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Abstract

We study the monotonicity of sender’s equilibrium strategy with respect to her type in signalling

games. We use counterexamples to show that when the sender’s payoff is non-separable, the Spence-

Mirrlees condition cannot rule out equilibria in which the sender uses non-monotone strategies. These

equilibria can survive standard refinements as incentives are strict and the sender plays every action

with positive probability. We provide sufficient conditions under which the sender’s strategy is mono-

tone in every Nash equilibrium. Our conditions require the sender’s payoff to have strictly increasing

differences between the state and the action profile and monotone with respect to each player’s action.

We also identify and fully characterize a novel property on the sender’s payoff that we call increasing

absolute differences over distributions, under which every pair of distributions over the receiver’s ac-

tions can be ranked endogenously. Our sufficient conditions fit into a number of applications, including

advertising, warranty provision, education and job assignment, etc.
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1 Introduction

Starting from the seminal contribution of Spence (1973), signalling games have become powerful tools

to study strategic interactions under asymmetric information. In a typical signalling model, an informed

sender, who has private information about the payoff environment (or her type), takes an action which

can influence the behavior of an uninformed receiver. This game theoretic model helps researchers to

understand phenomena such as education, limit pricing, the peacock’s tail, etc.

In virtually all applications of signalling games, players’ payoffs satisfy the well-known Spence-

Mirrlees condition: The sender’s actions and types are ranked, such that a higher type has a comparative

advantage in taking higher actions comparing with a lower type. For example, it is less costly for a talented

worker to receive more education (Spence 1973), and is more profitable for an efficient firm to cut prices

(Milgrom and Roberts 1982). Under this regularity condition, an intuitive prediction is that the sender’s

action should be non-decreasing in her type, or the game’s outcome is monotone.

In this paper, we assess the robustness of the above monotonicity prediction. We focus on signalling

games in which the set of types and actions are complete lattices (Topkis 1998) and the sender’s payoff

exhibits strictly increasing differences between the state and her own action. This generalizes the well-

known Spence-Mirrlees condition by allowing for discrete and multi-dimensional state and action spaces.

An equilibrium is monotone if a higher type sender never plays a strictly lower action than a lower type.

We examine the monotonicity of all (Bayes) Nash equilibria in these signalling games. The motivations

for this question is twofold. First, as pointed out by Fudenberg, Kreps and Levine (1988) as well as

Weinstein and Yildiz (2013), refinements in extensive form games are sensitive to the modeling details,

so it is important to evaluate the robustness of the monotonicity prediction against equilibrium selection.

Second, monotone equilibria have desirable properties, making them straightforward to interpret, tractable

to analyze and easy to compute (Athey 2001). Therefore, a result establishing the monotonicity of all

equilibria can facilitate the characterization of the set of equilibrium strategies and outcomes.1

We start from displaying a counterexample which shows that the Spence-Mirrlees condition cannot

guarantee the monotonicity of the sender’s strategy in all equilibria. These non-monotone equilibria exist

even when both players’ payoffs are strictly supermodular functions with respect to the sender’s type and

1To address the concern that there is a plethora of equilibria in signalling games, we adopt the following “double standard”:
For counterexamples, we will require stronger solution concepts such as sequential equilibrium (Kreps and Wilson 1982), and
equilibria that can survive standard refinements in Kohlberg and Mertens (1986), Cho and Kreps (1987), Banks and Sobel
(1987), etc. In contrast, when presenting positive results, we will focus on weaker solution concepts such as Nash equilibrium,
rationalizability, etc.
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the action profile. Furthermore, they can survive standard refinements as both players have strict incentives

and the sender plays every action with positive probability.

Comparing with Spence (1973), non-monotone equilibria exist due to the non-separability of the

sender’s payoff. Especially, the sender’s returns from the receiver’s action depend on her type. As a

result, a high type sender may have an incentive to play a low action if doing so can induce the receiver

to play a high action. The receiver has an incentive to do so if he believes that the state is high when the

sender’s action is low, which becomes self-fulfilling due to the sender’s non-monotone strategy.

We then proceed to provide sufficient conditions under which all Nash equilibria are monotone despite

payoffs being non-separable. At the heart of our analysis is a monotone-supermodular condition, which

requires, in addition to the Spence-Mirrlees condition, the sender’s payoff being strictly decreasing in her

own action, strictly increasing in the receiver’s action, and having increasing differences between her type

and the receiver’s action. This fits into a number of applications, including the education signalling game

in which an employer assigns workers job positions after observing their years of education, the warranty

provision game in which a firm chooses the length of warranty and the amount of refund before a consumer

chooses the quantity to purchase, etc.

Our first result (Theorem 1) shows that every equilibrium is monotone when the sender’s payoff is

monotone-supermodular and the receiver’s action choice is binary. This fits into the warranty provision

game when the consumer has unit demand. Intuitively, thanks to the binary action assumption, every

pair of distributions over the receiver’s action can be ranked according to first-order stochastic dominance

(FOSD). Since playing a higher action is more costly for the sender, she only has an incentive to do

so when it induces a more favorable response from the receiver. This implies that the ranking over the

sender’s equilibrium actions must coincide with the ranking over the receiver’s actions that they induce.

Since a high type sender has a stronger preference towards higher action profiles, she will never play a

strictly lower action than a low type in equilibrium.

However, in games where the receiver has three or more actions, non-monotone equilibria can arise

despite the sender’s payoff being monotone-supermodular, as it is no longer the case that every pair of the

receiver’s mixed actions can be ranked according to FOSD. Consequently, there can exist two equilibrium

action profiles which cannot be ranked albeit the corresponding actions for the sender can be ranked.

We introduce two sets of sufficient conditions to address this issue. First, we show in Theorem 2

that every equilibrium is monotone if the sender’s payoff is monotone-supermodular, the ranking over the

receiver’s action set is complete, and the receiver’s payoff satisfies a quasiconcavity-preserving property
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(QPP). QPP requires the receiver’s payoff to be strictly quasi-concave in his own action under every belief

about the state. A sufficient condition for QPP is that the receiver’s payoff being strictly concave in his

own action, which fits into the warranty provision game when the consumer faces decreasing marginal

returns to quantity.2 QPP implies that the receiver has at most two pure best replies in every circumstance,

which must be adjacent elements in his action set. As a result, every pair of his mixed best replies can be

ranked according to FOSD.

Second, we identify a novel condition on the sender’s payoff under which every pair of the receiver’s

mixed actions can be ranked endogenously. We call this property increasing absolute differences over dis-

tributions (IADD). Theorem 3 shows that if the sender’s payoff is monotone-supermodular and satisfies

IADD, then every Nash equilibrium is monotone.3 Unlike Theorem 2, Theorem 3 (as well as Theorem

1) makes no reference to the receiver’s payoff and incentives, so the conclusion extends to richer envi-

ronments such as the sender is signalling to a population of heterogeneous receivers, the receiver having

private information about his payoff, etc. We also establish a representation theorem that fully character-

izes IADD (Proposition 1), which facilitates its verification in applications.

Literature Review. Starting from Spence (1973), the monotonicity of outcomes has become a natural

prediction in various applications of signalling games to labor economics, industrial organization, corpo-

rate finance and biology. However, to the best of our knowledge, the question that when it is without loss

of generality to focus on monotone equilibria has not been systematically analyzed. Our results provide

sufficient conditions under which all equilibria are monotone. Our sufficient conditions highlight the eco-

nomic forces behind equilibrium monotonicity and our counterexamples illustrate how monotonicity can

fail once they are relaxed. Furthermore, these conditions are easy to verify given the functional forms of

players’ payoffs, which are useful for future applied works.

This paper also contributes to the literature on supermodular incomplete information games. Most of

the papers in this literature focus on simultaneous move games and establish the existence of monotone

pure strategy Nash equilibrium (e.g. Athey 2001; McAdams 2003; Van Zandt and Vives 2007; Reny

2011).4 In contrast, we analyze the monotonicity of equilibria in sequential move games where players’

2In Appendix B, we relate QPP to a strict version of the signed-ratio monotonicity condition in Quah and Strulovici (2012)
and provide a full characterization.

3A similar result is also obtained in Kartik, Lee and Rappoport (2017). We will elaborate this more in section 5 and show
that our result neither nests nor is nested by theirs.

4Several papers establish the monotonicity of all equilibria in simultaneous move supermodular games, for example, Morris
and Shin (1998) and the vast literature on global games, McAdams (2006) on uniform price auctions, etc.
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payoff functions are supermodular, with one-shot signalling games a natural starting point.5

Mensch (2016) studies dynamic incomplete information games with strategic complementarities and

establishes the existence of monotone perfect Bayesian equilibrium. Complementary to his work, we focus

on one-shot signalling games while emphasizing the robustness of equilibrium monotonicity. Our results

are also applicable to the study of robust predictions in repeated signalling games where the sender’s

payoff is monotone-supermodular. For example, our Theorems 1 and 3 are intermediate steps towards

establishing the commitment payoff bound and the consistency of the sender’s equilibrium behavior in

infinitely repeated reputation games with interdependent valuations (Pei 2016).

2 The Model

Consider the following two-player signalling game. Player 1 (or sender, she) privately observes the real-

ization of a payoff relevant state θ ∈ Θ (call it her type) and then chooses an action a1 ∈ A1. Player 2

(or receiver, he) has a prior belief π ∈ ∆(Θ) about θ . He chooses a2 ∈ A2 after observing a1. Player i’s

payoff is ui(θ ,a1,a2) with i ∈ {1,2}. Both players are expected utility maximizers. Abusing notation, let

ui(θ ,a1,α2)≡
∫

a2
ui(θ ,a1,a2)dα2 with α2 ∈ ∆(A2).

Throughout the paper, we assume that Θ, A1 and A2 are finite lattices and π has full support.6 We will

comment on cases in which Θ, A1 and A2 are infinite after stating our main results. We use � and % to

denote strict and weak orders on lattice sets. For two lattices X and Y , a mapping f : X ×Y → R exhibits

increasing differences if for every x,x′ ∈ X and y,y′ ∈ Y with x� x′ and y� y′:

f (x,y)− f (x′,y)≥ f (x,y′)− f (x′,y′), (2.1)

and it exhibits strictly increasing differences if the above inequality is strict (Topkis 1998). We introduce

a regularity condition on the sender’s payoff, which generalizes the Spence-Mirrlees condition to discrete

lattice sets:

5Complementarities in dynamic games are explored by Echenique (2004a, 2004b), who explains how dynamic incentives
can weaken the implications of complementarity and supermodularity. Despite we have established the monotonicity of all Nash
equilibria in a signalling game context, a signalling game with supermodular payoff functions is not necessarily supermodular in
its normal form and, therefore, the other attractive properties of simultaneous move supermodular games, such as the existence
of extremal equilibria, monotone comparative statics, the tâtonnement algorithm to compute the set of equilibria, etc. cannot
be applied to our setting.

6A set X is a lattice if there exists a partial order � such that for every x,x′ ∈ X , x∨x′,x∧x′ ∈ X , where x∨x′ is the smallest
element above both x and x′, x∧ x′ is the largest element below both x and x′.
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Definition 1 (Generalized Spence-Mirrlees Condition). u1 satisfies the generalized Spence-Mirrlees con-

dition if it exhibits strictly increasing differences in (θ ,a1).

Intuitively, this generalized Spence-Mirrlees condition requires that a higher type sender has a com-

parative advantage in playing higher actions comparing with a lower type. This is satisfied in most appli-

cations of signalling theory, including the education game in which receiving education is less costly for a

more talented worker (Spence 1973), the beer-quiche game in which drinking beer is more pleasant for the

strong sender (Cho and Kreps 1987), the warranty provision game in which providing lengthier warranty

is less costly for a high quality firm (Gal-Or 1989), etc.

Strategies & Equilibrium. The sender’s strategy is σ1 : Θ→ ∆(A1) and the receiver’s strategy is σ2 :

A1→ ∆(A2). Let σθ
1 ∈ ∆(A1) be the (possibly mixed) action played by type θ , which gives σ1 =

(
σθ

1
)

θ∈Θ
.

The solution concept is Nash equilibrium (henceforth equilibrium), which consists of a strategy profile

σ ≡ (σ1,σ2) such that σi best responds to σ−i for every i ∈ {1,2}. Since the game is finite, an equilibrium

exists. Next, we introduce the definitions of monotone strategy and monotone equilibrium:

Definition 2 (Monotone Strategy & Monotone Equilibrium). σ1 is a monotone strategy if for every θ � θ ′,

there exist no a1 ∈ supp(σθ
1 ) and a′1 ∈ supp(σθ ′

1 ) such that a1 ≺ a′1. An equilibrium (σ1,σ2) is monotone

if σ1 is a monotone strategy.

In words, a strategy is monotone if a low type sender never plays a strictly higher action than a high

type. When the order on A1 is complete (or A1 is one-dimensional), the monotonicity of σ1 implies that

min
a1

{
supp(σθ

1 )
}
% max

a1

{
supp(σθ ′

1 )
}

for every θ � θ
′. (2.2)

That is to say, if type θ ′ plays a1 with positive probability, then every type higher than θ ′ must be play-

ing actions that are higher or equal to a1 with probability 1. In particular, (2.2) implies that supp(σθ
1 )

dominates supp(σθ ′
1 ) in strong set order for every θ � θ ′. Nevertheless, it is worth to note that all our

counterexamples violate the weaker notion of monotonicity in terms of strong set order, making them

more convincing. In contrast, all the positive results apply under our more demanding monotonicity re-

quirement, which actually strengthens their implications.

We are interested in examining the monotonicity of all Nash equilibria in signalling games, and in

particular, games in which the sender’s payoff satisfies the generalized Spence-Mirrlees condition. The
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choice of a weak solution concept makes our positive results presented in section 4 robust against equi-

librium selection. However, due to the plethora of equilibria in signalling games, one might argue that

we should restrict attention to a subset of equilibria that can survive standard refinements instead of all

of them. To address this concern, whenever presenting counterexamples we will adopt the more stringent

solution concept of sequential equilibrium (Kreps and Wilson 1982). To make it even more convincing,

we will also require that the equilibria in the counterexamples can survive the refinements proposed in

Kohlberg and Mertens (1986), Cho and Kreps (1987), Banks and Sobel (1987), etc.

3 Counterexample: Existence of Non-Monotone Equilibria

In this section, we present a counterexample which shows that the generalized Spence-Mirrlees condition

cannot guarantee the monotonicity of the sender’s equilibrium strategy even in 2×2×2 games.

Example 1. Consider the following 2×2×2 game:

θ = θ1 h l

H 2,2 0,0

L 1,1 0,0

θ = θ0 h l

H −1,−1/2 1,0

L 0,−1 5/2,1/4

We leave the receiver’s prior belief unspecified as it plays no role. One can check that according to

the orders θ1 � θ0, H � L and h� l, the generalized Spence-Mirrlees condition is satisfied. In fact, these

payoffs even satisfy a stronger notion of complementarity, that is, both u1 and u2 are strictly supermodular

functions of the triple (θ ,a1,a2).7 Intuitively, there are complementarities between players’ actions as

well as between the state and the action profile.

However, we can find the following non-monotone equilibrium: The sender plays L if her type is θ1

and plays H if her type is θ0. The receiver, who could perfectly learn the state from the sender’s action,

plays l after observing H and plays h after observing L. Clearly, the sender’s strategy is non-monotone.

Nevertheless, the strategy profile is an equilibrium as no player has any incentive to deviate.

In fact, since players have strict incentives and there are no off-path beliefs, the above strategy profile

and its induced belief system also form a sequential equilibrium (Kreps and Wilson 1982). Moreover, it
7Let X be a lattice. A function f : X →R is strictly supermodular if f (x∨x′)+ f (x∧x′)≥ f (x)+ f (x′) for every x,x′ ∈ X ,

and the inequality is strict if {x,x′} 6= {x∨ x′,x∧ x′}.
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cannot be refined away using the selection criteria proposed in Kohlberg and Mertens (1986), Cho and

Kreps (1987), Banks and Sobel (1987). Since players’ incentives are strict, this equilibrium is also robust

against perturbations on the game’s payoff matrices.

We argue that this non-monotone equilibrium is driven by three features of the game: sequential moves,

non-separable payoff (of the sender) and interdependent values. Since players move sequentially, every

a1 induces a distribution over a2. As a result, the sender is effectively choosing a distribution over action

profiles instead of just her own action. Because u1 is non-separable with respect to θ and a2, her pref-

erences over the receiver’s actions also vary with the state. Therefore, her state contingent action choice

depends not only on her comparative advantage in a1 but also on her preferences over a2. Since the re-

ceiver’s best response to a1 depends on his belief about the state (i.e. values are interdependent), choosing

h after observing L and choosing l after observing H can be rationalized despite there are complemen-

tarities between players’ actions. In our non-monotone equilibrium, the receiver believes that the state is

θ1 after observing L and the state is θ0 after observing H, which provides the sender an incentive to use

non-monotone strategies and makes the receiver’s belief self-fulfilling.

While sequential moves and interdependent values are standard in signalling games, non-separability

of the sender’s payoff distinguishes our model from the classic education signalling game (Spence 1973)

and the beer-quiche game (Cho and Kreps 1987). In these examples, the sender’s valuations of money

and fighting do not depend on her type. Nevertheless, non-separable payoffs arise naturally in many other

economic applications. For example, consider a firm (receiver) offering a worker (sender) a job after

observing her education. The worker’s preferences over jobs depend on her type (for example, her taste

and talent) no matter whether the jobs are horizontally differentiated (Roy 1951) or vertically differentiated

(Waldman 1984, Gibbons and Waldman 1999).8 Non-separability also occurs in various applications of

signalling games in industrial organization, some of which will be discussed in details in section 5.

We close this section by observing that the existence of non-monotone equilibrium in our couterexam-

ple does not contradict the well-known results in Van Zandt and Vives (2007) on Bayesian supermodular

games. This is because once we maintain the pre-specified orders over players’ strategies, a signalling

game with supermodular payoffs as Example 1 is not necessarily supermodular in its normal form.9

8When jobs are horizontally differentiated, different types of workers prefer different kinds of jobs, as in Roy (1951)’s
hunting-fishing example. When jobs are vertically differentiated, the worker’s gain from a job position depends on her talent
due to the piece-rate incentive schemes, the prospects of promotion, etc.

9Echenique (2004a) shows that every game that has at least two pure Nash equilibria is supermodular if the analyst can
flexibly choose the order over players’ strategies. However, the results that are established under an arbitrary order cannot
imply the monotonicity of the sender’s action with respect to her type.
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4 Sufficient Conditions for Monotone Equilibrium

In this section, we introduce sufficient conditions that guarantee the monotonicity of all equilibria. At the

heart of our analysis is the following monotone-supermodular condition on the sender’s payoff:

Definition 3 (Monotone-Supermodular Condition). The sender’s payoff is monotone-supermodular if (i)

u1 is strictly decreasing in a1 and strictly increasing in a2 , and (ii) u1 exhibits strictly increasing differ-

ences in (θ ,a1) and increasing differences in (θ ,a2).

Comparing with the more demanding requirement that both u1 and u2 are strictly supermodular func-

tions of (θ ,a1,a2), our monotone-supermodular condition does not require any complementarities within

players’ actions, nor does it impose any restrictions on the receiver’s payoff function. Nevertheless, it

incurs two important requirements in addition to the generalized Spence-Mirrlees condition. First, the

sender’s payoff exhibits increasing differences between the state and the receiver’s action. This includes

the separable payoff (i.e., there exist f : A1 × A2 → R and c : Θ× A1 → R such that u1(θ ,a1,a2) =

f (a1,a2)+ c(θ ,a1)) as a special case. It also fits into many other applications where payoffs are non-

separable by nature. For example, in warranty provision games, the firm’s per unit profit (sales price minus

the expected refund paid to the consumers) increases with its product quality, and therefore, its total profit

exhibits increasing differences between its quality and the quantity sold. In education signalling games

in which a firm assigns workers to various job positions after observing their years of education, more

talented workers receive higher benefits from higher level jobs due to the piece-rate incentive schemes and

better prospects of promotion.

Second, the sender’s payoff is monotone with respect to her own action and the receiver’s action in

appropriate directions.10 This is natural in many applications. For example, it is costly for the firm to pro-

vide lengthier warranties and higher refunds, but it can benefit when consumers increase their purchasing

quantities. Similarly, workers face higher opportunity costs to receive more education but they can benefit

from more decent job positions.

In the next two subsections (4.1 and 4.2), we state results that establish the monotonicity of equilibria

in signalling games where the sender’s payoff is monotone-supermodular. The role of the monotone-

supermodular condition in our results will be discussed in subsection 4.3. We will elaborate in section

10Our results also hold when the sender’s payoff is increasing in her own action and decreasing in the receiver’s action.
However, non-monotone equilibria can exist when the sender’s payoff is strictly increasing (or strictly decreasing) in both
players’ actions (see Example 3 in subsection 4.3).
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5 how the assumptions of our results fit into the classic applications of signalling games in industrial

organization and labor economics, and outline their implications in these settings.

4.1 Binary Action Games

In this subsection, we study games in which the receiver’s action choice is binary, i.e. |A2| = 2. This

fits into the warranty provision game when the consumer has unit demand, i.e. a2 ∈ {0,1}. Our first

result below states that for these games, monotone-supermodularity alone is sufficient to guarantee the

monotoncity of all equilibria.

Theorem 1. If |A2| = 2 and the sender’s payoff is monotone-supermodular, then every equilibrium is

monotone.

PROOF. Let A2 ≡ {a2 , a2} with a2 � a2. Suppose towards a contradiction that in some equilibrium σ ,

there exist θ � θ ′ and a1 � a′1 such that σθ
1 (a

′
1) > 0 and σθ ′

1 (a1) > 0. Let α2 ≡ σ2(a1) and α ′2 ≡ σ2(a′1)

be the mixed actions played by the receiver after observing a1 and a′1, respectively. Since type θ prefers

(a′1,α
′
2) to (a1,α2) and type θ ′ prefers (a1,α2) to (a′1,α

′
2), we have:

u1(θ ,a′1,α
′
2)≥ u1(θ ,a1,α2) (4.1)

and

u1(θ
′,a1,α2)≥ u1(θ

′,a′1,α
′
2). (4.2)

These together imply that:

u1(θ ,a′1,α
′
2)−u1(θ ,a1,α2)≥ 0≥ u1(θ

′,a′1,α
′
2)−u1(θ

′,a1,α2). (4.3)

Because u1 is strictly decreasing in a1, (4.2) also implies that u1(θ
′,a′1,α2)> u1(θ

′,a1,α2)≥ u1(θ
′,a′1,α

′
2).

This further implies that α2 must attach a higher probability to a2 comparing to α ′2, as the sender’s payoff

is strictly increasing in a2. Therefore, we have θ � θ ′, a1 � a′1 and α2 dominates α ′2 in the sense of first-

order stochastic dominance (FOSD). Since u1 has strictly increasing differences in (θ ,a1) and increasing

differences in (θ ,a2), we have:

u1(θ ,a′1,α
′
2)−u1(θ ,a1,α2)< u1(θ

′,a′1,α
′
2)−u1(θ

′,a1,α2), (4.4)
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which contradicts (4.3).

The intuition of Theorem 1 is as follows. When |A2|= 2, every pair of distributions over the receiver’s

action can be ranked according to FOSD. Since playing a higher action is more costly for the sender, she

only has an incentive to do so when it induces a more favorable response from the receiver. This implies

that the ranking over the sender’s equilibrium actions must coincide with the ranking over the receiver’s

(possibly mixed) actions that they induce. Because a high type sender has a stronger preference towards

higher action profiles, she will never play a strictly lower action than a low type.

Since the above proof makes no reference to the receiver’s incentives, our monotonicity property also

applies to every ex ante rationalizable strategy (Bernheim 1984; Pearce 1984). In fact, only monotone

strategies can survive the first round of elimination. The irrelevance of the receiver’s incentives also makes

it clear that our result immediately extends to cases where the receiver has private information about his

preferences, the sender is signalling to a population of receivers with heterogeneous preferences, etc.

Provided that an equilibrium exists, Theorem 1 can also be generalized to signalling games with infinite

A1 and Θ with two cautions. First, when the type space is infinite, Nash equilibrium needs to be defined at

the interim stage after the sender observes her type. This is to ensure that the sender will play a best reply

at every state. Second, when A1 is infinite, some of the actions in the support of a sender’s strategy can

be suboptimal. Hence, monotonicity condition in Definition 2 can fail in some equilibria. Nevertheless,

we show in Appendix C that the sender’s equilibrium strategy must be almost surely monotone in the

following sense: For every θ � θ ′ and a1 ∈ supp(σθ
1 ), the probability that type θ ′ plays an action strictly

higher than a1 equals to zero.

Theorem 1 also has the following implication on repeated signalling games where the sender’s payoff

is monotone-supermodular. Suppose that in a Nash equilibrium, always playing the highest action is a best

reply for a low type sender, then a high type must be playing the highest action with probability 1 at every

on-path history. As shown in Pei (2016), this is an intermediate step towards establishing the commitment

payoff bound and the uniqueness of equilibrium behavior in reputation games.11

11However, the monotonicity of equilibria in the normal form representation of a repeated game does not imply the mono-
tonicity of the sender’s behavior strategy at every on-path history. Therefore, it cannot guarantee that the receiver will always
positively update his belief about the sender’s type after observing the highest on-path action.
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4.2 Games with |A2| ≥ 3

In this subsection, we generalize our findings in binary action games to ones in which the receiver has

more than two actions. To illustrate the difficulties, we first present a counterexample showing that the

sender’s payoff being monotone-supermodular is no longer sufficient to guarantee the monotonicity of all

equilibria.

Example 2. Consider the following 2×2×3 game:

θ = θ1 h m l

H 2− ε,1 1−2ε,0 −3ε,−2

L 2,0 1,1 0,0

θ = θ0 h m l

H 2−3ε,0 1−3ε,0 4ε,0

L 2− ε,0 1,2 8ε,3

Suppose ε ∈ (0,1/8) and apply the rankings θ1 � θ0, H � L and h � m � l. One can verify that the

sender’s payoff is monotone-supermodular. However, consider the following strategy profile: The sender

plays L if θ = θ1, and plays H if θ = θ0. The receiver plays m after observing L, and plays h and l with

equal probabilities after observing H. One can check that the sender’s strategy is non-monotone although

this strategy profile and its induced belief constitute a sequential equilibrium.12

Example 2 highlights the following issue: When |A2| ≥ 3, the distributions over the receiver’s actions

cannot be completely ranked via FOSD. In particular, u1 being monotone-supermodular does not imply

the following:

• For every α2,α
′
2 ∈ ∆(A2), if α2 is preferred to α ′2 for some θ ∈ Θ when she plays a1 ∈ A1, then the

sender’s expected payoff difference between α2 and α ′2 is increasing in her type conditional on a1.

We proceed along two directions to address this challenge, leading to two monotonicity results. First, we

introduce a property on the receiver’s payoff under which every pair of his (pure or mixed) best replies

can be ranked via FOSD. This together with the monotone-supermodular condition on the sender’s payoff

imply the monotonicity of all equilibria (Theorem 2). Second, we identify a class of utility functions u1

which can endogenously generate a complete order on ∆(A2). When the sender’s payoff function belongs

to this class and is monotone-supermodular, every equilibrium is monotone irrespective of the receiver’s

payoff (Theorem 3).
12This counterexample is not driven by the receiver’s non-generic payoff. Even when the receiver has strict preferences

over A2 conditional on (θ ,a1) = (θ0,H), there still exists a non-monotone partial pooling equilibrium in which type θ1 mixes
between H and L, and type θ0 always plays H.
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4.2.1 Quasiconcavity-Preserving Property

For this part, we assume that A2 ≡ {a1
2, ...,a

n
2} is completely ordered with a1

2 ≺ a2
2 ≺ ...≺ an

2.13 For every

(θ ,a1) ∈Θ×A1 and i ∈ I ≡ {1,2, ...,n−1}, let

γ
a1
θ
(i)≡ u2(θ ,a1,ai

2)−u2(θ ,a1,ai+1
2 ) (4.5)

be the receiver’s payoff gain by decreasing his action locally, and let

Γ
a1
π̃
(i)≡

∫
γ

a1
θ
(i)dπ̃ (4.6)

be his expected payoff gain under belief π̃ ∈ ∆(Θ). We now recall the definition of strict single-crossing

function in Milgrom and Shannon (1994):

Definition 4. Function γ : I→R satisfies strict single-crossing property (SSCP) if for every i ∈ I, γ(i)≥ 0

implies that γ( j)> 0 for every j ∈ I with j > i.

If γ
a1
θ
(·) satisfies SSCP for every (θ ,a1) ∈ Θ×A1, then u2(θ ,a1, ·) is strictly quasi-concave in a2. In

that case, the receiver has at most two pure best replies to every (θ ,a1), which must be adjacent elements

in A2. This further implies that every pair of his (pure or mixed) best replies to a degenerate distribution

on Θ×A1 can be ranked according to FOSD. However, some of the sender’s actions may induce non-

degenerate beliefs in some equilibria, so the issue of aggregating single-crossing property arises. This

motivates us to introduce the following quasiconcavity-preserving property (QPP) on the receiver’s payoff.

Definition 5 (Quasiconcavity-Preserving Property). The receiver’s payoff satisfies QPP if Γ
a1
π̃

: I → R

satisfies SSCP for every (π̃,a1) ∈ ∆(Θ)×A1.14

A sufficient condition for QPP is γ
a1
θ
(·) being strictly increasing for every (θ ,a1) ∈ Θ×A1. This fits

into the warranty provision game when the consumer faces decreasing marginal returns with respect to

quantity. Intuitively, u2 is strictly concave in a2 when γ
a1
θ
(·) is strictly increasing. The latter implies QPP

as strict concavity is preserved under positive linear aggregation. Nevertheless, strict concavity is by no
13Our monotonicity result in this subsection (Theorem 2) can also be extended to settings where A2 is a multi-dimensional

convex set.
14A more general version of the QPP property when A2 is any subset of R is introduced and characterized by Choi and

Smith (2017). In the case where A2 is finite, our condition is equivalent to a strict version of theirs.
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means necessary for QPP. In Appendix B, we provide a full characterization of QPP by relating it to a

strict version of the signed-ratio monotonicity condition introduced in Quah and Strulovici (2012).

Under QPP, the receiver’s (pure or mixed) best replies to every (π̃,a1) ∈ ∆(Θ)×A1 can be ranked

according to FOSD. This leads to our second result:

Theorem 2. If (i) the order on A2 is complete, (ii) the sender’s payoff is monotone-supermodular, and (iii)

the receiver’s payoff satisfies QPP, then every equilibrium is monotone.

The proof follows along the same line as that of Theorem 1, which we omit to avoid repetition. Note

that despite the extra condition on the receiver’s payoff function, Theorem 2 only requires him to play a

best reply against some π̃ ∈ ∆(Θ) after every a1 ∈ A1 on the equilibrium path. Therefore, the above mono-

tonicity result does not depend on the receiver’s belief updating process and applies to all outcomes under

weaker solution concepts such as S∞W (Dekel and Fudenberg 1990) and iterative conditional dominance

(Shimoji and Watson 1998), which are variants of rationalizability that can rule out the receiver’s subop-

timal plays at off-path information sets.15 Moreover, when applying the elimination procedure for S∞W ,

all non-monotone strategies will be deleted after one round elimination of weakly dominated strategy fol-

lowed by another round elimination of strictly dominated strategy. When applying iterative conditional

dominance, all surviving strategies are monotone after two rounds of elimination.

4.2.2 Increasing Absolute Differences over Distributions

In what follows, we take an alternative approach by introducing a condition on the sender’s payoff that

can guarantee the monotonicity of equilibria irrespective of the receiver’s payoff. Unlike the previous

subsection, we allow the order on A2 to be incomplete. As illustrated in Example 2, the main obstacle

against equilibrium monotonicity is the lack of a complete order on ∆(A2). We introduce the following

increasing absolute differences over distributions condition (IADD) on the sender’s payoff under which a

complete order on ∆(A2) can be constructed endogenously.

15S∞W is the solution concept when applying one round elimination of weakly dominated strategies followed by iterative
elimination of strictly dominated strategies. Dekel and Fudenberg (1990) show that it characterizes the set of rationalizable
strategies when players entertain small amount of uncertainty about their opponents’ payoffs. Shimoji and Watson (1998) show
that iterative conditional dominance generalizes rationalizability in normal form games to extensive form games.
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Definition 6 (Increasing Absolute Differences over Distributions). The sender’s payoff satisfies IADD if

for every a1 ∈ A1 and every α2,α
′
2 ∈ ∆(A2), we have u1(θ ,a1,α2)−u1(θ ,a1,α

′
2) being either increasing

in θ and non-negative for all θ ∈Θ, or decreasing in θ and non-positive for all θ ∈Θ.

To make sense of the terminology, note that IADD implies that the absolute value of the difference

u1(θ ,a1,α2)−u1(θ ,a2,α
′
2) is increasing in θ .16 Intuitively, if u1 satisfies IADD, then for every a1 ∈ A1,

there exists a complete ordinal preference on ∆(A2) (denoted by %a1) that is shared among all types of

senders. In addition, this ordinal ranking coincides with the one based on the intensity of preferences. In

other words, if α2 %a1 α ′2, then the difference in the sender’s payoffs between (a1,α2) and (a1,α
′
2) must

be increasing in θ . This leads to our last monotonicity result:

Theorem 3. If u1 is monotone-supermodular and satisfies IADD, then every equilibrium is monotone.

PROOF. Suppose towards a contradiction that in some equilibrium (σ1,σ2), there exist θ � θ ′ and a1� a′1

such that σθ
1 (a

′
1)> 0 and σθ ′

1 (a1)> 0. Let α2 ≡ σ2(a1), α ′2 ≡ σ2(a′1) with α2,α
′
2 ∈ ∆(A2). Since type θ

prefers (a′1,α
′
2) to (a1,α2), and type θ ′ prefers (a1,α2) to (a′1,α

′
2), we have:

u1(θ ,a′1,α
′
2)≥ u1(θ ,a1,α2) (4.7)

and

u1(θ
′,a1,α2)≥ u1(θ

′,a′1,α
′
2). (4.8)

Since u1 is strictly decreasing in a1, we have u1(θ
′,a′1,α2)> u1(θ

′,a1,α2). Inequality (4.8) then implies

that u1(θ
′,a′1,α2)> u1(θ

′,a′1,α
′
2). Applying (4.7) and (4.8) we have:

u1(θ ,a′1,α
′
2)−u1(θ ,a1,α2)≥ u1(θ

′,a′1,α
′
2)−u1(θ

′,a1,α2). (4.9)

Meanwhile, note that

u1(·,a′1,α ′2)−u1(·,a1,α2) = u1(·,a′1,α ′2)−u1(·,a′1,α2)+u1(·,a′1,α2)−u1(·,a1,α2).

16IADD is also necessary for
∣∣u1(θ ,a1,α2)−u1(θ ,a2,α

′
2)
∣∣ to be increasing in θ when Θ is a continuum and u1 is a contin-

uous function of θ .
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Since u1 exhibits strictly increasing differences between θ and a1, we have:

u1(θ ,a′1,α2)−u1(θ ,a1,α2)< u1(θ
′,a′1,α2)−u1(θ

′,a1,α2). (4.10)

In addition, IADD and u1(θ
′,a′1,α2)−u1(θ

′,a′1,α
′
2)> 0 imply that:

u1(θ ,a′1,α
′
2)−u1(θ ,a′1,α2)≤ u1(θ

′,a′1,α
′
2)−u1(θ

′,a′1,α2). (4.11)

Summing up (4.10) and (4.11), we obtain a contradiction against (4.9). Therefore, every equilibrium must

be monotone.

As a remark, since the order on ∆(A2) can be constructed endogenously under IADD, our result does

not rely on the pre-specified order on A2, nor does it rely on the monotone-supermodularity condition on

u1 with respect to a2. In fact, it is clear from the above proof that once u1 satisfies IADD, all equilibria are

monotone if u1 is strictly decreasing in a1 and exhibits strictly increasing differences in (θ ,a1).

Furthermore, since the proof of Theorem 3 makes no reference to the receiver’s rationality and incen-

tives, it possesses the same robustness properties as Theorem 1. That is, all ex ante rationalizable strategies

of the sender must also be monotone. This monotonicity result continues to hold when the receiver has

private information about his payoff, when the sender is signalling to a population of receivers with het-

erogeneous preferences, etc. In addition, Theorem 3 immediately extends to cases where A2 is infinite as

the cardinality of A2 plays no role in the above proof. Finally, extensions of Theorem 3 to cases where Θ

and A1 are infinite are subject to the same cautions mentioned in subsection 4.1 and Appendix C, with the

main issues being the existence of equilibrium as well as the sender playing suboptimal actions.

In order to apply Theorem 3, it is necessary to verify whether IADD is satisfied. To facilitate this

process, we fully characterize the functional form restrictions of IADD in the following proposition:

Proposition 1. u1 satisfies IADD if and only if there exist functions f : A1×A2→ R, v : Θ×A1→ R and

c : Θ×A1→ R with v(θ ,a1) increasing in θ and minθ∈Θ v(θ ,a1)≥ 0 for every a1 ∈ A1 such that:

u1(θ ,a1,a2) = f (a1,a2)v(θ ,a1)+ c(θ ,a1). (4.12)

PROOF. See Appendix A.
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Remark on IADD. IADD enables us to construct endogenous orders on ∆(A2). Nevertheless, as shown

in Kartik et al. (2017) and Kushnir and Liu (2017), there are other conditions on players’ payoff functions

under which we could obtain a complete order over distributions. These include the single-crossing ex-

pectational differences (SCED) and the monotone expectational differences (MED) in Kartik et al.(2017),

and the increasing differences over distributions (IDD) in Kushnir and Liu (2017).

When applying to the same probability space, IADD is more demanding than MED and SCED. This

is because, for example, IADD on ∆(A2) requires that (i) u1(θ ,a1,α2)− u1(θ ,a2,α
′
2) does not change

sign when we vary θ and (ii) its absolute value is increasing in θ . These together imply that the expected

difference u1(θ ,a1,α2)−u1(θ ,a2,α
′
2) is monotone in θ .17

However, as shown in the next subsection, neither MED, SCED nor IDD on ∆(A2) is sufficient for our

purpose. It is also important to note that IADD on ∆(A2) neither implies nor is implied by MED or SCED

on ∆(A1×A2). We will further elaborate on this in the context of education signalling (section 5.2), which

helps clarify the novel implications of Theorem 3 compared to a related result in Kartik et al. (2017).

4.3 Discussion

In this subsection, we argue that the monotone-supermodular condition on the sender’s payoff plays an

indispensable role in our analysis. In particular, we will show that neither the monotoncitiy nor the super-

modularity part of the condition can be replaced by other appealing alternatives.

4.3.1 Alternative Monotonicity Conditions

One may conjecture that the existence of non-monotone equilibria (e.g. the one in Example 1) is driven

by the state dependence of the sender’s ordinal preferences over a2, or whether we could modify the

monotonicity assumption on the sender’s payoff by letting it to be strictly increasing (or strictly decreasing)

in both a1 and a2. However, the following counterexample suggests that these conjectures are not true.

17In our signalling game context, IDD on ∆(A2) would require that for every a1 ∈ A1 and every α2,α
′
2 ∈ ∆(A2), the expected

payoff differences u1(θ ,a1,α2)− u1(θ ,a1,α
′
2) is either strictly increasing, strictly decreasing, or constant in θ . In contrast,

IADD only implies that these differences are either increasing or decreasing. Thus, in general Kushnir and Liu (2017)’s IDD
is only implied by the strict version of our IADD (i.e. for every a1 ∈ A1 and α2,α

′
2 ∈ ∆(A2), |u2(θ ,a1,α2)− u2(θ ,a1,α

′
2)| is

either constant of strictly increasing in θ ).
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Example 3. Consider the following 2×2×2 game:

θ = θ1 h l

H 2,2 0,0

L 1,1 −1/2,0

θ = θ0 h l

H 1/4,−1/2 1/8,0

L 0,−1 −1/16,1/4

One can verify that according to the order θ1 � θ0, H � L and h � l, the sender’s payoff satisfies

the generalized Spence-Mirrlees condition. Moreover, as in Example 1, both u1 and u2 are supermodular

functions of the triple (θ ,a1,a2). Different from Example 1, the sender’s ordinal preferences over a1

and a2 are state independent. In particular, the sender’s payoff is strictly increasing in both a1 and a2.

However, her cardinal preferences over the receiver’s actions still depend on the state. As a result, there

exists a non-monotone equilibrium in which type θ1 plays L, type θ0 plays H, and the receiver plays h

after observing L and plays l after observing H. One can also construct similar counterexamples in which

the sender’s payoff exhibits strictly increasing differences in (θ ,a1), increasing differences in (θ ,a2) but

is strictly decreasing in both a1 and a2.

4.3.2 Single-Crossing Differences vs. Increasing Differences

In this part, we show that our strictly increasing difference condition on u1 cannot be replaced with the

strict single-crossing difference property in Milgrom and Shannon (1994), which is well-known in the

monotone comparative statics literature.

Definition 7. The sender’s payoff has strict single-crossing differences (SSCD) if for every θ � θ ′ and

every (a1,a2)� (a′1,a
′
2), u1(θ

′,a1,a2)−u1(θ
′,a′1,a

′
2)≥ 0 implies that u1(θ ,a1,a2)−u1(θ ,a′1,a

′
2)> 0.

By definition, SSCD is a weaker property than strictly increasing differences. The following example

shows that SSCD is not sufficient for guaranteeing the monotonicity of equilibria in signalling games,

even when the sender’s payoff satisfies our monotonicity condition.

Example 4. Consider the following 2×2×2 game:

θ = θ1 h l

H 1,2 −3,0

L 3,1 −1,0

θ = θ0 h l

H 1,0 −2,0

L 2,−1 −1,0
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Consider the orders θ1 � θ0, H � L and h� l. One can check that, first, u1 is strictly increasing in a2

and is strictly decreasing in a1. Second, u1 has SSCD although it fails to have increasing differences. Let

α2 ≡ 2
3h+ 1

3 l and α ′2 ≡
1
3h+ 2

3 l be two mixed actions of the receiver, we have:

u1(θ0,h,α2)−u1(θ0, l,α ′2) = 0 >−2
3
= u1(θ1,h,α2)−u1(θ1, l,α ′2). (4.13)

When the receiver’s prior belief attaches probability 1/3 to state θ1, one can proceed to construct the fol-

lowing non-monotone equilibrium: Type θ1 plays L for sure, type θ0 plays H and L each with probability

1/2, the receiver plays α2 after observing H and α ′2 after observing L.

In the above example, the receiver’s best reply to the sender’s action is mixed. SSCD only requires

that u1(θ ,a1,a2)−u1(θ ,a′1,a
′
2) has the strict single-crossing property for every pair of pure action profiles

that can be ranked. This does not imply that u1(θ ,a1,α2)−u1(θ ,a′1,α
′
2) is also strict single-crossing for

every (a1,α2),(a′1,α
′
2) ∈ A1×∆(A2) with a1 � a′1 and α2 FOSDs α ′2.18 This leaves open the possibility

of (4.13), which leads to the existence of non-monotone equilibria.

5 Applications

In this section, we revisit two classic applications of signalling games in industrial organization and labor

economics. We apply our sufficient conditions to establish the monotonicity of all equilibria in these

games and discuss the relationships between our results and the existing ones in the literature.

5.1 Advertising and Warranty Provision

Consider a firm (sender) selling products to a consumer (receiver). Let θ ∈Θ⊂R be the product’s quality,

which is the firm’s private information. For simplicity, we assume that the per unit sales price is exogenous,

which is normalized to 1. Every product sold has a positive probability of breakdown, which depends on

its quality. The firm chooses a 3-dimensional action: a1 ≡ (aad
1 ,alen

1 ,are
1 ) ∈ A1 ⊂ R+×R+× [0,1], where

aad
1 is the intensity of advertising, alen

1 is the length of warranty, and are
1 is the (per unit) refund the firm

commits to pay if the product breaks down during the length of the warranty. The consumer chooses how

many units to purchase after observing a1, which is denoted by a2 ∈ A2 ⊂ N.

18In fact, since |A1| = |A2| = 2 in this example, the payoff function u1 also has SCED on both ∆(A1) and ∆(A2) (Kartik et
al. 2017). However, it does not have SCED on the larger space ∆(A1×A2).
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The sender’s payoff being monotone-supermodular requires that (i) u1 is strictly decreasing in the triple

(aad
1 ,alen

1 ,are
1 ) and is strictly increasing in a2, and (ii) u1 has strictly increasing differences in (θ ,aad

1 ),

(θ ,alen
1 ) and (θ ,are

1 ), and increasing differences in (θ ,a2). The monotone part is straightforward, as

advertising, providing lengthier warranty and more refund are all costly for the firm. Keeping other factors

fixed, the firm’s profit is higher when the consumer purchases larger quantities.

Next, we justify the supermodular part. First, there are complementarities between θ and aad
1 when

the cost of promoting a good product is lower than the cost of promoting a bad one. This can be driven

by regulation policies, reputation concerns, umbrella branding (Wernerfelt 1988), etc. Second, there are

complementarities between θ and are
1 when higher quality product has lower probability of breakdown,

so therefore, committing to a higher per unit refund is less costly. Similarly, the firm’s per unit profit

(defined as sales price minus expected refund payment) is strictly increasing in the product’s quality, and

therefore, u1 has strictly increasing differences in (θ ,a2). Finally, there are complementarities between θ

and alen
1 when breakdown arrives according to a time homogeneous Poisson process with intensity strictly

decreasing in the product’s quality (Gal-Or 1989).

As the firm’s payoff is monotone-supermodular, it will use a monotone strategy in every equilibrium

when the consumer has unit demand (Theorem 1), when the consumer faces decreasing marginal returns

to quantities (Theorem 2), or when its payoff takes the following functional form (Theorem 3):

u1(θ ,a1,a2) =
(

1− g(θ ,alen
1 )︸ ︷︷ ︸

prob. of breakdown within alen
1 periods

per unit refund︷︸︸︷
are

1 + f (θ)
)

a2 − c(θ ,aad
1 )︸ ︷︷ ︸

cost of advertising

, (5.1)

where

(i) g : Θ×R+→ [0,1] is strictly decreasing in θ , strictly increasing in alen
1 and exhibits strictly decreas-

ing differences in (θ ,alen
1 ),

(ii) f : Θ→ R+ is strictly increasing, which captures the firm’s benefit from initial sales beyond the

sales price in a reduced form,19 and

(iii) c : Θ×R+→ R is strictly increasing in aad
1 and exhibits strictly decreasing differences in (θ ,aad

1 ).

19This is relevant when the product is a newly introduced experience good (Nelson 1974; Milgrom and Roberts 1986).
Nevertheless, the absence of f (θ) will not affect the applicability of our monotonicity result.
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5.2 Education Signalling with Vertically Differentiate Jobs

Consider the following variant of the Spence (1973) education signalling model. Let θ ∈Θ be the talent of

the worker, a1 ∈ A1 be the education the worker receives, and a2 ∈ A2 be the job offered by the employer

after he observes a1.

The sender’s payoff being monotone-supermodular implies that (i) u1 is strictly decreasing in a1 and

strictly increasing in a2, (ii) u1 exhibits strictly increasing differences between θ and (a1,a2). The mono-

tonicity assumption requires that receiving education is costly, and the jobs are vertically differentiated

so that every worker prefers a higher level job.20 For the supermodularity assumption, first, u1 exhibits

strictly increasing differences in (θ ,a1) when receiving education is less costly for more talented workers

(Spence 1973). Second, u1 exhibits strictly increasing differences in (θ ,a2) when the returns from a higher

level job (relative to a lower level one) increases with the worker’s talent, which is a well-established fact

in the personnel economics literature.21

When the worker’s payoff is monotone-supermodular, more talented workers receive more education

in every equilibrium when there are only two jobs (Theorem 1). If the employer’s payoff function is

strictly concave in a2, then Theorem 2 guarantees the monotonicity of all equilibria even when there are

three or more jobs.22 Alternatively, suppose the worker’s payoff function takes the following form:

u1(θ ,a1,a2) = f (θ)g(a2)︸ ︷︷ ︸
worker’s return from job assignment

− c(θ ,a1)︸ ︷︷ ︸
cost of education

, (5.2)

where both f : Θ→ R+ and g : A2→ R are strictly increasing, and c : Θ×A1→ R is strictly increasing

in a1 and has strictly decreasing differences in (θ ,a1). According to Theorem 3, every equilibrium is

monotone regardless of how the employer evaluates various matches between jobs, talent and education.

Kartik et al. (2017) study a similar application, with a2 ∈R+ being the wage offered by the firm. They

show that if the worker’s payoff function has SCED over ∆(A1×A2), then every equilibrium of this game

is monotone. According to their characterization result, u1 has SCED over ∆(A1×A2) if and only if it

20If jobs are instead horizontally differentiated (Roy 1951), then the resulting payoff structure resembles Example 1, in
which we have shown that non-monotone equilibria can exist.

21See for example, Waldman (1984) and Gibbons and Waldman (1999). Different types of workers receive different returns
to a higher level job can be due to, for example, that the talent of a worker affects her prospects of promotion, the expected
compensation she receives under piece-rate incentive schemes, etc.

22Concavity of u2 is satisfied if for every (θ ,a1) ∈ Θ×A1, there exists an ideal job assignment a∗2(θ ,a1) that maximizes
u2(θ ,a1, ·), and the employer incurs a quadratic loss when there is a mismatch between talent and jobs.
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takes the following functional form:

u1(θ ,a1,a2) = g1(a1,a2) f1(θ)+g2(a1,a2) f2(θ)+h(θ), (5.3)

where both f1 and f2 are single-crossing functions that satisfy a ratio-ordered condition.23 Their results

provide insights on cheap talk games and education signalling games when the receiver’s payoffs are

unknown to the sender. However, their results are not applicable to education signalling games where the

worker’s payoff is given by (5.2) and c(θ ,a1) cannot be written as the product of two functions c1(θ) and

c2(a1).24 Our Theorem 3 accommodates these cases and implies the monotonicity of all equilibria.

6 Conclusion

This paper makes two contributions to the signalling game literature. First, we show that equilibrium

monotonicity does not follow trivially from the well-known Spence-Mirrlees condition nor is it implied

by the complementarities and supermodularity of players’ payoff functions. Our counterexamples are

robust against equilibrium refinements and highlight the problems that arise when the sender’s returns

from the receiver’s action depend on her type. Second, we provide sufficient conditions under which all

Nash equilibria are monotone. These conditions are easy to verify and fit into a number of applications,

including advertising, warranty provision, education and job assignment, etc. In these scenarios, our

results imply that it is without loss of generality to focus on monotone equilibria.

23According to Kartik et al. (2017), for two single-crossing functions f1, f2 : Θ→ R, f1 ratio dominates f2 if (i) ∀θ � θ ′,
f1(θ

′) f2(θ) ≤ f1(θ) f2(θ
′), and (ii) ∀θ � θ̂ � θ ′, f1(θ

′) f2(θ) = f1(θ) f2(θ
′) if and only if f1(θ

′) f2(θ̂) = f1(θ̂) f2(θ
′) and

f1(θ̂) f2(θ) = f1(θ) f2(θ̂). Functions f1 and f2 are ratio-ordered if either f1 ratio dominates f2 or f2 ratio dominates f1.
24The cost function is not multiplicative separable in applications when c(θ ,a1) = k(θ)a1 + t(a1), with t(a1) being the a

fixed cost, interpreted as the cost of tuition, and k(θ)a1 being a variable cost which depends on the worker’s talent.
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Appendices

A Proof of Proposition 1

We establish Proposition 1 by proving a series of equivalence statements.

Lemma A1. u1 has IADD if and only if for every a1 ∈ A1 and every α2,α
′
2 ∈ ∆(A2), we have

u1(θ̃ ,a1,α2)> u1(θ̃ ,a1,α
′
2) for some θ̃ ∈Θ =⇒ u1(θ ,a1,α2)−u1(θ ,a1,α

′
2) is increasing in θ . (A.1)

PROOF. The only-if part of the lemma is straightforward. Let us focus on the if part. To show that (A.1)

implies IADD, it suffices to show that if u1(θ̃ ,a1,α2) > u1(θ̃ ,a1,α
′
2) for some θ̃ , then u1(θ ,a1,α2) ≥

u1(θ ,a1,α
′
2) for all θ ∈Θ.

Suppose towards a contradiction that there exist a1 ∈ A1,α2,α
′
2 ∈ ∆(A2), and θ̃ , θ̂ ∈ Θ, such that

u1(θ̃ ,a1,α2) > u1(θ̃ ,a1,α
′
2) and u1(θ̂ ,a1,α2) < u1(θ̂ ,a1,α

′
2). Then, condition (A.1) implies that we

have both u1(θ ,a1,α2)− u1(θ ,a1,α
′
2) and u1(θ ,a1,α

′
2)− u1(θ ,a1,α2) being increasing in θ . Hence,

u1(θ ,a1,α2)−u1(θ ,a1,α
′
2) must be constant for every θ , which leads to a contradiction.

Next, notice that an immediate implication of u1 satisfying IADD is that for every a1 ∈ A1 and α2,α
′
2 ∈

∆(A2), the expected payoff difference u1(θ ,a1,α2)−u1(θ ,a1,α
′
2) is monotone in θ . The following lemma

fully characterizes this necessary condition of IADD.

Lemma A2. u1(θ ,a1,α2)−u1(θ ,a1,α
′
2) is monotone in θ for every (a1,α2,α

′
2) ∈ A1×∆(A2)×∆(A2) if

and only if the sender’s payoff has the following representation:

u1(θ ,a1,a2) = f (a1,a2)v(θ ,a1)+ c(θ ,a1)+g(a1,a2), (A.2)

where v : Θ×A1→ R is an increasing function of θ .

The proof of Lemma A2 is omitted as it immediately follows from the characterization results in Kartik

et al. (2017) and Kushnir and Liu (2017). Therefore, it is without loss of generality to assume u1 taking

the functional form in (A.2), which we will do for the rest of the proof.

We now proceed to characterize condition (A.1). To do this, let us first introduce some useful notation.
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Let A2 ≡ {a1
2, ..,a

n
2} with n≥ 2. For every a1 ∈ A1, let

va1 ≡min
θ∈Θ

v(θ ,a1) ∈ R,

and

f a1 ≡ ( f (a1,a1
2), ..., f (a1,an

2)), ga1 ≡ (g(a1,a1
2), ...,g(a1,an

2)) ∈ Rn.

Finally, let Γ ≡ {γ ∈ Rn|1 · γ = 0}, where 1 ≡ (1,1, ...,1) ∈ Rn and ‘·’ denotes the inner product of two

vectors. We establish the following result.

Lemma A3. Suppose that u1 has representation (A.2). Then, u1 satisfies (A.1) if and only if

∀(a1,γ) ∈ A1×Γ, (va1 f a1 +ga1) · γ > 0 =⇒ f a1 · γ ≥ 0. (A.3)

PROOF. (If statement) First, note that given the representation (A.2), condition (A.1) is equivalent to the

requirement that for every (a1,γ) ∈ A1×Γ and every v≥ va1 , (v f a1 +ga1) · γ > 0⇒ f a1 · γ ≥ 0. Suppose

towards a contradiction that this does not hold for some (a1,γ) ∈ A1×Γ and some v ≥ va1 . That is, we

have (v f a1 +ga1) · γ > 0 but f a1 · γ < 0. Then, (A.3) implies that (va1 f a1 +ga1) · γ ≤ 0. Hence, we have

0 < (v f a1 +ga1) · γ = (va1 f a1 +ga1) · γ︸ ︷︷ ︸
≤0

+(v− va1) f a1 · γ︸ ︷︷ ︸
≤0

≤ 0,

which leads to a contradiction.

(Only-if statement) Suppose that (A.3) is violated for some (a1,γ) ∈ A1×Γ, i.e. (va1 f a1 +ga1) · γ > 0

but f a1 · γ < 0. Let ξ > 0 be small enough such that:

max{|ξ γ1|, ..., |ξ γn|}< 1/n.

Consider two probability distributions α2,α
′
2 ∈ ∆(A2), where α2 ≡∑

n
i=1

1
nδai

2
, α ′2 ≡∑

n
i=1(

1
n−ξ γi)δai

2
, and

δai
2

denotes the Dirac measure on ai
2 ∈ A2. Let θ be the smallest element in Θ, which exists since Θ is a

complete lattice. By construction, when playing a1, type θ sender strictly prefers α2 to α ′2. However, since

f a1 · γ < 0, u1(·,a1,α2)−u1(·,a1,α
′
2) is strictly decreasing in θ . Hence, condition (A.1) is violated.
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Next, consider the linear operator τ : Rn→ Rn−1 with

τ(w)≡ (w1−wn, ...,wn−1−wn), ∀w ∈ Rn.

By construction, τ(w) = 0 if and only if w is a constant vector. In addition, for every γ ∈ Γ and w∈Rn, we

have w · γ = ∑
n−1
i=1 (wi−wn)γi = τ(w) · γ. Our next lemma provides a further characterization of condition

(A.1) via the linear mapping τ .

Lemma A4. Suppose that u1 has the representation (A.2). Then, u1 satisfies condition (A.3) if and only

if for every a1 ∈ A1, there exist λ ,µ ∈ [0,+∞) with (λ ,µ) 6= (0,0) such that

λτ( f a1) = µτ(va1 f a1 +ga1). (A.4)

PROOF. For every w∈Rn, let us partition Γ into Γ+(w),Γ−(w),Γ0(w), such that w ·γ > 0 (resp., w ·γ < 0)

for every γ ∈ Γ+(w) (resp., γ ∈ Γ−(w)), and Γ0(w) = Γ\(Γ+(w)∪Γ−(w)). Now we can equivalently state

condition (A.3) as

Γ
+(va1 f a1 +ga1)⊂ Γ

0( f a1)∪Γ
+( f a1), ∀a1 ∈ A1. (A.5)

(If statement) Pick any a1 ∈ A1 and suppose there exist λ and µ such that (A.4) holds. If either λ or µ

is 0, then since (λ ,µ) 6= (0,0), we have either τ( f a1) = 0 or τ(va1 f a1 +ga1) = 0. In both cases, (A.5) is

satisfied. If λ µ 6= 0, then by (A.4) we have for every γ ∈ Γ+(va1 f a1 +ga1),

f a1 · γ = τ( f a1) · γ =
µ

λ
τ(va1 f a1 +ga1) · γ =

µ

λ
(va1 f a1 +ga1) · γ > 0.

Hence, γ ∈ Γ+( f a1).

(Only-if statement) Pick any a1 ∈ A1 and consider the two n− 1 dimensional vectors τ( f a1) and

τ(va1 f a1 + ga1). Suppose that the required λ and µ do not exist. Then, there exists no κ ≥ 0 such that
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κτ( f a1) = τ(va1 f a1 +ga1). By Farkas’ Lemma, there exists γ̃ ≡ (γ̃1, ..., γ̃n−1) ∈ Rn−1 such that

τ( f a1) · γ̃ < 0 but τ(va1 f a1 +ga1) · γ̃ > 0.25

Let γ ≡ (γ̃1, ..., γ̃n−1, γ̃n), where γ̃n ≡ −∑
n−1
i=1 γ̃i. The construction of γ̃ implies that γ ∈ Γ+(va1 f a1 + ga1)

but γ ∈ Γ−( f a1). This violates (A.5) and thus also violates (A.3).

To conclude the proof of Proposition 1, we derive (4.12) from (A.4). According to the definition of τ ,

Lemma A4 implies that for every (a1,a2) ∈ A1×A2,

λ ( f (a1,a2)− f (a1,an
2)) = µ

[
(va1 f (a1,a2)+g(a1,a2))− (va1 f (a1,an

2)+g(a1,an
2))
]
,

or, equivalently,

µg(a1,a2) = (λ −µva1) f (a1,a2)+h(a1),

where

h(a1) = µ(va1 f (a1,an
2)+g(a1,an

2)−λ f (a1,an
2).

On the one hand, if µ 6= 0, let

v̂(θ ,a1)≡ v(θ ,a1)+(λ −µva1)/µ and ĉ(θ ,a1)≡ c(θ ,a1)+h(a1),

which obtains representation (4.12). Note that by construction, minθ∈Θ v̂(θ ,a1) = λ/µ ≥ 0.

On the other hand, if µ = 0, then we must have λ 6= 0 and f (a1,a2) = h(a1)/λ . In this case, let

f̂ (a1,a2)≡ g(a1,a2), v̂(θ ,a1)≡ 1 and ĉ(θ ,a1)≡ c(θ ,a1)+h(a1)v(θ ,a1)/λ ,

which obtains representation (4.12).

25Farkas’ Lemma implies the existence of γ̂ ∈ Rn−1 such that τ( f a1) · γ̂ ≤ 0 and τ(va1 f a1 + ga1) · γ̂ > 0. But given that
τ( f a1) 6= 0, if τ( f a1) · γ̂ = 0, there must exist γ̃ ∈ Rn−1 close to γ̂ such that τ( f a1) · γ̃ < 0 and τ(va1 f a1 +ga1) · γ̃ > 0.
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B Characterizing Quasiconcavity-Preserving

In this Appendix, we provide a characterization of the quasiconcavity-preserving property based on the

primitives of the model. We first introduce a strict version of the signed-ratio monotonicity condition in

Quah and Strulovici (2012).

Definition B1 (Strict Signed-Ratio Monotonicity). A pair of functions γ
a1
θ
,γa1

θ ′ : I→R obeys strict signed-

ratio monotonicity (or SSRM) if

(1) for every i such that γ
a1
θ
(i)< 0 and γ

a1
θ ′ (i)> 0, we have

−
γ

a1
θ
(i)

γ
a1
θ ′ (i)

>−
γ

a1
θ
( j)

γ
a1
θ ′ ( j)

for every j > i, and

(2) for every i such that γ
a1
θ
(i)> 0 and γ

a1
θ ′ (i)< 0, we have

−
γ

a1
θ ′ (i)

γ
a1
θ
(i)

>−
γ

a1
θ ′ ( j)

γ
a1
θ
( j)

for every j > i.

The next result characterizes the quasiconcavity-preserving property in our setting, which is a straight-

forward extension of Theorem 1 in Quah and Strulovici (2012):

Proposition B1. The receiver’s payoff is quasiconcavity-preserving if and only if (i) γ
a1
θ

satisfies SSCP

for every (θ ,a1) ∈Θ×A1, and (ii) γ
a1
θ

and γ
a1
θ ′ obey SSRM for every a1 ∈ A1 and every θ ,θ ′ ∈Θ.

PROOF. (Only-if statement) Suppose that the receiver’s payoff is quasiconcavity-preserving, i.e., Γθ
π̃

has

the strict single-crossing property for every (a1, π̃) ∈ A1×∆(Θ). Then, (i) immediately follows by taking

the degenerate distributions over ∆(Θ). For (ii), pick any pair of functions γ
a1
θ

and γ
a1
θ ′ . Suppose that

γ
a1
θ
(i)< 0 and γ

a1
θ ′ (i)> 0. Let

β =
−γ

a1
θ
(i)/γ

a1
θ ′ (i)

1− γ
a1
θ
(i)/γ

a1
θ ′ (i)

,

so that β ∈ (0,1) and βγ
a1
θ
(i)+ (1−β )γa1

θ ′ (i) = 0. Since βγ
a1
θ
+(1−β )γa1

θ ′ has the strict single-crossing

property, we have βγ
a1
θ
( j)+ (1−β )γa1

θ ′ ( j) > 0 for all j > i. Given that γ
a1
θ ′ must satisfy SSCP and thus
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γ
a1
θ ′ ( j)> 0, we can further obtain

1−β

β
=−

γ
a1
θ
(i)

γ
a1
θ ′ (i)

>−
γ

a1
θ
( j)

γ
a1
θ ′ ( j)

.

Hence, γ
a1
θ

and γ
a1
θ ′ must obey SSRM for every a1 ∈ A1 and every θ ,θ ′ ∈Θ.

(If-statement) Let Θ ≡ {θ1, ...,θK}. We need to show that ∀µ ≡ (µ1, ...,µK) ∈ [0,1]K such that

∑
K
k=1 µi = 1, the function Γ

a1
µ : I→ R with Γ

a1
µ (i)≡ ∑

K
k=1 µkγ

a1
θk
(i) satisfies the strict single-crossing prop-

erty. Since SSCP is preserved under positive scalar multiplication, and if γ
a1
θ

and γ
a1
θ ′ obey SSRM then so

do βγ
a1
θ

and γ
a1
θ ′ for all β ≥ 0, it suffices for us to show that Γa1 ≡ ∑

K
k=1 γ

a1
θk

satisfies SSCP.

Suppose that Γa1(i) ≥ 0. We want to show that Γa1( j) > 0 for every j > i. If γ
a1
θk
(i) ≥ 0 for all

k = 1, ...,K, then we are done because each γ
a1
θk

satisfies SSCP. Now suppose that γ
a1
θk
(i) < 0 for some

θk ∈Θ. In this case, let us partition Θ into three subsets, Θ+, Θ0 and Θ−, such that θk′ ∈Θ+ if γ
a1
θk′
(i)> 0,

θk′ ∈Θ0 if γ
a1
θk′
(i) = 0, and θk′ ∈Θ− if γ

a1
θk′
(i)< 0. Hence, we have

∑
θk∈Θ+∪Θ−

γ
a1
θk

=
L

∑
`=1

γ
a1
` ,

where each function γ` : I→ R is a positive linear combination of at most two functions γ
a1
θk
,γa1

θk′
such that

θk,θk′ ∈Θ+∪Θ−, and γ`(i)≥ 0 for all `= 1, ...,L.

To complete the proof, it now suffices to show that for every `= 1, ...,L, if γ
a1
` = αγ

a1
θk
+βγ

a1
θk′

for some

α,β > 0 and γ
a1
θk
,γa1

θk′
such that γ

a1
θk
(i)< 0 and γ

a1
θk′
(i)> 0, we would then obtain γ

a1
` ( j)> 0 for every j > i.

This is true because by SSRM, we have

β

α
≥−

γ
a1
θk
(i)

γ
a1
θk′
(i)

>−
γ

a1
θk
( j)

γ
a1
θk′
( j)

for every j > i,

and hence γ
a1
` ( j) = αγ

a1
θk
( j)+βγ

a1
θk′
( j)> 0.
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C Generalized Results with Infinite A2

In this Appendix, we generalize our monotonicity results to cases where A1 is infinite. For simplicity,

we shall assume that A1 ⊂ Rn with n ≥ 1 and it is a complete lattice with to the product order on the

Euclidean space. With infinite A1, a technical difficulty is that some of the actions in the support of σθ
1

can be suboptimal. Therefore, the notion of monotonicity in Definition 2 does not apply.

For every a1 ∈ A1 and α1 ∈ ∆(A1), let Pr(α1� a1) be the probability that the realization of α1 is strictly

higher than a1. To accommodate the above-mentioned technical difficulty, we introduce the following

weaker version of monotonicity:

Definition C1. σ1 is an almost surely monotone strategy if for every θ � θ ′ and a1 ∈ supp(σθ
1 ), we have

Pr(σθ ′
1 � a1) = 0. An equilibrium (σ1,σ2) is almost surely monotone if σ1 is almost surely monotone.

We establish the following result, which generalizes Theorem 1.

Theorem C1. If |A2|= 2 and the sender’s payoff is monotone-supermodular, then every Nash equilibrium

is almost surely monotone.

PROOF. The proof of Theorem 1 implies the following lemma.

Lemma C1. Given the receiver’s strategy σ2, for every θ � θ ′ and a1 � a′1, if a′1 is a best response to

σ2 for type θ , then a1 is not a best response to σ2 for type θ ′.

For every x ∈ Rn and r > 0, let B(x,r) be the open ball around x with radius r. For every θ � θ ′

and a1 ∈ supp(σθ
1 ), we have σθ

1 (B(a1,r)) > 0 for every r > 0. That is to say, there exists a′1 ∈ B(a1,r)

such that a′1 is optimal for type θ . Let ar
1 be the smallest element that is above every element in B(a1,r).

Lemma C1 implies that Pr(σθ ′
1 � ar

1) = 0 for every r > 0. For every strictly positive decreasing sequence

{ri}∞
i=1 with limi→∞ ri = 0, we have:

lim
i→∞
{a′1|a′1 � ari

1 }= {a
′
1|a′1 � a1} and {a′1|a′1 � ari

1 } ⊃ {a
′
1|a′1 � ar j

1 } for every i > j.

The monotone convergence theorem implies that:

Pr(σθ ′
1 � a1) = Pr(σθ ′

1 � lim
i→∞

ari
1 ) = lim

i→∞
Pr(σθ ′

1 � ari
1 ) = 0.

The corresponding generalizations of Theorems 2 and 3 are similar and, therefore, omitted.
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