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Abstract

With infinite horizon, optimal rules for sequential search from a known

distribution feature a constant reservation value that is independent of whether

recall of past options is possible. We extend this result to the the case when

there are multiple distributions to choose from: it is optimal to sample

from the same distribution in every period and to continue searching until a

constant reservation value is reached.
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1. Introduction

In the standard optimal search problem (e.g. Lippman and McCall, 1976),

the choice is to either stop searching and consume the best option available

or to continue the costly search. Continuation yields a draw of a single

observation from some known distribution. With infinite horizon, the optimal

search rule is simple and independent of the possibility of recall: continue

searching until a constant reservation value, uniquely determined by the

distribution, has been reached.

A natural extension of the standard problem is to allow the searcher to

also choose the search intensity, modelled as the number of simultaneous

observations drawn from the known distribution.1 With infinite horizon,

Morgan (1983, Proposition 1) shows that with no recall it is optimal to

search with constant intensity until stopping. With full recall, Morgan (1983,

Proposition 5) only establishes that the optimal intensity is weakly decreasing,

leaving open the possibility that the searcher might reduce intensity after

a favorable draw. In an interesting application to delegated R&D, Poblete

and Spulber (2017, Lemma 3) show optimality of constant intensity with full

recall while assuming existence, uniqueness and reservation value strategies.

We strengthen these results and show that the optimal intensity is constant

— regardless of the possibility of recall and without restricting the class of

admissible search rules.

The choice of search intensity is a special case of a more general problem in

1There are alternative ways to model search intensity. For example, Karni and Schwartz

(1977a) model it as the amount of time between two consecutive search attempts.
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which the searcher chooses a distribution from which to draw the observation.

For example, the searcher could be choosing the riskiness of search. Similarly,

no recall and full recall are special cases of a more general problem in which

recall is stochastic as in Landsberger and Peled (1977). We incorporate both

of these generalizations in an otherwise standard search model with infinite

horizon and show that it is optimal to sample from the same distribution in

every period and to continue searching until the constant reservation value

associated with this distribution has been achieved.

As we will discuss in more detail later, our result is a very natural one in

light of the related literature. First, once the infinite horizon of the search

problem is taken into account, our optimal search rule corresponds to the

one that Weitzman (1979) has identified as optimal for a search problem

with full recall and finite horizon. Second, the irrelevance of recall obtains

for the same reason as in the related results for search problems with infinite

horizon in DeGroot (1970, p. 335), Lippman and McCall (1976, p. 169), and

Landsberger and Peled (1977, Theorem 2), namely that the option of recall

is never exercised when full recall is possible.

2. Model

While search is ongoing, a searcher decides in each period t = 0, 1 . . .

whether to sample from one of n available distributions (take the action

at ∈ A = {1, . . . , n}) or to stop (at = 0). Stopping yields a payoff xt ∈ X in

the current period, where xt is the option the searcher has in hand at the

beginning of period t and X ⊂ R++ is a finite set. Once search has been

stopped, no further decisions can be taken and no further payoffs accrue. If
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the searcher samples from distribution at, the state variable xt transitions to

xt+1 ∈ X with probability p(xt+1|xt, at), where xt+1 is the option the searcher

has in hand at the beginning of period t + 1. The cost of sampling from

distribution a is c(a) > 0. The per-period discount factor is δ ∈ (0, 1]. The

searcher’s problem is to maximize her expected discounted payoff (for every

initial condition x0 ∈ X) by choosing a search rule µ : X → A ∪ {0} that

specifies for each state whether search should be continued by sampling from

distribution a (µ(x) = a) or be stopped (µ(x) = 0).2

The above model can be embedded into a Markov decision process frame-

work (Bertsekas, 1995) by (i) appending a terminal state x = 0 that is reached

with probability one whenever the stopping action a = 0 is taken and (ii)

supposing that the only available action (at zero cost) in the terminal state

is a = 0. With discounting (δ < 1) standard results (e.g. Bertsekas, 1995,

Chapter 1.2) ensure that the Bellman equations

v∗(x) = max

{
x,max

a∈A

{
δ
∑
y∈X

v∗(y)p(y|x, a)− c(a)

}}
(1)

have a unique solution v∗ : X → R and that a search rule µ∗ is optimal iff it

satisfies

µ∗(x) =

0 ⇒ v∗(x) = x

a′ ∈ A ⇒ v∗(x) = δ
∑

y∈X v
∗(y)p(y|x, a′)− c(a′).

(2)

In particular, an optimal search rule exists. The same conclusions hold

without discounting (δ = 1) because the Markov decision process formulation

2The restriction to such stationary search rules is without loss of generality; see the

sources cited in the next paragraph.
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of our search problem is a special case of the stochastic shortest path problem

analysed in Bertsekas and Tsitsiklis (1991).3

We impose additional structure on the conditional probability distributions

p(·|x, a) that accommodates the familiar cases of search with no or full recall

but also allows for more general specifications.

Assumption 1. For all a ∈ A there exists a probability distribution q(·|a)

on X such that p(y|x, a) = q(y|a) holds for all y > x ∈ X.

If the condition p(y|x, a) = q(y|a) holds for all x and y in X the only

option available to the searcher in period t+ 1 after choosing a in period t is

the realized draw from the distribution q(·|a), so that there is no recall. With

perfect recall, the option xt remains available in period t + 1 after a draw

from q(·|a) has been taken, which corresponds to Assumption 1 holding with

p(x|x, a) =
∑

y≤x q(y|a), and p(y|x, a) = 0 for y < x. Stochastic recall as in

Landsberger and Peled (1977) is obtained by taking p(·|x, a) to be convex

combinations of the probability distributions describing the no-recall and the

full-recall case. Assumption 1 covers this case while allowing for more general

specifications.

3Assumption 1 in Bertsekas and Tsitsiklis (1991) is satisfied: First, there exists an

absorbing, cost- (and benefit)-free state (the terminal state 0). Second, there exists a proper

stationary policy (choose the terminal action in each state). Third, improper stationary

rules (policies for which there is a strictly positive probability that the terminal state is

never reached) result in infinite expected cost because c(a) > 0 for all a ∈ A. Assumption

2 in Bertsekas and Tsitsiklis (1991) holds because A is finite. Our claim then follows from

Proposition 2 in Bertsekas and Tsitsiklis (1991).
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3. Optimal Search Rules

Define for each action a ∈ A the reservation value s(a) as the unique

solution (Step 1, proof of Proposition 1) to the equation

δ
∑
y∈X

max{y, s(a)}q(y|a)− s(a) = c(a). (3)

When there is only one distribution to sample from, it is well-known

(DeGroot, 1970; Lippman and McCall, 1976) that both in the no-recall

and the full-recall case the optimal rule is to continue searching until the

current option xt exceeds the reservation value s(a). The same kind of

reservation value rule is optimal under Assumption 1 when searching from

multiple distributions. Moreover, the searcher optimally samples from the

same distribution a∗ with the highest reservation value until the reservation

value s(a∗) of this distribution has been achieved:

Proposition 1. Let Assumption 1 hold and let a∗ ∈ arg max s(a). The unique

solution to the Bellman equations (1) is given by v∗(x) = max{x, s(a∗)} and

the rule

µ∗(x) =

0 if x > s(a∗)

a∗ if x ≤ s(a∗)

(4)

is optimal.

We provide a direct and straightforward proof in the appendix. To obtain

intuition, consider the problem from Weitzman (1979). There, a searcher

called Pandora faces a finite number of closed boxes with an uncertain reward

hidden in each box. For each box there is a cost of opening it. The problem is

to determine the order in which to open the boxes, and when to stop searching
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and accept the highest reward sampled so far. The optimal rule (Pandora’s

Rule) assigns a reservation value to each box, depending only on the properties

of that box, and then specifies to open the boxes in descending order by

reservation value until the highest sampled reward exceeds the reservation

value of every closed box.

With full recall, our search problem is like Pandora’s problem when there

are infinite copies of each of n different types of boxes. The optimal search

rule identified in Proposition 1 is nothing but Pandora’s Rule applied to

this scenario, namely to keep opening boxes of the type with the highest

reservation value until the most recent draw exceeds this reservation value.

Since search only continues if all previously sampled rewards are below the

reservation value of the best type of box and the option to open another such

box is always available, this rule never uses the possibility to recall an earlier

reward. As the optimality of a rule cannot be affected by eliminating options

that the rule never exercises, the result in Proposition 1 holds regardless

of whether recall is possible or not. The fact that Assumption 1 suffices

for the result can be understood as a generalization of the observation in

Weitzman (1979) that the optimal search rule is not affected by rearranging

the probability distribution for rewards below the reservation value.

4. Discussion

Our result can be extended in several directions. First, provided that

the reservation value s(a) is well-defined for all a ∈ A and that the problem

maxa∈A s(a) has a solution, the arguments proving Proposition 1 go through

without any substantial modification. In particular, under standard regularity
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conditions (Bertsekas and Tsitsiklis, 1991; James and Collins, 2006) the set

of distributions A can be compact or countably infinite rather than finite

and the support of the probability distributions q(·|a) can be compact as in

Poblete and Spulber (2017).

Second, it is only for the convenience of modelling search as a simple

Markov decision process that we have assumed transition probabilities to

depend only on the best option currently in hand and that whether or not

such an option is recalled in the next period is exogenous. While not fitting

into our formal framework, more elaborate models of recall, such as the ones

in Karni and Schwartz (1977a), Karni and Schwartz (1977b) and Ikuta (1988),

in which the probability of a successful recall depends on the number of

periods since a draw has been taken, or the one in Saito (1998), in which

recall is costly, cannot upset our conclusion that with an infinite horizon it is

optimal to search until the reservation value s(a∗) is exceeded and stop then.4

In particular, recalling a past option can only be optimal “off the equilibrium

path” when such an option should have been accepted at the time it had

become available.

Third, as noted in Banks and Sundaram (1992, footnote 3) and discussed

in more detail in Bergemann and Välimäki (2001, Section 4), the results

obtained in Weitzman (1979) can be viewed as establishing the optimality of a

Gittins index policy in a multi-armed bandit problem in which a switching cost

has to be paid on the first trial with a given bandit. The same interpretation

is applicable in our setting. In particular, under assumptions analogous to

4Of course, our result is not applicable if the horizon is finite or the cost of sampling is

increasing over time – which are the cases that these papers focus on.
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the ones maintained in Bergemann and Välimäki (2001, Theorem 2), the

appropriately defined Gittins index policy is optimal in a multi-armed bandit

problem with switching costs in which there is an infinite number of each of

n different types of arms, with all the arms of the same type being ex ante

identical. Just as in our model, the possibility of recall is irrelevant in such an

environment with stationary bandits because an optimal policy never requires

the agent to return to a bandit that has previously been abandoned (Banks

and Sundaram, 1992; Bergemann and Välimäki, 2001).

Acknowledgments

We thank Julia Grünseis and an anonymous referee for suggestions.

Appendix: Proof of Proposition 1

Step 1: The function g : A× R→ R defined by

g(s, a) = δ
∑
y∈X

max{y, s}q(y|a)− s (5)

is (strictly) decreasing in s for all a ∈ A (if s < max{X}). This follows from

rewriting

g(s, a) = δ
∑
y∈X

max{y − s, 0}q(y|a)− (1− δ)s

and noting (DeGroot, 1970, Sec. 11.8) that
∑

y∈X max{y − s, 0}q(y|a) is

(strictly) decreasing in s (whenever it is strictly positive).

Observing that (3) is equivalent to

g(s(a), a) = c(a) (6)
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and that c(a) > 0 for all a ∈ A, it is immediate from the above monotonicity

properties that (3) can have at most one solution s(a). Existence of a solution

follows upon observing that g(s, a) is continuous, satisfies g(max{X}, a) = 0,

and lim gs→−∞ =∞.

Step 2: Let v∗(x) = max{x, s(a∗)}.

Consider x ≤ s(a∗). We then have for all a ∈ A:

δ
∑
y∈X

v∗(y)p(y|x, a)− c(a) = δ
∑
y∈X

max{y, s(a∗)}p(y|x, a)− c(a)

= δ
∑
y∈X

max{y, s(a∗)}q(y|a)− c(a)

= g(s(a∗), a)− c(a) + s(a∗)

= g(s(a∗), a)− g(s(a), a) + s(a∗)

≤ s(a∗),

where the first equality is from the specification of v∗, the second uses

Assumption 1 to infer that for y > s∗(a) the condition x ≤ s∗(a) implies

p(y|x, a) = q(y|x), the third is from the definition of g in (5), and the fourth is

from (6). The inequality in the last line follows from Step 1 and s(a∗) ≥ s(a).

It holds as an equality for a = a∗. Therefore

s(a∗) = δ
∑
y∈X

v∗(y)p(y|x, a∗)−c(a∗) = max

{
x,max

a∈A

{
δ
∑
y∈X

v∗(y)p(y|x, a)− c(a)

}}
(7)

holds for all x ≤ s(a∗).

Consider x > s(a∗). We then have for all a ∈ A:

δ
∑
y∈X

v∗(y)p(y|x, a)− c(a) = δ
∑
y∈X

max{y, s(a∗)}p(y|x, a)− c(a)
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≤ δ
∑
y∈X

max{y, x}p(y|x, a)− c(a)

= δ
∑
y∈X

max{y, x}q(y|a)− c(a)

= g(x, a)− c(a) + x

= g(x, a)− g(s(a), a) + x

≤ x,

where the equality in the first line again uses v∗(x) = max{x, s(a∗)}, the

inequality in the second line uses x > s∗(a), the equality in the third line is

from Assumption 1, and the remaining lines are obtained in the same way as

in the case x ≤ s(a∗), using that x > s(a∗) implies x > s(a) for all a ∈ A to

obtain the final inequality. Therefore,

x = max

{
x,max

a∈A

{
δ
∑
y∈X

v∗(y)p(y|x, a)− c(a)

}}
(8)

holds for all x > s(a∗).

Combining (7) and (8), it is immediate that v∗(x) = max{x, s(a∗)} solves

the Bellman equations (1) and that µ∗(x) as defined in (4) satisfies the

optimality conditions (2).
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