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On Linear Transformations of Intersections

Alexey Kushnir and Shuo Liu∗

June 3, 2017

Abstract

For any linear transformation and two convex closed sets, we provide necessary and

sufficient conditions for when the transformation of the intersection of the sets coincides with

the intersection of their images. We also identify analogous conditions for non-convex sets,

general transformations, and multiple sets. We demonstrate the usefulness of our results via

an application to the economics literature of mechanism design.

Keywords: linear transformation, convex closed set, intersection, directional convex-

ity, mechanism design, dominant-strategy implementation, Bayesian implementation

1 Introduction

Let T : Rn → Rm be a linear transformation for somem,n ∈ N andA,B ⊂ Rn be two convex closed

sets with a non-empty intersection. Generally, the transformation of the intersection T (A ∩B) is

a subset of the intersection of their images TA ∩ TB. In this paper, we provide necessary and

sufficient conditions for these sets to coincide, i.e., T (A ∩ B) = TA ∩ TB. To the best of our

knowledge, this question has not been addressed previously.

Specifically, in Section 2, we provide conditions that exploit the directional convexity and path-

connectedness of the union A∪B and their relation to the kernel of the linear transformation. As

shown in Section 3, these conditions can be extended to non-convex sets, non-linear transforma-

tions, and multiple sets. To further deepen our understanding of the problem, in Section 4, we
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Figure 1. The orthogonal projection of discs A and B (left) along the x-axis (transformation T ) and

the y-axis (transformation T ′). TA ∩ TB 6= T (A ∩B) and T ′A ∩ T ′B = T ′(A ∩B) because A ∪B is not

convex in the direction of the x-axis, but is convex in the direction of the y-axis. For rectangles A′ and

B′ (right), TA′ ∩ TB′ = T (A′ ∩B′) for any linear transformation T because union A′ ∪B′ is convex.

consider a different set of conditions that rely on the properties of support points of the convex

sets. Finally, in Section 5, we demonstrate how our results can be applied to study the design

of robust mechanisms for selling goods—a problem that has recently attracted attention in the

economics literature of mechanism design (see, e.g., Manelli and Vincent, 2010; Gershkov, Goeree,

Kushnir, Moldovanu and Shi, 2013).

2 Convex Closed Sets

To motivate, let us first consider a simple example. The left panel of Figure 1 presents two discs

of the same radius A,B ⊂ R2 with non-empty intersection. If we project the discs along the

x-axis, we obtain TA ∩ TB 6= T (A ∩B), where T is the projection operator. The transformation

of the intersection of the sets does not coincide with intersections of their images because there

exist points a ∈ A and b ∈ B that have the same image, but the line connecting them contains no

points of A ∩ B. Note that such a situation is not possible when the union A ∪ B is convex, as

the right panel of Figure 1 shows. This observation leads to our first result.

Theorem 1. For any linear transformation T and convex closed sets A and B, if the union A∪B
is convex, then T (A ∩B) = TA ∩ TB.

Proof. Consider any A,B ⊂ Rn, linear T : Rn → Rm, and t ∈ TA ∩ TB. By definition, there

exist a ∈ A and b ∈ B such that Ta = Tb = t. As A∪B is convex, we have [a, b] ⊂ A∪B. Moreover,

[a, b]∩A = [a, c1] for some c1 ∈ [a, b]∩A. Similarly, [a, b]∩B = [c2, b] for some c2 ∈ [a, b]∩B. As

[a, c1]∪ [c2, b] = [a, b], we have [a, c1]∩ [c2, b] 6= ∅, and thus there must exist some c ∈ [a, b]∩A∩B.

By the linearity of T , we also have t = Tc ∈ T (A ∩B). Hence, T (A ∩B) = TA ∩ TB.
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Remark. The convexity of the union of sets A ∪B is also a necessary condition for T (A ∩B) =

TA ∩ TB for all linear transformations T : Rn → Rn−1 (see Theorem A1 in the Appendix).

Theorem 1 provides a sufficient condition for T (A ∩ B) = TA ∩ TB to be true for any linear

transformation T . However, if only a specific transformation T is of interest, this condition might

be too demanding. For example, even though the union of the two discs in the left panel of Figure

1 is not convex, for projection T ′ along the y-axis, we nevertheless have T ′(A ∩ B) = T ′A ∩ T ′B.

Intuitively, this is the case because there is no gap between sets A and B along the direction of

the projection T ′. This motivates us to introduce the following concept of directional convexity.1

Definition 1. A set C ⊂ Rn is convex in direction d ∈ Rn if for all a, b ∈ C with a− b = αd for

some α ∈ R, we have [a, b] ⊂ C.

The left panel of Figure 1 shows that the union of discs A and B is convex in the direc-

tion parallel to the y-axis. Denoting the kernel of a linear transformation T : Rn → Rm as

ker(T ) = {a ∈ Rn : Ta = 0}, we establish the following result.

Theorem 2. For a linear transformation T and convex closed sets A and B, if the union A ∪ B
is convex in every direction d ∈ ker(T ), then T (A ∩B) = TA ∩ TB.

Proof. The proof follows the steps of the one of Theorem 1. We omit it to avoid repetition.

Nevertheless, the convexity of the union with respect to the directions in the kernel is not

generally a necessary condition. To illustrate, consider the two right triangular prisms A and B

in Figure 2 and suppose we project them orthogonally along the xy-plane onto the z-axis. The

projection of the intersection coincides with the intersection of the prisms’ images. However, the

union of the prisms is not convex with respect to the direction of the x-axis, which belongs to

ker(T ). To state our necessary condition, we introduce the following definition.

Definition 2. A set C ⊂ Rn is path-connected with respect to ker(T ) of linear transformation

T : Rn → Rm if the inverse image

T−1C (t) = {a ∈ C | a− b ∈ ker(T ) for some b : Tb = t}

is path-connected for all t ∈ TC, where TC refers to the image of C.

1Aumann and Hart (1986) previously introduced a similar concept of bi-convex sets that are convex with respect
to two orthogonal directions.
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Figure 2. The left panel shows the orthogonal projection T of prisms A and B along the xy-plane on

the z-axis. The right shows the inverse image of a given point t ∈ TA ∩ TB.

The right panel of Figure 2 presents the inverse image T−1A∪B(t) for some t ∈ TA ∩ TB.

Obviously, this is not a convex set. Nevertheless, this set is path-connected. It turns out that this

is not a coincidence: That sets T−1A∪B(t) are path-connected for all t ∈ T (A ∪B) is both necessary

and sufficient for T (A ∩ B) = TA ∩ TB. This result is formally stated and proved in the next

theorem.

Theorem 3. For a linear transformation T and convex closed sets A and B,

T (A ∩B) = TA ∩ TB

if and only if A ∪B is path-connected with respect to ker(T ).

Proof. (If statement) Consider any t ∈ TA ∩ TB. By definition, there exist a ∈ A and b ∈ B
such that Ta = Tb = t. As T−1A∪B(t) is path-connected there exists a path P (a, b) ⊂ T−1A∪B(t)

connecting a and b. Moreover, P (a, b)∩A = P (a, c1) is a path for some c1 ∈ P (a, b)∩A. Similarly,

P (a, b) ∩ B = P (c2, b) is a path for some c2 ∈ P (a, b) ∩ B. As P (a, c1) ∪ P (c2, b) = P (a, b), we

must have P (a, c1)∩P (c2, b) 6= ∅. This implies that there exists some c ∈ P (a, b)∩A∩B. Because

c ∈ T−1A∪B(t), we also have t = Tc ∈ T (A ∩B). Hence, T (A ∩B) = TA ∩ TB.

(Only-if statement) Consider any a ∈ A ∪ B. Suppose first that t = Ta /∈ TB, and hence

T−1A∪B(t) = T−1A (t). In this case, the inverse image T−1A∪B(t) is path-connected because set A is

convex and T is linear. Similarly, if Ta /∈ TA, we have T−1A∪B(t) = T−1B (t), which is again path-

connected. Finally, suppose that t = Ta ∈ TA ∩ TB and, without loss of generality, a ∈ A. As
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A is convex and T is linear, point a is path-connected to any point in T−1A∪B(t) ∩ A. Let us now

consider some b ∈ T−1A∪B(t)∩B. As T (A∩B) = TA∩TB, there exists c ∈ A∩B such that t = Tc.

As a result, c ∈ A ∩ B ∩ T−1A∪B(t). Therefore, point c is path-connected with both a and b within

T−1A∪B(t), which further implies that a is also path-connected with b within T−1A∪B(t).

Note that if A ∪B is convex with respect to every direction in ker(T ), the union is also path-

connected with respect to ker(T ). In fact, in this case, any two points a, b ∈ T−1A∪B(t) are connected

with a straight line. Theorem 3, thus, weakens the sufficient condition of Theorem 2 by allowing

points of the union to be connected with some path that is not necessarily a straight line.

3 Extensions

In this section, we show that the conditions set out in Section 2 can be extended to non-convex

sets, general non-linear transformations, and multiple sets. We start by noting that the sufficiency

part of Theorem 3 does not require sets A and B to be convex. Moreover, as the following result

shows, the convexity assumption in the necessity part can be replaced with a weaker requirement

whereby sets A and B are both path-connected with respect to ker(T ).

Theorem 4 (Non-Convex Sets). Consider a linear transformation T and closed sets A and B

that are path-connected with respect to ker(T ). Then,

T (A ∩B) = TA ∩ TB

if and only if A ∪B is path-connected with respect to ker(T ).

Proof. The proof of the if statement repeats the steps of the sufficiency proof of Theorem 3.

For the necessity part, the path-connectedness of T−1A∪B(t) for points t ∈ TA ∩ TB follows from

Theorem 5 presented below. In regard to points t /∈ TA∩ TB, the path-connectedness of T−1A∪B(t)

follows from the assumption that both A and B are path-connected with respect to ker(T ).

The linearity assumption of the transformation can also be dropped. However, for non-linear

transformations a− b ∈ ker(T ) does not imply Ta = Tb. To address this problem, we reformulate

the notion of the inverse image as T−1C (t) = {a ∈ C |Ta = t}. We can then modify the proof

of Theorem 3 and obtain the following necessary and sufficient condition for general non-linear

transformations.
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Theorem 5 (Non-Linear Transformations). Consider any transformation T and closed sets

A and B that have path-connected inverse images T−1A (t) and T−1B (t) for all t ∈ TA ∩ TB. Then,

T (A ∩B) = TA ∩ TB

if and only if the inverse image T−1A∪B(t) is path-connected for all t ∈ TA ∩ TB.

Proof. The proof of the “if-statement” repeats the steps of the sufficiency proof of Theorem

3. Let us prove the necessity statement. Consider any t ∈ TA ∩ TB. By definition, there exist

a ∈ T−1A (t) and b ∈ T−1B (t). As T (A ∩ B) = TA ∩ TB, there also exists c ∈ A ∩ B such that

Tc = t. As c ∈ T−1A (t) and T−1A (t) is path-connected, there is a path in T−1A (t) connecting c and

a. Similarly, c ∈ T−1B (t) implies that there is also a path in T−1B (t) connecting c and b. But then,

as T−1A∪B(t) = T−1A (t) ∪ T−1B (t), there is a path in T−1A∪B(t) connecting a and b.

Similar to the convexity assumption in Theorem 1, the inverse images T−1A (t) and T−1B (t) being

path-connected for all t ∈ TA∩ TB is only needed for the only-if statement. The sufficiency part

does not require this additional condition.

The analysis of two convex closed sets can be readily extended to multiple sets. Let A1, ..., AJ

be J ≥ 2 convex closed sets. First, we present a direct generalization of Theorem 2. In particular,

the theorem below states that if the union of every pair of sets is convex in every direction in

the kernel, then the transformation of the intersection of all sets coincides with the intersection of

their images.

Theorem 6 (Multiple Sets - Sufficiency). For a linear transformation T : Rn → Rm and J

convex closed sets A1, ..., AJ ,

T
(
∩Jj=1Aj

)
= ∩Jj=1 TAj

if Aj ∪ Aj′ is convex in every direction d ∈ ker(T ) for all j, j′ ∈ J ≡ {1, ..., J}.

Proof. We prove the statement by induction. Consider some t ∈ ∩Jj=1TAj. By definition, there

exists x1 ∈ A1 such that Tx1 = t. In addition, as A1 ∪A2 is convex in every direction d ∈ ker(T ),

we know by Theorem 2 that there exists x2 ∈ A1 ∩ A2 such that Tx2 = t.

6



Now suppose that there exists xj ∈ A1 ∩ ... ∩ Aj such that Txj = t. Consider some y ∈ Aj+1

such that Ty = t, which again exists by definition. As Ai ∪ Aj+1 is convex in every direction

d ∈ ker(T ), we have [xj, y] ⊂ Ai ∪ Aj+1 for each i = 1, ..., j. Hence, [xj, y] ⊂ (∩ji=1Ai) ∪ Aj+1. As

∩ji=1Ai and Aj+1 are both convex and closed, we can conclude (similar to Theorem 1) that there

must exist point z ∈ (∩ji=1Ai) ∩ Aj+1 such that Tz = t.

Similar to Theorem 2, the condition of Theorem 6 is not generally necessary. Our necessary and

sufficient condition for multiple sets is obtained by mirroring the proofs of Theorems 3 and 5.

Theorem 7 (Multiple Sets - Characterization). For a linear transformation T and J convex

closed sets A1, ..., AJ ,

T
(
∩Jj=1Aj

)
= ∩Jj=1 TAj

if and only if T−1
(∩ji=1Ai)∪Aj+1

(t) is path-connected for all j = 1, ..., J − 1 and for all t ∈ ∩Jj=1 T (Aj).

Proof. (If statement) Without loss, let J ≥ 3. Consider any t ∈ ∩Jj=1 TAj. As T−1A1∪A2
(t) is

path-connected and t ∈ TA1 ∩ TA2, we have t ∈ T (A1 ∩ A2). Hence, t ∈ T (A1 ∩ A2) ∩ TA3.

Furthermore, as T−1(A1∩A2)∪A3
(t) is also path-connected, we have t ∈ T (A1 ∩ A2 ∩ A3). Repeating

this argument, we will finally have t ∈ T
(
∩Jj=1Aj

)
. Therefore, T

(
∩Jj=1Aj

)
= ∩Jj=1 TAj.

(Only-if statement) Consider any t ∈ ∩Jj=1 TAj and any j ∈ {1, .., J − 1}. By linearity and

convexity, the sets T−1
∩ji=1Ai

(t) and T−1Aj+1
(t) are both path-connected. Now consider any point

a ∈ T−1
∩ji=1Ai

(t) and any point b ∈ T−1Aj+1
(t). As ∩Jj=1 TAj = T

(
∩Jj=1Aj

)
, there must exist point

c ∈ ∩Jj=1Aj such that Tc = t. Because c ∈ ∩ji=1Ai and c ∈ Aj+1, c is path-connected to both a and

b within T−1
(∩kj=1Aj)∪Ak+1

(t). Therefore, a and b are also path-connected within T−1
(∩kj=1Aj)∪Ak+1

(t).

4 Dual Approach

In this section, we examine our research question from a dual perspective. In particular, by

exploiting the properties of the support points of the closed convex sets, we provide a different

set of conditions for when a linear transformation of intersection coincides with the intersection

of their images.

First, we introduce some useful notations. For a set C ⊂ Rn, we define its support function as

SC(d) = sup
a∈C

a · d

7
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Figure 3. The orthogonal projections of discs A and B along the x-axis (a), the y-axis (b), and the axis

orthogonal to the xy-plane (c).

for all d ∈ Rn. We refer to u ∈ Rn as a support point of set C in direction d ∈ Rn if u ∈
arg maxa∈C a · d. The set of all support points of set C in direction d is denoted as E(C, d). Note

that E(C, 0) ≡ C and that E(C, d) is guaranteed to be non-empty if C is compact. We also refer

to the relative interior of set C as riC.2 In addition, for any linear transformation T : Rn → Rm,

we denote by ker(T )⊥ = {a ∈ Rn : a · d = 0 ∀d ∈ ker(T )} the subspace orthogonal to ker(T ).

For simplicity, we assume that n ≥ m and dim(image(T )) = m. This implies that ker(T )⊥ is a

m-dimensional space.

To motivate the results in this section, consider a simple example as shown in Figure 3. We

consider again two discs A and B with a non-empty intersection that belongs to the xy-plane

and their three orthogonal projections along the x-axis, the y-axis, and the axis orthogonal to

the xy-plane. The orthogonal projection of A ∩ B along the x-axis does not coincide with the

intersection of the images (Figure 3a). Using the dual point of view, we can say that the problem

arises because there exists a support point c of A ∩ B that is neither a support point of A nor a

support point of B in the direction d orthogonal to the projection line, i.e., d ∈ ker(T )⊥. This

implies that there must be distinct points a and b of sets A and B with a common image that lies

above the image of point c.

However, this does not happen for projection T ′ along the y-axis (Figure 3b), where any sup-

port point of A ∩ B in the direction orthogonal to the projection line, i.e., d ∈ ker(T ′)⊥, is also

a support point of one of the two sets in the same direction. This observation leads to our first

sufficient condition in this section.

2Formally, the relative interior is defined by riC = {a ∈ affC | ∃ε > 0, Bε(a) ∩ affC ⊂ C}, where affC is the
affine hull of set C and Bε(a) is the Euclidean ball with radius ε and center a (see p. 44 in Rockafellar (1997)).
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Theorem 8. For a linear transformation T and convex compact sets A and B,

∀d ∈ ker(T )⊥ E(A ∩B, d) ⊆ E(A, d) ∪ E(B, d) =⇒ T (A ∩B) = TA ∩ TB.

Proof. See the Appendix.

The condition of Theorem 8, however, is not generally necessary. This can be readily illustrated

with projection T ′′ of the two discs along the axis orthogonal to the xy-plane (Figure 3c). Though

T ′′(A ∩ B) = T ′′A ∩ T ′′B, point c is not a support point of either disc in the direction parallel

to the y-axis, which belongs to ker(T ′′)⊥. Theorem 9 below shows that a necessary and sufficient

condition requires any support point c of A ∩ B in direction d ∈ ker(T ′′)⊥ to be a support point

of each set in some directions d′, d′′ ∈ ker(T ′′)⊥ with d′ + d′′ = d.

Theorem 9. For a linear transformation T and convex compact sets A and B with riA∩riB 6= ∅,

T (A ∩B) = TA ∩ TB

if and only if ∀d ∈ ker(T )⊥ and ∀u ∈ E(A ∩ B, d), ∃d′, d′′ ∈ ker(T )⊥ such that d′ + d′′ = d and

u ∈ E(A, d′) ∩ E(B, d′′).

Proof. See the Appendix.

While compact convex sets are fully characterized by their support points, for general closed

convex sets, there might be directions without support points. Hence, to formulate a proper

condition, we invoke the concept of the support function. As stated in the proof of Theorem 9, the

support function for the intersection of sets A ∩ B with non-empty intersection of their relative

interiors (i.e., riA ∩ riB 6= ∅) can be conveniently characterized by3

SA∩B(d) = inf
d′+d′′=d

d′,d′′∈Rn

(SA(d′) + SB(d′′)). (1)

Our last necessary and sufficient condition states that for every direction d ∈ ker(T )⊥, we can

limit ourselves in the above equation to a minimization among only directions d′, d′′ ∈ ker(T )⊥.

3The condition on relative interiors can be relaxed. In that case, for any d ∈ Rn, we have

SA∩B(d) = cl( inf
d′+d′′=d

d′,d′′∈Rn

(SA(d′) + SB(d′))),

where cl f refers to the closure of f , i.e., clf(d) = lim infd′→d f(d′) (p. 78 in Hiriart-Urrut and Lemaréchal (2012)).

9



Theorem 10. For a given transformation T and convex closed sets A and B with riA∩ riB 6= ∅,
T (A ∩B) = TA ∩ TB if and only if for any direction d ∈ ker(T )⊥

inf
d′+d′′=d

d′,d′′∈Rn

(SA(d′) + SB(d′′)) = inf
d′+d′′=d

d′,d′′∈ker(T )⊥

(SA(d′) + SB(d′)). (2)

Proof. See the Appendix.

Though the above result seems to be rather technical, it proves to be very useful in the application

considered in the following section.

5 Application

We now present an economic application of our main results to designing robust mechanisms for

selling goods. To keep the exposition clear and transparent, we study only a simple example.

Consider an auctioneer who wants to sell an object to two agents indexed by i = 1, 2. Agent i’s

valuation of the object xi can be one of two types, xl or xh, and it is independently distributed

with equal probability. In addition, if agent i pays pi to obtain the object his utility equals xi−pi.
Using the revelation principle (Myerson, 1979), we restrict our analysis to direct mechanisms,

where agents are asked to report their types. Specifically, each mechanism specifies the probabil-

ities that the object is allocated to agents and the payments requested from agents conditional

on their reported types. To predict the outcome of a mechanism, economists typically consider

two solution concepts. The first solution concept is Bayesian incentive compatibility (BIC), which

requires that each agent reports his type truthfully given his belief about the distribution of the

other agent types and that the other agents also report their types truthfully. The second solution

concept is dominant-strategy incentive compatibility (DIC), which requires that each agent reports

his type truthfully regardless of the other agents’ reports and the realizations of their types.4 We

apply the result of Theorem 10 to establish the following BIC-DIC equivalence result: For any

BIC mechanism one could always construct an equivalent DIC mechanism that delivers the same

interim allocation probabilities to all agents.5

4DIC is a rather demanding solution concept that guarantees good and robust behavior of agents in applications.
In particular, it does not require that agents have a correct belief regarding the distribution of others’ types, and it
permits mistakes in agents’ behavior. DIC mechanisms have been successfully adopted by many markets ranging
from spectrum auctions (Milgrom, 2002) to labor markets for doctors, kidney exchange, and school choice in major
US cities (Roth, 2008).

5Manelli and Vincent (2010) were the first to establish this result and Gershkov et al. (2013) extended it
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To start with, note that any allocation of the object can be summarized by vectors qi =

(qill, q
i
lh, q

i
hl, q

i
hh), i = 1, 2, where each element refers to the probability that agent i receives the

object and the first (second) subscript refers to the first (second) agent’s type. From agent 1’s point

of view, the expected probability of receiving an object equalsQ1
l = 1

2
q1ll+

1
2
q1lh and Q1

h = 1
2
q1hl+

1
2
q1hh,

and similarly for agent 2. We refer to vectors Qi = (Qi
l, Q

i
h), i = 1, 2 as interim allocation

probabilities.

Two types of constraints shape the set of available allocation rules: feasibility constratings

and incentive compatibility constraints. Feasibility constraints guarantee that the object is not

allocated to two agents simultaneously. q1ll + q2ll ≤ 1

q1ll, q
2
ll ≥ 0

,

 q1lh + q2lh ≤ 1

q1lh, q
2
lh ≥ 0

,

 q1hl + q2hl ≤ 1

q1hl, q
2
hl ≥ 0

,

 q1hh + q2hh ≤ 1

q1hh, q
2
hh ≥ 0

. (3)

Plainly, the feasibility set CF ⊂ R8 defined by constraints (3) consists of a Cartesian product of

four simplices. The support function for each simplex is easy to derive, e.g., max(0, d1ll, d
2
ll) is the

support function of the first simplex. The support function of a Cartesian product of sets equals

the sum of the support function. Hence, the support function of CF for any d ∈ R8 equals

SCF (d) = max(0, d1ll, d
2
ll) + max(0, d1lh, d

2
lh) + max(0, d1hl, d

2
hl) + max(0, d1hh, d

2
hh). (4)

Dominant strategy and Bayesian incentive compatibility constraints ensure that it is in the

best interest of each agent to report his type truthfully. Laffont and Maskin (1980) showed that

for any non-decreasing (ex post) allocation probabilities q1ll ≤ q1hl

q1lh ≤ q1hh

,

 q2ll ≤ q2lh

q2hl ≤ q2hh

(5)

it is possible to find payments that jointly form a DIC mechanism. In addition, they showed that

the above condition is also necessary for an allocation to be part of a DIC mechanism. We denote

the above set of allocations as CDIC and its support function as SDIC . Similarly, BIC constraints

reduce to the monotonicity of interim allocation probabilities

Q1
l ≤ Q1

h, Q2
l ≤ Q2

h. (6)

to social choice settings. Our treatment is, however, different from theirs, as it relies on the calculus of support
functions. See Goeree and Kushnir (2017) for a fully developed approach to mechanism design that uses the calculus
of support functions.
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Let T : R8 → R4 be the linear operator that transforms ex post allocations (q1, q2) into

interim allocations (Q1, Q2). Under transformation T , the DIC constraints (5) map onto the BIC

constraints (6) and the feasibility constraints (3) onto the corresponding feasibility constraints

at the interim level. The question of the BIC-DIC equivalence then reduces to the question of

whether the transformation of the intersection T (CF ∩ CDIC) coincides with TCF ∩ TCDIC . We

apply Theorem 10 to answer this question.

To this end, we first consider support function SCF∩DIC1
corresponding to the intersection of

CF with the DIC constraints of only agent 1. The support function for the DIC constraints of

agent 1 equals

SDIC
1

(d) =

 0 if d = λ1l (1, 0,−1, 0, 0, 0, 0, 0) + λ1h(0, 1, 0,−1, 0, 0, 0, 0),

+∞ otherwise

for any λ1l , λ
2
h ≥ 0. Given the result of Theorem 10, we need to analyze the values of SCF∩DIC1

(d)

only for directions d ∈ ker(T )⊥. Any such direction can be described by an 8-dimensional vector

d = (d1l , d
1
l , d

1
h, d

1
h, d

2
l , d

2
h, d

2
l , d

2
h). Taking into account that the support function of the intersection

equals the convolution of the corresponding support functions (see equation (1)), we obtain

SCF∩DIC1

(d) = inf
λ1l ,λ

1
h≥0

max(0, d1l − λ1l , d2l ) + max(0, d1l − λ1h, d2h)+

max(0, d1h + λ1l , d
2
l ) + max(0, d1h + λ1h, d

2
h).

The above minimization problem has a solution at λ1 = λ1l = λ1h = max(0, 1
2
(d1l − d1h)).6 Denote

d̃1l = d1l − λ1 and d̃1h = d1h + λ1. Introducing the DIC constraints for agent 2, we similarly obtain

SCF∩DIC1∩DIC2

(d) = inf
λ2l ,λ

2
h≥0

max(0, d̃1l , d
2
l − λ2l ) + max(0, d̃1l , d

2
h + λ2l )+

max(0, d̃1h, d
2
l − λ2h) + max(0, d̃1h, d

2
h + λ2h).

The above minimization problem has again a solution at λ2 = λ2l = λ2h = max(0, 1
2
(d2l − d2h)).

Overall, for all d ∈ ker(T )⊥, there exists a vector λ = (λ1, λ1,−λ1,−λ1, λ2,−λ2, λ2,−λ2) ∈ ker(T )⊥

such that SCF∩DIC(d) = SCF (d − λ) + SDIC(λ). Hence, the condition of Theorem 10 is satisfied

and we have T (CF ∩ CDIC) = TCF ∩ TCDIC , which establishes the BIC-DIC equivalence result.

The purpose of the above example is to illustrate the use of our results rather than to derive

6The fact that the minimum is achieved at the same values of λs has a deeper reason connecting the above
minimization problem to majorization. See Goeree and Kushnir (2017) for a more detailed analysis.
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novel insights in the economics literature. A detailed analysis of the BIC-DIC equivalence in linear

social choice problems with independent one-dimensional types using techniques from convex anal-

ysis has been provided by Goeree and Kushnir (2017). The results of the present study, however,

apply beyond linear settings and models with one-dimensional types. As such our result offer a

new and productive way to study the BIC-DIC equivalence in much more general environments,

which, however, is a topic for future research.

6 Conclusion

In this paper, we studied when a transformation of the intersection of two closed sets coincides with

the intersection of their images. Using both primal and dual approaches, we provided necessary

and sufficient conditions for any linear transformation and any two convex closed sets. We also

identified analogous conditions for non-convex sets, general transformations, and multiple sets.

As an application, we showed how our results can be applied to designing robust mechanisms

for selling goods. In fact, our results can be used to compare not only incentive compatibility

constraints but also any interim and ex post constraints, including individual rationality, budget

balance. We consider this to be an exciting direction for future research. We also believe our

results will be of great use by research in the fields of operations research, convex analysis, and

computer science.
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Appendix

Theorem A1. Consider two convex closed sets A,B ⊂ Rn. If for all linear transformations

T : Rn → Rn−1 we have T (A ∩B) = TA ∩ TB, then A ∪B is convex.

Proof. Take some a ∈ A and b ∈ B such that a 6= b, and consider a surjective linear transforma-

tion T : Rn → V, where V = {v ∈ Rn : v · (x − y) = 0} is (n − 1)-dimensional. By construction,

we have a− b ∈ ker(T ) and Ta = Tb = t for some t ∈ Rn−1. As t ∈ TA ∩ TB = T (A ∩ B), there

exists c ∈ A ∩ B such that Tc = t. As dim(ker(T )) = n − dim(V) = 1, points a, b, c must lie on

one straight line. As A and B are convex and c ∈ A ∩B, we have [a, c] ⊂ A and [b, c] ⊂ B, which

implies that [a, b] ⊂ A ∪B. Hence, A ∪B is convex.

Proof of Theorem 8. As T (A ∩B) ⊂ TA ∩ TB and both T (A ∩B) and TA ∩ TB are convex

compact sets, it suffices to show that E(T (A ∩ B), dm) ⊂ E(TA ∩ TB, dm) for all directions

dm ∈ Rm, that is, every support point of T (A ∩ B) is also a support point of TA ∩ TB in the

same direction. For this purpose, consider any direction dm ∈ Rm. Let T ∗ : Rm → Rn be

the adjoint operator (or the transpose) of T . As image(T ∗) = ker(T )⊥ (see p. 120 in Axler

(1997)) we have T ∗(dm) ∈ ker(T )⊥. The condition of the theorem then ensures that E(A ∩
B, T ∗(dm)) ⊆ E(A, T ∗(dm)) ∪ E(B, T ∗(dm)). By the definition of adjoint operators, we further

have E(T (A ∩B), dm) ⊆ E(TA, dm) ∪ E(TB, dm).

Now consider any t ∈ E(T (A ∩ B), dm) ⊆ E(TA, dm) ∪ E(TB, dm). Without loss, we suppose

that t ∈ E(TA, dm). On the one hand, T (A ∩ B) ⊂ TA ∩ TB implies that t · dm ≤ t′ · dm for all

t′ ∈ E(TA∩TB, dm). On the other hand, as TA∩TB ⊂ TA, it must be the case that t·dm ≥ t′ ·dm
for all t′ ∈ E(TA ∩ TB, dm). Hence, overall we have t · dm = t′ · dm for all t′ ∈ E(TA ∩ TB, dm).

As t ∈ TA ∩ TB, we can conclude that t ∈ E(TA ∩ TB, dm).

Proof of Theorem 9. For arbitrary direction dm ∈ Rm the support function of the image of

the intersection equals

ST (A∩B)(dm) = sup
t∈T (A∩B)

t · dm = sup
x∈A∩B

x · T ∗(dm) = SA∩B(T ∗(dm)),

where T ∗ is the adjoint operator. As image(T ∗) = ker(T )⊥ we have T ∗(dm) ∈ ker(T )⊥. The

support function for the intersection of sets having non-empty intersection of their relative interiors

riA ∩ riB 6= ∅ can be conveniently characterized by (see p. 145 in Rockafellar (1997))

SA∩B(T ∗(dm)) = inf
d′+d′′=T∗(dm)

d′,d′′∈Rn

(SA(d′) + SB(d′′)). (A.1)
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Taking into account the condition of the theorem and that the set of support points is non-empty

in any direction for compact sets we obtain

SA∩B(T ∗(dm)) = inf
d′+d′′=T∗(dm)

d′,d′′∈Rn

(SA(d′) + SB(d′′)) = inf
d′+d′′=T∗(dm)

d′,d′′∈ker(T )⊥

(SA(d′) + SB(d′′)). (A.2)

As d′, d′′ ∈ ker(T )⊥ = image(T ∗) there must exist d′m, d
′′
m ∈ Rm such that d′ = T ∗(d′m), and

d′′ = T ∗(d′′m). Moreover, we must have d′m + d′′m = dm.7 Hence,

SA∩B(T ∗(dm)) = inf
d′m+d′′m=dm

d′m,d′′m∈Rm

(SA(T ∗(d′m)) + SB(T ∗(d′′m)))

= inf
d′m+d′′m=dm

d′m,d′′m∈Rm

(STA(d′m) + STB(d′′m)) = STA∩TB(dm).

Overall, ST (A∩B)(dm) = STA∩TB(dm) for all directions dm ∈ Rm. Hence, T (A ∩B) = TA ∩ TB.

(Only-if statement) To establish the necessity part, we assume that T (A∩B) = TA∩TB and

consider any direction d ∈ ker(T )⊥ and support point u ∈ E(A ∩ B, d). As ker(T )⊥ = image(T ∗)

there must exist dm ∈ Rm such that d = T ∗(dm). For this direction, we have

STA∩TB(dm) = inf
d′m+d′′m=dm

d′m,d′′m∈Rm

(STA(d′m) + STB(d′′m)) = inf
d′m+d′′m=dm

d′m,d′′m∈Rm

(SA(T ∗(d′m)) + SB(T ∗(d′′m))). (A.3)

For any d′m, d
′′
m such that d′m + d′′m = dm, let d′, d′′ ∈ ker(T )⊥ and d′ = T ∗(d′m), d′′ = T ∗(d′′m),

d′ + d′′ = T ∗(dm) = d. As T (A ∩B) = TA ∩ TB there must exist d′ and d′′ such that

u · d = SA∩B(T ∗(dm)) = ST (A∩B)(dm) = STA∩TB(dm) = SA(d′) + SB(d′′),

where the last equality follows from Theorem 16.4 in Rockafellar (1997), which asserts that the

infimum of (A.3) is achieved when the relative interiors of the two sets have a point in common.

Also, as u ∈ A ∩ B, we have u · d′ ≤ SA(d′) and u · d′′ ≤ SB(d′′). As a result, we must have

u ·d′ = SA(d′), and u ·d′′ = SB(d′′). In other words, u ∈ E(A, d′)∩E(B, d′′), where d′, d′′ ∈ ker(T )⊥

and d′ + d′′ = T ∗(dm). As the choice of dm is arbitrary and image(T ∗) = ker(T )⊥ the only-if

statement follows.

7To see that d′m + d′′m 6= dm is not possible, denote am = d′m + d′′m − dm ∈ image(T ). By construction,
T ∗(am) = 0, and thus am ∈ ker(T ∗) = image(T )⊥. Hence, we have am ∈ image(T ) ∩ image(T )⊥, which implies
am = 0.

15



Proof of Theorem 10. The proof of the sufficient part follows from the proof of the sufficient

part of Theorem 9. Let us now establish the necessary part. Assume that T (A ∩B) = TA ∩ TB.

This implies that for any dm ∈ Rm we have ST (A∩B)(dm) = STA∩TB(dm). We know that

STA∩TB(dm) = inf
d′m+d′′m=dm

d′m,d′′m∈Rm

(STA(d′m) + STB(d′′m))

= inf
d′m+d′′m=dm

d′m,d′′m∈Rm

(SA(T ∗d′m) + SB(T ∗d′′m)).

As image(T ∗) = ker(T )⊥, there must exist d′, d′′ ∈ ker(T )⊥ such that d′ = T ∗d′m, d
′′ = T ∗d′′m.

Similar to the proof of Theorem 9 (see footnote 3) we establish that sets {d′, d′′ ∈ ker(T )⊥ | d′+d′′ =
T ∗dm} and {d′, d′′ ∈ ker(T )⊥ | d′ = T ∗d′m, d

′′ = T ∗d′′m, d
′
m + d′′m = dm} coincide. Therefore,

STA∩TB(dm) = inf
d′+d′′=T∗dm
d′,d′′∈ker(T )⊥

(SA(d′) + SB(d′′)).

At the same time, we have

ST (A∩B)(dm) = SA∩B(T ∗dm) = inf
d′+d′′=T∗dm

d′,d′′∈Rn

(SA(d′) + SB(d′′)).

Finally, as image(T ∗) = ker(T )⊥, we can conclude that for any d ∈ ker(T )⊥

inf
d′+d′′=d

d′,d′′∈Rn

(SA(d′) + SB(d′′)) = inf
d′+d′′=d

d′,d′′∈ker(T )⊥

(SA(d′) + SB(d′′)).
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