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Abstract

In many multiple testing problems, the individual null hypotheses (i) concern univariate

parameters and (ii) are one-sided. In such problems, power gains can be obtained for bootstrap

multiple testing procedures in scenarios where some of the parameters are ‘deep in the null’ by

making certain adjustments to the null distribution under which to resample. In this paper,

we compare a Bonferroni adjustment that is based on finite-sample considerations with certain

‘asymptotic’ adjustments previously suggested in the literature.
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1 Introduction

Multiple testing refers to any situation that involves the simultaneous testing of several hypotheses.

This scenario is quite common in empirical research in just about any field, including economics and

finance. Some examples include: one fits a multiple regression model and wishes to decide which

coefficients are different from zero; one compares several forecasting strategies to a benchmark and

wishes to decide which strategies are outperforming the benchmark; and one evaluates a policy with

respect to multiple outcomes and wishes to decide for which outcomes the policy yields significant

effects.

If one does not take the multiplicity of tests into account, then the probability that some of

the true null hypotheses are rejected by chance alone is generally unduly large. Take the case of

S = 100 hypotheses being tested at the same time, all of them being true, with the size and level

of each test exactly equal to α. For α = 0.05, one then expects five true hypotheses to be rejected.

Furthermore, if all test statistics are mutually independent, then the probability that at least one

true null hypothesis will be rejected is given by 1− 0.95100 = 0.994.

The most common solution to multiple testing problems is to control the familywise error rate

(FWE), which is defined as the probability of rejecting at least one of the true null hypotheses. In

other words, one uses a global error rate that combines all tests under consideration instead of an

individual error rate that only considers one test at a time.

Controlling the FWE at a pre-specified level α corresponds to controlling the probability of a

Type I error when carrying out a single test. But this is only one side of the testing problem —

and it can be achieved trivially by rejecting a particular hypothesis under test with probability α

without even looking at data. The other side of the testing problem is ‘power’, that is, the ability

to reject false null hypotheses.

In this paper, we shall study certain adjustments to ‘null sampling distributions’ with the hope

of power gains in the setting where the individual null hypotheses (i) concern univariate parameters

and (ii) are one-sided.

2 Testing Problem

Suppose data X are generated from some unknown probability mechanism P. A model assumes

that P belongs to a certain family of probability distributions, though we make no rigid requirements

for this family; it may be a parametric, semiparametric, or nonparametric model.

We consider the following generic multiple testing problem:

Hs : θs ≤ 0 vs. H ′
s : θs > 0 for s = 1, . . . , S , (2.1)

where the θs ..= θs(P) are real-valued, univariate parameters and the values under the null

hypotheses are always zero without loss of generality. We also denote θ ..= (θ1, . . . , θS)
′.
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The familywise error rate (FWE) is defined as

FWEP
..= P{Reject at least one hypothesis Hs : θs ≤ 0} .

The goal is to control the FWE rate at a pre-specified level α while at the same time to achieve

large ‘power’, which is loosely defined as the ability to reject false null hypotheses, that is, the

ability to reject null hypotheses Hs for which θs > 0. For example, particular notions of ‘power’

can be the following:

• The probability of rejecting at least one of the false null hypotheses

• The probability of rejecting a particular false null hypothesis

• The expected number of the false null hypotheses that will be rejected

• The probability of rejecting all false null hypotheses

Control of the FWE means that, for a given significance level α,

FWEP ≤ α for any P . (2.2)

Control of the FWE allows one to be 1− α confident that there are no false discoveries among the

rejected hypotheses.

Control of the FWE is generally equated with ‘finite-sample’ control: (2.2) is required to hold

for any given sample size n. However, such a requirement can often only be achieved under strict

parametric assumptions or for special permutation set-ups. Instead, we settle for asymptotic control

of the FWE:

lim sup
n→∞

FWEP ≤ α for any P . (2.3)

Note here that the statement “for any P” is meant to mean any P in the underlying assumed

model for the family of distributions generating the data; for example, often one would assume the

existence of some moments.

3 Multiple Testing Procedures

We assume that individual test statistics are available of the form

Tn,s
..=

θ̂n,s
σ̂n,s

,

where θ̂n,s is an estimator of θs based on a sample of size n and σ̂n,s is a corresponding standard

error.1 We also denote θ̂n ..= (θ̂n,1, . . . , θ̂n,s)
′. We further assume that these test statistics

are ‘proper’ t-statistics in the sense that Tn,s converges in distribution to the standard normal

distribution under θs = 0, for all s = 1, . . . , S.

1This means that σ̂n,s is an estimator of the standard deviation of θ̂n,s.
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There exist by now a sizeable number of multiple testing procedures (MTPs) designed to control

the FWE, at least asymptotically. The oldest and best-known such procedure is the Bonferroni

procedure that rejects hypothesis Hs if p̂n,s ≤ α/S, where p̂n,s is a p-value for Hs. Such a p-value

can be obtained based on asymptotic approximations or alternatively via resampling methods;

for example, an ‘asymptotic’ p-value is obtained as p̂n,s ..= 1 − Φ(Tn,s), where Φ(·) denotes the

c.d.f. of the standard normal distribution. Although the Bonferroni procedure controls the FWE

asymptotically under weak regularity conditions, it is generally suboptimal in terms of ‘power’.

There are two main avenues of increasing ‘power’ while maintaining (asymptotic) control of

the FWE. The first avenue, dating back to Holm (1979), is to use stepwise procedures where the

threshold for rejecting hypotheses becomes less lenient in subsequent steps in case some hypotheses

have been rejected in a first step. The second avenue, dating back to White (2000), at least in

nonparametric settings, is to take the dependence structure of the individual test statistics tn,s

into account rather than assuming a ‘worst-case’ dependence structure as the Bonferroni procedure

does; taking the true dependence structure into account — in the absence of strict assumptions

— requires the use of resampling methods, such as the bootstrap, subsampling, and permutation

methods. Romano and Wolf (2005) suggest to combine both avenues, resulting in resampling-based

stepwise multiple testing procedures.

We start by discussing a bootstrap-based single-step method. An idealized method would reject

all Hs for which Tn,s ≥ d1 where d1 is the 1− α quantile under the true probability mechanism P

of the random variable maxs(θ̂n,s − θs)/σ̂n,s. Naturally, the quantile d1 not only depends on the

marginal distributions of the centered statistics (θ̂n,s − θs)/σ̂n,s but, crucially, it also depends on

their dependence structure.

Since the true probability mechanism P is unknown, the idealized critical value d1 is not available.

But it can be estimated consistently under weak regularity conditions as follows. Take d̂1 as the

1 − α quantile under P̂n of maxs(θ̂
∗
n,s − θ̂n,s)/σ̂

∗
n,s. Here, P̂n is an unrestricted estimate of P. For

example, if X = (X1, . . . , Xn) with Xi
iid∼ P, then P̂n is typically the empirical distribution of

the Xi. Furthermore, θ̂∗n,s is the estimator of θ̂s and σ̂∗
n,s is the corresponding standard error, both

computed from X∗ where X∗ ∼ P̂n. In other words, we use the bootstrap to estimate d1. The

particular choice of P̂n depends on the situation. In particular, if the data are collected over time a

suitable time series bootstrap needs to be employed; for example, see Davison and Hinkley (1997)

and Lahiri (2003).

We have thus described a single-step multiple testing procedure (MTP). However, a stepwise

improvement is possible.2 In any given step j, one simply discards the hypotheses that have been

rejected so far and applies the single-step MTP to the remaining universe of non-rejected hypotheses.

The resulting critical value d̂j necessarily satisfies d̂j ≤ d̂j−1, and typically satisfies d̂j < d̂j−1,

so that new rejections may result; otherwise the method stops with no further rejections.

2More precisely, the improvement is of a stepdown nature.
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This bootstrap stepwise MTP provides asymptotic control of the FWE under remarkably weak

regularity conditions. Mainly, it is sufficient that (i)
√
n(θ̂n − θ) converges in distribution to a

(multivariate) continuous limit distribution and that the bootstrap consistently estimates this limit

distribution; and that (ii) the ‘scaled’ standard errors
√
nσ̂n,s and

√
nσ̂∗

n,s converge to the same, non-

zero limiting values in probability, both in the ‘real world’ and in the ‘bootstrap world’. Under even

weaker regularity conditions, a subsampling approach could be used instead; see Romano and Wolf

(2005). Furthermore, when a randomization setup applies, randomization methods can be used as

an alternative; see Romano and Wolf (2005) again.

4 Adjustments for Power Gains

As stated before, the bootstrap stepwise MTP of the previous section provides asymptotic control

of the FWE under weak regularity conditions. But in the one-sided setting (2.1) considered in this

paper, it might be possible to obtain further power gains by making adjustments for null hypotheses

that are ‘deep in the null’, an idea going back to Hansen (2005).

To motivate such an idea, it is helpful to first point out that for many parameters of interest θ,

there is a one-to-one relation between the bootstrap stepwise MTP of the previous section, which

is based on an unrestricted estimate P̂n of P, and a bootstrap stepwise MTP that is based on

a restricted estimate P̂0,n of P, satisfying the constraints of the S null hypotheses. In the latter

approach the critical value d̂1 in the first step is obtained as the 1 − α quantile under P̂0,n of

maxs θ̂
∗
n,s/σ̂

∗
n,s. Here, θ̂

∗
n,s is the estimator of θs and σ̂∗

n,s is the corresponding standard error, both

computed from X∗ where X∗ ∼ P̂0,n. Note that in this latter approach, there is no (explicit)

centering in the numerator of the bootstrap test statistics, since the centering already takes place

implicitly in the restricted estimator P̂0,n by incorporating the constraints of the null hypotheses.

For many parameters of interest, the unrestricted bootstrap stepwise MTP of the previous

section is equivalent to the restricted bootstrap stepwise MTP of the previous paragraph based

on an estimator P̂0,n that satisfies θs(P̂0,n) = 0 for s = 1, . . . , S. In statistical lingo, such a null

parameter θ(P̂0,n) corresponds to a least favorable configuration (LFC), since all the components

θs(P̂0,n) lie on the boundary of the respective null hypotheses Hs.

Remark 4.1 (Example: Testing Means). To provide a specific example of a null-restricted

estimator P̂0,n, consider the setting where X = (X1, . . . , Xn) with Xi
iid∼ P, Xi ∈ R

S , and

(θ1, . . . , θS)
′ = θ ..= E(Xi). Then an unrestricted estimator P̂n is given by the empirical distribution

of the Xi whereas a null-restricted estimator P̂0,n is given by the empirical distribution of the

Xi − θ̂n, where θ̂n is the sample average of the Xi. In other words, P̂0,n is obtained by suitably

shifting P̂n to achieve mean zero for all components.

Hansen (2005) argues that such an approach is overly conservative when some of the θs lie ‘deep

in the null’, that is, for θs ≪ 0. Indeed, it can easily be shown that asymptotic control of the
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FWE based on the restricted bootstrap stepwise MTP could be achieved based on an infeasible

‘estimator’ P̂0,n that satisfies

θs(P̂0,n) = min{θs, 0} .

(We use the term ‘estimator’ here, since such an P̂0,n is infeasible in practice because one does not

know the true values θs.) Clearly, when some of the θs are smaller than zero, one would obtain

smaller critical values d̂j in this way compared to using the LFC.

The idea then is to adjust P̂0,n in a feasible, data-dependent fashion such that θs(P̂0,n) < 0 for

all θs ‘deep in the null’.

4.1 Asymptotic Adjustments

Based on the law of iterated logarithm, Hansen (2005) proposes an adjustment P̂A
0,n that satisfies

θs(P̂
A
0,n)

..= θ̂n,s1{Tn,s<−
√
2 log logn} , (4.1)

where 1{·} denotes the indicator function of a set. Therefore, if the t-statistic Tn,s is sufficiently

small, the parameter of the restricted bootstrap distribution is adjusted to the sample-based

estimator θ̂s, and otherwise it is left unchanged at zero. How one can construct such an estimator

P̂
A
0,n depends on the particular application. In the example of Remark 4.1, say, P̂

A
0,n can be

constructed by suitably shifting the empirical distribution P̂n.

Hansen (2005) only considers a bootstrap single-step MTP. Hsu et al. (2010) propose the same

adjustment (4.1) in the context of a bootstrap stepwise MTP in the spirit of Romano and Wolf

(2005).

The adjustment (4.1) is of asymptotic nature, since one does not have to pay any ‘penalty’ in

the proposals of Hansen (2005) and Hsu et al. (2010). In other words, the MTP procedure proceeds

as if θs(P̂
A
0,n) = θs in case θs(P̂

A
0,n) has been adjusted to θ̂n,s < 0. The point here is that in finite

samples, it may happen that Tn,s < −
√
2 log logn even though θs ≥ 0 in reality; in such cases, the

null distribution P̂0,n is generally to ‘optimistic’ and results in critical values d̂j that are too small.

As a consequence, control of the FWE in finite samples will be negatively affected.

Also note that the cutoff −
√
2 log log n is actually quite arbitrary and could be replaced by any

multiple of it, however big or small, without affecting the asymptotic validity of the method.

Remark 4.2 (Related Problem: Testing Moment Inequalities). The literature on moment

inequalities is concerned with the related testing problem

H : θs ≤ 0 for all s vs. H ′ : θs > 0 for at least one s . (4.2)

This is not a multiple testing problem but the (single) multivariate hypothesis H also involves an

S-dimensional parameter θ and is one-sided in nature. For this testing problem, Andrews and Soares

(2010) suggest an adjustment to P̂0,n that is of asymptotic nature and corresponds to the adjustment
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of Hansen (2005) for testing problem (2.1). But then, in a follow-up paper, Andrews and Barwick

(2012) propose an alternative method based on finite-sample considerations that incorporates an

explicit ‘penalty’ for making adjustments to the LFC. The proposal of Andrews and Barwick (2012)

is computationally quite complex and also lacks a rigorous proof of validity. Romano et al. (2014)

suggest a Bonferroni adjustment as an alternative, which is simpler to implement and also comes

with a rigorous proof of validity.

4.2 Bonferroni Adjustments

We now ‘translate’ the Bonferroni adjustment of Romano et al. (2014) for testing problem (4.2) to

the multiple testing problem (2.1).

In the first step, we adjust P̂0,n based on a nominal 1 − β upper rectangular joint confidence

region for θ of the form

(−∞, θ̂n,1 + ĉ σ̂n,1]× · · · × (−∞, θn,S + ĉ σ̂n,S ] . (4.3)

Here, 0 < β < α and ĉ is a bootstrap-based estimator of the 1 − β quantile of the sampling

distribution of the statistic

max
s

θs − θ̂n,s
σ̂n,s

.

For notational compactness, denote the upper end of a generic joint confidence interval in (4.3) by

ûn,s ..= θ̂n,s + ĉ σ̂n,s . (4.4)

Then we propose an adjustment P̂B
0,n that satisfies

θs(P̂
B
0,n)

..= min{ûn,s, 0} . (4.5)

How one can construct such an estimator P̂B
0,n depends on the particular application. In the example

of Remark 4.1, say, P̂B
0,n can be constructed by suitably shifting the empirical distribution P̂n.

In the second step, the restricted bootstrap stepwise MTP (i) uses θ(P̂B
0,n) defined by (4.5) and

(ii) is carried out at nominal level α−β as opposed to nominal level α. Feature (ii) is a finite-sample

‘penalty’ that accounts for the fact that with probability β, the true θ will not be contained in the

joint confidence region (4.3) in the first step and, consequently, the adjustment in (i) will be overly

optimistic.

As reasonable ‘generic’ choice for β is β ..= α/10, as per the suggestion of Romano et al. (2014).

It is clear that the Bonferroni adjustment is necessarily less powerful compared to the asymptotic

adjustment for two reasons. First, typically θs(P̂
A
0,n) ≤ θs(P̂

B
0,n) for all s = 1, . . . , S. Second, the

asymptotic adjustment uses the full nominal level α in the stepwise MTP whereas the Bonferroni

adjustment only uses the reduced level α − β. On the other hand, it can be expected that the

asymptotic adjustments will be liberal in terms of the finite-sample control of the FWE in some

scenarios.
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4.3 Adjustments for Unrestricted Bootstrap MTPs

We have detailed the asymptotic and Bonferroni adjustments in the context of the restricted

bootstrap stepwise MTPs, since they are conceptually somewhat easier to understand.

But needless to say, these adjustments carry over one-to-one to the unrestricted bootstrap

stepwise MTPs of Romano and Wolf (2005).

Focusing on the first step to be specific, the asymptotic adjustment takes d̂1 as the 1−α quantile

under P̂n of maxs(θ̂
∗
n,s − θ̂An,s)/σ̂

∗
n,s. Here, P̂n is an unrestricted estimator of P and

θ̂An,s
..=







θ̂n,s if Tn,s < −
√
2 log logn

0 otherwise

Furthermore, θ̂∗n,s and σ̂∗
n,s are the estimator of θs and the corresponding standard error, respectively,

computed from X∗, where X∗ ∼ P̂n.

On the other hand, the Bonferroni adjustment takes d̂1 as the 1 − α + β quantile under P̂n of

maxs(θ̂
∗
n,s − θ̂Bn,s)/σ̂

∗
n,s. Here, P̂n is an unrestricted estimator of P and

θ̂Bn,s
..= θ̂n,s −min{ûn,s, 0} , (4.6)

with ûn,s defined as in (4.4). Furthermore, θ̂∗n,s and σ̂∗
n,s are the estimator of θs and the

corresponding standard error, respectively, computed from X∗ where X∗ ∼ P̂n.

The computation of the critical constants d̂j in subsequent steps j > 1 is analogous for both

adjustments.

Remark 4.3 (Single Adjustment versus Multiple Adjustments). In principle, the Bonferroni

adjustments (4.6) could be updated in each step of the bootstrap stepwise MTP by updating

the joint confidence region for the remaining part of θ in each step, that is, for the elements θs

of θ for which the corresponding null hypotheses Hs have not been rejected in previous steps. This

approach can be expected to lead to small further power gains though at additional computational

(and software coding) costs.

5 The Gaussian Problem

5.1 Single-Step Method

In this section, we derive an exact finite-sample result for the multivariate Gaussian model, which

motivates the method proposed in the paper. Assume that W ..= (W1, . . . ,WS)
′ ∼ P ∈ P ..=

{N(θ,Σ) : µ ∈ R
S} for a known covariance matrix Σ. The multiple testing problem consists of S

one-sided hypotheses

Hs : θs ≤ 0 vs. H ′
s : θs > 0 for s = 1, . . . , S . (5.1)
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The goal is to control the FWE exactly at nominal level α in this model, for any possible choice

of the θs, for some pre-specified value of α ∈ (0, 1). Note further that, because Σ is assumed

known, we may assume without loss of generality that its diagonal consists of ones; otherwise, we

can simply replace Ws by Ws divided by its standard deviation. This limiting model applies

to the nonparametric problem in the large-sample case, since standardized sample means are

asymptotically multivariate Gaussian with covariance matrix that can be estimated consistently.

First, if instead of the multiple testing problem, we were interested in the single multivariate

joint hypothesis that all θs satisfy θs ≤ 0, then we are in the moment inequalities problem; see

Remark 4.2. For such a problem, there are, of course, many ways in which to construct a test

that controls size at level α. For instance, given any test statistic T ..= T (W1, . . . ,WS) that is

nondecreasing in each of its arguments, we may consider a test that rejects H0 for large values of T .

Note that, for any given fixed critical value c, Pθ{T (W1, . . . ,WS) > c} is a nondecreasing function

of each component θs in θ. Therefore, if c ..= c1−α is chosen to satisfy

P0

{

T (W1, . . . ,WS) > c1−α

}

≤ α ,

then the test that rejects H0 when T > c1−α is a level α test. A reasonable choice of test statistic T

is the likelihood ratio statistic or the maximum statistic max(W1, . . . ,WS). For this latter choice of

test statistic, c1−α may be determined as the 1−α quantile of the distribution of max(W1, . . . ,WS)

when (W1, . . . ,WS)
′ is multivariate normal with mean 0 and covariance matrix Σ. Unfortunately,

as S increases, so does the critical value, which can make it difficult to have any reasonable power

against alternatives. The same issue occurs in multiple testing, as described below. The main idea

of our procedure is to essentially remove from consideration those θs that are ‘negative’.
3 If we can

eliminate such θs from consideration, then we may use a smaller critical value with the hopes of

increased power against alternatives.

In the multiple testing problem using the max statistic, one could simply reject any θs for which

Xs > c1−α. But as in the single testing problem above, c1−α increases with S and therefore it

may be helpful to make certain adjustments if one is fairly confident that a hypothesis Hs satisfies

θs < 0. Using this reasoning as a motivation, we may use a confidence region to help determine

which θs are ‘negative’. To this end, let M(1 − β) denote an upper rectangular joint confidence

region for θ at level 1− β. Specifically, let

M(1− β) ..=
{

θ ∈ R
S : max

1≤s≤S
(θs −Ws) ≤ K−1(1− β)

}

(5.2)

=
{

θ ∈ R
S : θs ≤ Ws +K−1(1− β) for all 1 ≤ s ≤ S

}

,

where K−1(1− β) is the 1− β quantile of the distribution (function)

K(x) ..= Pθ

{

max
1≤s≤S

(θs −Ws) ≤ x
}

.

3Such a program is carried out in the moment inequality problem by Romano et al. (2014).
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Note that K(·) depends only on the dimension S and the underlying covariance matrix Σ. In

particular, it does not depend on the θs, so it can be computed under the assumption that all

θs = 0. By construction, we have for any θ ∈ R
S that

Pθ{θ ∈ M(1− β)} = 1− β .

The idea now is that with probability at least 1−β, we may assume that θ will lie in Ω0∩M(1−β)

rather than just in Ω0, where Ω0 is the ‘negative quadrant’ given by {θ : θs ≤ 0, s = 1, . . . , S}.
Instead of computing the critical value under θ = 0, the ‘largest’ value of θ in Ω0 (or the value

under the LFC), we may therefore compute the critical value under θ̃, the ‘largest’ value of θ in

the (data-dependent) set Ω0 ∩M(1− β). It is straightforward to determine θ̃ explicitly because of

the simple shape of the joint confidence region for θ. In particular, θ̃ has sth component equal to

θ̃s ..= min{Ws +K−1(1− β), 0} . (5.3)

But, to account for the fact that θ may not lie in M(1 − β) with probability β, we reject any Hs

for which Ws exceeds the 1− α+ β quantile of the distribution of T ..= max(W1, . . . ,WS) under θ̃

rather than the 1 − α quantile of the distribution of T under θ̃. The following result establishes

that this procedure controls the FWE at level α.

Theorem 5.1. Let T .

.= max(W1, . . . ,WS). For θ ∈ R
S and γ ∈ (0, 1), define

b(γ, θ) .

.= inf{x ∈ R : Pθ{T (W1, . . . ,Wk) ≤ x} ≥ γ} ,

that is, as the γ quantile of the distribution of T under θ. Fix 0 < β < α. The multiple testing

procedure that rejects any Hs for which Ws > b(1− α+ β, θ̃) controls the FWE at level α.

Remark 5.1. As emphasized above, an attractive feature of the procedure is that the ‘largest’

value of θ in Ω0 ∩M(1− β) may be determined explicitly. This follows from our particular choice

of the initial joint confidence region for θ. If, for example, we had instead chosen M(1 − β) to

be the usual Scheffé confidence ellipsoid, then there may not even be a ‘largest’ value of θ in

Ω0 ∩M(1− β).

Proof of Theorem 5.1. First note that b(γ, θ) is nondecreasing in θ, since T is nondecreasing in

its arguments. Fix any θ. Let I0 ..= I0(θ) denote the indices of true null hypotheses, that is,

I0 ..= {s : θs ≤ 0} .

Let θ∗s
..= min(θs, 0) and let E be the event that θ ∈ M(1 − β). Then, the familywise error rate

(FWE) satisfies

Pθ{reject any true Hs} ≤ Pθ

{

Ec
}

+ Pθ{E ∩ {reject any Hs with s ∈ I0}}
= β + Pθ{E ∩ {reject any Hs with s ∈ I0}} .
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But when the event E occurs and some true Hs is rejected — so that maxs∈I0 Ws > b(1−α+ β, θ̃)

— then the event maxs∈I0 Ws > b(1− α+ β, θ∗) must occur, since b(1− α+ β, θ) is nondecreasing

in θ and θ ≤ θ̃ when E occurs. Hence, the FWE is bounded above by

β + Pθ

{

max
s∈I0

Ws > b(1− α+ β, θ∗)
}

≤ β + Pθ∗
{

max
s∈I0

Ws > b(1− α+ β, θ∗)
}

because the distribution of maxs∈I0 Ws only depends on those θs in I0. Therefore, the last expression

is bounded above by

β + Pθ∗
{

max
all s

Ws > b(1− α+ β, θ∗)
}

= β + 1− (1− α+ β) = β + (α− β) = α .

5.2 Stepwise Method

One can improve upon the single-step method in Theorem 5.1 by a stepwise method.4 More

specifically, consider the following method. Begin with the method described above, which rejects

any Hs for which Ws > b(1 − α + β, θ̃). Basically, one applies the closure method to the above

and show that it may be computed in a stepwise fashion. To do this, we first need to describe the

situation when testing only a subset of the hypotheses. So, let I denote any subset of {1, . . . , S}
and let bI(γ, θ) denote the γ quantile of the distribution of max(Ts : s ∈ I) under θ. Also, let

θ̃(I) ..= {θ̃s(I) : s ∈ I} with θ̃s(I) be defined as in (5.3) except that K−1(1 − β) is replaced by

K−1
I (1− β), defined to be the 1− β quantile of the distribution (function)

KI(x) ..= Pθ{max
s∈I

(θs −Ws) ≤ x} .

The stepwise method can now be described. Begin by testing all Hs with s ∈ {1, . . . , S} as

described in the single-step method. If there are any rejections, remove the rejected hypotheses

from consideration and apply the single-step method to the remaining hypotheses. That is, if I

is the set of indices of the remaining hypotheses not previously rejected, then reject any such Hs

if Ws > bI(1 − α + γ, θ̃(I)). And so on. (Note that at each step of the procedure, a new joint

confidence region is computed to determine θ̃(I), but β remains the same at each step.)

Theorem 5.2. Under the Gaussian setup of Theorem 5.1, the above stepwise method controls

the FWE at level α.

Proof of Theorem 5.2. We just need to show that the closure method applied to the above tests

results in the stepwise method as described. To do this, it suffices to show that if I ⊂ J , then

when J is tested (meaning the Hs with s ∈ J are jointly tested) and the method rejects the joint

(intersection) hypothesis, then it also rejects the particular joint (intersection) hypothesis when just

I is tested.

First, the distribution of maxθs∈I Ws is stochastically dominated by that of maxθs∈J Ws (since

we are just taking the max over a larger set), under any θ and in particular under θ̃(I). But

4More precisely, the improvement is a stepdown method.
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the distribution of the maximum statistic maxθs∈J Ws is monotone increasing with respect to θs

because of the important fact that, component wise,

θ̃(I) ≤ θ̃(J) .

Hence, the distribution of maxθs∈J under θ̃(I) is further dominated by the distribution of

maxθs∈J Ws under θ̃(J). Therefore, the critical values satisfy

bI(1− α+ β, θ̃(I)) ≤ bJ(1− α+ β, θ̃(J)) ,

which is all we need to show, since then any Hs for which Ws exceeds bJ(1−α+β, θ̃(J)) will satisfy

that Ws also exceeds bI(1− α+ β, θ̃(I)).

6 Monte Carlo Simulations

The data are of the form X ..= (X1, X2, . . . , Xn) with Xi
iid∼ N(θ,Σ), θ ∈ R

S , and Σ ∈ R
S×S . We

consider n = 50, 100.

For n = 50, we consider S = 25, 50, 100 and the following mean vectors θ = (θ1, . . . , θS)
′:

• All θs = 0

• 5 of the θs = 0.4

• 5 of the θs = 0.4 and S/2 of the θs = −0.4

• 5 of the θs = 0.4 and S/2 of the θs = −0.8

For n = 100, we consider S = 50, 100, 200 and the following mean vectors θ = (θ1, . . . , θS)
′:

• All θs = 0

• 10 of the θs = 0.3

• 10 of the θs = 0.3 and S/2 of the θs = −0.3

• 10 of the θs = 0.3 and S/2 of the θs = −0.6

For S = 50, 100, the covariance matrix Σ is always a constant-correlation matrix with constant

variance one on the diagonal and constant covariance ρ = 0, 0.5 on the off-diagonal.

The test statistics Tn,s are the usual t-statistics based on the individual sample means and

sample standard deviations.

The multiple testing procedure is always the bootstrap stepwise MTP of Romano and Wolf

(2005) and we consider three variants:

• LFC: no adjustment at all

• Asy: Asymptotic Adjustment

• Bon: Bonferroni Adjustment
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Note that for computational simplicity, Bon is based on a single adjustment throughout the stepwise

MTP; see Remark 4.3.

The nominal level for FWE control is α = 10% and the value of β for the Bonferroni adjustment

is chosen as β = 1% following the ‘generic’ suggestion β ..= α/10 of Romano et al. (2014).

We consider two performance measures:

• FWE: Empirical FWE

• Power: Average number of rejected false hypotheses

The number of Monte Carlo repetitions is B = 50, 000 in each scenario and the bootstrap à la Efron

(1979) is based on 1,000 resamples always.

The results for n = 50 are presented in Section A.1 and the results for n = 100 are presented in

Section A.2. They can be summarized as follows.

• As pointed out before, Asy is always more powerful than Bon necessarily.

• There are some scenarios where Asy fails to control the FWE, though the failures are never

grave: In the worst case, the empirical FWE is 10.6%.

• Bon can actually be less powerful than LFC (though never by much). This is not surprising:

When null parameters are on the boundary or close to the boundary, then the ‘minor’

adjustment in the first stage of Bon does not offset the reduction in the nominal level (from α

to α− β) in the second stage.

• When null parameters are ‘deep in the null’, also the power gains of Bon over LFC are

noticeable (though never quite as large as the power gains of Asy over LFC). Of course, such

power gains would even be greater by increasing the proportion of null parameters ’deep in

the null’ and/or the distance away from zero of such null parameters.

7 Conclusion

In many multiple testing problems, the individual null hypotheses (i) concern univariate parameters

and (ii) are one-sided. In such problems, power gains can be obtained for bootstrap multiple testing

procedures in scenarios where some of the parameters are ‘deep in the null’ by making certain

adjustment to the null distribution under which to resample. In this paper we have compared

a Bonferroni adjustment that is based on finite-sample considerations to certain ‘asymptotic’

adjustments previously suggested in the literature. The advantage of the Bonferroni adjustment

is that it guarantees better finite-sample control of the familywise error rate. The disadvantage is

that it is always somewhat less powerful than the asymptotic adjustments.
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A Detailed Monte Carlo Results

A.1 Results for n = 50

S LFC Asy Bon

ρ = 0

25 9.8 10.5 8.8

50 9.7 10.2 8.7

100 9.5 10.1 8.5

ρ = 0.5

25 10.0 10.0 9.0

50 9.8 9.8 8.8

100 9.9 9.9 8.9

Table A.1: All θs = 0: FWE.

S LFC Asy Bon LFC Asy Bon

ρ = 0

25 8.9 9.4 7.9 2.7 2.8 2.6

50 9.1 9.6 8.2 2.2 2.2 2.1

100 9.4 10.0 8.4 1.7 1.8 1.6

ρ = 0.5

25 9.9 9.9 8.9 3.2 3.2 3.1

50 9.8 9.8 8.8 2.8 2.8 2.7

100 10.0 10.1 9.2 2.4 2.4 2.3

Table A.2: 5 of the θs = 0.4: FWE | Power.
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S LFC Asy Bon LFC Asy Bon

ρ = 0

25 3.7 7.7 3.6 2.7 3.3 2.7

50 4.2 8.2 4.0 2.2 2.7 2.2

100 4.7 8.8 4.4 1.7 2.1 1.7

ρ = 0.5

25 5.3 7.6 4.7 3.1 3.6 3.2

50 5.9 8.0 5.3 2.8 3.2 2.7

100 6.6 8.4 5.9 2.4 2.8 2.3

Table A.3: 5 of the θs = 0.4 and S/2 of the θs = −0.4: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

25 3.7 8.8 6.9 2.7 3.4 3.2

50 4.2 9.3 7.1 2.2 2.8 2.6

100 4.7 9.8 7.4 1.7 2.2 2.0

ρ = 0.5

25 5.3 9.8 7.8 3.1 3.7 3.5

50 5.9 9.8 7.7 2.8 3.2 3.1

100 6.6 10.0 7.8 2.4 2.8 2.6

Table A.4: 5 of the θs = 0.4 and S/2 of the θs = −0.8: FWE | Power.
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A.2 Results for n = 100

S LFC Asy Bon

ρ = 0

50 9.8 10.2 8.8

100 10.0 10.4 8.9

200 10.0 10.6 8.9

ρ = 0.5

50 10.0 10.0 9.0

100 10.1 10.1 9.0

200 10.1 10.1 9.1

Table A.5: All θs = 0: FWE.

S LFC Asy Bon LFC Asy Bon

ρ = 0

50 8.8 9.1 7.9 5.4 5.5 5.3

100 9.5 9.8 8.5 4.5 4.5 4.3

200 9.7 10.2 8.7 3.6 3.7 3.5

ρ = 0.5

50 9.9 9.9 8.9 6.5 6.5 6.3

100 10.0 10.0 9.0 5.8 5.8 5.6

200 10.1 10.1 9.1 5.1 5.1 4.9

Table A.6: 10 of the θs = 0.3: FWE | Power.
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S LFC Asy Bon LFC Asy Bon

ρ = 0

50 3.3 7.3 3.4 5.4 6.4 5.4

100 4.3 8.4 4.1 4.5 5.3 4.4

200 4.7 8.9 4.4 3.6 4.4 3.6

ρ = 0.5

50 5.3 7.7 4.7 6.5 7.3 6.5

100 6.2 8.4 5.6 5.8 6.5 5.7

200 6.9 8.8 6.1 5.1 5.7 5.0

Table A.7: 10 of the θs = 0.3 and S/2 of the θs = −0.3: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

50 3.4 8.4 6.9 5.4 6.6 6.4

100 4.3 9.4 7.7 4.5 5.5 5.2

200 4.7 9.9 7.9 3.6 4.5 4.3

ρ = 0.5

50 5.3 9.9 8.3 6.5 7.4 7.1

100 6.2 10.0 8.4 5.8 6.5 6.3

200 6.9 10.2 8.6 5.1 5.9 5.6

Table A.8: 10 of the θs = 0.3 and S/2 of the θs = −0.6: FWE | Power.
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