

points is the red curve in the diagram below. The region where ( , ) ( , )A p q D p q  
is the region above the red curve. 

(c) ( , ) ( , )C p q D p q  at those points (p,q) such that 1
1

pq
p





. The set of such 

points is the blue curve in the diagram below. The region where 
( , ) ( , )C p q D p q  is the region below the red curve. 

(c) ( , ) ( , )B p q D p q  at those points (p,q) such that 2 5
5 10

pq
p





 (for p  1

2 ). The 

set of such points is given by the two green curves in the diagram below. The 
region where ( , ) ( , )B p q D p q  is the region between the two green curves. 

Since at every point in the (p,q) square there is a pure strategy which is strictly 
better than D, it follows that there is no mixed-strategy 1   against which D is 
a best reply. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

qA p( )

qC p( )

qB p( )

p
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Exercise 5.15.  (a) There are n pure-strategy Nash equilibria: at each 
equilibrium exactly one player jumps in. 
(b)Let p be the probability with which each player jumps into the water. Fix a 
player i. The probability that none of the other players jump in is   11 np   and 

thus the probability that somebody else jumps in is   11 1 np     .  Player i’s 

payoff if he jumps in is v c  for sure, while his expected payoff if he does not 
jump in is      1 1 11 1 0 1 1 1n n nv p p v p               .  Thus we need 

  11 1 nv c v p       , that is, 
1

1
1

ncp
v

   
 

 , which is strictly between 0 

and 1 because c < v. 

(c)  At the Nash equilibrium the probability that nobody jumps in is 

 
1

1
n

nn cp
v

    
 

; thus this is the probability that the dog dies. Hence the dog is 

rescued with the remaining probability 
1

1
n

nc
v

   
 

.  This is a decreasing 

function of n. Thus the more people who are watching, the worse off the dog. 
The plot of this function when c = 10 and v = 12 is shown below. 
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0.15

0.2

0.25

0.3

0.35

number of players

pr
ob

ab
ili

ty
 th

at
 d

og
 is

 sa
ve

d

f n( )

n

 



GAME THEORY – Giacomo Bonanno 

208 

Dynamic games  
with cardinal payoffs 

6.1 Behavioral strategies in dynamic games  

he definition of dynamic (or extensive-form) game with cardinal payoffs is 
just like the definition of extensive from game with ordinal payoffs 
(Definition 3.1, Chapter 3), the only difference being that we postulate von 

Neumann-Morgenstern preferences instead of merely ordinal preferences.  

In Chapter 5 we generalized the notion of strategic-form frame by allowing for 
lotteries (rather than just simple outcomes) to be associated with strategy profiles. 
One could do the same for extensive-form frames, as shown in Figure 6.1. 

e f

c d c d

1

2

1

1z 2z 3z

4z 5z

1 2
2 1
3 3

o o 
 
 

3o

4o 5o

a b

1 3 4
31 1

5 5 5

o o o 
 
 

 
Figure 6.1 

An extensive frame with probabilistic outcomes.  
The iz ’s are terminal nodes and the io ’s are basic outcomes. 

Chapter 

6 

T 
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In Figure 6.1  1 2 5, ,...,z z z  is the set of terminal nodes and  1 2 5, ,...,o o o  is the set 

of basic outcomes. Associated with 1z  is the lottery 1 2
2 1
3 3

o o 
 
 

, while the lottery 

associated with 3z  is  1 3 4
31 1

5 5 5

o o o 
 
 

, etc. 

However, as we saw at the end of Chapter 3, in extensive forms one can explicitly 
represent random events by means of chance moves (also called moves of Nature). 
Thus an alternative representation of the extensive-form frame of Figure 6.1 is the 
extensive form shown in Figure 6.2. 

Nature

e f

c c d

2

1

3o 4o 5o

a b

2
3

1
3

1o 2o

d

1

1o 3o 4o

Nature
1
5

1
53

5

 

Figure 6.2 
An alternative representation of the extensive frame of Figure 6.1.  

The terminal nodes have not been labeled. The io ’s are basic outcomes.  

Hence we can continue to use the definition of extensive-form frame given in 
Chapter 3, but from now on we will allow for the possibility of chance moves. 

The notion of strategy remains, of course, unchanged: a  strategy for a player is a list 
of choices, one for every information set of that player (Definition 3.4, Chapter 3). 
For example, the set of strategies for Player 1 in the extensive frame of Figure 6.2 is 

1 {( , ), ( , ), ( , ), ( , )}.S a e a f b e b f  Thus mixed strategies can easily be introduced also 
in extensive frames. For example, the set of mixed strategies for Player 1, 1 , in the 
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extensive frame of Figure 6.2 is the set of probability distributions over 1S :  

( , ) ( , ) ( , ) ( , )
: , , [0,1] and 1

11
a e a f b e b f

p q r p q r
p q r p q r

  
          

 . 

However, it turns out that in extensive forms with perfect recall one can use  
simpler objects than mixed strategies, namely behavioral strategies. 

Definition 6.1. A behavioral strategy for a player in an extensive  form  is a list of 
probability distributions, one for every information set of that player; each 
probability distribution is over the set of choices at the corresponding information 
set. 

For example, the set of behavioral strategies for Player 1 in the extensive frame of 

Figure 6.2 is : , [0,1]
1 1

a b e f
p q

p p q q
  

     
. A behavioral strategy is a 

simpler object than a mixed strategy: in this example, specifying a behavioral 
strategy for Player 1 requires specifying the values of two parameters (p and q), 
while specifying a mixed strategy requires specifying the values of three parameters 
(p, r and q). Can one then use behavioral strategies rather than mixed strategies? The 
answer is affirmative, as Theorem 6.2 below states. First we illustrate with an 
example based on the extensive form of Figure 6.3 (which is a simplified version of 
the extensive form of Figure 6.2, obtained by removing the moves of Nature; the 

iz ’s are terminal nodes and the outcomes have been omitted). 

e f

c d c d

2

1

1z 2z 3z

4z 5z

a b

1

 
Figure 6.3 

An extensive frame with the outcomes omitted. The iz ’s are terminal nodes. 
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Consider the mixed-strategy profile  1 2,    with  

1 
51 4 2

12 12 12 12

( , ) ( , ) ( , ) ( , )a e a f b e b f 
 
 

  and  2 1 2
3 3

c d


 
  
 

 

We can compute the probability of reaching every terminal node as follows: 

        51 1 4 1
1 1 2 1 2 12 3 12 3 36( ) ( , ) ( ) ( , ) ( )P z a e c a f c        , 

        101 2 4 2
2 1 2 1 2 12 3 12 3 36( ) ( , ) ( ) ( , ) ( )P z a e d a f d         

       5 72 1 1
3 1 2 1 2 12 3 12 3 36( ) ( , ) ( ) ( , ) ( )P z b e c b f c         

   2 2 4
4 1 2 12 3 36( ) ( , ) ( )P z b e d     

   5 102
5 1 2 12 3 36( ) ( , ) ( )P z b f d     

That is, the mixed-strategy profile  1 2,    gives rise to the following 

probability distribution over terminal nodes: 1 2 3 4 5
5 10 7 104
36 36 36 36 36

z z z z z 
 
 

. Now 

consider the following behavioral strategy of Player 1:  
5 7 52

12 12 7 7

a b e f 
 
 

. What 

probability distribution over the set of terminal nodes would it determine in 

conjunction with Player 2’s mixed strategy 2 1 2
3 3

c d


 
  
 

?  The calculations are 

easy: 

 5 51
1 2 12 3 36( ) ( ) ( )P z P a c   ,    5 102

2 2 12 3 36( ) ( ) ( )P z P a d    

 7 71
3 2 12 3 36( ) ( ) ( )P z P b c   ,    7 2 2 4

4 2 12 3 7 36( ) ( ) ( ) ( )P z P b d P e    

  7 5 102
5 2 12 3 7 36( ) ( ) ( ) ( )P z P b d P f   .  

Thus, against 2 1 2
3 3

c d


 
  
 

, Player 1’s behavioral strategy 
5 7 52

12 12 7 7

a b e f 
 
 

 and her 

mixed strategy 
51 4 2

12 12 12 12

( , ) ( , ) ( , ) ( , )a e a f b e b f 
 
 

 are equivalent, in the sense that 

they give rise to the same probability distribution 1 2 3 4 5
5 10 7 104
36 36 36 36 36

z z z z z 
 
 

 over 

terminal nodes. 
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Theorem 6.2 [Kuhn, 1953]. In extensive forms with perfect recall behavioral 
strategies and mixed strategies are equivalent, in the sense that, for every mixed 
strategy there is a behavioral strategy that gives rise to the same probability 
distribution over terminal nodes.8 

Without perfect recall, Theorem 6.2 does not hold. To see this, consider the one-
player extensive form shown in Figure 6.4 and the mixed strategy 

1 1
2 2

( , ) ( , ) ( , ) ( , )
0 0

a c a d b c b d 
 
 

 which induces the probability distribution 

1 2 3 4
1 1
2 20 0
z z z z 

 
 

 on the set of terminal nodes.  

c d c d

1

1

1z 2z 3z 4z

a b

 
Figure 6.4 

An one-player extensive frame without perfect recall.  

Consider an arbitrary behavioral strategy 
1 1

a b c d
p p q q

 
   

 with 

corresponding probability distribution over the set of terminal nodes 
1 2 3 4

(1 ) (1 ) (1 )(1 )
z z z z
pq p q p q p q

 
     

. In order to have 2( ) 0P z   it must be 

                                                
8 A more precise statement is as follows. Fix an extensive form with perfect recall and a Player 

i. Let ix  be an arbitrary profile of strategies of the players other than i, where, for every 

j i , jx  is either a mixed or a behavioral strategy of Player j. Then, for every mixed 

strategy i  of Player i there is a behavioral strategy ib  of Player i such  that  ,i ix   and  

 ,i ib x  give rise to the same probability distribution over the set of terminal nodes.  
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that either p = 0 or q = 1. If p = 0 then 1( ) 0P z   and if q = 1 then 4( ) 0P z  . 

Thus the probability distribution 1 2 3 4
1 1
2 20 0
z z z z 

 
 

 cannot be achieved with a 

behavioral strategy. 

Since the focus of this book is on extensive-form games with perfect recall, by 
Theorem 6.3 from now on we can restrict attention to behavioral strategies. 

As usual, one goes from a frame to a game by adding preferences over outcomes. 
Let O  be the set of basic outcomes (recall that with every terminal node is 
associated a basic outcome) and ( )OL  the set of lotteries (probability distributions) 
over O . 

Definition 6.3. An extensive-form game with cardinal payoffs is an extensive frame 
(with, possibly, chance moves) together  with a von Neumann-Morgenstern 
ranking i  of the set of lotteries ( )OL , for every Player i . 

As usual, it is convenient to represent a von Neumann-Morgenstern ranking by 
means of a von Neumann-Morgenstern utility function and replace the outcomes 
with a vector of utilities, one for every player.  

For example, consider the extensive form of Figure 6.2 where the set of basic 
outcomes is 1 2 3 4 5{ , , , , }O o o o o o  and suppose that Player 1 has a von Neumann-
Morgenstern ranking of ( )OL  that is represented by the following von Neumann-

Morgenstern utility function:  1 2 3 4 5

1 : 5 2 0 1 3
o o o o

U
ooutcome :

 . 

Suppose also that Player 2 has preferences represented by the von Neumann-

Morgenstern utility function 1 2 3 4 5

2 : 3 6 4 5 0
o o o o

U
ooutcome :

.  

Then from the extensive frame of Figure 6.2 we obtain the extensive-form game 
with cardinal payoffs shown in Figure 6.5.  Since the expected utility of lottery 

1 2
2 1
3 3

o o 
 
 

 is 4 for both players, and the expected utility of lottery 1 3 4
31 1

5 5 5

o o o 
 
 

 is 

1.2 for Player 1 and 4 for Player 2, we can simplify the game by replacing the first 
move of Nature with the payoff vector (4,4) and the second move of Nature with 
the payoff vector (1.2, 4). The simplified game is shown in Figure 6.6. 
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Nature

e f

c c d

2

3o 4o 5o

a b

2
3

1
3

1o 2o

d

1

1o 3o 4o

Nature

5 2 0 5 0 1 1 3

3 6 4 3 4 5 5 0

1

3
5

1
5

1
5

 
Figure 6.5 

An extensive game based on the frame of Figure 6.2.  
The terminal nodes have not been labeled. The io ’s are basic outcomes.  

e f

c d c d

2

1

1z 2z 3z

4z 5z

a b

4 0 1.2

1 3

4 4 4

5 0

1

 
Figure 6.6 

A simplified version of the game of Figure 6.5. The iz ’s are terminal nodes. 
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Given an extensive game with cardinal payoffs, associated with every behavioral 
strategy profile is a lottery over basic outcomes and thus, using a von Neumann-
Morgenstern utility function for each player, a payoff for each player. For example, 

as we saw above,  the behavioral strategy profile 5 7 52 1 2
12 12 7 7 3 3

,
a b e f c d    

    
    

 for 

the extensive form of Figure 6.5 gives rise to the lottery 1 2 3 4 5
71 25 213 81 150

540 540 540 540 540

o o o o o 
 
 

 

(for instance, the probability of basic outcome 1o  is calculated as follows: 
5 7 712 1 1 2 1 1

1 3 5 12 3 3 12 3 5 540( ) ( ) ( ) ( ) ( )P o P a P c P b P c     ). Using the utility function 

postulated above for Player 1, namely  1 2 3 4 5

1 : 5 2 0 1 3
o o o o

U
ooutcome :

, we get a 

corresponding payoff of 71 25 213 81 150 936
540 540 540 540 540 5405 2 0 1 3 1.733      . An alternative 

way of computing this payoff is by using the simplified game of Figure 6.6 where 

(as we saw above) the behavioral strategy profile 5 7 52 1 2
12 12 7 7 3 3

,
a b e f c d    

    
    

 yields 

the probability distribution over terminal nodes 1 2 3 4 5
5 10 7 104
36 36 36 36 36

z z z z z 
 
 

, which, in 

turn, yields the probability distribution 
5 10 7 104

36 36 36 36 36

4 0 1.2 1 3 
 
 

over utilities for 

Player 1. From the latter we get that the expected payoff for Player 1 is 
5 10 7 10 9364
36 36 36 36 36 5404 0 1.2 1 3 1.733      . The calculations for  Player 2 are similar 
(see Exercise 6.3).  

 

 Test your understanding of the concepts introduced in this section, by going 
through the exercises in Section 6.E.1 of Appendix 6.E at the end of this chapter. 
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6.2 Subgame-perfect equilibrium revisited 

The notion of subgame-perfect equilibrium was introduced in Chapter 3 
(Definition 3.7) for extensive-form games with ordinal payoffs. When payoffs are 
ordinal, a subgame-perfect equilibrium might fail to exists because either the entire 
game or a proper subgame might not have any Nash equilibria. In the case of finite 
extensive-form games with cardinal payoffs a subgame-perfect equilibrium always 
exists, because by Nash’s theorem (Theorem 5.8, Chapter 5) every finite game has 
at least one Nash equilibrium in mixed strategies. Thus, in the case of cardinal 
payoffs, the subgame-perfect equilibrium algorithm (Definition 3.8, Chapter 3) 
never halts and the output of the algorithm is a subgame-perfect equilibrium. We 
shall illustrate this with the extensive-form game shown in Figure 6.7 below.  

2 2

33

L R

A B E F

C D C G G HH

1
3
1

2
0
2

2
0
3

0
1
2

2
0
3

0
1
2

1
2
1

2
0
3

1

D

 

Figure 6.7 
An extensive-form game with cardinal payoffs. 

Let us apply the subgame-perfect equilibrium algorithm to this game. We start with 
the proper subgame that begins at Player 2’s decision node on the left, whose 
strategic form is shown in Table 6.8. Note that this subgame has no pure-strategy 
Nash equilibria. Thus if payoffs were ordinal the algorithm would halt and we 
would conclude that the game of Figure 6.7 has no subgame-perfect equilibria. 
However, we will assume that payoffs are cardinal. 
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C D
Player A 3  ,  1 0  ,  2

2 B 0  ,  3 1  ,  2

Player 3

 

Table 6.8 
The strategic form of the proper subgame on the left in the game of Figure 6.7. 

To find the mixed-strategy Nash equilibrium of the game of Table 6.8, let p be the 
probability of A and q the probability of C. Then we need q to be such that 
3 1q q  , that is, 1

4q  , and p to be such that 3(1 ) 2p p   , that is,  1
2p  .  

Thus the Nash equilibrium of this proper subgame is 
31 1 1

2 2 4 4

,
A B C D    

    
    

, 

yielding the following payoffs: 3 31 1 1 1 1 1
2 4 2 4 2 4 2 41 2 2 0    1.125 for Player 1, 

3 31 1 1 1 1 1
2 4 2 4 2 4 2 43 0 0 1 0.75     for Player 2 and 3 31 1 1 1 1 1

2 4 2 4 2 4 2 41 2 3 2 2     for 
Player 3. Thus we can simplify the game of Figure 6.7 as follows: 

1

2

3

L R

E F

G G HH

2
0
3

0
1
2

1
2
1

2
0
3

1.125
0.75
2

 

Figure 6.9 
The game of Figure 6.7 after replacing the proper subgame on  
the left with the payoffs associated with its Nash equilibrium. 
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Now consider the proper subgame of the game of Figure 6.9 (the subgame that 
starts at Player 2’s node). Its strategic form is shown in Table 6.10. 

G H
Player E 0  ,  3 1  ,  2

2 F 2  ,  1 0  ,  3

Player 3

 

Table 6.10 
The strategic form of the proper subgame of the game of Figure 6.9. 

Again, there is no pure-strategy Nash equilibrium. To find the mixed-strategy 
equilibrium let p be the probability of E and q the probability of G. Then we need q 
to be such that 1 2q q  , that is, 1

3q  , and p to be such that 
3 1 2 3(1 )p p p p     , that is,  2

3p  . Hence the Nash equilibrium is 

2 1 1 2
3 3 3 3

,
E F G H    

    
    

 yielding the following payoffs: 2 1 2 2 1 1 1 2
3 3 3 3 3 3 3 32 0 1 2 1     

for Player 1, 2 1 2 2 1 1 1 2
3 3 3 3 3 3 3 30 1 2 0 0.67     for Player 2 and 

2 1 2 2 1 1 1 2
3 3 3 3 3 3 3 33 2 1 3 2.33     for Player 3.  

Thus we can simplify the game of Figure 6.9 as shown in Figure 6.11 below, where  
the optimal choice for Player 1 is L. 

1
L R

1.125
0.75
2

1
0.67
2.33  

Figure 6.11 
The game of Figure 6.9 after replacing the proper subgame 

with the payoffs associated with the Nash equilibrium. 
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Hence the subgame-perfect equilibrium of the game of Figure 6.7 (expressed in 
terms of behavioral strategies) is:  

31 1 2 1 1 1 2
2 2 3 3 4 4 3 3

, ,
1 0

A B E F C D G HL R     
     
      

 

We conclude this section with the following proposition, which is a corollary of 
Theorem 5.8 (Chapter 5). 

Proposition 6.4. Every finite extensive-form game with cardinal payoffs has at least 
one subgame-perfect equilibrium 

 

 Test your understanding of the concepts introduced in this section, by 
going through the exercises in Section 6.E.2 of Appendix 6.E at the end of this 
chapter. 

 

6.3 Problems with the notion of 
subgame-perfect equilibrium  

The notion of subgame-perfect equilibrium is a refinement of Nash equilibrium. As 
explained in Chapter 2, in the context of perfect-information games, the notion of 
subgame-perfect equilibrium eliminates some “unreasonable” Nash equilibria that 
involve incredible threats. However, not every subgame-perfect equilibrium can be 
viewed as a “rational” solution. To see this, consider the extensive-form game 
shown in Figure 6.12 below. This game has no proper subgames and thus the set of 
subgame-perfect equilibria coincides with the set of Nash equilibria. The pure-
strategy Nash equilibria of this game are ( , , )a f c , ( , , )a e c , ( , , )b e c  and ( , , )b f d . 
It can be argued that neither ( , , )a f c  nor ( , , )b f d  can be considered “rational 
solutions”.  

Consider first the Nash equilibrium ( , , )a f c . Player 2’s plan to play f is rational 
only in the very limited sense that, given that Player 1 plays a, what Player 2 plans 
to do is irrelevant because it cannot affect anybody’s payoff; thus f is as good as e. 
However, if we take Player 2’s strategy as a “serious” plan specifying what Player 2 
would actually do if she had to move, then given that Player 3 plays c  e would 
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give Player 2 a payoff of 2, while f would only give a payoff of 1. Thus e seems to be 
a better strategy than f, if Player 2 takes the contingency “seriously”.  

c d

1

a

b

c d

e

3

2
2
2

0
0
0

2
2
2

0
0
0

1
1
0

f2

 

Figure 6.12 
An extensive-form game showing the insufficiency  

of the notion of subgame-perfect equilibrium. 

Consider now the Nash equilibrium ( , , )b f d  and focus on Player 3. As before, 
Player 3’s plan to play d is rational only in the very limited sense that, given that 
Player 1 plays a and Player 2 plays f, what Player 3 plans to do is irrelevant, so that c 
is as good as d. However, if Player 3 did find himself having to play, it would not be 
rational for him to play d, since d is a strictly dominated choice: no matter whether 
he is making his choice at the left node or at the right node of his information set, c 
gives him a higher payoff than d. How can it be then that d can be part of a Nash 
equilibrium? The answer is that d is strictly dominated conditional on Player 3’s 
information set being reached but not as a plan formulated before the play of the 
game starts. In other words, d is strictly dominated as a choice but not as a strategy. 

The notion of subgame-perfect equilibrium is not strong enough to eliminate 
“unreasonable” Nash equilibria such as ( , , )a f c  and ( , , )b f d  in the game of Figure 
6.12. In order to do that we will need a stronger notion. This issue is postponed to a 
later chapter. 



GAME THEORY – Giacomo Bonanno 

221 

Appendix 6.E: Exercises  

6.E.1 .  Exerc ise s for  Sec t ion 6 .1 :   
         Behavioral  s tra teg ies  in dynamic  games  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 6.1. What properties must an extensive-form frame satisfy in order for it 
to be the case that, for a given player, the set of mixed strategies coincides with the 
set of behavioral strategies? [Assume that there are at least two choices at every 
information set.] 

Exercise 6.2. Suppose that, in a given extensive-form frame, Player 1 has four 
information sets: at one of them she has two choices and at each of the other three 
she has three choices.  
(a) How many parameters are needed to specify a mixed strategy of Player 1? 
(b) How many parameters are needed to specify a behavioral strategy of Player 1? 

Exercise 6.3. Calculate the payoff of Player 2 from the behavioral strategy profile 

5 7 52 1 2
12 12 7 7 3 3

,
a b e f c d    

    
    

 in two ways: (1) using the game of Figure 6.5 and (2) 

using the simplified game of Figure 6.6. 

Exercise 6.4. Consider the following extensive form, where 1 5,...,o o  are basic 
outcomes. 

c d

1

a

b

c d

e

f2

3

Nature

1
2

1
2

3o1o 2o

2o

4o

5o
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Player 1’s ranking of O is 1 1 5 1 4 1 2 1 3o o o o o    ;  furthermore, she is indifferent 

between 5o  and the lottery 1 2 3
6 1 1
8 8 8

o o o 
 
 

 and is also indifferent between 4o  and 

the lottery 2 5
2 1
3 3

o o 
 
 

.  Player 2’s ranking of O is 1 2 2 2 4 2 3 2 5o o o o o    ;  

furthermore, he is indifferent between 3o  and the lottery 1 2 5
81 1

10 10 10

o o o 
 
 

. Finally, 

Player 3’s ranking of O is 2 3 4 3 3 3 5 3 1o o o o o    ; furthermore, she is indifferent 

between 4o  and the lottery 1 2 3
1 1 1
4 2 4

o o o 
 
 

 and is also indifferent between 3o  and 

the lottery 1 2
3 2
5 5

o o 
 
 

.   Write the corresponding extensive-form game. 

6.E.2 .  Exerc ise s for  Sec t ion 6 .2 :   
         subgame-perfec t equil ibr ium rev is i ted  

The answers to the following exercises are in Appendix S at the end of this chapter. 

Exercise 6.5. Consider the following extensive-form game with cardinal payoffs. 

1

2

1

U

D

l r

L R L R

1
5

3
2

2
4

0
3

1
1
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(a) Write the corresponding strategic-form game and find all the pure-strategy 
Nash equilibria. 

(b) Find the subgame-perfect equilibrium.  

Exercise 6.6. Consider the following extensive form (where the basic outcomes are 
denoted by xj instead of oj , j = 1,…, 10). 

1

2

3

x2x1 x3 x4 x5 x6 x7 x8 x9

x10
u

d

a b c

d e f d e f d e f

 

All the players satisfy the axioms of expected utility. They rank the outcomes as 
indicated below (if outcome w is above outcome y then w is strictly preferred to y, 
and if w and y are written next to each other then the player is indifferent between 
the two): 

7 9

1 2 4 5

10

3 6 8

,
, , ,

1:

, ,

x x
x x x x

Player
x

x x x

 
 
 
 
 
 

,    

1 3

4 5

2 7 8

6

9

,
,

2 : , ,

x x
x x

Player x x x
x
x

 
 
 
 
 
 
 
 

,     

2 7

8

1 4 9

3 5 6

,

3 :
, ,
, ,

x x
x

Player
x x x
x x x

 
 
 
 
 
 

.  

Furthermore, Player 2 is indifferent between x4 and the lottery 1 2
1 1
2 2

x x 
 
 

 and 

Player 3 is indifferent between x1 and the lottery 2 5
1 1
2 2

x x 
 
 

.  Although the above 

information is not sufficient to determine the von Neumann-Morgenstern utility 
functions of the players, it is sufficient to compute the subgame-perfect 
equilibrium. Find the subgame-perfect equilibrium. 
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Exercise 6.7. Consider the following extensive-form game with cardinal payoffs. 
1

2 2

1 1

L R

A B C D

E F E F G H G H

2
0

0
6

0
2

4
1

1
4

2
0

4
3

1
2  

(a) Write the corresponding strategic-form game. 
(b) Find all the pure-strategy Nash equilibria. 
(c) Find the mixed-strategy subgame-perfect equilibrium. 

Exercise 6.8. Consider the following extensive-form game with cardinal payoffs: 

x 0

x 1 x 2

x 3 x 4

1

2

3

L M

R

l

r l r

1
0
0

player 1's payoff

player 3's payoff

player 2's payoff

0
1
0

0
0
0

0
1
1

0
1
0

2
2
1

0
0
0

a b a b

1

 
(a) Find all the pure-strategy Nash equilibria. Which ones are also subgame perfect? 

(b) [This is a more challenging question] Prove that there is no mixed-strategy Nash 
equilibrium where Player 1 plays M with probability strictly between 0 and 1. 
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◊◊◊◊◊◊◊◊◊◊◊◊ 

Exercise 5.9: Challenging Question. You have to go to a part of town where 
many people have been mugged recently. You consider whether you should leave 
your wallet at home or carry it with you. Of the four possible outcomes, your 
most preferred one is having your wallet with you and not being mugged. Being 
mugged is a very unpleasant experience, so your second favorite alternative is not 
carrying your wallet and not being mugged (although not having any money with 
you can be very inconvenient). If, sadly enough, your destiny is to be mugged, 
then you prefer to have your wallet with you (possibly with not too much money 
in it!) because you don't want to have to deal with a frustrated mugger. A typical 
potential mugger, on the other hand, does not care whether or not you are carrying 
a wallet, in case he decides not to mug you (that is, he is indifferent between the 
corresponding two outcomes). Of course his favorite outcome is the one where 
you have your wallet with you and he mugs you. His least preferred outcome is 
the one where he attempts to mug you and you don't have your wallet with you 
(he risks being caught for nothing). Denote the possible outcomes as follows: 

  Potential mugger 
Not  mug              Mug 

You Leave wallet at home z1 z2
 

 Take wallet with you z3
 z4

 

(a)  What is the ordinal ranking of the outcomes for each player? 

(b) Suppose now that both players have von Neumann-Morgenstern utility 
functions. You are indifferent between the following lotteries: 

1 2 3 4
1 3 314

20 20 20 0
z z z z

L
 

  
 

 and 1 2 3 4
2 1 1

2 20 0
z z z z

L
 

  
 

;  furthermore, you are 

indifferent between 1 2 3 4
3 2 1

3 30 0
z z z z

L
 

  
 

 and 1 2 3 4
4 1 1

2 2 0 0
z z z z

L
 

  
 

.  The 

potential mugger is indifferent between the two lotteries 
1 2 3 4

5 1 1 1 1
4 4 4 4

z z z z
L

 
  
 

 and 1 2 3 4
6 8 67 16 37

128 128 128 128

z z z z
L

 
  
 

. For each player find the 

normalized von Neumann-Morgenstern utility function.  
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You have to decide whether or not to leave your wallet at home. Suppose that, if 
you leave your wallet at home, with probability p  (with 0 < p < 1) the potential 
mugger will notice that your pockets are empty and with probability (1p) he will 
not notice. If the potential mugger does not notice that your pockets are empty 
then he will nevertheless be aware of the fact that you might have left the wallet at 
home and he simply cannot tell.  

(c)  Represent this situation as an extensive game with imperfect information. 

(d) Write the corresponding normal form. 

(e) Find all the subgame-perfect equilibria (including the mixed-strategy ones, if 
any). [Hint: your answer should distinguish between different values of p]. 
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Appendix 6.S: Solutions to exercises  
Exercise 6.1.  It must be the case that the player under consideration has only 
one information set. 

Exercise 6.2.  (a) 53. The number of pure strategies is 2 3 3 3 54     and thus 
53 probabilities are needed to specify a mixed strategy. 
(b) 7: one probability for the information set where she has two choices and two 
probabilities for each of the other three information sets. 

Exercise 6.3.  (1) The induced probability distribution on basic outcomes is 
1 2 3 4 5

71 25 213 81 150
540 540 540 540 540

o o o o o 
 
 

. Thus Player 2’s expected utility is 

71 25 213 81 150 936
540 540 540 540 540 5403 6 4 5 0     = 1620

540 3 .  
(2) The induced probability distribution on terminal nodes is  

1 2 3 4 5
5 10 7 104
36 36 36 36 36

z z z z z 
 
 

. Thus Player 2’s expected payoff is 

5 10 7 10 1084
36 36 36 36 36 364 4 14 5 0 3       

Exercise 6.4.  The normalized von Neumann-Morgenstern utility functions are 
1 2 3 4 5

1

2

3

1 0 0 0.25 0.75
1 1 0.2 1 0
0 1 0.4 0.6 0.4

o o o o o
U
U
U

 
 
 
 
 
 

. Thus the extensive-form game is as follows: 

c d

1

a

b

c d

e

f2

3

Nature

1
2

1
2

1
1
0

0
1
1

0
0.2
0.4

0.25
1

0.6

0
1
1

0.75
0

0.4
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Or, in a simplified form obtained by removing the move of Nature, as follows: 

c d

1

a

b

c d

e

f2

3

1
1
0

0
1
1

0
0.2
0.4

0.25
1

0.6

0.375
0.5
0.7

 

Exercise 6.5.  (a) The strategic form is as follows. 

UL 1 5 1 5
UR 1 5 1 5
DL 3 2 0 3
DR 2 4 1 1

Player 1

Player  2

l r

 

The pure-strategy Nash equilibria are (UL,r),  (UR,r) and  (DR,r). 

(b) The proper subgame that starts at Player 2’s node has a unique mixed-

strategy Nash equilibrium given by 
3 1 1 1
4 4 2 2

,
L R l r    

    
    

, yielding Player 1 an 

expected payoff of 3 31 1 1 1 1 1
4 2 4 2 4 2 4 23 2 0 1 1.5    . Thus the unique subgame-

perfect equilibrium, expressed as a behavioral-strategy profile, is 

3 1 1 1
4 4 2 2

,
0 1
U D L R l r    

    
    

 or, expressed as a mixed-strategy profile,  

3 1 1 1
4 4 2 2

,
0 0

UL UR DL DR l r    
    
    

. 
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Exercise 6.6.  There is only one proper subgame starting from Player 2’s node; 
its strategic-form frame is as follows: 

Player 3
d e f

a x1 x2 x3

Player 2 b x4 x5 x6

c x7 x8 x9
 

For Player 1 strategy c is strictly dominated by strategy b (she prefers x4 to x7, 
and x5 to x8 and x6 to x9) and for Player 2 strategy f is strictly dominated by 
strategy d (she prefers x1 to x3, and x4 to x6 and x7 to x9). Thus we can simplify 
the game to the following. 

Player 3

d e

Player a x1 x2

2 b x4 x5
 

Restricted to these outcomes the payers’ rankings are: 
1

4 5

2

2 : ,
x

Player x x
x

 
 
 
 
 

 ,  

2

1 4

5

3 : ,
x

Player x x
x

 
 
 
 
 

. Let U be Player 2’s von Neumann-Morgenstern utility 

function. The we can set 1 2( ) 1 and ( ) 0U x U x  . Thus, since she is indifferent 

between x4 and x5 and also between  x4 and the lottery 1 2
1 1
2 2

x x 
 
 

, U(x4) = U(x5) 

= 1
2 . Let V  be Player 3’s von Neumann-Morgenstern utility function. The we 

can set 2 5( ) 1 and V( ) 0V x x  . Thus, since she is indifferent between x1 and x4 

and also between  x1 and the lottery 2 5
1 1
2 2

x x 
 
 

, V(x1) = V(x4) = 1
2 . Hence the 

above game-frame becomes the following game: 
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Player 3

d e

Player 2 a

b

1
21,

1 1
2 2, 1

2 ,0

0,1

 

There is no pure-strategy Nash equilibrium. Let p be the probability of a and q 
the probability of d. Then for a Nash equilibrium we need  q = 1

2   and  p = 1
2 . 

Hence in the subgame the outcome will be 1 2 4 5
1 1 1 1
4 4 4 4

x x x x 
 
 

. Since all of these 

outcomes are better than x10 for Player 1, Player 1 will play d. Thus the 

subgame-perfect equilibrium is 
1 1 1 1
2 2 2 2

, ,
0 01 0

a b c d e fd u     
     
      

. 

Exercise 6.7.  (a) The strategic form is as follows: 

  PLAYER  2 

  AC AD BC BD 

P 
L 
A 
Y 
E 
R 
 

1 

LEG 2 , 0 2 , 0 0 , 2 0 , 2 

LEH 2 , 0 2 , 0 0 , 2 0 , 2 

LFG 0 , 6 0 , 6 4 , 1 4 , 1 

LFH 0 , 6 0 , 6 4 , 1 4 , 1 

REG 1 , 4 4 , 3 1 , 4 4 , 3 

REH 2 , 0 1 , 2 2 , 0 1 , 2 

RFG 1 , 4 4 , 3 1 , 4 4 , 3 

RFH 2 , 0 1 , 2 2 , 0 1 , 2 

 

(b) There are no pure-strategy Nash equilibria. 
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(c) First let us solve the subgame on the left: 

 

 
Player  1 

 Player   2 

 A B 

E 2 , 0 0 , 2 

F 0 , 6 4 , 1 

 

There is no pure-strategy Nash equilibrium. Let us find the mixed-strategy 
equilibrium. Let p be the probability assigned to E and q the probability assigned 
to A. Then p must be the solution to  6(1 p)=2p+(1p) and  q must be the 

solution to 2q=4(1q). Thus 5
7

p    and  2
3

q  . The expected payoff of Player 1 

is 2 0 (1 ) 0(1 ) 4(1 )(1 ) 1.33pq p q p q p q        , while the expected payoff of 
player 2 is 0 2 (1 ) 6(1 ) 1(1 )(1 ) 1.714pq p q p q p q        .  

Next we solve the subgame on the right: 

 

 
Player  1 

 Player   2 

 C D 

G 1 , 4 4 , 3 

H 2 , 0 1 , 2 

There is no pure-strategy Nash equilibrium. Let us find the mixed-strategy 
equilibrium. Let p be the probability assigned to G and q the probability assigned 
to C. Then p must be the solution to  4p = 3p + 2(1p) and  q must be the solution 

to q+4(1q) = 2q+(1q). Thus 2
3

p    and  3
4

q  . The expected payoff of Player 

1 is 4 (1 ) 2(1 ) (1 )(1 ) 1.75pq p q p q p q        . Thus the game reduces to: 
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1

L R

1.33
1.714

1.75
2.67  

Hence the subgame-perfect equilibrium is: 

5 32 2 1 2 1 1
7 7 3 3 3 3 4 4

,
0 1
L R E F G H A B C D    

    
    

 

Exercise 6.8.  (a) The strategic form is as follows: 

                        Player 2                          Player 2    

  l        r    l r 

 R 1  ,  0  ,  0 1  ,  0  ,  0  R 1  ,  0  ,  0 1  ,  0  ,  0 

Player M 0  ,  1  ,  1 2  ,  2  ,  1  M 0  ,  1  ,  0 0  ,  0  ,  0 

1 L 1  ,  1  ,  0 0  ,  0  ,  0  L 1  ,  1  ,  0 0  ,  0  ,  0 

         

Player 3 chooses a   Player 3 chooses b 

 

The pure-strategy Nash equilibria are highlighted: (R,l,a), (M,r,a), (L,l,a), 
(R,l,b), (R,r,b) and (L,l,b).  They are all subgame perfect because there are no 
proper subgames. 
(b) Since, for Player 3, a strictly dominates b conditional on his information set 
being reached, he will have to play a if his information set is reached with 
positive probability. Now, Player 3’s information set is reached with positive 
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probability if and only if player 1 plays M with positive probability. Thus when 
Pr(M) > 0 the game essentially reduces to 

x 0

x 1 x 2

x 3 x 4

1

2

3

L M

R

l

r l r

1
0
0

player 1's payoff

player 3's payoff

player 2's payoff

0
1
0

0
0
0

a b a b

1

0
1
1

2
2
1

 
Now, in order for Player 1 to be willing to assign positive probability to M he 
must expect a payoff of at least 1 (otherwise R would be better) and the only 
way he can expect a payoff of at least 1 is if Player 2 plays r with probability at 
least 1

2 . Now if Player 2 plays r with probability greater than 1
2 , then M gives 

Player 1 a higher payoff than both L and R and thus he will choose M with 
probability 1, in which case Player 2 will choose r with probability 1 (and 
Player 3 will choose a with probability 1) and so we get the pure strategy 
equilibrium (M,r,a). If Player 2 plays r with probability exactly 1

2  then Player 1 
is indifferent between M and R (and can mix between the two), but finds L 
inferior and must give it probability 0. But then Player 2’s best reply to a mixed 
strategy of Player 1 that assigns positive probability to M and R and zero 
probability to L is to play r with probability 1 (if his information set is reached it 
can only be reached at node x2). Thus there cannot be a mixed-strategy 
equilibrium where player 1 assigns to M probability p with  
0 < p < 1 : it must be either Pr(M) =0 or Pr(M) = 1. 
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Exercise 6.9.  (a) Your ranking is (best at the top, worst at the bottom) 

3

1

4

2

z
z
z
z

 
 
 
 
 
 

 

while the potential mugger’s ranking is 
4

1 3

2

,
z

z z
z

 
 
 
 
 

. 

(b)  Let U be your utility function. Let U(z3) = 1, U(z1) = a, U(z4) = b and U(z2) 
= 0, with 0 < b < a < 1. The expected utilities are as follows: 3 3

1 20 20( )EU L a   
, 1

2 2( )EU L b ,  1
3 3( )EU L   and 1

4 2( )EU L a . From 3 4( ) ( )EU L E L  we get 
that 2

3a  . Substituting this into the equation 1 2( ) ( )EU L EU L  gives 1
2b  .  

Thus U(z3) = 1, U(z1) =
2
3

, U(z4) = 1
2

 and U(z2) = 0.  Let V  be the mugger’s 

utility function. Let V(z4) = 1, V(z1) = V(z3) = c and V(z2) = 0. The expected 
utilities are as follows: 1

5 4( ) (2 1)EV L c   and 1
6 128( ) (24 37)EV L c  . Solving 

5 6( ) ( )EV L EV L  gives c = 1
8 . Thus, V(z4) = 1, V(z1) = V(z3) = 1

8
 and V(z2) = 0. 

(c)  The extensive game is as follows: 

You

NATURE

MuggerMugger

leave
take

notice
not notice

1-pp

not mug not mug mugnot

z z z z z z1 2 1 2 3 4

2/3 0 2/3 0 1 1/2

1/8 0 0 1/8 11/8  



GAME THEORY – Giacomo Bonanno 

235 

(d) The normal form is as follows (for the mugger’s strategy the first refers to 
the left node, the second to the information set) 

NN NM MN MM

L 2/3 , 1/8 (2/3)p , (1/8)p 2/3(1-p) , 1/8 (1-p) 0 , 0

T 1 , 1/8 1/2 , 1 1 , 1/8 1/2 , 1

Potential Mugger

You

 

(e) At a subgame-perfect equilibrium the mugger will choose not to mug when 
he notices your empty pockets. Thus the normal form can be simplified as 
follows: 

NN NM

L 2/3 , 1/8 (2/3)p , (1/8)p

T 1 , 1/8 1/2 , 1
You

Potential Mugger

 

 If p < ¾  then Take is a strictly dominant strategy for you and therefore 
there is a unique subgame-perfect equilibrium given by (Take, Not mug / 
Mug).  

 If p = ¾  then there is a continuum of equilibria where the Mugger chooses 
“Not mug / Mug” with probability 1 and you choose L with probability q 

and T with probability (1q) for any q with 0  q  28
29

 

3 1(obtained from 1 )
32 8

q q    

 If p > ¾  then there is no pure-strategy subgame-perfect 
equilibrium. Let q be the probability that you choose L and r the 
probability that the mugger chooses NN. Then the unique mixed strategy 

equilibrium is given by the solution to: 2 2 1(1 ) (1 )
3 3 2

r p r r r      and 

1 1 (1 )
8 8

pq q    which is 7
8

q
p




 and 4 3
4 1

pr
p





. Thus the unique 

subgame-perfect equilibrium is: 

7 1 4 3 2 0 0
8 8 4 1 4 1

L T NN NM MN MM
p p

p p p p

 
        
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