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Christian Ewerhart**

October 16, 2017

Abstract. While smooth exact potential games are easily characterized in terms of the cross-

derivatives of players�payo¤ functions, an analogous di¤erentiable characterization of ordinal

or generalized ordinal potential games has been elusive for a long time. In this paper, it is

shown that the existence of a generalized ordinal potential in a smooth game with multidi-

mensional strategy spaces is crucially linked to the semipositivity (Fiedler and Pták, 1966) of a

modi�ed Jacobian matrix on the set of interior strategy pro�les at which at least two �rst-order

conditions hold. Our �ndings imply, in particular, that any generalized ordinal potential game

must exhibit pairwise strategic complements or substitutes at any interior Cournot-Nash equi-

librium. Moreover, provided that there are more than two players, the cross-derivatives at any

interior equilibrium must satisfy a rather stringent equality constraint. The two conditions,

which may be conveniently condensed into a local variant of the di¤erentiable condition for

weighted potential games, are made explicit for sum-aggregative games, symmetric games, and

two-person zero-sum games. For the purpose of illustration, the results are applied to classic

games, including probabilistic all-pay contests with heterogeneous valuations, models of mixed

oligopoly, and Cournot games with a dominant �rm.
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1. Introduction

When a strategic game admits a potential, players�preferences may be conveniently summa-

rized in a single objective function (Rosenthal, 1973; Monderer and Shapley, 1996a). Potentials

of di¤erent types have been identi�ed for a large variety of games. Moreover, the underlying

methods have been found useful for the analysis of oligopolistic markets (Slade, 1994), learning

processes (Monderer and Shapley, 1996b; Fudenberg and Levine, 1998; Young, 2004), popu-

lation dynamics (Sandholm, 2001, 2009; Cheung, 2014), the robustness of equilibria (Frankel

et al., 2003; Morris and Ui, 2005; Okada and Tercieux, 2012), the decomposition of games

(Candogan et al., 2011), imitation strategies (Duersch et al., 2012), dynamics in near-potential

games (Candogan et al., 2013a, 2013b), the existence of Nash equilibrium (Voorneveld, 1997;

Kukushkin, 1994, 2011), solution concepts (Peleg et al., 1996; Tercieux and Voorneveld, 2010),

games with monotone best-response selections (Huang, 2002; Dubey et al., 2006; Jensen, 2010),

supermodular and zero-sum games (Brânzei et al., 2003), and even issues in mechanism design

(Jehiel et al., 2008).

Both exact and ordinal variants of the concept have been considered in the literature.1 In the

case of �nite strategy spaces, complete characterizations are known for exact and (generalized)

ordinal potential games. Exact potential games admit a convenient characterization also in the

important class of smooth games, i.e., in the class of games with Euclidean strategy spaces

and twice continuously di¤erentiable payo¤ functions. For instance, a smooth game with one-

dimensional interval strategy spaces admits an exact potential if and only if the Jacobian of that

game, i.e., the matrix of cross-derivatives of players�payo¤ functions, is globally symmetric.

For the class of in�nite ordinal potential games, a useful characterization has been established

by Voorneveld and Norde (1997). Speci�cally, a game admits an ordinal potential if and only

there are no weak improvement cycles and an order condition is satis�ed.2 However, as far as

we know, no di¤erentiable characterization has been available up to this point for the classes

1For a real-valued function on the set of strategy pro�les to be an exact potential (a weighted potential),
the di¤erence in a player�s payo¤ resulting from a unilateral change of her strategy must equal precisely (up to
a positive factor) the corresponding di¤erence in the potential. For a potential to be ordinal, any strict gain
in a player�s payo¤ resulting from a unilateral change of her strategy must be re�ected by a strict gain in the
potential and, unless the ordinal potential is generalized, vice versa.

2For a rigorous statement of this important result, we refer the reader to Voorneveld and Norde (1997).
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of ordinal or generalized potential games. This has been a highly undesirable situation because

the ordinal notions are of considerable conceptual interest.3

The present paper addresses this long-standing issue by studying the local feasibility of a

generalized ordinal potential in a small neighborhood of an interior Cournot-Nash equilibrium

(or, more generally, in a small neighborhood of any interior strategy pro�le at which at least

two �rst-order conditions hold).4 To this end, we consider an arbitrary cyclic path that is

contained in a small open neighborhood of the equilibrium. In the simplest case, the path

runs along the edges of a small rectangular box that contains the equilibrium at its center. In

general, however, the path need not be centered, it may even be zig-zagging, crossing itself, or

forming a complicated knot. By shrinking the path to in�nitesimal size, we identify conditions

on the slopes of players�local best-response functions such that each player�s payo¤ is strictly

increasing over the respective edges of the path that re�ect her changes in strategy. Since a

strict improvement cycle is impossible in a generalized ordinal potential game (Voorneveld,

1997), this approach indeed delivers a set of tight necessary conditions for the existence of a

generalized ordinal potential in a wide class of games with continuous strategy spaces.

For example, it will be recalled that a smooth n-player game with interval strategy spaces

is a weighted potential game if and only if there exist positive weights w1 > 0; :::; wn > 0 such

that5

wi
@2ui(xN)

@xj@xi
= wj

@2uj(xN)

@xi@xj
(i; j 2 f1; :::; ng; i 6= j) (1)

holds at any strategy pro�le xN . Below, it will be shown that, at any interior Cournot-Nash

equilibrium x�N of any smooth generalized ordinal potential n-player game, provided that cross-

derivatives do not vanish, there exist positive weights w1(x�N) > 0; :::; wn(x
�
N) > 0 such that

wi(x
�
N)
@2ui(x

�
N)

@xi@xj
= wj(x

�
N)
@2uj(x

�
N)

@xj@xi
(i; j 2 f1; :::; ng; i 6= j). (2)

3Monderer and Shapley (1996a, p. 135) wrote: �Unlike (weighted) potential games, ordinal potential games
are not easily characterized. We do not know of any useful characterization, analogous to the one given in (4.1),
for di¤erentiable ordinal potential games.� Since then, the problem has apparently remained open. See, e.g.,
the recent surveys by Mallozzi (2013), González-Sánchez and Hernández-Lerma (2016), or Lã et al. (2016).

4As will be explained, local conditions such as those considered in the present paper cannot be sharpened
by considering additional strategy pro�les.

5Here, xi and ui = ui(xN ) denote player i�s strategy and payo¤ function, respectively, where xN = (x1; :::; xn)
is the corresponding strategy pro�le. The notation will be introduced more carefully in Section 2.
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Thus, any smooth generalized ordinal potential game satis�es a local analogue of the global

di¤erentiable property of a weighted potential game at any interior equilibrium.6 Moreover, as

will also be seen, this condition implies rather tight restrictions in speci�c classes of games. In

this sense, a (partial) di¤erentiable characterization of generalized ordinal potential games with

continuous strategy spaces is obtained.

The analysis starts by considering strict improvement cycles that involve two players only.

For this case, the existence of a generalized ordinal potential is shown to imply that the product

of the slopes of any two players�mutual local best-response functions (or, more generally, the

product of the corresponding cross-derivatives) at any interior regular equilibrium must be

nonnegative.7 Thus, borrowing the terminology familiar from contributions such as Bulow et

al. (1985), Amir (1996), Dubey et al. (2006), and Monaco and Sabarwal (2016), we obtain

as our �rst main necessary condition that the game must exhibit pairwise strategic substitutes

or complements at any interior regular equilibrium. The strict improvement cycle, provided it

can be constructed, may then run either clockwise or counterclockwise around the equilibrium,

depending on whether the horizontal (vertical) player�s local best-response function is strictly

increasing (strictly declining) or strictly declining (strictly increasing). As an illustration of its

usefulness, it will be shown that the criterion is tight in a class of probabilistic all-pay contests.

The criterion is then sharpened by considering strict improvement cycles that involve more

than two players. In the abstract, the existence of a particular strict improvement cycle is

shown to correspond to the semipositivity (Fiedler and Pták, 1966; Johnson et al., 1994) of a

matrix that is constructed from the Jacobian by replacing all diagonal entries by zero and by

multiplying all entries above the diagonal with negative one.8 Exploiting the speci�c structure

of the problem at hand, the semipositivity condition is then reformulated in more explicit

6The assumption that cross-derivatives do not vanish is indeed needed. To see this, consider the two-player or-
dinal potential game with payo¤s u1(x1; x2) = �(x1+x2)2 and u2(x1; x2) = �(x1+x2)6. Then, at any Cournot-
Nash equilibrium x�N , the cross-derivatives are given by @

2u1(x
�
N )=@x2@x1 = �2 and @2u2(x�N )=@x1@x2 = 0, in

con�ict with relationship (2).
7We call an interior Nash equilibrium regular if the local second-order conditions hold strictly at the equi-

librium point. In a neighborhood of a regular Nash equilibrium, one may de�ne local best-response functions,
which allows a more intuitive discussion of some of the �ndings of this paper. Apart from the expositional
simpli�cation, however, the regularity assumption is not crucial for the analysis.

8Semipositivity generalizes the concept of a P-matrix (Gale and Nikaidô, 1965). The relevant elements of
the theory of semipositive matrices will be reviewed in the next section.
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terms, such as the invertibility of the modi�ed Jacobian and polynomial constraints on the

slopes of players� local best-response functions. Moreover, useful additional conditions are

derived by either renaming players, or by �ipping around individual strategy spaces (Vives,

1990; Amir, 1996). In particular, this leads to our second main condition in the case of one-

dimensional strategy spaces, viz. a set of equality constraints that must be satis�ed by the slopes

of players� local best-response functions (or alternatively, by the cross-derivatives of players�

payo¤ functions) at any interior regular equilibrium of any generalized ordinal potential game

with at least three players. The two main conditions are then combined and rephrased into the

simple cross-derivative condition stated above.

The remainder of this paper is structured as follows. Section 2 contains preliminaries. The

�rst main necessary condition is derived in Section 3. Section 4 deals with the general geometry

of strict improvement cycles involving more than two players. Section 5 discusses the second

main necessary condition. Speci�c classes of games are considered in Section 6. Section 7

discusses extensions. Section 8 concludes. All proofs have been relegated to an Appendix.

2. Preliminaries

2.1 Games with continuous strategy spaces

A game � is de�ned by a set of players N = f1; :::; ng, a strategy space Xi for each i 2 N , and

a payo¤ function ui : XN � X1 � ::: � Xn ! R for each i 2 N . The game � will be called

smooth (e.g., Vives, 1999) if Xi is a subset of some Euclidean space and ui is twice continuously

di¤erentiable in the interior of XN , for any i 2 N . For expositional simplicity, the analysis will

subsequently focus on the case in which Xi � R for all i 2 N .9 Clearly, under this condition,

marginal payo¤s �i � @ui=@xi are well-de�ned in the interior of XN for all i 2 N .

By a (Cournot-Nash) equilibrium of a game �, we mean a strategy pro�le x�N � (x�1; :::; x�n) 2

XN such that ui(x�i ; x
�
�i) � ui(xi; x

�
�i) for any i 2 N and for any xi 2 Xi, where x��i =

(x�1; :::; x
�
i�1; x

�
i+1; :::; x

�
n) is the pro�le comprised of the strategies chosen by the opponents of

player i, so that x��i 2 X�i � X1� :::�Xi�1�Xi+1� :::�Xn. An equilibrium x�N of a smooth

game � will be called interior if x�i is an interior point of Xi for all i 2 N . At an interior equi-
9The case of multi-dimensional strategy spaces will be dealt with in Section 7.
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librium x�N , the �rst-order necessary condition associated with player i�s optimization problem

implies

�i(x
�
i ; x

�
�i) =

@ui(x
�
i ; x

�
�i)

@xi
= 0 (i 2 N). (3)

An equilibrium x�N will be called regular if, in addition,

@�i(x
�
i ; x

�
�i)

@xi
=
@2ui(x

�
i ; x

�
�i)

@x2i
< 0 (i 2 N): (4)

Consider an interior regular equilibrium x�N . Then, as a direct consequence of the implicit

function theorem, the equation �i(xi; x�i) = 0 de�nes a continuously di¤erentiable function

�i � �i(x�i) � �i(x�i;x�N) that maps any vector x�i from a small open neighborhood U � X�i

of x��i to a strategy �i(x�i) 2 Xi such that �i(�i(x�i); x�i) = 0. We will refer to �i(�;x�N) as

player i�s local best-response function around x�N .
10 For any other player j 6= i, we will refer to

�ij � �ij(x�N) =
@�i(x

�
�i)

@xj
= �@�i(x

�
N)=@xj

@�i(x�N)=@xi
= �@

2ui(x
�
N)=@xj@xi

@2ui(x�N)=@x
2
i

(5)

as the slope of player i�s local best-response function with respect to player j.

2.2 Potentials and potential games

The following well-known de�nitions do not require di¤erentiability.11 A game � is an exact

potential game if there exists a function P : XN ! R, referred to as an exact potential of �,

such that

ui(xi; x�i)� ui(bxi; x�i) = P (xi; x�i)� P (bxi; x�i) (6)

for any i 2 N , xi 2 Xi, bxi 2 Xi, and x�i 2 X�i. A game � is called a weighted potential game

if there exist positive factors w1 > 0; :::; wn > 0 as well as a function P : XN ! R, referred to

as a weighted potential of �, such that

ui(xi; x�i)� ui(bxi; x�i) = wi(P (xi; x�i)� P (bxi; x�i)) (7)

10This function may actually correspond to player i�s global best-response function (e.g., if ui(xi; x��i) is
strictly quasiconcave in xi). However, this is not assumed.
11In fact, as shown by Voorneveld (1997) in response to a question raised by Peleg et al. (1996), an ordinal

potential game with continuous payo¤ functions need not possess a continuous ordinal potential function. How-
ever, this does not constitute a problem for the present analysis because the necessary conditions derived below
do not impose any continuity assumption on the generalized ordinal potential.
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for any i 2 N , xi 2 Xi, bxi 2 Xi, and x�i 2 X�i. Next, � is an ordinal potential game if

condition (6) in the de�nition of an exact potential game is replaced by

ui(xi; x�i) > ui(bxi; x�i) if and only if P (xi; x�i) > P (bxi; x�i). (8)

Finally, � is a generalized ordinal potential game if (6) is replaced by the even weaker condition

ui(xi; x�i) > ui(bxi; x�i) implies P (xi; x�i) > P (bxi; x�i). (9)

In the latter two cases, the function P is called an ordinal potential or generalized ordinal

potential, respectively, of the game �. Any exact potential is a weighted potential, any weighted

potential is an ordinal potential, and any ordinal potential is a generalized ordinal potential.

However, a generalized ordinal potential game need not, in general, be an ordinal potential

game, an ordinal potential game need not, in general, be a weighted potential game, and a

weighted potential game need not, in general, be an exact potential game.

Smooth exact potential games with intervals as strategy spaces may be conveniently char-

acterized in terms of the cross derivatives of players�payo¤ functions.

Lemma 1 (Monderer and Shapley, 1996a). Consider a smooth game � in which strategy

spaces are intervals. Then � is an exact potential game if and only if

@2ui(xN)

@xj@xi
=
@2uj(xN)

@xi@xj
(i; j 2 N; j 6= i;xN 2 XN). (10)

The extension of Lemma 1 to weighted potential games is immediate. However, as discussed in

the Introduction, an analogous characterization for ordinal games, speci�cally geared toward

the class of games with continuous strategy spaces, has apparently not been known so far.

A general necessary condition may be formulated in terms of the following concept. A strict

improvement cycle for a game � (of length L) is a �nite sequence of strategy pro�les

:::! x0N ! x1N ! :::! xL�1N ! ::: (11)

in XN with the property that, for any l = 0; :::; L� 1, there is a player i � �(l) 2 N such that

xl+1�i = x
l
�i and ui(x

l+1
i ; xl�i) > ui(x

l
i; x

l
�i), where x

L
N should be read as x

0
N .
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We then have the following useful result.

Lemma 2 (Voorneveld, 1997). A generalized ordinal game does not admit any strict im-

provement cycle.12

2.3 Strategic substitutes and complements

Let xN be an interior strategy pro�le (e.g., an interior Cournot-Nash equilibrium) in a smooth

game �. Then, � will be said to exhibit strategic complements (strategic substitutes) at xN if

@ui(xN)=@xj@xi � 0 (� 0) for any two players i and j with j 6= i. Fix two players i and j with

j 6= i. We will say that � exhibits strategic complements (strategic substitutes) between i and j

at xN if @ui(xN)=@xj@xi � 0 (� 0) and @uj(xN)=@xi@xj � 0 (� 0). Finally, we will say that �

exhibits pairwise strategic complements or substitutes at xN if � exhibits, for any two players i

and j with j 6= i, either strategic complements between i and j at xN or strategic substitutes

between i and j at xN .

2.4 Semipositivity

Consider a vector �N = (�1; :::; �n)T 2 Rn, where the superscript T indicates transposition, as

usual. We will write �N > 0 (�N � 0) if all entries of �N are positive (nonnegative), i.e., if

�i > 0 (�i � 0) for all i = 1; :::; n. The following de�nition goes back at least to Fiedler and

Pták (1966).

De�nition 1. A square matrix A 2 Rn�n is called semipositive if there exists a vector �N � 0

such that A�N > 0.

In the de�nition, we may obviously replace the weak inequality by a strict one, using a simple

perturbation argument. Thus, semipositivity amounts to the condition that (the interior of)

the convex cone generated by the columns of A intersects the positive orthant Rn++ = fzN 2

Rn : zN > 0g. Along these lines, semipositivity may be seen to correspond to a straightforward

feasibility condition in linear programming.

12For games in which strategy spaces can be totally ordered, local potentials (Morris, 1999; Frankel et al.,
2003; Morris and Ui, 2005; Okada and Tercieux, 2012) generalize exact potentials by requiring an inequality
condition that relaxes equation (7) in several ways. Since Lemma 2 does not apply, this extension lies outside
of our present focus. However, a characterization of local potential maximizers in smooth games can be found
in Morris (1999, p. 28).
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Call a square matrix A 2 Rn�n inverse nonnegative if its matrix inverse A�1 exists and all

entries of A�1 are nonnegative. The following lemma provides a very useful recursive charac-

terization of semipositivity.

Lemma 3 (Johnson et al., 1994). A square matrix A 2 Rn�n is semipositive if and only if

at least one of the following two conditions holds:

(i) A is inverse nonnegative;

(ii) there exists m 2 f1; :::; n� 1g and a submatrix bA 2 Rn�m obtained from A via deletion of

n�m columns, such that all m�m submatrices of bA are semipositive.
3. The �rst necessary condition

3.1 Statement of the result

In this section, we derive the following simple yet apparently not widely known condition that is

necessary for the existence of a generalized ordinal potential in a game with continuous strategy

spaces.

Proposition 1. Suppose that the smooth game � admits a generalized ordinal potential. Then,

at any regular interior Cournot-Nash equilibrium x�N , necessarily

�ij(x
�
N ) � �ji(x �N ) � 0 (12)

for any two players i 2 N and j 2 N with i 6= j.

Thus, any generalized ordinal potential game with continuous strategy spaces necessarily ex-

hibits pairwise strategic substitutes or complements at any interior regular equilibrium.

It is important to note that the respective slopes of the local best-response functions are

required to satisfy the inequality only at the pro�le x�N itself, rather than, say, in an open

neighborhood of the equilibrium. This is not a weakness of our result but ultimately owed to

the �exibility of the ordinal concept. In fact, as may be seen from the illustration given at the

end of this section, there are examples of ordinal potential games (viz. symmetric contests)

for which the mutual cross-derivatives @2ui(xN)=@xj@xi and @2uj(xN)=@xi@xj have di¤erent

8



signs almost everywhere on the set of strategy pro�les (viz. o¤ the hyperplane de�ned through

xi = xj), even though condition (12) is certainly satis�ed at the unique equilibrium.

It is similarly important to note that, in games with more than two players, condition (12)

requires only pairwise strategic complements or substitutes. Therefore, unless the game is sum-

aggregative (see Section 6 for a de�nition), the conclusion of Proposition 1 is less stringent than

the property that the game exhibits either strategic complements or strategic substitutes at any

interior regular equilibrium. Again, this should not come as a surprise because, e.g., �ipping

around the strategy space of one of three players, say, may certainly destroy the property of

strategic complements or strategic substitutes, but does not change the property of being a

generalized ordinal game.

The conclusion of Proposition 1 is quite immediate when � actually admits an exact (or even

weighted) potential. Indeed, in this case, Lemma 1 implies that @2ui=@xj@xi = @2uj=@xi@xj

holds in the interior of XN . Therefore, at any regular interior equilibrium x�N ,

�ij(x
�
N ) � �ji(x �N ) =

�
�@

2ui(x
�
N)=@xj@xi

@2ui(x�N)=@x
2
i

�
�
�
�@

2uj(x
�
N)=@xi@xj

@2uj(x�N)=@x
2
j

�
(13)

=
(@2ui(x

�
N)=@xj@xi)

2

(@2ui(x�N)=@x
2
i ) �
�
@2uj(x�N)=@x

2
j

� � 0, (14)

consistent with Proposition 1.

For a less obvious example, consider the interesting class of multiplicatively separable ag-

gregative games for which an ordinal potential has been constructed explicitly (Kukushkin,

1994; Nocke and Schutz, 2016). Thus, assume that payo¤s admit the representation ui(xN) =

xi � �(xN) for all i 2 N , where � : XN ! R is an arbitrary twice continuously di¤erentiable

function that does not depend on the player i. Then, at any interior regular equilibrium x�N ,

player j�s optimality condition implies

x�j �
@�(x�N)

@xj
+ �(x�N) = 0, (15)
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so that

x�j � �ij(x�N) = x�j �
�
�@

2ui(x
�
N)=@xj@xi

@2ui(x�N)=@x
2
i

�
(16)

= x�j �
�
�x

�
i � (@2�(x�N)=@xj@xi) + (@�(x�N)=@xj)

@2ui(x�N)=@x
2
i

�
(17)

= �
x�i � x�j � (@2�(x�N)=@xj@xi)� �(x�N)

@2ui(x�N)=@x
2
i

. (18)

Thus, noting the symmetry of the numerator in (18) with respect to i and j, we arrive at

�ij(x
�
N)� �ji(x�N) � 0, consistent with Proposition 1.

However, if inequality (12) fails to hold for any two players at any regular interior equilib-

rium, then there cannot exist a generalized ordinal potential for �. In particular, a smooth

game with an interior regular equilibrium that exhibits, in the strategic interaction between

two players, an increasing reaction curve for one player and a decreasing reaction curve for

the other player is never a generalized ordinal potential game. A classic example is the mixed

oligopoly model by Singh and Vives (1984), in which one �rm chooses a price, and the other

�rm chooses a quantity. Another famous example is quantity competition between a dominant

�rm and several fringe �rms (Bulow et al., 1985). Many further examples, taken from diverse

areas such as law enforcement, business strategy, and citizen protests, for instance, can be found

in Tombak (2006) and Monaco and Sabarwal (2016).

3.2 Outline of proof

To understand why Proposition 1 holds true, consider Figure 1. Here, keeping the strategy pro-

�le x��i;j = (x�1; :::; x
�
i�1; x

�
i+1; :::; x

�
j�1; x

�
j+1; :::; x

�
n) �xed, player i�s local best-response function

�i = �i(xj; x
�
�i;j) around x

�
N is strictly increasing in player j�s strategy xj, and player j�s local

best-response function �j = �j(xi; x��i;j) around x
�
N is strictly decreasing in player i�s strategy

xi. Therefore, �ij(x�N) � �ji(x�N) < 0, and the necessary condition fails. And indeed, for " > 0

small enough, the �nite sequence starting at the upper left corner and running clockwise around

the square,

:::! (x�i � "; x�j + "; x��i;j)! (x�i + "; x
�
j + "; x

�
�i;j)! (19)

! (x�i + "; x
�
j � "; x��i;j)! (x�i � "; x�j � "; x��i;j)! :::,

10



constitutes a strict improvement cycle, as will be explained now. To start with, consider the

strategy change corresponding to the upper side of the square. Then, with " small, player i�s

payo¤ is �rst increasing (over a longer section of the side) and then decreasing (over a shorter

section of the side).

Figure 1. Constructing a strict improvement cycle involving two players.

The point to note is now that, as a consequence of smoothness of payo¤s at the Cournot-Nash

equilibrium, player i�s payo¤ function along the upper side of the square may be approximated

arbitrarily well by a parabola opening downwards, provided the square is small enough. As

the parabola is symmetric around its peak, the payo¤ di¤erence for player i, when switching

from strategy xi � " to xi + ", will be overall positive.13 Similar considerations apply to the

remaining three sides of the square. In fact, at the bottom side, there is no trade-o¤ because

player i�s marginal payo¤ is always negative there. Thus, in sum, one may construct a strict

improvement cycle that leads around the equilibrium. As seen in the previous section, however,

this is incompatible with the existence of a generalized ordinal potential.

3.3 Discussion

Proposition 1 may be further strengthened by focusing on the conditions that are actually used

in the proof. For example, the interiority assumption in Proposition 1 can be easily relaxed.

13There is a minor technical subtlety here in so far that the payo¤ di¤erence approaches zero as " goes to
zero. However, as shown in the Appendix with the help of a careful limit consideration, the payo¤ di¤erence
approaches zero from above since the corresponding cross-derivative is positive. This turns out to be su¢ cient
to settle the trade-o¤ for a su¢ ciently small but still positive ".

11



What matters is that those players that are involved in the strict improvement cycle use an

interior strategy. Second, players that are not involved in the strict improvement circle may

use any strategy, even a suboptimal one.14 Further, the regularity assumption may be dropped

entirely provided that the conditions on the slopes introduced above and later in the paper are

replaced by the corresponding conditions on the cross-derivatives of players�payo¤ functions.

For instance, in a two-player game, the necessary condition that �12(x�N) � �21(x�N) � 0 holds

at any regular interior equilibrium x�N may be replaced by the somewhat more stringent, but

also maybe less vivid condition that (@2u1(x�N)=@x2@x1) � (@2u2(x�N)=@x1@x2) � 0 holds at

any interior (i.e., not necessarily regular) equilibrium x�N . Thus, the regularity assumption is

purely expositional.15 Then, the restriction to one-dimensional strategy spaces can be easily

relaxed, essentially because a �nite sequence that is a strict improvement cycle remains a

strict improvement cycle when players are granted more strategic �exibility. In fact, as will

be explained in Section 7, the existence of a generalized ordinal potential in a smooth game

with multi-dimensional strategy spaces leads to implications that are much stronger than those

discussed so far (because there is more freedom for constructing strict improvement cycles in

higher dimensions). Next, the criterion applies more generally to any strategy pro�le at which

the �rst-order conditions for all players are satis�ed. Thus, rather than a global maximum, the

individual player�s problem may have a local maximum, local minimum, or in�ection point at

x�N . Finally, the game � actually need not be smooth. It su¢ ces that the payo¤ functions of the

involved players are twice continuously di¤erentiable at the critical point under consideration.

However, no further strengthening of the results is possible from considering strategy pro�les

that are not local equilibria between at least two players. The reason is that, if at most one

player�s marginal condition holds at some x�N , then there are no strict improvement cycles locally

at x�N . To the contrary, it is then always feasible to construct locally an ordinal potential by

14These two generalizations will be illustrated below.
15However, the use of slopes rather than cross-derivatives is suggested also by the analysis of su¢ cient con-

ditions, which is not part of the present paper, though.
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exploiting the strict monotonicity of n � 1 payo¤ functions.16 Relatedly, the consideration of

more complicated paths (in which players may move more than twice), does not lead to more

stringent conditions than those reported in the present paper. Indeed, while it may indeed be

easier to achieve a strict gain in payo¤ on a single non-centered path segment, shrinking the

path down to in�nitesimal size necessarily leads to a system of linear inequalities on second-

order derivatives only (cf. also the proof of Lemma 4 given in the Appendix). However, as will

be discussed later in the analysis, a simple search model actually covers all possible (nonzero)

slope combinations consistent with the necessary conditions. Along these lines, the conditions

identi�ed in the present paper will be seen to be actually equivalent to the absence of any local

strict improvement cycle (de�ned by the requirement that it remains a strict improvement cycle

even after being shrunk by any factor " 2 (0; 1) via a pantograph �xed at x�N).17

3.4 An illustration

In the n-player lottery contest with valuations V1 > 0; :::; Vn > 0, player i�s payo¤ is given by

ui(x1; :::; xn) =
xi

x1 + :::+ xn
Vi � xi, (21)

where we assume that X1 = ::: = Xn = [0;1).18 It follows from a general result of Szidarovszky

and Okuguchi (1997) that this game has a unique (yet not necessarily interior) equilibrium

x�N = (x
�
1; :::; x

�
n).

Rather than applying our criterion to the n-player equilibrium, we will consider an equilib-

rium in the two-player game between arbitrary players i 2 N and j 2 N with j 6= i, assuming

that all remaining players remain passive. This actually strengthens our criterion.19 So consider

16E.g., in the two-player case, if @u1(x�N )=@x1 = 0 < @u2(x
�
N )=@x2, then

P (xN ) = u1(xN ) + x2 �maxf2 j@u1(x�N )=@x2j ; 1g (20)

is an ordinal potential in a small neighborhood of x�N . Similar constructions can be used to cover the cases
where either (i) there are more than two players, or (ii) the marginal payo¤s of all players are non-zero at x�N .
17Strict improvement cycles that are not local in this sense are discussed in the extensions section.
18If x1 + ::::+ xn = 0, then we assume ui = 1

n .
19E.g., in a three-player contest with almost identical heterogeneous valuations, the respective slopes of the

local best-response functions at the unique interior equilibrium are all negative. Thus, in that case, a direct
application of Proposition 1 would not yield any valuable conclusions.
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a pro�le x#N = (x
#
i ; x

#
j ; x

#
�i;j) 2 XN such that the following conditions hold:

ui(x
#
i ; x

#
j ; x

#
�i;j) � ui(xi; x

#
j ; x

#
�i;j) (xi 2 Xi), (22)

uj(x
#
j ; x

#
i ; x

#
�i;j) � uj(xj; x

#
i ; x

#
�i;j) (xj 2 Xi), (23)

x#�i;j = (0; :::; 0) 2 Rn�2. (24)

In the bilateral game between players i and j, equilibrium e¤orts are given by the well-known

expressions (cf. Konrad, 2009)

x#i =
V 2i Vj

(Vi + Vj)2
and x#j =

ViV
2
j

(Vi + Vj)2
. (25)

From
@2ui(x

#
N)

@x2i
= �

2x#j Vi

(x#i + x
#
j )

3
< 0, (26)

and an analogous inequality for player j, we see that the equilibrium is regular. Moreover, the

slope of player i�s local best-response function is given by

�ij(x
#
N) = �

@2ui(x
#
N)

@xj@xi
�
 
@2ui(x

#
N)

@x2i

!�1
=
x#i � x

#
j

2x#j
=
Vi � Vj
2Vj

. (27)

An analogous expression may be derived for player j. We therefore see that the necessary

condition �ij(x
#
N) � �ji(x

#
N) � 0 holds if and only if

�(Vi � Vj)
2

4ViVj
� 0, (28)

or equivalently, if and only if Vi = Vj. Thus, if valuations are strictly heterogeneous in the sense

that at least two valuations di¤er, then the n-player contest introduced above does not allow a

generalized ordinal potential.20

On the other hand, the lottery contest with homogenous valuations V � V1 = ::: = Vn

belongs to the beforementioned class of multiplicatively separable aggregative ordinal potential

games. Speci�cally, the function

P (xN) = x1 � ::: � xn �
�

V

x1 + :::+ xn
� 1
�

(xN > 0) (29)

20As will becomes clear later, the same conclusion holds under the much more �exible assumptions of Dixit
(1987).
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is an ordinal potential for the lottery contest in the interior of the strategy space. In that sense,

our criterion is not only necessary but also su¢ cient in the considered class of contests.

4. Strict improvement cycles involving more than two players21

4.1 The role of semipositivity

In this section, we will discuss the geometry of strict improvement cycles that involve more

than two players.

To �x ideas, the initial focus will be on a particular path in which players 1 through n

consecutively raise their respective strategies, and subsequently lower their strategies, following

the same order. Figure 2 illustrates a path of this kind for the case of three players. In contrast

to the case of cycles that involve two players only, it turns out that more stringent necessary

conditions are obtained when allowing for a rectangular-shaped box with edges that are not

necessarily of equal length.

Figure 2. Constructing a circular improvement path involving three players.

An analysis of the conditions necessary and su¢ cient for the described path to constitute a

strict improvement cycle leads to the following observation.

Lemma 4. Suppose that the smooth game � admits a generalized ordinal potential. Then, at
21This section is more technical than the rest of the paper and could be skipped in a �rst reading.
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any regular interior Cournot-Nash equilibrium x�N , the matrix of �signed slopes�

J � J(x�N) =

0BBB@
0 ��12(x�N) � � � ��1n(x�N)

�21(x
�
N) 0

. . .
...

...
. . . . . . ��n�1n(x�N)

�n1(x
�
N) � � � �nn�1(x

�
N) 0

1CCCA (30)

cannot be semipositive.

Thus, by logical contraposition, if the matrix J de�ned through (30) happens to be semipositive

at some regular interior equilibrium, then � does not admit a generalized ordinal potential.

In the sequel, we will take two more steps so as to develop Lemma 4 into our most general

result for the case of one-dimensional strategy spaces. First, note that the conclusion of Lemma

4, i.e., that J is not semipositive, may certainly be replaced by the less stringent conclusion

that J is not inverse nonnegative. As a matter of fact, this simpli�cation will not weaken our

criterion at all, essentially because case (ii) of Lemma 3 corresponds to a situation in which one

may construct a strict improvement cycle with less than n players involved.

4.2 Permutations of the player set and �ipped strategy spaces

Second, recall that Lemma 4 looks at one particular path only. Alternative paths, corresponding

to additional necessary conditions, may be constructed, e.g., by either (i) changing the order

in which players change their respective strategies, or by (ii) �ipping around the natural order

of individual strategy spaces. While the �rst concept is rather speci�c to the problem at hand,

the second concept (i.e., �ipping around the natural order of an individual strategy space) is

familiar from the theory of the oligopoly, where it has been used, in particular, to convert a

two-player Cournot game with strategic substitutes into a supermodular game (Vives, 1990;

Amir, 1996).

Formally, let � : N ! N be an arbitrary bijection of the set of players. Then the natural

ordering 1; 2; :::; n in which the set N is run through twice in the construction of the strict

improvement cycle is permuted such that the strategy change of player i takes place at position

�(i) rather than at position i. In other words, when ��1 denotes the inverse of �, player ��1(1)

moves �rst, and player ��1(n) last. Below, � = id will refer to the identity mapping on N , and

� = (i1i2:::im) to the round-robin permutation that maps i1 to i2, i2 to i3, ..., im�1 to im, and im
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back to i1, leaving all remaining players unchanged. Further, denote by F � N the arbitrary

subset of players for which the strategy space is �ipped around.

It turns out that both of these operations, including combinations thereof, may be conve-

niently implemented by a set of pairwise sign changes applied to the slopes of players� local

best-response functions. More precisely, the matrix J introduced in the statement of Lemma 4

may be replaced, without a¤ecting the validity of the lemma, by any matrix

J (�;F ) � J (�;F )(x�N) =

0BBBB@
0 ��(�;F )12 (x�N) � � � ��(�;F )1n (x�N)

�
(�;F )
21 (x�N) 0

. . .
...

...
. . . . . . ��(�;F )n�1n(x

�
N)

�
(�;F )
n1 (x�N) � � � �

(�;F )
nn�1(x

�
N) 0

1CCCCA , (31)

where the entries o¤ the diagonal are given by the formula22

�
(�;F )
ij (x�N) = (�1)Ifi2Fg+Ifj2Fg �

sgn(�(j)� �(i))
sgn(j � i) � �ij(x�N) (i; j 2 N; j 6= i). (32)

From equation (32), it is easy to see that �ipping around all of the players�individual strategy

spaces does not lead to any new condition, i.e., J (id;N) = J . Moreover, a circular shift of the

players forward by one position is equivalent to �ipping around player n�s strategy space only,

i.e., J ((12:::n);?) = J (id;fng). Taking account of such redundancies, however, a total of (n�1)!2n�1

independent conditions remain. Some of these will prove useful below.

4.3 A more general result

Recall that a principal submatrix of a square matrix A 2 Rn�n is a submatrix eA 2 Rm�m, for
some m 2 f1; :::; ng, that is obtained from A by deleting n�m pairs of corresponding rows and

columns. In particular, A is a principal submatrix of itself. Summarizing the discussion so far,

we arrive at the following extension of Proposition 1.

Lemma 5. Suppose that the smooth game � admits a generalized ordinal potential. Then, at

any regular interior Cournot-Nash equilibrium x�N , the matrix J = J(x
�
N) de�ned through (30)

does not possess an inverse nonnegative principal submatrix. Moreover, the same is true if J is

replaced by any matrix J (�;F ) = J (�;F )(x�N) where players have been renamed using an arbitrary

22Here and elsewhere in the paper, sgn denotes the sign function, satisfying sgn(d) = +1 if d > 0, sgn(d) = 0
if d = 0, and sgn(d) = �1 if d < 0. Moreover, I denotes the indicator function, satisfying Ifi2Fg = 1 if i 2 F
and Ifi2Fg = 0 otherwise (similarly for Ifj2Fg).
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bijection � : N ! N , and where an arbitrary subset F � N of individual strategy spaces have

been �ipped around.

Illustrations of how Lemma 5 sharpens the conclusion of Proposition 1 will be given below. The

following example shows, however, that the conclusion of Lemma 5 boils down to the conclusion

of Proposition 1 in the case of two players (i.e., the earlier restriction to strict improvement

cycles running over the edges of a square was indeed innocuous).

Example 1. It is obvious that the two one-dimensional principal submatrices of

J =

�
0 ��12(x�N)

�21(x
�
N) 0

�
(33)

are not inverse nonnegative. The condition that J itself is inverse nonnegative is that J is

nonsingular, with all entries of the inverse matrix being nonnegative. Because of

J�1 =
1

�12(x�N)�21(x
�
N)

�
0 �12(x

�
N)

��21(x�N) 0

�
, (34)

this means �12(x�N)�21(x
�
N) < 0 and �21(x

�
N) > 0 > �12(x

�
N).

23 By �ipping around the strategy

space of exactly one of the two players (i.e., by letting F = f1g or F = f2g, and � = id),

or alternatively by changing the order of moves (i.e., F = ? and � = (12)), one may assure

oneself that the sign condition on the individual slopes may be dropped without loss. Thus, we

return to the criterion captured by Proposition 1, viz. that the inequality �12(x�N)�21(x
�
N) < 0

is incompatible with the existence of a generalized ordinal potential for �.

5. The second necessary condition

5.1 Statement of the result

While Lemma 5 is quite general, it is also desirable to know less stringent conditions that

can be applied more readily to speci�c games. In this section, we therefore derive a second

set of conditions that are necessary for the existence of a generalized ordinal potential in a

given game with continuous strategy spaces. In contrast to the pairwise strategic substitutes or

23Indeed, suppose that J is inverse nonnegative with �12(x�N )�21(x
�
N ) > 0. Then, since all entries of J�1

must be nonnegative, �12(x�N ) � 0 and �21(x�N ) � 0, so that �12(x�N )�21(x�N ) � 0, which is impossible.
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complements condition appearing in Proposition 1, the conditions introduced in the following

result impose restrictions on the slopes of local best-response functions (or, more generally,

cross-derivatives) of at least three players.

Proposition 2. Suppose that the smooth game � with more than two players admits a gener-

alized ordinal potential. Then, at any regular interior Cournot-Nash equilibrium x�N , and for

any set fi1; i2; i3g � N of pairwise di¤erent players,

�i1i2(x
�
N) � �i2i3(x�N) � �i3i1(x�N) = �i2i1(x�N) � �i3i2(x�N) � �i1i3(x�N). (35)

Moreover, for any set of pairwise distinct players fi1; ::::; img � N with m � 4,

�i1i2(x
�
N) � �i2i3(x�N) � ::: � �im�1im(x�N) � �imi1(x�N) (36)

= �i2i1(x
�
N) � �i3i2(x�N) � ::: � �imim�1(x�N) � �i1im(x�N),

provided that �i1i3(x
�
N) 6= 0; :::; �i1im�1(x�N) 6= 0 and �i3i1(x�N) 6= 0; :::; �im�1i1(x�N) 6= 0:

Thus, the product of pairwise slopes of the local best-response functions over an arbitrary cycle

of three players remains unchanged if the order in which the cycle is run through is reversed.

Moreover, this result extends to cycles of length four and beyond provided that a certain slopes

of players�local best-response functions are all nonzero.24

For exact potential games, the conclusion of Proposition 2 may be checked directly. For

instance, for an exact potential game with n = 3 players, Lemma 1 implies

�12(x
�
N) � �23(x�N) � �31(x�N)

=
@2u1(x

�
N)=@x2@x1

@2u1(x�N)=@x
2
1

� @
2u2(x

�
N)=@x3@x2

@2u2(x�N)=@x
2
2

� @
2u3(x

�
N)=@x1@x3

@2u3(x�N)=@x
2
3

(37)

=
@2u2(x

�
N)=@x1@x2

@2u1(x�N)=@x
2
1

� @
2u3(x

�
N)=@x2@x3

@2u2(x�N)=@x
2
2

� @
2u1(x

�
N)=@x3@x1

@2u3(x�N)=@x
2
3

(38)

= �21(x
�
N) � �32(x�N) � �13(x�N), (39)

as claimed. Obviously, this argument extends in a straightforward way to more than three

players and likewise to the case of weighted potential games.

24For ordinal potentials that are su¢ ciently well-behaved, as in the subsequently listed examples, the assump-
tion that certain slopes do not vanish is obsolete. In general, however, it seems that the assumption cannot be
easily dropped.
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For the class of ordinal potential games in which payo¤s are given by ui(xN) = xi � �(xN),

it is again the symmetry relationship

x�j �
@2ui(x

�
N)

@x2i
� �ij(x�N) = x�i �

@2uj(x
�
N)

@x2j
� �ji(x�N) (i; j 2 N; j 6= i) (40)

derived in equations (16-18) that allows the same conclusion.

Proposition 2 shows that these properties hold, more generally, for any generalized ordinal

potential game. The result is actually somewhat unexpected, because the rather in�exible

equality constraints (35-36) follow from a set of assumptions that are entirely of an ordinal

nature.

A way to reformulate and summarize the conclusions of Propositions 1 and 2, essentially

without losing any mileage,25 is the following, beforementioned result.

Corollary 1. Consider an interior regular Cournot-Nash equilibrium x�N in a smooth game

� such that all slopes f�ij(x�N) : i; j 2 N s.t. i 6= jg are nonzero. If � admits a generalized

ordinal potential, then there exist positive weights w1(x�N) > 0; :::; wn(x
�
N) > 0 such that

�ij(x
�
N)wi(x

�
N) = �ji(x

�
N)wj(x

�
N) (i; j 2 N; j 6= i). (41)

Thus, as discussed in the Introduction, the existence of an ordinal potential implies a local

property that is reminiscent of the global condition for a weighted potential game.

5.2 Illustrations

We will illustrate Proposition 2 and Corollary 1 with the help of two additional examples. These

are a search model of the Diamond-type, which extends an example in Milgrom and Roberts

(1990), and a model of horizontally di¤erentiated price competition. The �rst example will also

allow us to settle an earlier question regarding strict improvement cycles that do not simply

follow the edges of a rectangular box.

Consider �rst the following search model. Each of n players i = 1; :::; n chooses a search

e¤ort xi � 0 at costs Ci(xi), and receives a payo¤

ui(x1; :::; xn) =
�P

j 6=i�ijxixj

�
+ bixi � Ci(xi), (42)

25That is, Corollary 1 implies both Proposition 1 and Proposition 2 in the case of nonzero slopes.
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where �ij 6= 0 measures player i�s expected bene�t (or damage) resulting from a random

encounter with player j, and bi 2 R is player i�s intrinsic marginal valuation of search e¤ort.

Note that it is not assumed here that the game is supermodular. We shall assume, however,

that the cost functions are quadratic for all players, i.e., that Ci(xi) = cix
2
i for some ci > 0.

Suppose that an interior Cournot-Nash equilibrium exists. Then, by Corollary 1, the search

game admits a generalized ordinal potential only if there are factors w1 > 0; :::; wn > 0 such that

�ijwi = �jiwj for all i and j with j 6= i. However, that condition is equivalent to the existence

of a weighted potential. Hence, given that being a weighted potential game is more stringent

than being a generalized ordinal potential game, the condition of Corollary 1 is actually seen

to be tight also in this case.

Relatedly, returning to the discussion adjourned at the end of Section 3, for any given

interior strategy pro�le x�N , and arbitrary nonzero slopes f�ij(x�N) 6= 0 : j 6= ig, the pro�le

x�N is easily seen to be a regular Cournot-Nash equilibrium in the search model for parameters

�ij = �ij(x
�
N), bi = x

�
i � �j 6=i�ijx�j , and ci = 1

2
. Therefore, the conditions on the slopes of the

local best-response functions obtained in Corollary 1 cannot be tightened any further in this

speci�c class of games. Since the consideration of local strict improvement cycles of arbitrary

shape can only lead to slope conditions that apply regardless of the speci�c game at hand, this

implies that the consideration of local strict improvement cycles of arbitrary shape in arbitrary

smooth games indeed does not lead to additional insights over those already obtained.26

Next, consider the following model of Bertrand-style competition between n �rms i = 1; :::; n

with di¤erentiated products. Suppose that each �rm i 2 N chooses a price xi (keeping the

notation for convenience), and subsequently sells a quantity

qi(xN) = Qi � sixi +
X
j 6=i

�ijxj, (43)

where Qi > 0, si > 0, and �ij 6= 0 are parameters. Firm i�s production cost is represented by a

convex and twice continuously di¤erentiable function i. Thus, �rm i�s pro�t reads

ui(xN) = xiqi(xN)� i(qi(xN)). (44)

26In fact, it follows now from the proofs that, if a local strict improvement cycle of any shape and for any
number of players exists, then there will also be a strict improvement cycle that is rectangular-shaped and that
involves at most three players.
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The conditions for the existence of an exact potential may be derived in a straightforward way.

Speci�cally, the cross-derivative of �rm i�s pro�t with respect to �rm j is given by

@2ui(xN)

@xj@xi
= �ij(1 + si

00
i (qi(xN))). (45)

Hence, from Lemma 1, the price-setting game admits an exact potential if and only if

�ij(1 + si
00
i ) = �ji(1 + sj

00
j ) (i; j 2 N ; j 6= i). (46)

In particular, all cost functions need to be (at most) quadratic. Even though this is a classic

example, little was known about the possibility of a generalized ordinal potential. Suppose that

the price-setting game allows an interior equilibrium x�N . Then, from Proposition 2, we obtain

a necessary condition that is less stringent than (46), viz. that

�i1i2�i2i3�i3i1 = �i2i1�i3i2�i1i3 (47)

holds for any set fi1; i2; i3g of pairwise di¤erent �rms. Thus, if price externalities are generic (in

the sense that equation (47) fails to hold for some triplet fi1; i2; i3g of pairwise di¤erent �rms,

then the price-setting game with more than two �rms does not admit a generalized ordinal

potential. Clearly, the same conclusion may be drawn if any of the analogues of equation (47)

fails to hold for any m � 4.

6. Some speci�c classes of games

The purpose of this section is it to characterize the restrictions that our necessary conditions

impose in three speci�c classes of games. By necessary conditions, we mean here throughout

the strongest-form necessary conditions summarized in Lemma 5.
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6.1 Sum-aggregative games

In a sum-aggregative game (e.g., Corchón, 1994), each player i�s payo¤ function may be written

as ui(xi; x�i) = Ui(xi; x�i) for some function Ui on Xi � R, where x�i =
P

j 6=ixj. Examples

include Cournot games and contests (such as the one considered above). We claim that the

consideration of strict improvement cycles involving any number of players yields no conclusions

on top of what Proposition 1 would deliver. To see this, note that, at any pro�le xN from the

interior of XN , the payo¤ representation of the sum-aggregative game implies

@2ui(xN)

@xj@xi
=
@2ui(xN)

@xk@xi
(48)

for any set fi; j; kg of pairwise di¤erent players. Therefore, at any interior regular equilibrium

x�N , the slopes of the local best-response functions satisfy �ij(x
�
N) � �i(x�N) for any two players

i and j with j 6= i. Consequently, the matrix J = J(x�N) de�ned through (30) attains the

particular form

J =

0BBBBB@
0 ��1(x�N) ��1(x�N) � � � ��1(x�N)

�2(x
�
N) 0 ��2(x�N) � � � ��2(x�N)

�3(x
�
N) �3(x

�
N) 0

. . .
...

...
. . . . . . ��n�1(x�N)

�n(x
�
N) �n(x

�
N) � � � �n(x

�
N) 0

1CCCCCA : (49)

To see under what conditions this matrix is semipositive, it clearly su¢ ces to restrict attention

to the case where �i(x�N) 6= 0 for all i 2 N . Since we are interested in conclusions that go

beyond those of Proposition 1, we may even assume that �i(x�N)�j(x
�
N) > 0 for any two players

i and j with j 6= i. But then, all slopes are nonzero and of the same sign, so that J may be

rescaled into a skew-symmetric matrix by multiplying it from the left with a positive diagonal

matrix. Thus, J cannot be semipositive.27 Moreover, the conclusion of skew-symmetry does

not change when we permute the player set or �ip around individual strategy spaces.

The discussion may be summarized as follows.

Corollary 2. A smooth sum-aggregative game � satis�es the necessary conditions for the

27Indeed, a skew-symmetric matrix is never semipositive. To see this, suppose that A 2 Rn�n is semipositive.
Then, there exists �N 2 Rn with �N > 0 such that A�N > 0. Hence, if A is also skew-symmetric, AT = �A,
so that AT�N = �A�N < 0. However, by the Theorem of the Alternative (Johnson et al., 1994, Th. 2.9), this
is impossible.
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existence of a generalized ordinal potential if and only if � exhibits, at any interior regular

equilibrium, either strategic complements or strategic substitutes.

6.2 Symmetric games

A game � is symmetric if all players have the same strategy space X � X1 = ::: = XN , and if,

for any permutation � : N ! N of the player set, payo¤s satisfy

ui(x1; :::; xn) = u�(i)(x�(1); :::; x�(n)) (i 2 N; (x1; :::; xn) 2 XN). (50)

Furthermore, a Cournot-Nash equilibrium x�N = (x�1; :::; x
�
n) is symmetric if x

�
1 = ::: = x�N .

Smooth symmetric games admit at least one symmetric equilibrium under standard assumptions

(Moulin, 1986, p. 115).28 Therefore the following observation may be useful.

Corollary 3. In any smooth symmetric game �, the necessary conditions for the existence

of a generalized ordinal potential are automatically satis�ed at any symmetric Cournot-Nash

equilibrium.

For instance, it is known that any symmetric game with one-dimensional strategy spaces and

best-response functions that have a slope globally strictly above negative one admits at most

one Cournot-Nash equilibrium (Vives, 1999). Since the equilibrium is necessarily symmetric in

that case, such games satisfy our necessary conditions as well.

6.3 Zero-sum games

As usual, we call a two-player game � zero-sum if u1(xN) + u2(xN) = 0 for all xN 2 XN . For

this case, Proposition 1 yields the following noteworthy implication.

Corollary 4. A smooth two-player zero-sum game � satis�es the necessary conditions for the

existence of a generalized ordinal potential if and only if �12(x�N) = �21(x
�
N) = 0 at any interior

regular saddle point x�N of �.

Thus, if players� reaction curves always intersect at a right angle that is aligned with the

coordinate system (as it is the case in a symmetric two-player zero-sum game, for instance), then

28However, there are also large classes of economically relevant symmetric games that admit only asymmetric
pure-strategy Nash equilibria (cf. Amir et al., 2010).
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the necessary conditions for the existence of a generalized ordinal potential hold. Conversely,

no generalized ordinal potential is feasible in a two-player zero-sum game if the tangents to the

players�reaction curves are not parallel to the coordinate axes at any point of intersection.

Corollary 4 extends to two-player games that are strategically zero-sum in the sense of

Moulin and Vial (1978), i.e., to games such that u1(xN) + u2(xN) is additively separable in x1

and x2. In particular, this is an alternative way to look at the contest example discussed above.

7. Extensions

7.1 Multi-dimensional strategy spaces

Below, we will brie�y summarize the adaptions that need to be made to accommodate multi-

dimensional strategy spaces. In fact, as it turns out, the extension of the necessary conditions

is mainly a matter of notation.

In the case of one-dimensional strategy spaces, the most general condition for the existence

of a strict improvement cycle required the existence of a vector �N = (�1; :::; �n)T 2 Rn with

�N > 0 such that J�N > 0, where J denotes as before the matrix of �signed slopes�introduced

in Lemma 4. Taking account of the possibility of �ipping around any subset of individual

strategy spaces, yet keeping the natural ordering of the players, this condition is equivalent

to the existence of a vector �N = (�1; :::; �n)T 2 Rn (all components of which are necessarily

nonzero) such that

0BBB@
�1 0 � � � 0

0 �2
. . .

...
...

. . . . . . 0
0 � � � 0 �n

1CCCA

0BBBBBBBBB@

0 �@
2u1(x

�
N)

@x2@x1
� � � �@

2u1(x
�
N)

@xn@x1
@2u2(x

�
N)

@x1@x2
0

. . .
...

...
. . . . . . �@

2un�1(x
�
N)

@xn@xn�1
@2un(x

�
N)

@x1@xn
� � � @2un(x

�
N)

@xn�1@xn
0

1CCCCCCCCCA

0BBB@
�1
�2
...
�n

1CCCA < 0.

(51)

The bene�t of this reformulation is that condition (51) easily extends to the case of multi-

dimensional strategy spaces. To see this, suppose that now Xi � Rdi for i = 1; :::; n, where di

denotes the dimension of player i�s strategy space. Thus, each player i 2 N chooses a vector

(x
(1)
i ; :::; x

(di)
i ) 2 Xi, such that her payo¤ function ui has a total of dimXN = d1 + ::: + dn
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arguments. Then, to obtain the multi-dimensional analogue of the semipositivity condition,

one replaces each scalar �i (i.e., the length of the respective side of the rectangular box) by

a vector �i = (�
(1)
i ; :::; �

(d1)
i ) 2 Rdi (i.e., a direction of change for the unilateral change of

strategy by player i in the strict improvement cycle), and correspondingly, each cross derivative

(@2ui(x
�
N)=@xj@xi) by a matrix Hij 2 Rdi�dj collecting the cross-derivatives of player i�s payo¤

function ui with respect to any pair consisting of one of player i�s and one of player j�s choice

variables. The component �i(@2ui(x�N)=@xj@xi)�j resulting from the left-hand side of (51) must

then be replaced by (�i)THij�j.

For example, in the case of n = 2 players with d1 = d2 = 2, the semipositivity condition

(allowing for �ipped strategy spaces) must be replaced by the condition that there exist vectors

�1 = (�
(1)
1 ; �

(2)
1 )

T and �2 = (�
(1)
2 ; �

(2)
2 )

T such that

(�1)
TH12�2 > 0 and (�2)TH21�1 < 0, (52)

where

Hij =

0BBB@
@2ui(x

�
N)

@x
(1)
j @x

(1)
i

@2ui(x
�
N)

@x
(2)
j @x

(1)
i

@2ui(x
�
N)

@x
(1)
j @x

(2)
i

@2ui(x
�
N)

@x
(2)
j @x

(2)
i

1CCCA (i 2 N = f1; 2g; i 6= j) (53)

denotes the beforementioned matrix of cross-derivatives. The corresponding conditions for

either more than two involved players or strategy spaces of dimension larger than two may now

be found by straightforward extension. Using this notation, the proof of Lemma 4 extends in

a straightforward way.

7.2 Non-local strict improvement cycles

The approach of this paper extends to non-local strict improvement cycles, where the role of the

interior equilibrium is taken over by a cyclic path along which the generalized ordinal potential

stays constant. We illustrate the basic idea with an example, featuring two players and one-

dimensional strategy spaces. Suppose that x�N = (x
�
1 ; x

�
2 ) and x

+
N = (x

+
1 ; x

+
2 ) are two interior
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strategy pro�les such that

u1(x
�
1 ; x

+
2 ) = u1(x

+
1 ; x

+
2 ), (54)

u2(x
+
1 ; x

+
2 ) = u2(x

+
1 ; x

�
2 ), (55)

u1(x
+
1 ; x

�
2 ) = u1(x

�
1 ; x

�
2 ), (56)

u2(x
�
1 ; x

�
2 ) = u2(x

�
1 ; x

+
2 ). (57)

In other words, the �nite sequence

:::! (x�1 ; x
+
2 )! (x+1 ; x

+
2 )! (x+1 ; x

�
2 )! (x�1 ; x

�
2 )! ::: (58)

is a cyclic path along which the player that changes her strategy keeps an unchanged payo¤.

Consider now a perturbation of the pro�les, say

ex�N(") = (x�1 + "��1 ; x�2 + "��2 ), (59)

ex+N(") = (x+1 + "�+1 ; x+2 + "�+2 ), (60)

for " > 0 small, and for an arbitrary vector �# = (��1 ; �
+
1 ; �

�
2 ; �

+
2 )
T 2 R4. Then, for " su¢ ciently

small, the �nite sequence

:::! (ex�1 ("); ex+2 ("))! (ex+1 ("); ex+2 ("))! (ex+1 ("); ex�2 ("))! (ex�1 ("); ex�2 ("))! ::: (61)

is a strict improvement cycle provided that the following conditions hold:

�+1
@u1(x

+
1 ; x

+
2 )

@x1
+ �+2

@u1(x
+
1 ; x

+
2 )

@x2
� ��1

@u1(x
�
1 ; x

+
2 )

@x1
� �+2

@u1(x
�
1 ; x

+
2 )

@x2
> 0 (62)

�+1
@u2(x

+
1 ; x

�
2 )

@x1
+ ��2

@u2(x
+
1 ; x

�
2 )

@x2
� �+1

@u2(x
+
1 ; x

+
2 )

@x1
� �+2

@u2(x
+
1 ; x

+
2 )

@x2
> 0 (63)

��1
@u1(x

�
1 ; x

�
2 )

@x1
+ ��2

@u1(x
�
1 ; x

�
2 )

@x2
� �+1

@u1(x
+
1 ; x

�
2 )

@x1
� ��2

@u1(x
+
1 ; x

�
2 )

@x2
> 0 (64)

��1
@u2(x

�
1 ; x

+
2 )

@x1
+ �+2

@u2(x
�
1 ; x

+
2 )

@x2
� ��1

@u2(x
�
1 ; x

�
2 )

@x1
� ��2

@u2(x
�
1 ; x

�
2 )

@x2
> 0 (65)

In particular, if � admits a generalized ordinal potential, then the matrix

r(x�N ; x+N) (66)

=

0BBBB@
�@u1(x

�
1 ;x

+
2 )

@x1

@u1(x
+
1 ;x

+
2 )

@x1
0

@fu1(x+1 ;x
+
2 )�u1(x

�
1 ;x

+
2 )g

@x2

0
@fu2(x+1 ;x

�
2 )�u2(x

+
1 ;x

+
2 )g

@x1

@u2(x
+
1 ;x

�
2 )

@x2
�@u2(x

+
1 ;x

+
2 )

@x2
@u1(x

�
1 ;x

�
2 )

@x1
�@u1(x

+
1 ;x

�
2 )

@x1

@fu1(x�1 ;x
�
2 )�u1(x

+
1 ;x

�
2 )g

@x2
0

@fu2(x�1 ;x
+
2 )�u2(x

�
1 ;x

�
2 )g

@x1
0 �@u2(x

�
1 ;x

�
2 )

@x2

@u2(x
�
1 ;x

+
2 )

@x2

1CCCCA
27



must not be semipositive. Moreover, an analogous conclusion is obtained for any matrix derived

from r(x�N ; x+N) by multiplying an arbitrary subset of the column vectors with negative one.

Thus, an extension to non-local cycles is indeed feasible.29

8. Concluding remarks

In this paper, we have identi�ed tight conditions necessary for the existence of a generalized

ordinal potential in any given game with continuous strategy spaces and twice continuously

di¤erentiable payo¤ functions. Since every ordinal game is, in particular, a generalized ordinal

potential game, the same conditions are equally crucial for the existence of an ordinal potential.

In this sense, a (partial) di¤erentiable characterization of these important classes of games has

been accomplished.

We have used our criteria to prove the non-existence of generalized ordinal potentials in a

variety of classic games, including probabilistic all-pay contests with heterogeneous valuations,

mixed oligopoly, and quantity competition with a dominant �rm. Parameter constraints have

been obtained for a search model and a di¤erentiated Bertrand game with more than two �rms.

Besides illustrating the usefulness of the conditions, these applications allow to see some of the

economic implications of ordinal potential concepts.

Our results imply, in particular, that the class of concave games (Rosen, 1965) is not con-

tained in the class of generalized ordinal potential games.30 While both concepts impose related

restrictions on second-order derivatives, viz. negative quaside�niteness of the Jacobian in the

case of concave games and not semipositivity of the sign-modi�ed Jacobian in the case of gen-

eralized ordinal potential games, the relationship is actually rather loose. For instance, in a

smooth two-player game with payo¤functions that are strictly concave in own strategy, negative

29One might speculate whether the kernel of the matrix r(x�N ; x
+
N ) contains information about the isoquants

of any ordinal potential. Numerical investigations suggest, however, that unless isoquants are elliptic, r(x�N ; x
+
N )

will be invertible. Intuitively, this means that there typically does not exist a nearby �constant-payo¤ cycle�of
the same length.
30Conversely, however, it is well-known that any smooth game admitting a twice continuously di¤erentiable

exact potential function whose Hessian is globally negative de�nite is a concave game. See, e.g., Neyman (1997),
Ui (2008), and Hofbauer and Sandholm (2009).
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quaside�niteness of the Jacobian is tantamount to����@2u1(xN)@x2@x1
+
@2u2(xN)

@x1@x2

���� � 2
s����@2u1(xN)@x21

���� � ����@2u2(xN)@x22

����. (67)

Thus, mixed signs of mutual cross-derivatives at an interior equilibrium are feasible in a concave

game, yet as noted above, not in a generalized ordinal potential game.

Clearly, our �ndings may also be conducive to the identi�cation of new classes of ordinal

potential games. In particular, we have shown that necessary conditions in the strongest form

are satis�ed by three important classes of games, which may be informally described as (i) sum-

aggregative games with either increasing or decreasing best-response functions, (ii) symmetric

games in which best-response functions have everywhere slopes strictly exceeding negative one,

and (iii) symmetric two-person zero-sum games. This allows for the theoretical possibility that

some of these games might indeed admit a generalized ordinal potential.31

A somewhat unexpected feature of the analysis is re�ected in the equality constraints that

apply to smooth generalized ordinal potential games with more than two players. After all, the

assumptions driving the equality constraints are of a purely ordinal nature, while the implica-

tions are nongeneric in nature. We have no simple intuition for this �nding.

Appendix

This Appendix contains the proofs of our results. For the proofs of the known facts summarized

above as Lemmas 1 through 3, the reader is referred to Monderer and Shapley (1996a, Th. 4.5),

Voorneveld (1997, Lemma 2.1), and Johnson et al. (1994, Cor. 3.5 & Th. 4.3), respectively.

Proof of Proposition 1. By contradiction. Suppose that, at some interior regular equilibrium

x�N , and for some players i and j with j 6= i, we have �ij(x�N)��ji(x�N) < 0. By renaming players,

if necessary, we may assume that �ji(x�N) < 0 < �ij(x
�
N). Thus, player i�s local best-response

31Preliminary research by the author on the construction of ordinal potentials in smooth games strongly
suggests that the necessary conditions identi�ed in the present paper are indicative regarding su¢ ciency as well.
However, unfortunately, the matter of su¢ ciency is highly involved. For example, the pseudo- and best-reply
potentials ingeniously constructed in prior work (Huang, 2002; Dubey et al., 2006; Jensen, 2010) need not be
generalized ordinal potentials in general. Because of such di¢ culties, it has to remain feasible for the time being
that the restrictions implied by the existence of a generalized ordinal potential are even more restrictive than
the necessary conditions identi�ed in the present analysis.
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function around x�N is strictly increasing in xj, whereas player j�s local best-response function

around x�N is strictly declining in xi (i.e., just as shown in Figure 1), with

@2ui(x
�
N)

@xj@xi
> 0 and

@2uj(x
�
N)

@xi@xj
< 0. (68)

It is claimed now that, for any su¢ ciently small " > 0, the payo¤ di¤erence corresponding to

the upper side of the square satis�es

�+
i (") � ui(x�i + "; x�j + "; x��i;j)� ui(x�i � "; x�j + "; x��i;j) > 0. (69)

To prove this, we determine the �rst and second derivatives of the function �+
i ("), and evaluate

at " = 0. As for the �rst derivative, one obtains

@�+
i (")

@"
=

�
@ui(x

�
i + "; x

�
j + "; x

�
�i;j)

@xi
+
@ui(x

�
i + "; x

�
j + "; x

�
�i;j)

@xj

�
�
�
�
@ui(x

�
i � "; x�j + "; x��i;j)

@xi
+
@ui(x

�
i � "; x�j + "; x��i;j)

@xj

�
. (70)

Evaluating at " = 0, and subsequently exploiting the necessary �rst-order condition for player

i at the interior equilibrium x�N , we �nd

@�+
i (0)

@"
= 2 � @ui(x

�
N)

@xi
= 0. (71)

Next, consider the second derivative of �+
i (") at " = 0, i.e.,

@2�+
i (0)

@"2
=

�
@2ui(x

�
N)

@x2i
+
@2ui(x

�
N)

@xj@xi
+
@2ui(x

�
N)

@xi@xj
+
@2ui(x

�
N)

@x2j

�
(72)

�
�
@2ui(x

�
N)

@x2i
� @

2ui(x
�
N)

@xj@xi
� @

2ui(x
�
N)

@xi@xj
+
@2ui(x

�
N)

@x2j

�
= 2 � @

2ui(x
�
N)

@xj@xi
+ 2 � @

2ui(x
�
N)

@xi@xj
. (73)

Invoking Schwarz�s theorem regarding the equality of cross-derivatives for twice continuously

di¤erentiable functions, and subsequently using (68), one �nds

@2�+
i (0)

@"2
= 4 � @

2ui(x
�
N)

@xj@xi
> 0. (74)

In sum, (71) and (74) imply that, indeed, �+
i (") > 0 for any su¢ ciently small " > 0. Analogous
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arguments can be used to deal with the other three sides of the square. Speci�cally, one de�nes

�+
j (") = uj(x

�
j � "; x�i + "; x��i;j)� uj(x�j + "; x�i + "; x��i;j), (75)

��
i (") = ui(x

�
i � "; x�j � "; x��i;j)� ui(x�i + "; x�j � "; x��i;j), (76)

��
j (") = uj(x

�
j + "; x

�
i � "; x��i;j)� uj(x�j � "; x�i � "; x��i;j), (77)

and now readily veri�es that

@�+
j (0)

@"
= (�2) � @uj(x

�
N)

@xj
= 0, (78)

@��
i (0)

@"
= (�2) � @ui(x

�
N)

@xi
= 0, (79)

@��
j (0)

@"
= 2 � @uj(x

�
N)

@xj
= 0, (80)

and that

@2�+
j (0)

@"2
= (�4) � @

2uj(x
�
N)

@xi@xj
> 0, (81)

@2��
i (0)

@"2
= 4 � @

2ui(x
�
N)

@xj@xi
> 0, (82)

@2��
j (0)

@"2
= (�4) � @

2uj(x
�
N)

@xi@xj
> 0. (83)

It follows that �+
i (") > 0, �+

j (") > 0, ��
i (") > 0, and ��

j (") > 0 all hold for " > 0 small

enough. But then, the �nite sequence (19) is a strict improvement cycle, which is incompatible

with the existence of a generalized ordinal potential by Lemma 2. �

Proof of Lemma 4. A semipositive matrix remains semipositive after multiplication from the

left or right with any positive diagonal matrix (Johnson et al., 1994, p. 267). Therefore, the

semipositivity of J is equivalent to the semipositivity of the matrix

J =

0BBBBBBBBB@

0 �@
2u1(x

�
N)

@x2@x1
� � � �@

2u1(x
�
N)

@xn@x1
@2u2(x

�
N)

@x1@x2
0

. . .
...

...
. . . . . . �@

2un�1(x
�
N)

@xn@xn�1
@2un(x

�
N)

@x1@xn
� � � @2un(x

�
N)

@xn�1@xn
0

1CCCCCCCCCA
, (84)

which is constructed from the Jacobian of � by replacing all diagonal entries by zero and by

multiplying all entries above the diagonal with negative one. Suppose now that J is semipositive,
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so that J is semipositive as well. Then, by de�nition, there exists a vector �N = (�1; :::; �n)T 2 R

with �N > 0 such that J�N > 0. Consider now the �nite sequence

:::! x
(1;+)
N (") = (x�1 + �1"; x

�
2 � �2"; x�3 � �3"; :::; x�n�1 � �n�1"; x�n � �n")!

! x
(2;+)
N (") = (x�1 + �1"; x

�
2 + �2"; x

�
3 � �3"; :::; x�n�1 � �n�1"; x�n � �n")!

...

! x
(n;+)
N (") = (x�1 + �1"; x

�
2 + �2"; x

�
3 + �3"; :::; x

�
n�1 + �n�1"; x

�
n + �n")! (85)

! x
(1;�)
N (") = (x�1 � �1"; x�2 + �2"; x�3 + �3"; :::; x�n�1 + �n�1"; x�n + �n")!

! x
(2;�)
N (") = (x�1 � �1"; x�2 � �2"; x�3 + �3"; :::; x�n�1 + �n�1"; x�n + �n")!

...

! x
(n;�)
N (") = (x�1 � �1"; x�2 � �2"; x�3 � �3"; :::; x�n�1 � �n�1"; x�n � �n")! :::,

where " > 0 is a small constant as before. Figure 2 illustrates this path for n = 3, where the

rectangular-shaped box has sides of respective length "i = �i" for i = 1; 2; 3. It is claimed that,

for any " > 0 su¢ ciently small, the following four conditions hold:

(i) player 1�s payo¤ at x(1;+)N (") is strictly higher than at x(n;�)N (");

(ii) for i = 2; :::; n, player i�s payo¤ at x(i;+)N (") is strictly higher than at x(i�1;+)N (");

(iii) player 1�s payo¤ at x(1;�)N (") is strictly higher than at x(n;+)N (");

(iv) for i = 2; :::; n, player i�s payo¤ at x(i;�)N (") is strictly higher than at x(i�1;�)N (").

To establish (i), proceed precisely as in the proof of Proposition 1, and consider the �rst two

derivatives of the payo¤ di¤erence

�(1;+)(") = u1(x
(1;+)
N ("))� u1(x(n;�)N (")) (86)

= u1(x
�
1 + �1"; x

�
2 � �2"; x�3 � �3"; :::; x�n�1 � �n�1"; x�n � �n") (87)

� u1(x�1 � �1"; x�2 � �2"; x�3 � �3"; :::; x�n�1 � �n�1"; x�n � �n")
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at " = 0. The �rst derivative of �(1;+)(") at " = 0 is given by

@�(1;+)(0)

@"
=

�
�1
@u1(x

�
N)

@x1
� �2

@u1(x
�
N)

@x2
� :::� �n

@u1(x
�
N)

@xn

�
(88)

�
�
��1

@u1(x
�
N)

@x1
� �2

@u1(x
�
N)

@x2
� :::� �n

@u1(x
�
N)

@xn

�
= 2�1

@u1(x
�
N)

@x1
. (89)

Hence, from player 1�s �rst-order condition,

@�(1;+)(0)

@"
= 0. (90)

Next, one considers the second derivative of �(1;+)(") at " = 0, i.e.,

@2�(1;+)(0)

@"2
=

�
(�1)

2@
2u1(x

�
N)

@x21
� �2�1

@2u1(x
�
N)

@x2@x1
� :::� �n�1

@2u1(x
�
N)

@xn@x1

� �1�2
@2u1(x

�
N)

@x1@x2
+ (�2)

2@
2u1(x

�
N)

@x22
+ :::+ �n�2

@2u1(x
�
N)

@xn@x2
...

��1�n
@2u1(x

�
N)

@x1@xn
+ �2�n

@2u1(x
�
N)

@x2@xn
+ :::+ (�n)

2@
2u1(x

�
N)

@x2n

�
(91)

�
�
(�1)

2@
2u1(x

�
N)

@x21
+ �2�1

@2u1(x
�
N)

@x2@x1
+ :::+ �n�1

@2u1(x
�
N)

@xn@x1

+ �1�2
@2u1(x

�
N)

@x1@x2
+ (�22)

@2u1(x
�
N)

@x22
+ :::+ �n�2

@2u1(x
�
N)

@xn@x2
...

+ �1�n
@2u1(x

�
N)

@x1@xn
+ �2�n

@2u1(x
�
N)

@x2@xn
+ :::+ (�n)

2@
2u1(x

�
N)

@x2n

�
.

Collecting terms, one obtains

@2�(1;+)(0)

@"2
= �2�1

�
�2
@2u1(x

�
N)

@x2@x1
+ �3

@2u1(x
�
N)

@x3@x1
+ :::+ �n

@2u1(x
�
N)

@xn@x1

�
: (92)

Thus, using �1 > 0, and recalling that the signs in the �rst of the n inequalities in the system

J�N > 0 are all negative, one arrives at

@2�(1;+)(0)

@"2
> 0. (93)

It follows that �(1;+)(") > 0 for any " > 0 su¢ ciently small, which proves (i). To verify claims
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(ii) through (iv), de�ne payo¤ di¤erences

�(i;+)(") = ui(x
(i;+)
N ("))� ui(x(i�1;+)N (")) (i = 2; :::; n), (94)

�(1;�)(") = u1(x
(1;�)
N ("))� u1(x(n;+)N (")), (95)

�(i;�)(") = ui(x
(i;�)
N ("))� ui(x(i�1;+)N (")) (i = 2; :::; n). (96)

Using the players�necessary �rst-order conditions, it is straightforward to validate that

@�(i;+)(0)

@"
= 0 (i = 2; :::; n), (97)

@�(1;�)(0)

@"
= 0, (98)

@�(i;�)(0)

@"
= 0 (i = 2; :::; n). (99)

Moreover, for i = 2; :::; n, calculations analogous to (91) yield

@2�(i;+)(0)

@"2
= 2�i

�
�1
@2ui(x

�
N)

@x1@xi
+ :::+ �i�1

@2ui(x
�
N)

@xi�1@xi
(100)

��i+1
@2ui(x

�
N)

@xi+1@xi
� :::� �n

@2ui(x
�
N)

@xn@xi

�
> 0, (101)

where the inequality corresponding to player i�s strategy change corresponds precisely to the

i�s inequality in the system J�N > 0. Finally, one notes that, since d(�")2 = d"2, it follows

that
@2�(i;�)(0)

@"2
=
@2�(i;+)(0)

@"2
(i = 1; :::; n). (102)

In sum, this clearly proves (ii) through (iv). Thus, there exists a strict improvement cycle in

�. Since this is impossible, the lemma follows. �

Proof of Lemma 5. Take a bijection � : N ! N and a subset F � N . Suppose that

players have been renamed corresponding to �, so that ��1(1) moves �rst and ��1(n) moves

last, and the strategy spaces of the players in F have been �ipped around. Suppose �rst that

F = ?. Then, if a strict improvement cycle corresponding to (�; F ) can be constructed, Lemma
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4 implies that the matrix

J�(x�N)

=

0BBBB@
0 ����1(1)��1(2)(x�N) � � � ����1(1)��1(n)(x�N)

���1(2)��1(1)(x
�
N) 0

. . .
...

...
. . . . . . ����1(n�1)��1(n)(x�N)

���1(n)��1(1)(x
�
N) � � � �

(�;F )

��1(n)��1(n�1)(x
�
N) 0

1CCCCA ,
(103)

is semipositive. De�ne the n�n permutation matrix �� = f�ijg with entries �ij = 1 if j = �(i)

and �ij = 0 if j 6= �(i). Then it can be checked that32

��J�(x�N)(�
�)T = J (�;?)(x�N). (108)

Since semipositivity of a matrix is not a¤ected by multiplication from the right or left with

a permutation matrix (Johnson et al., 1994, p. 267), J (�;?)(x�N) is semipositive. To complete

the proof, it su¢ ces to note that the slope �ij(x�N) changes sign when precisely one of the two

strategy spaces of players i and j is �ipped around. �

Proof of Proposition 2. Fix a regular interior equilibrium x�N of the generalized ordinal

potential game �. To prove the �rst claim, let fi1; i2; i3g be any triplet of pairwise di¤erent

players. Clearly, one may rename the players such that i1 = 1, i2 = 2, and i3 = 3. Suppose �rst

that � exhibits either strategic complements or strategic substitutes at x�N . Thus, we assume

32E.g., let � = (123). Then, with i counting rows and j counting columns,

�� =

0@ 0 1 0
0 0 1
1 0 0

1A . (104)

Therefore,

��J�(x�N )(�
�)T =

0@ 0 1 0
0 0 1
1 0 0

1A0@ 0 ��31(x�N ) ��32(x�N )
�13(x

�
N ) 0 ��12(x�N )

�23(x
�
N ) �21(x

�
N ) 0

1A0@ 0 0 1
1 0 0
0 1 0

1A (105)

=

0@ 0 ��12(x�N ) �13(x
�
N )

�21(x
�
N ) 0 �23(x

�
N )

��31(x�N ) ��32(x�N ) 0

1A (106)

=

0B@ 0 ��(�;?)12 (x�N ) ��(�;?)13 (x�N )

�
(�;?)
21 (x�N ) 0 ��(�;?)23 (x�N )

�
(�;?)
31 (x�N ) �

(�;?)
32 (x�N ) 0

1CA , (107)

consistent with relationship (108).
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that either �ij(x�N) � 0 for all i; j 2 f1; 2; 3g with j 6= i (in the case of strategic complements),

or �ij(x�N) � 0 for all i; j 2 f1; 2; 3g with j 6= i (in the case of strategic substitutes). In this

case, one �ips around player 2�s strategy space, yet leaves unchanged the order in which the

�nite sequence is run through (i.e., � = id and F = f2g). Then, by Lemma 5, the modi�ed

matrix

J3 � J (id,f2g)(x�N) =

0@ 0 �12(x
�
N) ��13(x�N)

��21(x�N) 0 �23(x
�
N)

�31(x
�
N) ��32(x�N) 0

1A (109)

cannot be inverse nonnegative. To prove (35), it su¢ ces to show that the determinant of J3,

jJ3j = �12(x�N)�23(x�N)�31(x�N)� �21(x�N)�32(x�N)�13(x�N), (110)

vanishes. To provoke a contradiction, suppose �rst that jJ3j > 0. Then, from the temporary

assumption of either strategic complements or strategic substitutes at x�N , all the entries of the

matrix inverse of J3,

(J3)
�1 =

1

jJ3j

0@ �23(x
�
N)�32(x

�
N) �13(x

�
N)�32(x

�
N) �12(x

�
N)�23(x

�
N)

�31(x
�
N)�23(x

�
N) �13(x

�
N)�31(x

�
N) �21(x

�
N)�13(x

�
N)

�21(x
�
N)�32(x

�
N) �12(x

�
N)�31(x

�
N) �12(x

�
N)�21(x

�
N)

1A , (111)

are nonnegative, in contradiction to the earlier conclusion that J3 is not inverse nonnegative.

Hence, jJ3j � 0. Suppose next that jJ3j < 0. Then, by running through the same path in the

opposite direction (e.g., by letting � = (13) and F = f2g), one obtains from Lemma 5 that

J 03 � J ((13);f2g)(x�N) =

0@ 0 ��12(x�N) �13(x
�
N)

�21(x
�
N) 0 ��23(x�N)

��31(x�N) �32(x
�
N) 0

1A = �J3 (112)

is not inverse nonnegative. The matrix inverse of J 03 is consequently given by (J
0
3)
�1 = �(J3)�1.

Hence, in this case, recalling (111) and jJ3j < 0, all entries of (J 03)
�1 are nonnegative, in

contradiction to the fact that J 03 is not inverse nonnegative. It follows that jJ3j = 0, which

proves the �rst claim in the case where � exhibits either strategic complements or strategic

substitutes at x�N . Next, we drop the assumption that � exhibits either strategic complements

or strategic substitutes at x�N . From Proposition 1, we know, however, that � exhibits pairwise

strategic complements or substitutes at x�N . Hence, up to another renaming of the players,

there are only two cases:

(i) Strategic complements at x�N between player 1 and each of players 2 and 3, as well as strategic

substitutes at x�N between players 2 and 3;
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(ii) Strategic substitutes at x�N between player 1 and each of players 2 and 3, as well as strategic

complements at x�N between players 2 and 3.

In either case, by �ipping around the strategy space of player 1, the game may be transformed

into a game that exhibits either strategic substitutes at x�N or strategic complements at x�N .

Since the operation of �ipping around individual strategy spaces does not a¤ect the validity of

equation (35), we �nd that the equation indeed holds generally in the case of three players.

The proof for m � 4 follows now easily by induction. To see this, let fi1; i2; :::; img be

an arbitrary set of pairwise di¤erent players. Suppose that the claim holds for any m0 2

f3; 4; :::;m � 1g. Then, in particular, a consideration of the two subsets fi1; i2; :::; im�1g and

fim�1; im; i1g shows that

�i1i2(x
�
N) � ::: � �im�2im�1(x�N) � �im�1i1(x�N) = �i2i1(x�N) � ::: � �im�1im�2(x�N) � �i1im�1(x�N), (113)

�im�1im(x
�
N) � �imi1(x�N) � �i1im�1(x�N) = �imim�1(x�N) � �i1im(x�N) � �im�1i1(x�N). (114)

Taking the respective products of the left-hand and right-hand sides of these equations yields

�
�i1i2(x

�
N) � ::: � �im�1im(x�N) � �imi1(x�N)

�
�
�
�im�1i1(x

�
N) � �i1im�1(x�N)

�
=
�
�i2i1(x

�
N) � ::: � �im�1im(x�N) � �i1im(x�N)

�
�
�
�i1im�1(x

�
N) � �im�1i1(x�N)

�
. (115)

By assumption, �i1im�1(x
�
N) 6= 0 and �im�1i1(x�N) 6= 0. Hence, eliminating the common nonzero

factors, (115) implies

�i1i2(x
�
N) � ::: � �im�1im(x�N) � �imi1(x�N) = �i2i1(x�N) � ::: � �im�1im(x�N) � �i1im(x�N), (116)

as claimed. This concludes the induction argument, and therefore proves the proposition. �

Proof of Corollary 1. Let x�N be an interior regular Nash equilibrium such that �ij(x�N) 6= 0

for all i 6= j. We need to �nd positive constants w1(x�N) > 0; :::; wn(x�N) > 0 such that

�ij(x
�
N)wi(x

�
N) = �ji(x

�
N)wj(x

�
N) (i; j 2 N; j 6= i). (117)

It is claimed that

wi(x
�
N) = (j�12(x�N)j � ::: � j�i�1i(x�N)j) � (j�i+1i(x�N)j � ::: � j�nn�1(x�N)j) (i 2 N) (118)
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does the job. Clearly, it su¢ ces to check (117) for i < j. Splitting the product in the second

bracket of (118), and plugging the result into the left-hand side of (117), one obtains

�ij(x
�
N)wi(x

�
N) = (j�12(x�N)j � ::: � j�i�1i(x�N)j)

� sgn(�ij(x�N)) � j�i+1i(x�N)j � ::: � j�jj�1(x�N)j � j�ij(x�N)j (119)

� (j�j+1j(x�N)j � ::: � j�nn�1(x�N)j) .

From Proposition 1 and the assumption that slopes do not vanish,

sgn(�ij(x�N)) = sgn(�ji(x
�
N)). (120)

Moreover, from Proposition 2,

�i+1i(x
�
N) � ::: � �jj�1(x�N) � �ij(x�N) = �ii+1(x�N) � ::: � �j�1j(x�N) � �ji(x�N). (121)

Plugging (120) and (121) into relationship (119) delivers

�ij(x
�
N)wi(x

�
N) = (j�12(x�N)j � ::: � j�i�1i(x�N)j)

� sgn(�ji(x�N)) � j�ii+1(x�N)j � ::: � j�j�1j(x�N)j � j�ji(x�N)j (122)

� (j�j+1j(x�N)j � ::: � j�nn�1(x�N)j)

= �ji(x
�
N)wj(x

�
N). (123)

This proves the claim and, hence, the corollary. �

Proof of Corollary 2. See the text before the corollary. �

Proof of Corollary 3. It su¢ ces to note that, at any symmetric equilibrium x�N , the matrix

J (�;F )(x�N) is skew-symmetric for any bijection � : N ! N and for any subset F � N . �

Proof of Corollary 4. (Only if) From Proposition 1, �12(x�N)�21(x
�
N) � 0. However, from

the zero-sum property and Schwarz�s theorem,

sgn(
@2u1(x

�
N)

@x2@x1
) = �sgn(@

2u2(x
�
N)

@x2@x1
) = �sgn(@

2u2(x
�
N)

@x1@x2
). (124)

Hence, sgn(�12(x�N)) = �sgn(�21(x�N)), and consequently �12(x�N) = �21(x�N) = 0. (If) Immedi-

ate. �
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List of symbols (not for publication)

�, N = f1; :::; ng game, set of players
Xi � R, xi; bxi; x#i player i�s strategy set, typical elements
ui : XN � X1 � :::�Xn ! R player i�s payo¤ function
�i = @ui=@xi marginal payo¤
x�N = (x

�
1; :::; x

�
n) 2 XN Nash equilibrium

x�i = (x1; :::; xi�1; xi+1; :::; xn); X�i strategy pro�le of i�s opponents, set
�i � �i(x�i) � �(x�i;x�N) player i�s local best-response function
U � X�i a small open neighborhood of x��i
�ij = �ij(x

�
N) slope of �i at x�N and w.r.t j

P : XN ! R potential function
:::! x0N ! x1N ! :::! xL�1N ! ::: strict improvement cycle (of length L)
�(l) player changing xlN to x

l+1
N

�N = (�1; :::; �n)
T 2 Rn vector of coe¢ cients

A 2 Rn�n; bA 2 Rn�m; eA 2 Rm�m square, sub-, and principal submatrix
Rn++ = fzN 2 Rn : zN > 0g open positive orthant
A�1 matrix inverse of A
� : XN ! R auxiliary function
x�i;j; X�i;j strategy pro�le (excluding i and j), set
"; "1; "2; "3 small positive constants
Vi; V player i�s valuation, common valuation
J 2 Rn�n slope matrix
� : N ! N; id; (i1:::im); F � N permutations, set of ��ipped�players
J (�;F ); �

(�;F )
ij ; sgn(d); Ifi2Fg signed slope (matrix), sign, indicator

i1; ::::; im pairwise distinct players
�ij 6= 0; bi 2 R; ci > 0; Ci(:) parameters, cost function
Qi > 0; si > 0; �ij 6= 0; i(:) parameters, cost function
Ui(xi; x�i); �i aggregative game payo¤, slope
X symmetric strategy space
(x
(1)
i ; :::; x

(di)
i ) player i�s strategy (multi-dimensional)

Hij 2 Rdi�dj matrix of cross-derivatives
�i = (�

(1)
i ; :::; �

(d1)
i ) 2 Rdinf0g direction

x�N = (x
�
1 ; x

�
2 ); x

+
N = (x

+
1 ; x

+
2 ) two strategy pro�lesex�N(:); ex+N(:) further strategy pro�les

�# = (��1 ; �
+
1 ; �

�
2 ; �

+
2 ) 2 R4 vector

r(x�N ; x+N) 2 R4�4 an auxiliary matrix
�+
i (:);�

�
i (:);�

+
j (:);�

�
j (:) payo¤ di¤erences (two players)

J; J3; J
0
3 auxiliary matrices

x
(i;+)
N (:); x

(i;�)
N (:) points in the strict improvement cycle

�(i;+)(:);�(i;�)(:) payo¤ di¤erences (n players)
�� = f�ijg permutation matrix
m0 positive integer used in the induction
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