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Abstract

Constructing joint confidence bands for structural impulse response functions based on a

VAR model is a difficult task because of the non-linear nature of such functions. We propose

new joint confidence bands that cover the entire true structural impulse response function up

to a chosen maximum horizon with a prespecified probability (1−α), at least asymptotically.

Such bands are based on a certain bootstrap procedure from the multiple testing literature.

We compare the finite-sample properties of our method with those of existing methods via

extensive Monte Carlo simulations. We also investigate the effect of endogenizing the lag

order in our bootstrap procedure on the finite-sample properties. Furthermore, an empirical

application to a real data set is provided.

KEY WORDS: Bootstrap; impulse response functions;

joint confidence bands; vector autoregressive process.
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1 Introduction

Impulse response analysis based on low-dimensional structural vector autoregressions (VARs)

is still a popular tool in applied work; for example, see Barsky and Sims (2011), Kurmann and

Otrok (2013), and Bian and Gete (2015). In practice, the impulse response functions have to

be estimated from the data and it is standard in the literature to report the corresponding

estimation uncertainty in the form of confidence bands.

It is by now a well-known fact that simply connecting individual marginal confidence

intervals with nominal confidence level (1− α) does not result in confidence bands that cover

the entire true impulse response function with the prespecified confidence level (1−α). Instead,

such a procedure results in joint confidence bands that are too narrow and hence cover the true

impulse responses with probability less than the desired level.1 Consequently, the literature has

proposed a substantial number of methods to construct ‘proper’ joint confidence bands that

are designed to actually cover the entire true impulse response function with a prespecified

probability; for example, see Staszewska (2007), Jordà (2009), and Lütkepohl et al. (2015a,b).

The finite-sample properties of the existing methods are compared in Lütkepohl et al.

(2015a,b) via extensive Monte Carlo experiments. They find that the traditional Bonferroni

bands and the Wald bands of Lütkepohl et al. (2015b) mostly exhibit empirical coverage rates

close to or above the nominal level but that the bands can be excessively wide. In contrast, the

bands of the other competing methods — namely, the bands of Staszewska (2007) and Jordà

(2009) as well as the size-adjusted Bonferroni and Wald bands of Lütkepohl et al. (2015a,b) —

are narrower but suffer from finite-sample coverage rates below the nominal level in certain

scenarios. Consequently, there is no method so far that produces joint confidence bands for

impulse response functions that enjoys both (i) robust empirical coverage rates close to the

nominal confidence level and (ii) moderate volumes compared to the Bonferroni and Wald

bands.

We propose new joint confidence bands for impulse response functions that are based

on the methodology of Romano and Wolf (2010) who provide a bootstrap-based method to

construct rectangular joint confidence bands for a generic parameter θ ∈ Rd. Furthermore,

they prove that, under weak regularity conditions, their proposed joint confidence bands have

asymptotically the correct coverage probability and are also asymptotically balanced. The

resulting joint confidence bands are subsequently labeled as balanced bootstrap (BB) bands.

In addition, we conduct a Monte Carlo experiment to compare the finite-sample properties

of the proposed BB bands with those of a set of competing methods. We find that the BB

bands are smaller than the Bonferroni and the Wald bands. Furthermore, the BB confidence

bands seem to work reliably in scenarios where the ratio of the sample size to the number of

coefficients is not small (that is, in medium to high-degrees-of-freedom scenarios), even when

the maximum propagation horizon is large.

1This property is obvious from a theoretical point of view; in addition, for example, see Lütkepohl et al.

(2015a) for Monte Carlo evidence.
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The remainder of the paper is organized as follows. Section 2 reviews impulse response

functions of structural vector autoregressions. Section 3 presents the new confidence bands.

Section 4 briefly describes the competing methods to construct confidence bands. Section 5

describes the Monte Carlo experiment and presents the empirical findings. Section 6 presents

an empirical application. Section 7 concludes. The Appendix contains additional details about

the estimation of impulse response functions, an algorithm to construct the BB bands and

boxplots describing the finite-sample properties of the various methods. The Supplementary

Material contains detailed tables with the simulation results and figures corresponding to the

Monte Carlo simulations and the empirical application.

2 Structural Impulse Response Functions

Consider an m-dimensional reduced-form VAR(p) process of the form

yt = ν +A1yt−1 + . . .+Apyt−p + ut , (1)

where yt is an m-dimensional random vector, the Ai are m×m coefficient matrices, ν is an

m-dimensional intercept vector, and {ut} is an m-dimensional independent and identically

distributed (i.i.d.) process with E[ut] = 0 and positive-definite covariance matrix Σu
..= E[utu

′
t].

The process in (1) is stable and stationary if and only if

det
(
Im −A1z

1 − . . .−Apzp
)
6= 0 for all z ∈ C with |z| ≤ 1 .

A stationary VAR(p) process admits a Wold vector moving average (VMA) representation of

the form

yt = µ+

+∞∑
i=0

φiut−i , (2)

where µ ..= E[yt] = (Im −A1 − . . .−Ap)−1 ν and the φi are fixed m × m VMA-coefficient

matrices that satisfy φ0 = Im and φs =
∑s

j=1 φs−jAj , for s ∈ N+.

The structural representation of (1) is given by

B−1
0 yt = B−1

0 ν +B−1
0 A1yt−1 + . . .+B−1

0 Apyt−p +B−1
0 ut , (3)

where B−1
0 ∈ Rm×m is a non-singular linear mapping that transforms the reduced-form errors ut

into the structural shocks εt, that is, εt ..= B−1
0 ut. The key restriction on B−1

0 (or equivalently

on B0) emerges from imposing that the structural shocks are instantaneously uncorrelated and

have unit variance.2 Thus, B0 needs to satisfy the following equation:

Σu = B0B
′
0 . (4)

2This implies that the covariance matrix of the εt is equal to the m-dimensional identity matrix, that is,

E[εtε
′
t] = Im.
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Simple accounting reveals that there are m(m− 1)/2 degrees of freedom in specifying B0, and

hence further restrictions are needed to achieve identification.3 The literature offers a wide

variety of different identification strategies; for example, see Lütkepohl (2005, Section 9.1) for a

brief overview.

However, we will be agnostic about the particular identification procedure, as our goal is to

provide new joint confidence bands with good finite-sample properties rather than to propose a

new identification procedure. Thus, at this point, we only assume that the structural VAR is

exactly identified via an arbitrary identification procedure.

The identification of the impact matrix B0 allows one to exactly express the reduced-form

VAR(p) process {yt} as a structural vector moving average process

yt = µ+
+∞∑
i=0

Θiεt−i , (5)

where Θh
..= φhB0. The (i, j)-th structural impulse response function with a maximum

propagation horizon H ∈ N, denoted by Θij,H , measures the partial effect of a one-standard-

deviation shock4 in the j-th variable on the i-th variable over H + 1 periods and is given by the

vector that collects the (i, j)-th element of the corresponding structural vector moving average

(VMA) coefficient matrices, that is,

Θij,H
..=


∂yt,i
∂εt,j

...
∂yt+H,i
∂εt,j

 =


Θij,0

...

Θij,H

 for i, j = 1, . . . ,m . (6)

The structural VMA coefficient matrices at propagation horizon h ∈ {0, . . . ,H} can be obtained

as Θh = (JAhJ ′)B0, where J ..= [Im : 0 : . . . : 0] ∈ Rm×mp is a selector matrix and A denotes

the reduced-form coefficient matrix of the mp-dimensional companion form of a VAR(p) process.

Thus, the structural impulse response function Θij,H is a non-linear function of the reduced-form

model coefficients (A1, . . . , Ap) and the impact matrix B0, that is,

Θij,H = Θij,H (A1, . . . , Ap, B0) . (7)

The reduced-form coefficient matrices (A1, . . . , Ap) are usually estimated by a standard

procedure such as least squares (LS). The impact matrix B0 is in general a function of

the reduced-form coefficient matrices (A1, . . . , Ap,Σu) and a set of identifying restrictions.

An estimator for B0, denoted by B̂0, is found by replacing the true coefficient matrices by

corresponding estimators (and by imposing the identifying restrictions). Thus, a plug-in

estimator of the impulse response function is obtained as

Θ̂ij,H
..= Θij,H

(
Â1, . . . , Âp, B̂0

)
. (8)

3Rubio-Ramirez et al. (2010) provide a necessary and sufficient condition for global (exact) identification of

structural VARs; in particular, the necessary condition of Rubio-Ramirez et al. (2010) is equivalent to the widely

used (necessary) rank condition of Rothenberg (1971).
4Given the normalization E[εtε

′
t] = Im, a one-standard-deviation shock is equivalent to a unit shock.
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The estimator in (8) is consistent if the estimators (Â1, . . . , Âp, B̂0) are consistent because

Θij,H (·) is a continuous function.

3 New Joint Confidence Bands

3.1 Motivation and Notation

Romano and Wolf (2010) propose a method to construct joint confidence bands for a generic

parameter θ ∈ Rd. For them, this method is just a means to an end, where the end is stepwise

multiple testing procedure that controls the familywise error rate. But we can adapt this

method to our ‘direct’ end of constructing joint confidence bands for impulse response functions.

The method of Romano and Wolf (2010) is based on the availability of a consistent estimator for

the parameter of interest and a bootstrap procedure that estimates the sampling distribution

of the aforementioned estimator. Therefore, it can be used one-to-one to construct joint

confidence bands for impulse response functions of structural vector autoregressions because

both a consistent estimator for Θij,H and such a bootstrap procedure are available; for example,

see Kilian (1998b).

The asymptotic properties of the generic bands hinge on a set of regularity conditions about

the asymptotic distribution of the estimator (of the parameter of interest) and the bootstrap;

see Romano and Wolf (2010, Theorem 3.1). A discussion of the validity of the regularity

conditions in the present context — that is, the construction of joint confidence bands for

impulse response functions of structural vector autoregressions — is found in Section 3.3 below.

The bands of Romano and Wolf (2010) are rectangular by construction in contrast to

methods that produce joint confidence sets of a non-rectangular shape in first place, from which

then rectangular joint confidence bands are obtained by projection on the axes; an example of

the latter approach are the Wald bands of Lütkepohl et al. (2015b). Such projection methods

usually result in conservative joint confidence bands, even asymptotically, which are excessive

in volume and thus leads to a loss in information.

Furthermore, the method of Romano and Wolf (2010) is attractive from a computational

point of view, since it involves only the computation of the estimator of the impulse response

function Θij,H and an estimator (via the bootstrap) of the sampling distribution of the statistic

max
√
T |Θ̂ij,H − Θij,H |, where T denotes the sample size and both the maximum and the

absolute value of a vector are understood to be element-wise operators. Both quantities are

straightforward to compute and do not contain any sort of potential numerical difficulties

such as, for example, the inversion of a large-dimensional matrix.

In contrast, the construction of the size-adjusted Wald joint confidence bands of Lütkepohl

et al. (2015b) requires on the one hand the computation and the inversion of the (potentially

large-dimensional) asymptotic covariance matrix of the vectorized estimators of (A1, . . . , Ap,Σu)

and on the other hand an iterative procedure to decrease the volume of the confidence bands;

see Section 4.3.
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Next, the following notation is introduced:

• Let
{√

T
∣∣∣Θ̂∗ij,h,b − Θ̂ij,h

∣∣∣}B
b=1

denote the marginal bootstrap distribution at propagation

horizon h ∈ {0, . . . ,H} based on B bootstrap replications.

• Let Ĥ
∗
h(t), h ∈ {0, . . . ,H}, denote the following empirical distribution function

∀t ∈ R, Ĥ
∗
h(t) ..=

1

B

B∑
b=1

1{
√
T |Θ̂∗ij,h,b−Θ̂ij,h| ≤ t} ,

and the corresponding empirical quantile function is then given by

Ĥ
∗,−1

h (q) ..= inf
{
t : Ĥ∗h(t) ≥ q

}
.

• Let L̂
∗
(t) denote the following empirical distribution function

∀t ∈ R, L̂
∗
(t) ..=

1

B

B∑
b=1

1{
max
h∈S̃ij
{Ĥ∗h(

√
T |Θ̂∗ij,h,b−Θ̂ij,h|)} ≤ t

} ,

where S̃ij ⊆ {0, . . . ,H} denotes the propagation horizons when
√
T
∣∣∣Θ̂ij,h −Θij,h

∣∣∣ exhibits

a non-degenerate distribution; see Remark 3.1. The corresponding empirical quantile

function is then given by

L̂
∗,−1

(q) ..= inf
{
t : L̂∗(t) ≥ q

}
.

Remark 3.1. Identifying restrictions may predetermine the response at one or multiple

propagation horizons h̃, that is, for some known constant ch̃ ∈ R, Θ̂ij,h̃ = ch̃ and also Θ̂∗
ij,h̃,b

= ch̃

for all b. Consequently, Ĥ
∗
h̃(t) = 1[0,∞)(t) with probability one, and hence the empirical

distribution of max
h∈{0,...,H}

{
Ĥ∗h

(√
T
∣∣∣Θ̂∗ij,h,b − Θ̂ij,h

∣∣∣)} is degenerate at one (with probability

one). Defining L̂
∗
(t) as the empirical distribution function of the aforementioned distribution

would result in joint confidence bands that are excessively wide because L̂
∗,−1

(1− α) = 1 for

all α ∈ [0, 1); see formula (9). Hence, L̂
∗
(t) is defined as the empirical distribution function of

max
h∈S̃ij

{
Ĥ∗h

(√
T
∣∣∣Θ̂∗ij,h,b − Θ̂ij,h

∣∣∣)}.

3.2 Balanced Bootstrap Joint Confidence Bands

Based on equation (3.7) in Romano and Wolf (2010), we define the balanced bootstrap (BB)

joint confidence bands for Θij,H with nominal coverage probability (1− α) as the Cartesian

product of the following (H + 1) marginal intervals:[
Θ̂ij,h −

1√
T

Ĥ
∗,−1

h

(
L̂
∗,−1

(1− α)
)
, Θ̂ij,h +

1√
T

Ĥ
∗,−1

h

(
L̂
∗,−1

(1− α)
)]

for h = 0, . . . ,H .

(9)
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A detailed algorithm for the construction of the BB bands is found in Appendix C. In the

following, the BB bands for Θij,H with a nominal coverage of (1− α) are denoted by CB
(1−α)
BB,ij .

It is worth providing some further discussion about the BB joint confidence bands.

As is evident from (9), the BB bands are based on the estimated sampling distributions of

the non-studentized roots
√
T |Θ̂ij,h −Θij,h|. Often confidence intervals based on studentized

roots are preferred from a higher-order asymptotic point of view; for example, see Hinkley and

Wei (1984). However, under the assumption of stationarity of {yt}, the standard deviations

of the scaled estimator
√
T Θ̂ij,h, denoted by σh, are decreasing in the propagation horizon

(for fixed T ), that is, σh → 0, and the same is true for the standard errors σ̂h; for example,

see Lütkepohl (1990). As a consequence, using the estimated sampling distributions of the

studentized roots
√
T |Θ̂ij,h−Θij,h|/σ̂h results in joint confidence bands that can have excessively

large volume, as pointed out by Lütkepohl et al. (2015a).

The construction of the BB bands involves the prepivoting transformation of Beran (1987);

that is, the roots that underlie the joint confidence bands are monotonically transformed by

their estimated empirical distribution function Ĥ∗h. Beran (1987) argues that the prepivoting

transformation reduces the coverage bias of marginal confidence intervals and also results

in improved higher-order properties, similar to studentized roots. Consequently, using the

prepivoting transformation results in BB joint confidence bands with good coverage properties

but without excessive volume; see the Monte Carlo simulations in Section 5.

The BB bands are symmetric around the estimated impulse response function. The

methodology of Romano and Wolf (2010) also allows the construction of asymmetric, ‘equal-

tailed’ joint confidence bands based on the estimated distribution of the one-sided roots√
T (Θ̂ij,h−Θij,h). But simulation results (not reported here) suggest that the symmetric bands

are superior to the asymmetric bands in terms of finite-sample coverage properties.

Remark 3.2. In the absence of any ‘favoritism’ of certain propagation horizons, the property

of balance is a desirable one, as has previously been argued by Beran (1987, 1988) and Romano

and Wolf (2010) in more general contexts: Balanced confidence bands spread out the probability

of missing at least one element of the impulse response function evenly over the individual

propagation horizons (up to the maximum propagation horizon H considered).

Another way to look at this issue is the following. If the property of balance were considered

completely irrelevant, it would be easy to construct joint confidence bands with coverage (1−α):

Construct a marginal confidence interval for the impulse response function at propagation

horizon one with coverage (1 − α) and take the Cartesian product of it with the Cartesian

product of H − 1 times the real line. The resulting Cartesian product then trivially results

in valid joint confidence bands with maximum propagation horizon H, for any H. Such joint

confidence bands are extremely unbalanced and are of no use in practice.

Of course, this example is perverse, since all but the first intervals are unbounded. However,

it can be considered as a limiting case for a non-perverse example where all but the first interval

have individual coverage probabilities that are close to one (but less than one) and where the
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first interval has individual coverage probability close to (1− α) (but greater than 1− α), in a

way such that the coverage probability of the confidence bands are equal to (1− α). Clearly,

such imbalanced bands are also not desirable from a practical point of view.

Last but not least, it can be expected that imposing the property of balance, at least

asymptotically, will result in joint confidence bands with small volume; though it may well be

possible to find joint confidence bands with even smaller volume if the property of balance is

abandoned, a topic which is left to future research.

If certain propagation horizons are ‘favored’ over others, then it is desirable to construct

imbalanced joint confidence bands such that the marginal coverage probabilities at the favored

propagation horizons are suitably higher compared to the other propagation horizons. An

explicit construction of this sort is beyond the scope of this paper. However, the solution in

such a case can certainly not be to employ joint confidence bands whose balance properties are

unknown and which do not adapt to any ‘favored’ propagation horizons, either, such as the

Wald-type bands of Lütkepohl et al. (2015b). �

Remark 3.3. Cao and Sun (2011) derive the asymptotic distribution of structural impulse

response functions of short panel vector autoregressions. Furthermore, Cao and Sun (2011)

compare the finite-sample coverage properties of marginal confidence for individual responses

based on the asymptotic distribution with the properties of various bootstrap intervals, but

joint confidence bands for the entire impulse response function are not considered in their study.

We expect that our proposed method can also be applied to construct joint confidence bands for

impulse response functions of short panel vector autoregressions. However, a detailed analysis

of this topic is beyond the scope of this paper. �

3.3 Asymptotic Properties

The regularity conditions underlying Theorem 3.1 of Romano and Wolf (2010), which states the

asymptotic properties of the generic bootstrap joint confidence bands, involve the asymptotic

distribution of the estimator of the impulse response function and the asymptotic validity of the

bootstrap. Thus, for the sake of completeness, both assumptions are subsequently reviewed.

Under standard assumptions and when LS is used for the estimation of (A1, . . . , Ap,Σu),

the asymptotic distribution of
√
T (Θ̂ij,H −Θij,H) is generally derived via an application of

the delta method; for example, see Lütkepohl (1990). Thus, the asymptotic distribution of

the (standardized) estimator of the impulse response function is typically normal because the

(vectorized) LS estimator of (A1, . . . , Ap,Σu) is asymptotically normal under weak high-level

assumptions: for example, see Lütkepohl (2005, Section 3.7). However, Lütkepohl (1989) and

Benkwitz et al. (2000) note that the asymptotic covariance matrix, denoted by Σ
Θ̂

, is singular

in certain scenarios; hence, in such scenarios, the limiting distribution of
√
T (Θ̂ij,H −Θij,H) is

not normal, but degenerate normal instead.

This characteristic of the asymptotic distribution of the estimated impulse response function

(that is, normal versus degenerate normal) has an impact on the consistency of the bootstrap for
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the joint sampling distribution of
√
T (Θ̂ij,H −Θij,H). More specifically, in case the asymptotic

distribution is non-degenerate normal, the bootstrap is consistent because the usual smoothness

conditions underlying the bootstrap are satisfied; for example, see Horowitz (2001). However,

the bootstrap may not be consistent when the asymptotic distribution is degenerate normal;

for example, see Benkwitz et al. (2000).

It is evident that assumptions B1–B4 of Romano and Wolf (2010, p. 607) are satisfied if the

asymptotic distribution of Θ̂ij,H is non-degenerate normal, which is the case if Σ
Θ̂

is positive

definite. Thus, the asymptotic properties of CB
(1−α)
BB,ij can then be deduced from Theorem 3.1 of

Romano and Wolf (2010). More specifically, it holds that

lim
T→∞

P
(
Θij,H ∈ CB

(1−α)
BB,ij

)
= (1− α) , (10)

if Σ
Θ̂

is positive definite. Furthermore, let CB
(1−α)
BB,ij,h denote the h-th marginal confidence

interval for Θij,h, then it holds that

lim
T→∞

P
(

Θij,h ∈ CB
(1−α)
BB,ij,h

)
= ρ ∈ (0, 1) ∀h ∈ {0, . . . ,H} , (11)

if Σ
Θ̂

is positive definite. Summarizing, under the condition of a positive definite covariance

matrix Σ
Θ̂

, the BB joint confidence bands have asymptotically the correct coverage rate and

are asymptotically balanced in the sense that coverage rate of the marginal intervals CB
(1−α)
BB,ij,h

are asymptotically independent of h ∈ {0, . . . ,H}.
Data generating processes that give rise to a singular asymptotic covariance matrix Σ

Θ̂
are

included in the Monte Carlo experiment in Section 5 to gain some simulation-based insights

about the properties of the BB bands in scenarios with an asymptotic degenerate normal

distribution.

Remark 3.4. The traditional Bonferroni bands and the size-adjusted Bonferroni bands of

Lütkepohl et al. (2015a) have a similar handicap: These joint confidence bands are also only

proven to work if the bootstrap is consistent for all marginal distributions
√
T (Θ̂ij,h −Θij,h),

which is the case if
√
T (Θ̂ij,h −Θij,h) converges to a non-degenerate normal distribution for all

h ∈ {0, . . . ,H}; for more details, see Lütkepohl et al. (2015b, p. 9). �

The simultaneous test of H0,h : Θij,h = 0, h ∈ {0, . . . ,H}, is of great interest in applied

work. Such a test can be carried out by ‘inverting’ the joint confidence bands for Θij,H . In

particular, any H0,h is rejected for which zero is not contained in the marginal confidence

interval CB
(1−α)
BB,ij,h. It follows from Corollary 3.1 of Romano and Wolf (2010) that such a testing

procedure asymptotically controls the probability of falsely rejecting at least one true hypothesis

H0,h, that is,

lim sup
T→∞

P(reject at least one true hypothesis H0,h) ≤ α , (12)

at least as long as Σ
Θ̂

is positive definite. In other words, for all h ∈ {0, . . . ,H} for which zero

is not contained in the corresponding marginal confidence interval, one can be jointly confident

that the true impulse response Θij,h is non-zero; that is, the confidence holds jointly for all

such h and not just individually (for a given such h).

9



4 Competing Methods

In order to assess the finite-sample performance of our proposed method, we compare its finite-

sample properties with those of relevant competing methods in the literature. More specifically,

the list of the competing bands consists of the Näıve bands, the traditional Bonferroni bands,

and the recently proposed Wald and Adjusted-Wald bands of Lütkepohl et al. (2015b). In the

following, each of the four competing methods is briefly outlined; more details are found in the

corresponding references.

4.1 Näıve Confidence Bands

The Näıve confidence bands for Θij,H , as defined in Lütkepohl et al. (2015a), are given by the

collection of the (H + 1) marginal confidence intervals with individual confidence level (1− α),

that is,

CB
(1−α)
Näıve,ij

..=
[
q∗,ij0,α

2
, q∗,ij0,(1−α

2
)

]
× · · · ×

[
q∗,ijH,α

2
, q∗,ijH,(1−α

2
)

]
, (13)

where q∗,ijh,α
2

and q∗,ijh,(1−α
2

) denote the α
2 and 1− α

2 quantiles of the bootstrap distribution of the

estimated impulse response coefficient at horizon h ∈ {0, . . . ,H}.

4.2 Bonferroni Joint Confidence Bands

The Bonferroni joint confidence bands for Θij,H consist of the Cartesian product of (H + 1)

marginal confidence intervals for the individual responses Θij,h, h ∈ {0, . . . ,H}, where the

nominal confidence level of the marginal intervals is adjusted via Bonferroni’s inequality in order

to ensure that the joint coverage probability is, asymptotically, at least (1−α). (Of course, this

can only be guaranteed if the underlying bootstrap method is consistent.) More specifically,

the adjusted marginal nominal confidence level is equal to (1− β), where β ..= α/(H + 1).5 The

rectangular Bonferroni joint confidence bands for Θij,H , as defined in Lütkepohl et al. (2015a),

are given by

CB
(1−α)
B,ij

..=

[
q∗,ij

0,β
2

, q∗,ij
0,(1−β

2
)

]
× · · · ×

[
q∗,ij
H,β

2

, q∗,ij
H,(1−β

2
)

]
, (14)

where q∗,ij
h,β

2

and q∗,ij
h,(1−β

2
)

denote the β
2 and 1− β

2 quantiles of the bootstrap distribution of the

estimated impulse response coefficient at horizon h ∈ {0, . . . ,H}.

4.3 Wald and Adjusted-Wald Joint Confidence Bands

The Wald joint confidence bands for Θij,H of Lütkepohl et al. (2015b) are constructed in a

two-step fashion. First, the bootstrap Wald test for the relevant reduced-form parameters of the

underlying VAR is inverted to obtain a joint confidence ellipse. Second, the ellipse is projected

5In case the initial response is zero by construction, β is equal to α/H.
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onto the axes of the impulse response space, resulting in rectangular joint confidence bands

for Θij,H .

More specifically, the Wald joint confidence ellipse for the relevant reduced-form coefficients,

denoted by θ, with a nominal confidence level of (1− α) is given by

Wθ
(1−α) =

{
θ : T

(
θ̂ − θ

)′ (
Σ̂θ

)−1(
θ̂ − θ

)
≤ w∗(1−α)

}
,

where θ̂ denotes a consistent estimator for θ, Σ̂θ denotes a consistent estimator of the asymptotic

variance of θ̂, and w∗(1−α) denotes the (1 − α) quantile of the bootstrap distribution of

the Wald statistic.6 The bootstrap impulse responses are ordered according to the set of

increasing bootstrap Wald statistics {w∗1 ≤ · · · ≤ w∗B} in the sense that Θ̂
∗
ij,H,n corresponds

to w∗n. Finally, the rectangular Wald joint confidence bands for Θij,H with nominal confidence

level (1−α) are given as the envelope of the ordered set of bootstrap impulse response functions{
Θ̂
∗
ij,H,1, . . . , Θ̂

∗
ij,H,(1−α)×B

}
, that is,

CB
(1−α)
Wald,ij

..=
[
l∗ij,0, u

∗
ij,0

]
× · · · ×

[
l∗ij,H , u

∗
ij,H

]
, (15)

where l∗ij,s
..= min

{
Θ̂∗ij,b,n : n = 1, . . . , (1− α)×B

}
, and u∗ij,s is defined as the corresponding

upper bound; we assume here tacitly that (1−α)×B is an integer, otherwise take the smallest

integer larger than (1− α)×B.

Lütkepohl et al. (2015b) point out that the Wald bands are conservative by construction, and

hence usually cover more than (1−α)×B of the bootstrap impulse response functions. Thus, a

volume adjustment of the Wald bands can be considered and Lütkepohl et al. (2015b) propose

the following iterative adjustment:7 Remove iteratively the last element in the set of ordered

bootstrap impulse responses until the bootstrap coverage of the envelope of the remaining

functions is greater than or equal to (1− α). The resulting rectangular Adjusted-Wald joint

confidence bands for Θij,H with a nominal confidence level (1− α) are given as the envelope of

the remaining bootstrap impulse responses, that is,

CB
(1−α)
Adj-W,ij

..=
[
l̃∗ij,0, ũ

∗
ij,0

]
× · · · ×

[
l̃∗ij,H , ũ

∗
ij,H

]
, (16)

where l̃∗ij,h
..= min

{
Θ̂∗ij,b,h : b = 1, . . . , B̃

}
, and B̃ denotes index of the first bootstrap impulse

response that is not removed, and ũ∗ij,H is defined as the corresponding upper bound.

6This is the empirical distribution of w∗b
..= T

(
θ̂∗b − θ̂

)′ (
Σ̂∗θ

)−1(
θ̂∗b − θ̂

)
, b = 1, . . . , B, where θ̂∗b and Σ̂∗θ are

estimators based on bootstrap data {y∗1 , . . . , y∗T }.
7Lütkepohl et al. (2015b) also propose another adjustment procedure and the resulting joint confidence bands

are called Bonferroni-adjusted Wald bands, see Lütkepohl et al. (2015b, p. 11).
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5 Monte Carlo Simulation

5.1 Lag Selection and Estimation of Impulse Responses

The lag order is selected using the Akaike information Criterion (AIC), as Kilian (2001)

provides simulation evidence that confidence intervals (for individual responses) based on the

AIC exhibit superior finite-sample coverage properties compared to confidence intervals based

on the Schwarz Information Criterion and the Hannan-Quinn Criterion. The maximum lag

order pmax is determined endogenously using the rule of thumb proposed in Schwert (1989).

According to this rule, the maximum lag order is given by

pmax
..=
⌊
12(T/100)0.25

⌋
, (17)

where b·c denotes the integer part of a real number and T denotes the sample size. Thus, the

maximum lag order is given by 12, 14, and 16 for sample sizes of 100, 200, and 400, respectively.

In the following, p̂ denotes the lag order selected by the AIC, that is, p̂ ..= p̂AIC.

We estimate the reduced-form coefficients (ν,A1, . . . , Ap̂) of the VAR model by least squares;

see Lütkepohl (2005, Section 3.2) for more details. It is well known that the LS estimator is

biased in finite samples due to the presence of lagged endogenous variables. Thus, we correct

for the finite-sample bias using the closed-form bias estimator of Pope (1990); see Appendix A

for details. The corresponding bias-corrected estimators of the slope coefficients are given by

ÂBC
i

..= ÂLS,i − B̂ias(ÂLS,i) , for i = 1, . . . , p̂ ,

where ÂLS,i denotes the LS estimator of Ai and B̂ias(ÂLS,i) denotes Pope’s corresponding

bias estimator. Furthermore, in scenarios where the bias correction causes nonstationarity —

that is, where the process corresponding to (ν, ÂLS,1, . . . , ÂLS,p̂) is stationary but the process

corresponding to (νBC, ÂBC
1 , . . . , ÂBC

p̂ ) is non-stationary — the stationarity correction of Kilian

(1998b) is applied instead; see Appendix B for details.

We assume a recursive structure of the structural VAR model, that is, the impact matrix B0

is given by the lower-triangular Cholesky decomposition of Σu. The corresponding estimator is

naturally given by

B̂0
..= chol

(
Σ̂BC
u

)
,

where Σ̂BC
u denotes the estimated residual covariance matrix based on the bias-corrected VAR

coefficient estimators. Summarizing, the estimated structural impulse response functions Θ̂ij,H

are obtained as

Θ̂ij,H
..= Θij,H

(
ÂBC

1 , . . . , ÂBC
p̂ , chol

(
Σ̂BC
u

))
. (18)

5.2 Bootstrap Details

The bootstrap distribution of the estimator of the structural impulse response functions is

generated by the following nonparametric bootstrap procedure of Kilian (1998b):
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a) Given {yt}Tt=1, p̂,
(
ν̂BC, ÂBC

1 , . . . , ÂBC
p̂

)
and the corresponding series of residuals {ût}Tt=p̂+1,

generate a bootstrap sample {y∗1, . . . , y∗T } via the following recursion

y∗t =

yt , t = 1, . . . , p̂

ν̂BC + ÂBC
1 y∗t−1 + . . .+ ÂBC

p̂ y∗t−p̂ + e∗t , t = p̂+ 1, . . . , T
, (19)

where e∗t is a random draw with replacement from the empirical distribution of the

residuals that are rescaled and centered to have mean zero.8

b) Obtain
(
Â∗,BC

1 , . . . , Â∗,BC
p̂

)
and Σ̂∗,BC

u by fitting a VAR(p̂) model to {y∗t }
T
t=1.

c) Obtain Θ̂
∗
ij,H = Θij,H

(
Â∗,BC

1 , . . . , Â∗,BC
p̂ , chol

(
Σ̂∗,BC
u

))
.

d) Repeat steps a) to c) B times resulting in the bootstrap sample
{

Θ̂
∗
ij,H,b

}B
b=1

.

The previously outlined bootstrap algorithm is subsequently referred to as the exogenous

bootstrap because the lag order is not re-estimated based on the bootstrap sample {y∗1, . . . , y∗T }.
The Wald-type joint confidence bands of Lütkepohl et al. (2015b) can only be constructed

using the exogenous bootstrap because the computation of the bootstrap Wald statistic requires

that the vector of the estimator of the slope coefficients (Â1, . . . , Âp̂) and the bootstrap analogues

(Â∗1, . . . , Â
∗
p̂∗) have the same dimension and hence the same lag order, that is, p̂ = p̂∗. Therefore,

a fair comparison of the finite-sample performance of the BB bands with the competing methods

should be based on the exogenous bootstrap.

Remark 5.1. The exogenous bootstrap algorithm differs from the original algorithm in Kilian

(1998b) in one minor aspect. The LS parameter estimates of the reduced-form coefficients are

corrected for their finite-sample bias using the closed-form bias formula of Pope (1990) instead

of a bootstrap-based bias correction as in Kilian (1998b). This modification can be justified, on

the one hand, since both procedures remove only the first-order bias and, on the other hand,

since both procedure exhibit a similar finite-sample performance, as is shown in the Monte

Carlo study by Engsted and Pedersen (2014). �

Kilian (1998a) provides simulation-based evidence that endogenizing the lag order selection

in the bootstrap procedure results in an improved coverage accuracy of marginal bootstrap

intervals for impulse responses of structural vector autoregressions. In order to investigate

whether a similar effect can be observed for joint confidence bands, the BB bands, the Näıve

bands, and the Bonferroni bands will be additionally constructed based on the endogenous

bootstrap procedure of Kilian (1998a).

Remark 5.2. Our suggested bootstrap procedure is an extension of previous proposals for

univariate finite-order ARMA models to multivariate finite-order VAR models, where the order

is determined in a data-dependent fashion as opposed to being assumed known; in particular, we

8The centering and rescaling is carried out as suggested in Stine (1987).
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follow Kilian (2001) in using the AIC to select the order. As stated before, the maximum order

considered is allowed to tend to infinity together with the sample size T ; see (17). Therefore,

our bootstrap procedure can also be considered a sieve bootstrap, whose validity in more general

models — that is, in models more general than a finite-order VAR model — is studied in Meyer

and Kreiss (2015).

There are recent bootstrap procedures — such as the linear process bootstrap of Jentsch and

Kreiss (2010) and the hybrid bootstrap of Jentsch and Politis (2015) — which can be applied in

the present context to generate the bootstrap data {y∗1, . . . , y∗T }. However, an in-depth analysis

of the effect of employing different bootstrap procedures on the finite-sample performances of

confidence bands for structural impulse response functions is beyond the scope of this paper. �

5.3 Data Generating Processes

5.3.1 Bivariate VAR(1) Models

We first consider the bivariate data generating processes from Kilian (1998b), which were

previously considered in Lütkepohl et al. (2015a) and Lütkepohl et al. (2015b) in the context of

joint confidence bands for structural impulse response functions, that is,

DGP-1 yt =

(
ρ 0.0

0.5 0.5

)
yt−1 + ut , (20)

with ρ ∈ {0.95, 0.9, 0.5, 0,−0.5,−0.9,−0.95}. The specific variants of DGP-1 will be denoted by

DGP-1i, i ∈ {a, . . . , g}, depending on the specific value of ρ. The characteristic roots of the

processes are presented in Table 1.

DGP Roots

1a (2.000, 1.053)

1b (2.000, 1.111)

1c (2.000, 2.000)

1d (2.000)

1e (2.000,−2.000)

1f (2.000,−1.111)

1g (2.000,−1.053)

Table 1: Characteristic roots of the various variants of DGP-1.

Some properties of DGP-1 are worth mentioning: First, all processes are stationary but

some are persistent (DGP-1a, DGP-1g). Second, independently of ρ, the true response of

the first variable to a shock in the second variable is zero at all propagation horizons, that

is Θ12,H = 0 ∈ RH+1, and hence the asymptotic distribution of the estimator is degenerate

normal as noted in Benkwitz et al. (2000). Third, for ρ = 0 (DGP-1d), the true response of the
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first variable to a shock in the first variable is also zero at all propagation horizons, that is,

Θ11,H = 0, and hence the estimator is also asymptotically degenerate normal.

Furthermore, we use ut
i.i.d.∼ N (0,Σ1

u), where the population covariance matrix is given by

Σ1
u =

(
1.00 0.30

0.30 1.00

)
.

In the Monte Carlo simulation, data samples of length T ∈ {100, 400} are generated for each

variant of DGP-1 and the propagation horizon is H ∈ {10, 20}; Lütkepohl et al. (2015a,b) use

the same choices of T and H.

5.3.2 Trivariate VAR(4) Model

DGP-2 is a trivariate VAR(4) model previously considered in Staszewska-Bystrova (2011).

More specifically, the population parameters of DGP-2 are the estimates of a model of the

inflation rate, the unemployment rate, and the federal fund rate using US quarterly data from

1960-Q1 through 2004-Q1; for more details about the data set, see Stock and Watson (2001) or

Staszewska-Bystrova (2011). The DGP is given by

DGP-2 yt = ν +A1yt−1 +A2yt−2 +A3yt−3 +A4yt−4 + ut , (21)

where

A1
..=

0.549 −0.965 0.164

0.029 1.480 0.003

0.084 −1.567 0.962

 , A2
..=

 0.118 1.506 −0.128

−0.013 −0.494 0.043

0.197 1.763 −0.364

 ,

A3
..=

 0.060 −0.954 0.054

0.002 −0.029 −0.024

−0.070 −0.848 0.333

 , A4
..=

 0.261 0.250 −0.098

−0.012 −0.014 0.008

−0.046 0.563 −0.010

 ,

and ν ..= (1.076, 0.125, 0.347)′. Furthermore, we use ut
i.i.d.∼ N (0,Σ2

u), where the population

covariance matrix of DGP-2 is the covariance estimate based on the same data as the intercept

and the slope coefficients and is given by

Σ2
u

..=

 0.962 −0.018 0.116

−0.018 0.049 −0.087

0.116 −0.087 0.693

 .

In the Monte Carlo study, data samples of length T ∈ {100, 400} are generated and the

maximum propagation horizon is H ∈ {4, 8, 12, 16, 20, 24, 28}. The choices of H reflect the fact

that DGP-2 is an empirical DGP based on quarterly data and hence the considered values of

the maximum propagation horizon H correspond to impulse responses over one up to seven

years.
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5.4 Simulation Parameters and Performance Evaluation

The nominal confidence level of the various joint confidence bands is 90%. The number of

bootstrap replications is B = 2000 throughout and the number of Monte Carlo replications is

also 2000. The finite-sample performance of the various bands is evaluated via the empirical

volume and the empirical coverage rate. More specifically, the empirical coverage rate is

calculated in the usual way, that is,

EC ..=
1

2000

2000∑
m=1

1{Θij,H∈CBm,ij} ,

where CBm,ij denotes particular joint confidence bands for Θij,H and 1{A} denotes the indicator

function of an event A. The empirical volume of particular joint confidence bands for Θij,H

is computed as the average of the sum of the lengths of the corresponding marginal intervals,

that is,

V ..=
1

2000

2000∑
m=1

H∑
h=0

(um,h − lm,h) ,

where um,h denotes the upper bound of the h-th marginal interval of the bands in the m-th

Monte Carlo repetition and lm,h denotes the corresponding lower bound.

5.5 Results

5.5.1 DGP-1: Bivariate VAR(1) Models

The tables with the simulation results are relegated to the Supplementary Material for the

sake of clarity. Boxplots summarizing the performance of the various methods across different

scenarios are found in Appendices D and E. The focus is on the finite-sample performance of the

BB bands because the performance of the competing methods have already been investigated

individually for this specific DGP in Lütkepohl et al. (2015a,b). The main conclusions are as

follows:

• For T = 100 and H = 10, the BB bands exhibit coverages rates close to or mildly below

the nominal level of 90% except in the scenarios where the asymptotic distribution of the

estimator of the impulse response function is degenerate normal (that is, joint confidence

bands for Θ1,1 of DGP-1d and Θ1,2 of all processes) and the scenario where joint confidence

bands are constructed for Θ1,1 of DGP-1g. The bands of the former scenarios exhibit

coverage rates above the nominal level, whereas the bands for the latter scenario exhibit

substantial undercoverage. Furthermore, the BB bands are robust with respect to the

propagation horizon. Overall, the coverage bias of the BB bands is substantially reduced

for the large sample size of T = 400; see Figures D.1 and D.2.

• In general, the coverage bias of the BB bands is comparable to that of the Adjusted-Wald

bands, but smaller than the coverage bias of the Näıve bands, the Bonferroni bands, and

the Wald bands.
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• In all scenarios, the BB bands are smaller than the Bonferroni bands, where the excess

volume (vis-à-vis the volume of the BB bands) of the Bonferroni bands ranges from 0.7%

to 55%. Overall, the excess volume tends to increase with the sample size T and the

maximum propagation horizon H. However, there does not seem to be a clear pattern

between the stationary characteristics of the processes and the excess volume of the

Bonferroni bands.

• In 108 out of the 112 scenarios, the BB bands exhibit a smaller volume than the

conservative Wald bands. In these scenarios, the volume of the Wald bands is substantially

larger and the excess volume (vis-à-vis the volume of the BB bands) ranges from 24.5%

to 82.9%. Furthermore, the excess volume decreases with the maximum propagation

horizon H and the sample size T in almost all scenarios.

• In 98 out of the 112 scenarios, the volume of the Adjusted-Wald bands is smaller than

the volume of the BB bands. However, the difference is usually small. As expected,

the BB bands are larger than the Näıve bands which completely ignore the inherent

simultaneity in the construction of the bands.

5.5.2 DGP-2: Trivariate VAR(4) Model

The complexity of DGP-2 is substantially larger compared to the bivariate VAR(1) models of

DGP-1. The true impulse response functions of DGP-2 depend on 42 population reduced-from

coefficients (compared to 7 population coefficients in DGP-1). Thus, the results for T = 100

give some indication about the performance of the joint confidence bands in scenarios where the

ratio of the sample size to the number of coefficients is small (that is, low degrees of freedom).9

The tables with the simulation results are relegated to the Supplementary Material. Boxplots

summarizing the performance of the various methods across different scenarios are found in

Appendices F and G. The main conclusions are as follows:

• For T = 100, there are systematic differences in the coverage rates of the BB bands,

that is the bands for Θ1,1,Θ1,3,Θ3,3 perform worse than the bands for the other impulse

responses; see Figure N.1 in the Supplementary Material. More specifically, the bands for

Θ1,1,Θ1,3,Θ3,3 exhibit substantial undercoverage whereas the bands for the remaining

impulse responses exhibit only mild under- and overcoverage, even for large H. Overall,

the coverage distortion as well as the variation in coverage rates are substantially reduced

for a sample size of T = 200, except the coverage rates of the bands for Θ1,1 which

are still seriously below 90%. For T = 400, the coverage rates of the BB bands are

consistently close to the nominal coverage of 90%, even for large H; see Figure N.2 in the

Supplementary Material.

• In principle, the BB bands are smaller than the two conservative bands (Bonferroni and

Wald) and larger than the Näıve bands. Interestingly, the BB bands are even smaller than

9For T = 100, there are 300 individual data points to estimate the 42 coefficients.

17



the Adjusted-Wald bands in 172 out of 189 scenarios. In general, the volume of the BB

bands is strictly decreasing in the sample size, but strictly increasing in the propagation

horizon.

• For T = 100, there are systematic differences in the coverage rates of the Bonferroni bands.

The Bonferroni bands for Θ1,1,Θ1,3,Θ3,3 exhibit massive to substantial undercoverage

in some scenarios, whereas the bands for the other impulse responses exhibit only mild

under- and overcoverage. For a larger sample size of T = 200, the coverage rates are close

or above the nominal level of 90% except the coverage rates of the bands for Θ1,1, which

are still seriously below 90%. For T = 400, all coverage rates are above the nominal level.

• The coverage rates of the Wald bands are markedly above the nominal level of 90% in

173 out of 189 scenarios. Overall, the positive coverage bias is enhanced with the sample

size; see Figures N.1 and N.2 in the Supplementary Material. In all scenarios, the Wald

bands exhibit the largest volume and are substantially larger than the Bonferroni bands.

• For T = 100, the Adjusted-Wald bands exhibit coverage rates that are substantially

distorted and systematically differ among the different impulse response functions; see

Figure N.1 in the Supplementary Material. Nevertheless, the coverage distortions and

the systematic variation in coverage rates are mitigated as the sample size increases; see

Figure N.2 in the Supplementary Material.

• The Näıve bands massively under-represent the joint estimation uncertainty in all scenarios.

The empirical coverage rate falls below 40% in some scenarios with T = 100. Thus, these

results provide additional evidence that the Näıve bands should not be used in practice,

at least not when joint confidence bands are desired.

5.5.3 Empirical Balance

From a theoretical point of view, the BB bands, the Näıve bands and the Bonferroni bands

are asymptotically balanced, that is, the marginal coverage probability is (asymptotically)

independent of the propagation horizon h ∈ {0, . . . ,H}. The Wald-type bands of Lütkepohl

et al. (2015b) have not been theoretically investigated in terms of asymptotic balance.

Table 2 presents the mean absolute deviations (MAD) from the mean of the marginal

empirical coverage rates for DGP-2, H = 20 and T ∈ {100, 400}. For the small sample size

T = 100, the (unadjusted) Wald bands exhibit the smallest deviations from balance, followed

closely by the Bonferroni bands. The third place is shared by the BB bands and the Adjusted-

Wald bands and the last place goes to the Näıve bands. Increasing the sample size to T = 400

reduces the MAD of all methods in all scenarios. The first two places are again awarded to the

Wald and the Bonferroni bands, respectively. However, the BB bands exhibit the smaller MAD

in six out of nine scenarios when compared to the Adjusted-Wald bands and in seven out of

nine scenarios when compared to the Näıve bands, respectively, resulting in the third place.

The last place is shared by the Adjusted-Wald and the Näıve bands.
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DGP2 Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

T = 100

Näıve 7.97 1.63 5.61 2.46 1.44 0.51 3.41 3.44 2.91

BB 1.95 0.95 4.35 0.73 1.02 0.47 1.39 2.20 0.64

Bonferroni 2.26 0.44 3.73 0.47 0.57 0.31 0.47 1.32 0.75

Wald 1.32 0.35 2.58 0.28 0.43 0.30 0.35 0.72 0.53

Adj-Wald 3.15 0.70 5.35 1.64 0.61 0.74 1.77 1.27 1.35

T = 400

Näıve 0.37 0.38 0.54 0.70 0.58 0.65 0.95 0.69 0.72

BB 0.51 0.43 0.32 0.13 0.27 0.22 0.66 0.52 0.27

Bonferroni 0.20 0.20 0.13 0.19 0.29 0.15 0.41 0.14 0.30

Wald 0.11 0.08 0.07 0.16 0.15 0.08 0.22 0.13 0.12

Adj-Wald 0.82 0.36 1.04 0.21 0.25 0.42 1.28 0.32 0.80

Table 2: MAD of the empirical marginal coverage rates (from their mean) of nominal 90%

confidence bands with H = 20, normal errors, and AIC lag selection.

5.5.4 Exogenous vs. Endogenous Bootstrap

The tables with the simulation results for the Näıve bands, the Bonferroni bands, and the BB

bands based on the endogenous bootstrap are found in the Supplementary Material. The main

conclusions are as follows:

• The simulation results for the bivariate VAR(1) models show that endogenizing the lag

uncertainty in general results in an upward shift of the coverage rates of the BB bands for

both T = 100 and T = 400; see Figure N.3 in the Supplementary Material. The effect on

the coverage rates of endogenizing the lag uncertainty is ambiguous as there are scenarios

where the coverage bias is reduced (for example, bands for Θ1,1 of DGP-1g), but also

scenarios where the opposite is true (for example, bands for Θ1,1 of DGP-1e). However,

the BB bands based on the endogenous bootstrap are larger than the BB bands based on

the exogenous bootstrap.

• The results for the trivariate VAR(4) model show that the coverage rates of the BB bands

based on the endogenous bootstrap are surprisingly inferior to those of the BB bands

based on exogenous bootstrap for T = 100; see Figure N.4 in the Supplementary Material.

For T = 200, 400, there are scenarios where the BB bands based on the endogenous

bootstrap are superior, but in the majority of the scenarios, the bands based on the

exogenous bootstrap are superior. For T = 100, endogenizing the lag uncertainty results

in bands that are smaller than the bands based on the exogenous bootstrap. The same

is true for the majority of the scenarios with T = 200, 400, although the differences are

decreasing in the sample size.

• The results for the the bivariate VAR(1) models show that the coverage rates of the

Bonferroni bands based on the endogenous bootstrap are larger than those of the

Bonferroni bands based on the exogenous bootstrap in the majority of the scenarios,
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although the differences tend to decrease with the sample size. Hence, endogenizing the

lag uncertainty increases the coverage bias of the Bonferroni bands, as the Bonferroni

bands based on the exogenous bands exhibit coverage rates above the nominal level.

• The simulation results for the trivariate VAR(4) model show that the effect of endogenizing

the lag uncertainty on the Bonferroni bands is ambiguous (for all sample sizes); there

are scenarios where the bands based on the endogenous bootstrap are superior but also

scenarios where the opposite is true. The Bonferroni bands based on the endogenous

bootstrap are smaller than the Bonferroni bands based on the exogenous bootstrap in

almost all scenarios.

5.6 Summary of Simulation Evidence

We have conducted a Monte Carlo simulation to compare the finite-sample properties of the

BB bands with a number of competing methods. We have included several bivariate VAR(1)

models and an empirical trivariate VAR(4) model in the set of data generating processes.

The simulation results of the bivariate VAR(1) models show that the BB bands and the

Adjusted-Wald bands exhibit both a smaller coverage bias and a smaller volume than the

Bonferroni and the Wald bands. Both methods are robust with respect to the maximum

propagation horizon and also produce reasonable joint confidence bands when the true impulse

response is zero and hence the asymptotic distribution of the estimator is degenerate.

The simulation results of the trivariate VAR(4) model show that the coverage rates of the

BB bands, the Bonferroni bands, and the Adjusted-Wald bands are potentially downward

biased in low-degrees-of-freedom scenarios. In such scenarios, the Wald bands may be preferred

to avoid the use of bands that underestimate the estimation uncertainty, but the price to pay is

the large volume of the Wald bands, especially for large maximum propagation horizons. For

T = 400, the BB bands exhibit the smallest coverage bias and at the same time the smallest

volume among all joint confidence bands (except for the Näıve bands).

Overall, both the Adjusted-Wald bands and the BB bands work reliably in small models.

However, the simulation results of the trivariate VAR(4) model show that the BB bands

generally outperform the Adjusted-Wald bands in more complex models.

Endogenizing the lag uncertainty reduces the coverage bias of the BB bands only in particular

scenarios. However, in the majority of the scenarios, the BB bands based on the exogenous

bootstrap are superior in that regard. The effect on the volume is ambiguous and depends on

the data generating process; the same holds for the Bonferroni bands. Based on these findings,

we do not promote the endogenous bootstrap.

Furthermore, the results of the trivariate VAR(4) model confirm two of the main empirical

findings in Lütkepohl et al. (2015b). First, the Wald bands tend to exhibit a larger volume

than the Bonferroni bands. Second, the volume-adjustment of the Wald bands can result in

coverage rates markedly below the nominal level in low-degrees-of-freedom scenarios.
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6 Empirical Application

We illustrate the BB joint confidence bands and the competing methods using the structural

VAR model of Kilian (2009). The three-dimensional VAR model of Kilian includes the following

three variables:

• ∆prodt: the percentage change in global crude oil production

• realt: a business cycle index of global real activity (expressed in logs)

• rpot: the real price of oil (expressed in logs)

The monthly data set from 1973-01 through 2007-12 is downloaded from the homepage of the

American Economic Review.10 We estimate the parameters of the reduced-form VAR(3) model

(as suggested by the AIC) by the same methodology as in the Monte Carlo simulation. Following

Kilian (2009), we use a recursive identification scheme where B0 is the lower-triangular Cholesky

decomposition of the reduced-form residual covariance matrix and the maximum propagation

horizon is H = 18. The 90% joint confidence bands are constructed based on the bootstrap

procedure of Kilian (1998b) with B = 2000 replications.

BB Bon Wald A-Wald Näıve

Θ11 31.77 35.69 42.63 34.50 20.25

Θ21 23.06 27.77 33.72 24.09 16.24

Θ31 21.25 25.27 32.03 21.82 14.48

Θ12 41.73 54.35 62.56 44.54 31.99

Θ22 59.99 73.66 94.45 64.41 44.67

Θ32 45.72 62.34 75.75 44.79 34.25

Θ13 65.61 88.09 107.61 65.31 51.12

Θ23 89.19 114.63 128.32 95.58 67.83

Θ33 85.05 115.42 133.36 87.68 64.98

Table 3: Volume of joint confidence bands for H = 18.

Table 3 presents the volumes of the 90% joint confidence bands of all impulse responses

with a maximum propagation horizon of H = 18. The Wald and the Bonferroni bands exhibit

the largest volumes in all scenarios. The BB bands have the smallest volume (of the proper

joint confidence bands) in seven out of nine scenarios. These findings are completely in line

with the simulation-based findings about the volumes of the various joint confidence bands.

Figure 1 displays the estimated structural response of ∆prodt to a one-standard-deviation

shock in εt,2 over a maximum propagation horizon of H = 18 (that is, Θ̂12,18) and the

corresponding nominal 90% joint confidence bands.11 The figure illustrates the different shapes

10https://www.aeaweb.org/articles?id=10.1257/aer.99.3.1053
11 The figures of the remaining eight impulse responses are relegated to the Supplementary Material for the

sake of clarity.
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Figure 1: Estimated impulse response of ∆prodt to a one-standard-deviation shock in εt,2 over

a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.

and volumes of the joint confidence bands. Inference based on the BB bands results in rejecting

the null hypothesis of a zero response for propagation horizons h = 4–18 (as the marginal

intervals do not cover zero). Inverting the other confidence bands results in different conclusions

about the simultaneous test of the H + 1 hypotheses. More specifically, inference based on

the Bonferroni bands results in rejecting the null hypothesis of a zero response for only two

propagation horizons (h = 3, 4), inference based the Wald bands results in accepting the null

hypothesis of a zero response at all propagation horizons h ∈ {0, . . . , 18}, and inference based

on the Adjusted-Wald bands results in rejecting the null hypothesis of a zero response for

propagation horizons h = 3–18.
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7 Conclusion

Impulse response analysis based on low-dimensional structural vector autoregressions is still

a popular tool in applied work. It is standard in applications to equip the estimated impulse

response function with confidence bands that indicate the underlying estimation uncertainty.

The literature has proposed several methods to construct joint confidence bands designed to

cover the entire true impulse response function with a prespecified probability. The so far

existing methods suffer from deficiencies: They can exhibit empirical coverage rates substantially

below the desired nominal level in certain scenarios or they can be excessively large in terms of

the aggregate volume.

We have proposed new joint confidence bands for impulse response functions of structural

vector autoregressions based on multiple testing methodology of Romano and Wolf (2010).

Under weak regularity conditions, these balanced bootstrap (BB) bands have asymptotically

the desired coverage probability and are also asymptotically balanced.

We have compared the finite-sample properties of the BB bands to those of existing bands

by means of a Monte Carlo simulation. The BB bands (i) have smaller volume than the two

conservative bands — the traditional Bonferroni bands and the Wald bands of Lütkepohl et al.

(2015b) — and (ii) have similar volume compared to the Adjusted-Wald bands of Lütkepohl

et al. (2015b). In terms of coverage probability, the performance of the BB bands is overall

the best.

Nevertheless, the BB bands — just like the Adjusted-Wald bands — can suffer from

undercoverage for small sample sizes. It stands to reason that this problem can be fixed,

or at least mitigated, by a double-bootstrap approach. However, studying the finite-sample

properties of such an approach via Monte Carlo simulations does not seem feasible given

currently available computing power.
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A Bias Correction

Let A denote the matrix of the true slope coefficients of the VAR(1) representation of a

general VAR(p) process. Under some regularity conditions, Pope (1990) derives the following

approximation for the finite-sample bias of the least squares (LS) estimator of A:

Bias(Â) = − b
T

+O(T−
3
2 ) ,

where

b ..= ΣU

[(
Ikp −A′

)−1
+A′

(
Ikp −

(
A′
)2)−1

+
k∑
i=1

λi
(
Ikp − λiA′

)−1

]
Σ−1
Y .

Here, Ikp denotes the kp× kp identity matrix, λi denotes the i-th eigenvalue of A, ΣY denotes

the covariance matrix of Yt ..=
(
y′t, y

′
t−1, . . . , y

′
t−p+1

)′
and ΣU denotes the covariance matrix of

Ut ..= (ut, 0, . . . , 0)′. Neglecting higher order terms and replacing true parameters by their LS

estimators yields the following estimator for the finite-sample bias of Â:

B̂ias(Â) ..= − 1

T
Σ̂U

[(
Ikp − Â′

)−1
+ Â′

(
Ikp −

(
Â′
)2
)−1

+

k∑
i=1

λ̂i

(
Ikp − λ̂iÂ′

)−1
]

Σ̂−1
Y .

Thus, the bias-corrected LS estimator is given by

ÂBC ..= Â− B̂ias(Â) .

B Stationarity Correction

In order to prevent that stationary parameter estimates are pushed outside the stationary

region by the bias correction, Kilian (1998b) proposes the following adjustment procedure:

a) Calculate the modulus of the largest root of the (uncorrected) LS estimate Â and denote

this quantity by r(Â). If r(Â) ≥ 1, set
ˆ̂
A ..= Â. If r(Â) < 1, construct the bias-corrected

estimator ÂBC ..= Â− B̂ias(Â).

b) If r(ÂBC) ≥ 1, obtain Ãi ..= Â− δiB̂ias(Â) with δ1 = 1 and δi = δi−1 − 0.01.

c) Repeat step b) until r(Ãi) < 1.

d) Set
ˆ̂
A ..= Ãi.

C Construction of BB Bands

The following algorithm provides a step-by-step instruction for the construction of the BB bands

with nominal confidence level of (1− α) for an arbitrary identification procedure.
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1. Fit a VAR(p̂) model to the the observed time series {y1, . . . , yT }, where p̂ denotes the

estimated lag order.

2. Compute the impact matrix B̂0 according to the chosen approach of identification.

3. Estimate the structural impulse response function of interest with maximum propagation

horizon H, that is,

Θ̂ij,H
..= Θij,H

(
Â1, . . . , Âp̂, B̂0

)
,

where the Â1, . . . , Âp̂ are the estimated reduced-form coefficients.

4. Generate a bootstrap sample
{√

T
∣∣∣Θ̂∗ij,H,b − Θ̂ij,H

∣∣∣}B
b=1

. The number B of bootstrap

replications should be at least 2000, if feasible.

5. Compute the following (H + 1) empirical distribution functions

Ĥ∗h(t) ..=
1

B

B∑
b=1

1{
√
T |Θ̂∗ij,h,b−Θ̂ij,h| ≤ t} for h = 0, . . . ,H .

Statistical software packages usually provide a built-in function for computing the empirical

distribution function; for example, the function ecdf in the software package R.

6. Compute the following bootstrap sample

{
max
h∈S̃

{
Ĥ∗h

(√
T
∣∣∣Θ̂∗ij,h,b − Θ̂ij,h

∣∣∣)}}B
b=1

and the

corresponding (1− α) quantile. Statistical software packages usually provide a built-in

function for computing empirical quantiles; for example, the function quantile in the

software package R.

7. Construct the BB confidence bands for Θij,H with nominal confidence level (1− α) by

computing (H + 1) marginal intervals[
Θ̂ij,h ±

1√
T
Ĥ∗,−1
h

(
L̂−1(1− α)

)]
for h = 0, . . . ,H ,

where Ĥ∗,−1
h (q) ..= inf

{
t : Ĥ∗h(t) ≥ q

}
and L̂−1(1− α) denotes the (1− α) quantile from

step 6.

Remark C.1. The methodology of Romano and Wolf (2010) allows one to construct joint

confidence bands that do not cover all but ‘only’ at least H − k + 2, k ≥ 2, of the elements of

Θij,H with nominal confidence level 1−α. Step 6. in the previous algorithm has to be modified

to construct such bands. More specifically, one has to compute the empirical (1−α) quantile of{
k- max

h∈S̃

{
Ĥh

(√
T
∣∣∣Θ̂∗ij,h,b − Θ̂ij,h

∣∣∣)}}B
b=1

,

where k-max is the function that returns the k-th largest element of a vector.

27



D DGP-1: Empirical Coverages
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Figure D.1: DGP-1: Boxplots of the empirical coverages across all variants of DGP-1, all

impulse responses and all maximum propagation horizons (56 parameter constellations in total)

of nominal 90% joint confidence bands for T = 100.
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Figure D.2: DGP-1: Boxplots of the empirical coverages across all variants of DGP-1, all

impulse responses and all maximum propagation horizons (56 parameter constellations in total)

of nominal 90% joint confidence bands for T = 400.
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E DGP-1: Volumes
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Figure E.1: DGP-1: Boxplots of the volumes across all variants of DGP-1, all impulse responses

and all maximum propagation horizons (56 parameter constellations in total) of nominal 90%

joint confidence bands for T = 100.
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Figure E.2: DGP-1: Boxplots of the volumes across all variants of DGP-1, all impulse responses

and all maximum propagation horizons (56 parameter constellations in total) of nominal 90%

joint confidence bands for T = 400.
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F DGP-2: Empirical Coverages

●

●

●

●

●●
●

●●

●
●●
●●
●

●

●

●

●●
●●

Naive BB Bonferroni Wald Adjusted−Wald

20
40

60
80

10
0

E
m

pi
ric

al
 C

ov
er

ag
e

Figure F.1: DGP-2: Boxplots of the empirical coverages across all impulse responses and all

maximum propagation horizons (63 parameter constellations in total) of nominal 90% joint

confidence bands for T = 100.
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Figure F.2: DGP-2: Boxplots of the empirical coverages across all impulse responses and all

maximum propagation horizons (63 parameter constellations in total) of nominal 90% joint

confidence bands for T = 400.
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G DGP-2: Volumes
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Figure G.1: DGP-2: Boxplots of the volumes across all impulse responses and all maximum

propagation horizons (63 parameter constellations in total) of nominal 90% joint confidence

bands for T = 100.
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Figure G.2: DGP-2: Boxplots of the volumes across all impulse responses and all maximum

propagation horizons (63 parameter constellations in total) of nominal 90% joint confidence

bands for T = 400.

35



Balanced Bootstrap Joint Confidence Bands

for Structural Impulse Response Functions

SUPPLEMENTARY MATERIAL

Stefan Bruder

Department of Economics

University of Zurich

stefan.bruder@econ.uzh.ch

Michael Wolf

Department of Economics

University of Zurich

michael.wolf@econ.uzh.ch

1

mailto:stefan.bruder@econ.uzh.ch
mailto:michael.wolf@econ.uzh.ch


H Results for DGP-1 with Exogenous Bootstrap

Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 73.45 6.52 89.50 3.55 69.05 6.20 69.50 3.78

BB 87.95 8.56 91.05 4.16 86.40 8.44 88.05 5.17

Bonferroni 94.20 10.12 98.70 5.88 93.05 9.76 94.50 6.19

Wald 96.40 11.84 99.85 7.61 96.00 11.48 98.15 7.94

Adj-Wald 88.00 8.27 90.85 4.00 85.85 8.03 90.20 5.38

ρ = 0.90

Näıve 75.55 5.85 87.95 3.10 69.90 5.88 68.35 3.52

BB 87.25 7.62 92.50 3.67 86.75 7.84 89.20 4.79

Bonferroni 93.60 8.82 98.95 5.11 92.80 8.93 94.45 5.71

Wald 96.70 10.10 99.65 6.47 97.05 10.30 97.85 7.18

Adj-Wald 89.60 7.43 92.35 3.56 88.10 7.59 89.85 5.01

ρ = 0.50

Näıve 70.25 2.04 87.20 1.15 69.45 3.19 70.70 2.13

BB 89.40 2.98 94.45 1.48 87.80 4.63 89.80 3.02

Bonferroni 95.35 3.35 98.25 1.96 94.60 5.08 94.30 3.50

Wald 98.00 3.92 99.35 2.34 96.80 5.89 97.90 4.12

Adj-Wald 89.75 2.91 92.75 1.41 88.35 4.35 91.45 3.01

ρ = 0.00

Näıve 67.05 1.02 87.40 0.58 68.80 1.97 72.50 1.64

BB 93.25 1.50 95.75 0.77 88.15 2.92 87.05 2.38

Bonferroni 96.20 1.70 98.50 1.00 94.80 3.23 94.65 2.70

Wald 98.60 2.03 99.65 1.12 97.35 3.82 98.15 3.16

Adj-Wald 91.70 1.52 94.45 0.73 89.00 2.79 90.95 2.29

ρ = −0.50

Näıve 72.30 1.65 88.80 0.49 61.75 1.70 72.10 1.55

BB 89.00 2.40 95.55 0.68 89.70 2.50 87.60 2.23

Bonferroni 95.20 2.65 98.00 0.86 94.85 2.76 95.10 2.51

Wald 98.35 3.10 99.55 1.04 97.70 3.24 97.55 2.88

Adj-Wald 91.15 2.27 94.75 0.65 87.75 2.40 90.95 2.11

ρ = −0.90

Näıve 73.70 5.12 87.75 1.29 60.10 2.39 62.30 1.62

BB 85.60 6.60 94.00 1.54 85.80 3.36 88.55 2.35

Bonferroni 94.40 7.68 98.15 2.18 90.70 3.69 90.95 2.64

Wald 96.90 8.90 99.60 2.66 96.35 4.31 97.75 3.09

Adj-Wald 88.40 6.60 90.90 1.50 86.25 3.33 88.75 2.32

ρ = −0.95

Näıve 71.85 5.15 88.65 1.53 58.15 2.37 63.90 1.65

BB 82.20 6.55 93.30 1.76 85.70 3.34 89.35 2.36

Bonferroni 94.05 8.07 98.30 2.56 91.80 3.73 93.60 2.67

Wald 96.70 9.42 99.70 3.02 95.45 4.37 96.90 3.10

Adj-Wald 85.50 6.79 91.80 1.69 84.25 3.35 89.70 2.35

Table 1: Empirical coverage probabilities and average volumes of nominal 90% joint confidence

bands with T = 100, H = 10, normal errors, and AIC lag selection.
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Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 77.25 2.87 87.80 1.75 71.25 2.73 68.90 1.86

BB 89.10 3.61 90.70 1.88 88.75 3.60 88.40 2.44

Bonferroni 95.65 4.52 98.70 2.77 95.30 4.32 95.50 2.94

Wald 98.10 4.97 99.35 3.20 97.80 4.79 98.05 3.38

Adj-Wald 88.05 3.57 90.20 1.83 89.65 3.53 89.30 2.46

ρ = 0.90

Näıve 75.65 2.66 87.20 1.45 71.55 2.69 69.15 1.66

BB 88.60 3.39 91.50 1.60 89.60 3.55 89.30 2.21

Bonferroni 95.65 4.14 98.40 2.33 95.70 4.21 95.20 2.65

Wald 97.55 4.52 99.25 2.65 97.80 4.64 97.95 3.01

Adj-Wald 88.55 3.15 91.10 1.56 89.35 3.50 89.70 2.22

ρ = 0.50

Näıve 68.65 0.91 88.20 0.49 69.15 1.45 71.85 0.95

BB 90.95 1.25 94.55 0.59 89.95 2.00 89.60 1.28

Bonferroni 95.70 1.45 98.75 0.80 95.75 2.29 95.95 1.51

Wald 97.70 1.63 99.05 0.91 97.65 2.55 97.40 1.70

Adj-Wald 89.40 1.63 92.00 0.91 88.40 2.55 88.65 1.70

ρ = 0.00

Näıve 69.45 0.46 88.40 0.25 66.10 0.91 74.95 0.75

BB 91.50 0.64 94.10 0.30 88.15 1.25 90.20 1.00

Bonferroni 95.80 0.73 98.30 0.41 95.50 1.44 96.70 1.19

Wald 98.10 0.64 99.50 0.29 87.45 1.23 98.30 0.97

Adj-Wald 90.10 0.64 93.30 0.29 88.90 1.23 90.00 0.97

ρ = −0.50

Näıve 73.75 0.75 89.40 0.19 62.75 0.77 75.50 0.70

BB 89.90 1.02 95.40 0.25 90.05 1.08 88.70 0.93

Bonferroni 96.50 1.20 98.40 0.32 94.30 1.22 96.20 1.11

Wald 98.35 1.33 99.25 0.36 97.50 1.37 98.50 1.23

Adj-Wald 90.35 0.97 94.45 0.24 88.95 1.06 89.90 0.88

ρ = −0.90

Näıve 73.15 2.49 88.75 0.57 61.60 1.14 64.30 0.73

BB 88.65 3.17 91.35 0.64 88.80 1.59 89.40 1.01

Bonferroni 96.05 3.86 98.35 0.92 94.80 1.79 94.45 1.16

Wald 97.70 4.28 99.35 1.04 96.95 1.98 97.20 1.29

Adj-Wald 89.30 3.14 90.75 0.62 88.80 1.58 89.35 1.00

ρ = −0.95

Näıve 74.00 2.55 89.40 0.70 62.90 1.14 63.60 0.75

BB 88.45 3.20 90.90 0.77 87.75 1.59 90.50 1.05

Bonferroni 96.20 4.03 98.60 1.13 93.10 1.81 94.95 1.20

Wald 97.85 4.53 99.10 1.26 96.80 2.02 96.80 1.33

Adj-Wald 88.50 3.25 90.20 0.74 86.40 1.59 87.25 1.04

Table 2: Empirical coverage probabilities and average volumes of nominal 90% joint confidence

bands with T = 400, H = 10, normal errors, and AIC lag selection.
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Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 71.85 14.90 88.45 6.50 66.70 14.77 68.05 6.94

BB 86.35 20.59 92.75 8.04 86.50 20.96 88.25 9.99

Bonferroni 94.10 22.75 99.45 12.22 93.75 22.86 96.05 12.90

Wald 95.75 25.26 99.60 15.15 95.70 25.44 98.20 15.95

Adj-Wald 88.50 19.09 91.85 7.84 86.60 19.27 88.85 10.53

ρ = 0.90

Näıve 75.00 12.31 88.10 5.14 68.60 12.84 68.45 5.85

BB 86.75 17.42 94.20 6.65 87.20 18.58 89.45 8.71

Bonferroni 95.20 18.84 99.35 9.92 95.60 19.82 96.10 11.11

Wald 96.80 20.54 99.65 11.73 97.00 21.60 98.15 13.03

Adj-Wald 88.45 15.64 93.00 6.29 88.15 16.48 89.80 8.80

ρ = 0.50

Näıve 69.25 2.25 84.15 1.25 64.10 3.61 68.80 2.33

BB 89.65 3.46 95.05 1.70 88.65 5.68 90.15 3.60

Bonferroni 96.50 4.18 99.00 2.46 96.35 6.60 96.25 4.51

Wald 97.80 4.64 99.30 2.78 97.50 7.29 97.80 4.98

Adj-Wald 90.60 3.37 93.25 1.64 88.80 5.26 91.00 3.55

ρ = 0.00

Näıve 67.90 1.05 87.35 0.61 69.15 2.09 72.90 1.76

BB 91.85 1.58 94.85 0.83 89.00 3.18 86.85 2.62

Bonferroni 97.10 1.93 98.85 1.17 96.90 3.79 95.65 3.24

Wald 98.60 2.09 99.50 1.27 97.90 4.09 98.00 3.45

Adj-Wald 91.90 1.56 94.05 0.76 89.20 2.95 91.10 2.44

ρ = −0.50

Näıve 70.55 1.69 87.65 0.50 60.65 1.76 73.55 1.61

BB 87.95 2.59 95.45 0.72 92.30 2.69 87.55 2.41

Bonferroni 96.55 3.09 98.95 1.00 96.10 3.21 95.85 2.94

Wald 97.95 3.35 99.20 1.12 97.50 3.51 98.55 3.17

Adj-Wald 91.15 2.44 94.75 0.69 87.75 2.56 92.15 2.30

ρ = −0.90

Näıve 72.25 10.88 88.15 2.03 60.05 4.23 61.70 1.89

BB 86.05 15.20 94.15 2.59 86.05 6.30 90.70 2.90

Bonferroni 95.65 16.55 99.00 3.96 93.95 6.67 95.70 3.46

Wald 96.85 17.85 99.15 4.39 99.75 7.20 96.45 3.73

Adj-Wald 87.20 13.63 91.60 2.44 85.20 5.75 89.50 2.80

ρ = −0.95

Näıve 70.10 12.41 88.25 2.68 54.90 4.68 61.45 2.04

BB 82.10 16.71 93.40 3.27 85.80 6.87 89.85 3.08

Bonferroni 95.50 19.51 99.10 5.09 93.85 7.55 95.30 3.71

Wald 96.20 21.52 99.40 5.58 95.55 8.27 96.55 4.01

Adj-Wald 86.55 16.44 90.60 3.11 85.10 6.65 88.60 3.03

Table 3: Empirical coverage probabilities and average volumes of nominal 90% joint confidence

bands with T = 100, H = 20, normal errors, and AIC lag selection.
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Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 74.30 7.09 88.85 3.04 68.40 6.99 69.90 3.27

BB 88.45 9.13 93.55 3.47 88.40 9.32 89.35 4.46

Bonferroni 96.45 11.53 99.05 5.37 96.40 11.44 96.85 5.75

Wald 97.35 11.73 99.55 4.06 96.70 11.67 98.15 6.17

Adj-Wald 88.50 8.80 90.75 3.36 87.45 8.96 89.45 4.47

ρ = 0.90

Näıve 73.20 5.37 89.45 2.15 67.85 5.69 70.40 2.51

BB 88.65 7.12 93.70 2.52 89.00 7.77 90.80 3.47

Bonferroni 96.90 8.74 99.30 3.84 96.90 9.29 97.20 4.44

Wald 97.85 8.89 99.35 4.06 97.35 9.46 98.00 4.68

Adj-Wald 89.30 6.76 92.80 2.44 88.50 7.36 90.40 3.46

ρ = 0.50

Näıve 68.60 0.94 85.15 0.51 66.25 1.55 71.90 0.98

BB 90.65 1.33 94.05 0.62 89.05 2.21 90.30 1.37

Bonferroni 97.05 1.65 98.90 0.91 96.65 2.67 97.70 1.73

Wald 97.85 1.71 99.10 0.95 97.20 2.76 97.80 1.80

Adj-Wald 89.95 1.31 93.30 0.61 88.95 2.15 90.95 1.36

ρ = 0.00

Näıve 68.25 0.46 86.90 0.26 68.40 0.93 74.85 0.77

BB 92.55 0.65 94.65 0.31 89.60 1.29 88.95 1.03

Bonferroni 98.10 0.80 99.55 0.45 96.90 1.59 97.45 1.31

Wald 98.00 0.84 99.20 0.47 97.45 1.64 97.60 1.36

Adj-Wald 91.10 0.65 93.40 0.30 89.30 1.26 89.40 0.99

ρ = −0.50

Näıve 73.15 0.76 88.95 0.19 61.00 0.78 75.85 0.71

BB 90.25 1.04 94.90 0.26 90.25 1.11 89.50 0.95

Bonferroni 97.65 1.31 98.95 0.36 96.45 1.34 97.25 1.22

Wald 98.30 1.35 99.35 0.37 97.65 1.39 98.80 1.26

Adj-Wald 91.15 1.01 94.85 0.25 88.95 1.09 91.00 0.93

ρ = −0.90

Näıve 76.65 5.03 88.65 0.80 63.25 1.97 62.45 0.80

BB 89.85 6.59 93.05 0.94 87.75 2.81 90.80 1.16

Bonferroni 97.60 8.15 99.25 1.44 95.40 3.24 95.60 1.41

Wald 98.15 8.40 99.45 1.51 96.90 3.34 97.60 1.46

Adj-Wald 89.15 6.27 92.00 0.90 89.15 2.70 89.05 1.14

ρ = −0.95

Näıve 74.90 6.39 89.70 1.13 61.20 2.37 64.20 0.90

BB 89.10 8.20 92.60 1.31 88.05 3.31 90.40 1.29

Bonferroni 97.25 10.44 98.90 2.04 95.65 3.91 95.90 1.57

Wald 97.35 10.80 99.30 2.12 95.95 4.05 96.65 1.63

Adj-Wald 89.45 8.08 90.35 1.25 88.30 3.27 87.45 1.27

Table 4: Empirical coverage probabilities and average volumes of nominal 90% joint confidence

bands with T = 400, H = 20, normal errors, and AIC lag selection.
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I Results for DGP-1 with Endogenous Bootstrap

Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 71.50 5.20 92.05 1.66 61.75 2.43 68.80 1.73

BB 87.40 8.59 93.35 4.35 87.65 8.51 91.45 5.37

Bonferroni 92.60 10.10 99.55 6.14 93.35 9.81 95.90 6.48

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.90

Näıve 75.45 5.92 91.25 3.17 69.60 5.93 70.75 3.59

BB 87.25 7.72 94.20 3.85 87.35 7.96 91.10 5.00

Bonferroni 94.60 8.92 99.50 5.40 94.50 9.04 95.45 6.02

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.50

Näıve 73.30 2.08 89.65 1.18 69.40 3.22 73.15 2.17

BB 92.40 3.06 96.70 1.58 90.40 4.71 91.70 3.17

Bonferroni 96.30 3.50 99.45 2.18 95.70 5.23 95.75 3.77

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.00

Näıve 69.80 1.05 90.30 0.61 71.00 2.03 75.10 1.70

BB 92.95 1.63 96.80 0.85 90.75 3.13 92.65 2.58

Bonferroni 96.70 2.00 99.45 1.29 96.20 3.58 96.55 3.07

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.50

Näıve 75.30 1.67 90.80 0.51 66.50 1.73 76.90 1.58

BB 91.40 2.51 97.10 0.76 92.75 2.67 90.75 2.41

Bonferroni 96.25 2.89 99.20 1.34 96.85 3.06 95.40 2.87

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.90

Näıve 75.95 5.20 89.75 1.38 63.15 2.44 67.20 1.68

BB 87.00 6.77 95.10 1.72 89.40 3.51 91.35 2.54

Bonferroni 95.60 7.89 99.15 3.34 95.05 3.91 95.05 3.07

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.95

Näıve 71.70 5.23 90.75 1.64 63.00 2.43 68.90 1.71

BB 84.55 6.77 94.65 1.95 88.10 3.49 91.85 2.56

Bonferroni 94.90 8.33 99.50 3.96 93.90 3.98 96.20 3.15

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

Table 5: Empirical coverage probabilities and average volumes of nominal 90% joint confidence

bands with T = 100, H = 10, normal errors, and AIC lag selection.
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Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 76.20 2.58 90.25 0.74 66.15 1.16 68.10 0.78

BB 89.75 3.69 93.00 1.98 89.35 3.67 92.05 2.54

Bonferroni 96.45 4.58 99.35 2.91 95.60 4.39 97.35 3.08

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.90

Näıve 74.55 2.67 91.05 1.49 70.60 2.71 72.85 1.71

BB 89.15 3.45 92.55 1.69 90.40 3.61 90.85 2.30

Bonferroni 96.25 4.18 99.25 2.46 96.70 4.25 96.35 2.78

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.50

Näıve 70.65 0.93 90.10 0.51 69.45 1.47 73.80 0.97

BB 91.85 1.30 95.65 0.63 90.55 2.06 91.55 1.35

Bonferroni 96.55 1.52 99.05 0.90 96.55 2.37 97.50 1.63

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.00

Näıve 71.20 0.47 89.95 0.26 71.20 0.93 78.65 0.77

BB 94.00 0.69 95.80 0.33 91.55 1.33 91.80 1.07

Bonferroni 98.05 0.85 9.10 0.51 97.30 1.55 97.55 1.31

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.50

Näıve 77.15 0.77 91.00 0.20 68.80 0.78 79.10 0.72

BB 91.50 1.07 96.60 0.27 92.00 1.14 90.95 0.99

Bonferroni 96.95 1.29 99.30 0.54 96.15 1.33 97.35 1.22

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.90

Näıve 76.60 2.51 90.85 0.60 66.55 1.16 69.85 0.75

BB 91.05 3.21 95.30 0.69 90.15 1.64 91.85 1.07

Bonferroni 97.25 3.90 99.40 1.42 95.45 1.85 96.95 1.33

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.95

Näıve 78.05 2.58 89.90 0.74 65.40 1.16 69.85 0.77

BB 88.55 3.28 92.90 0.83 90.75 1.64 91.90 1.11

Bonferroni 95.50 4.12 99.25 1.73 94.70 1.89 97.15 1.40

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

Table 6: Empirical coverage probabilities and average volumes of 90%confidence bands with

T = 400, H = 10, normal errors, and AIC lag selection.
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Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 70.65 12.60 91.35 2.93 60.25 4.78 68.65 2.15

BB 89.05 21.01 95.05 8.45 87.10 21.38 91.10 10.42

Bonferroni 95.25 23.20 99.50 13.02 93.90 23.33 97.05 13.74

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.90

Näıve 76.70 12.45 90.50 5.30 70.60 12.98 69.90 6.02

BB 87.70 17.66 95.65 6.98 87.75 18.73 91.75 9.03

Bonferroni 95.20 19.15 99.30 10.59 95.50 20.04 96.75 11.78

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.50

Näıve 73.05 2.28 88.40 1.28 70.30 3.69 73.90 2.41

BB 91.45 3.68 96.40 1.86 90.20 5.98 91.60 3.86

Bonferroni 96.70 4.61 99.80 2.93 97.55 7.19 96.60 5.12

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.00

Näıve 71.05 1.08 89.40 0.64 71.95 2.14 77.60 1.81

BB 93.60 1.71 96.50 0.91 92.20 3.34 90.85 2.79

Bonferroni 98.45 2.44 99.80 1.65 97.95 4.34 97.30 3.82

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.50

Näıve 73.20 1.75 89.45 0.53 62.85 1.79 75.45 1.64

BB 90.75 2.75 97.40 0.81 93.10 2.88 91.45 2.59

Bonferroni 96.90 3.59 99.70 1.77 97.90 3.73 96.95 3.54

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.90

Näıve 75.45 10.97 90.35 2.15 62.95 4.28 68.70 1.95

BB 88.85 15.63 96.30 2.89 89.95 6.56 92.90 3.17

Bonferroni 96.75 16.97 99.70 6.50 96.95 7.08 97.85 4.41

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.95

Näıve 71.05 12.66 90.20 2.93 58.90 4.82 67.90 2.17

BB 85.75 17.14 96.05 3.61 88.90 7.11 91.60 3.42

Bonferroni 96.15 20.11 99.90 8.67 96.20 8.01 96.85 4.98

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

Table 7: Empirical coverage probabilities and average volumes of nominal 90% joint confidence

bands with T = 100, H = 20, normal errors, and AIC lag selection.
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Θ1,1 Θ1,2 Θ2,1 Θ2,2

DGP1 Method EC Volume EC Volume EC Volume EC Volume

ρ = 0.95

Näıve 74.85 6.40 90.65 1.21 63.10 2.39 67.85 0.94

BB 89.05 9.33 94.40 3.62 89.10 9.42 92.20 4.62

Bonferroni 96.55 11.60 99.65 5.67 96.35 11.51 98.25 6.05

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.90

Näıve 75.00 5.40 89.35 2.21 70.75 5.73 71.55 2.58

BB 90.30 7.27 95.20 2.67 91.20 7.91 92.65 3.63

Bonferroni 97.65 8.88 99.55 4.11 97.85 9.43 97.80 4.74

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.50

Näıve 69.45 0.97 86.05 0.53 67.75 1.58 72.90 1.02

BB 93.95 1.39 96.05 0.67 91.65 2.29 93.05 2.44

Bonferroni 98.65 1.77 99.85 1.06 98.05 2.82 98.70 1.93

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = 0.00

Näıve 72.20 0.47 89.95 0.26 69.05 0.94 76.95 0.78

BB 93.70 0.70 96.10 0.34 92.50 1.37 91.35 1.10

Bonferroni 98.20 1.00 99.85 0.62 98.60 1.77 98.75 1.51

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.50

Näıve 77.45 0.78 90.60 0.20 65.00 0.80 76.20 0.73

BB 91.60 1.08 97.30 0.28 92.75 1.16 91.85 1.01

Bonferroni 97.85 1.46 99.85 0.66 98.35 1.51 98.65 1.40

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.90

Näıve 75.40 5.03 92.10 0.83 65.30 1.98 69.80 0.83

BB 91.05 6.74 95.90 1.02 91.45 2.88 94.45 1.23

Bonferroni 98.15 8.28 99.75 2.49 97.60 3.34 98.55 1.77

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

ρ = −0.95

Näıve 75.30 6.41 90.65 1.21 63.95 2.39 67.95 0.94

BB 89.15 8.31 94.70 1.42 90.50 3.37 93.00 1.37

Bonferroni 97.15 10.54 99.85 3.52 96.90 4.03 98.55 2.07

Wald Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na

Table 8: Empirical coverage probabilities and average volumes of nominal 90% joint confidence

bands with T = 400, H = 20, normal errors, and AIC lag selection.
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J Empirical Coverages for DGP-2 with Exogenous Bootstrap

Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 24.75 73.55 68.15 76.05 75.35 76.80 52.20 66.20 50.70

BB 72.00 87.15 86.40 95.10 90.90 90.60 93.95 87.25 82.45

Bonferroni 53.25 92.05 89.80 93.30 92.55 94.70 80.45 88.00 80.80

Wald 88.75 99.25 98.60 99.40 98.30 99.40 97.10 97.50 97.50

Adj-Wald 42.40 81.55 80.50 85.80 89.35 84.30 71.15 81.80 73.60

H = 8

Näıve 21.50 66.55 61.80 63.60 68.95 68.60 46.10 62.85 46.90

BB 73.60 87.25 85.05 95.70 90.20 89.55 92.50 85.40 83.00

Bonferroni 63.15 93.90 90.50 93.60 92.40 95.10 84.65 89.85 84.95

Wald 88.40 98.45 96.90 99.00 97.70 99.30 96.45 96.30 97.00

Adj-Wald 49.15 82.95 79.75 83.15 87.95 84.60 71.95 84.00 76.20

H = 12

Näıve 19.60 63.95 53.85 56.10 58.40 63.65 42.85 57.30 44.70

BB 71.80 89.40 81.75 94.55 87.55 90.15 89.95 85.85 81.05

Bonferroni 66.00 95.30 87.90 92.20 81.70 94.25 85.60 90.65 85.00

Wald 84.60 98.50 93.60 98.25 97.05 98.20 94.90 96.90 95.35

Adj-Wald 52.35 85.40 76.80 77.85 86.70 86.05 72.25 84.30 73.65

H = 16

Näıve 19.45 62.95 47.65 51.85 56.15 59.55 42.40 54.65 42.30

BB 71.65 89.90 77.05 94.80 87.75 89.00 89.00 87.60 81.75

Bonferroni 70.00 95.25 85.30 94.80 90.40 94.55 87.45 91.65 86.35

Wald 86.15 98.05 91.40 98.35 96.25 98.15 95.45 97.00 94.45

Adj-Wald 55.25 85.60 73.20 79.35 85.85 82.95 74.20 85.60 74.25

H = 20

Näıve 16.95 61.05 44.25 49.25 53.85 58.05 39.60 54.65 40.60

BB 72.35 90.00 77.10 92.75 86.65 89.40 89.60 86.90 81.90

Bonferroni 70.75 95.90 84.30 93.05 91.20 94.15 88.65 92.90 86.95

Wald 85.90 98.25 91.00 97.05 96.10 96.75 95.05 96.65 94.55

Adj-Wald 55.50 85.45 73.30 78.00 84.05 82.95 75.60 85.55 73.40

H = 24

Näıve 18.05 57.30 40.25 44.30 52.30 53.85 38.95 52.90 38.80

BB 71.60 89.90 72.20 90.15 87.30 88.20 88.45 86.65 81.85

Bonferroni 72.55 96.00 79.65 93.25 92.20 92.20 89.80 92.95 86.60

Wald 84.25 98.30 87.55 97.20 95.95 95.60 95.15 96.20 92.60

Adj-Wald 56.30 84.70 68.45 77.85 84.65 80.50 75.05 84.60 73.40

H = 28

Näıve 15.00 54.70 37.25 44.85 51.90 49.10 36.20 53.65 34.25

BB 72.35 89.00 72.00 91.45 88.25 86.15 89.65 87.75 79.70

Bonferroni 74.45 95.90 78.30 94.30 93.15 90.45 89.75 93.75 85.60

Wald 85.10 98.25 85.35 97.05 96.20 94.20 94.45 96.30 91.60

Adj-Wald 56.25 82.75 65.95 79.50 86.35 77.20 74.95 85.85 71.90

Table 9: Empirical coverage probabilities of nominal 90% joint confidence bands based on the

exogenous bootstrap with T = 100, normal errors, and AIC lag selection.
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Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 62.80 73.15 71.00 76.45 75.70 80.85 70.60 71.50 69.60

BB 88.80 91.05 90.55 90.40 89.05 89.55 89.50 89.45 89.05

Bonferroni 89.70 93.75 93.90 94.75 93.30 95.65 93.35 92.15 91.65

Wald 98.20 99.55 99.60 99.50 99.60 99.45 99.75 99.45 99.20

Adj-Wald 86.60 88.80 88.05 88.30 88.15 87.30 86.90 87.70 88.20

H = 8

Näıve 60.30 67.75 68.90 68.85 65.75 70.95 66.40 66.35 64.75

BB 87.50 89.85 90.30 88.80 89.70 91.05 88.95 89.60 90.00

Bonferroni 91.70 95.30 95.45 94.80 94.95 96.00 94.30 94.60 95.30

Wald 98.00 99.40 99.40 99.15 99.20 99.40 99.05 99.30 99.40

Adj-Wald 85.10 88.20 88.65 88.15 89.10 88.70 86.65 87.80 88.05

H = 12

Näıve 60.30 66.65 68.00 64.15 61.20 66.35 63.55 62.20 63.30

BB 88.80 90.30 89.65 88.00 89.15 90.40 88.65 89.90 89.95

Bonferroni 93.85 95.75 96.20 95.00 95.25 96.70 94.70 95.20 95.25

Wald 97.55 99.20 99.30 99.35 98.80 99.45 98.70 99.15 99.05

Adj-Wald 86.55 87.25 88.15 85.50 88.65 89.15 86.65 89.45 88.70

H = 16

Näıve 58.00 62.60 64.35 61.50 56.15 63.50 62.55 58.90 59.55

BB 88.45 89.85 89.90 89.10 88.90 89.80 89.60 89.55 90.25

Bonferroni 94.40 95.85 96.75 95.70 94.60 95.95 95.20 95.20 96.00

Wald 97.25 99.00 99.05 99.00 98.85 98.95 98.05 98.95 99.05

Adj-Wald 87.70 87.40 87.25 87.60 88.80 87.80 87.45 88.10 87.35

H = 20

Näıve 56.50 62.05 63.90 58.25 55.25 63.00 59.45 57.95 60.40

BB 88.35 91.75 90.10 90.15 89.05 90.55 88.90 90.75 90.15

Bonferroni 95.10 97.15 96.35 95.75 95.10 96.70 95.15 96.00 96.35

Wald 97.20 99.35 98.50 98.50 98.55 98.60 98.15 98.75 98.50

Adj-Wald 87.35 87.35 88.05 88.90 88.65 88.35 87.80 89.70 87.65

H = 24

Näıve 55.35 60.15 60.40 58.45 53.55 59.95 60.25 55.60 58.00

BB 88.75 91.70 87.55 87.65 88.30 90.35 88.45 90.45 90.15

Bonferroni 94.40 97.05 96.30 95.40 94.30 96.75 95.95 96.45 95.60

Wald 96.70 99.15 98.70 98.30 98.00 98.70 98.50 98.75 98.10

Adj-Wald 87.05 87.15 85.75 86.50 88.05 87.20 88.15 88.70 87.75

H = 28

Näıve 53.95 60.40 59.60 57.35 52.40 57.60 57.15 55.85 55.75

BB 86.30 91.45 89.50 88.85 87.85 90.90 88.60 90.80 90.05

Bonferroni 93.85 97.45 96.95 95.60 94.60 97.55 96.70 96.30 96.55

Wald 96.40 98.95 98.90 98.40 97.90 98.80 98.50 98.75 98.70

Adj-Wald 84.25 86.05 88.70 87.15 87.65 88.35 86.95 88.65 87.60

Table 10: Empirical coverage probabilities of nominal 90% joint confidence bands based on the

exogenous bootstrap with T = 400, normal errors, and AIC lag selection.
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K Empirical Coverages for DGP-2 with Endogenous Bootstrap

Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 32.40 71.25 66.40 75.50 62.00 77.45 54.45 62.85 55.85

BB 70.40 85.95 82.25 93.50 89.85 87.30 91.15 86.15 84.40

Bonferroni 67.50 92.15 88.80 94.15 92.20 95.00 78.50 84.85 83.45

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 8

Näıve 29.50 64.80 56.15 63.10 59.20 69.50 47.05 58.05 49.40

BB 68.65 84.30 78.95 93.45 89.00 85.90 88.70 83.35 81.30

Bonferroni 73.85 93.15 85.45 92.55 84.95 93.45 83.55 85.10 84.85

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 12

Näıve 26.50 61.00 48.00 53.10 48.90 61.75 45.65 54.30 40.25

BB 66.65 85.45 75.80 91.40 85.65 84.75 86.50 83.00 79.30

Bonferroni 77.40 93.70 81.00 90.75 82.05 93.85 85.25 86.30 83.80

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 16

Näıve 25.65 58.55 40.15 49.70 46.95 55.30 41.55 50.05 37.25

BB 65.40 86.35 68.20 90.45 84.35 84.35 84.45 83.00 78.10

Bonferroni 79.45 94.90 74.20 91.60 82.20 93.00 85.30 87.25 81.50

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 20

Näıve 24.85 56.30 38.10 49.00 44.80 50.80 40.25 51.75 35.65

BB 67.25 86.65 68.90 91.30 84.85 83.90 86.80 84.05 78.95

Bonferroni 80.85 95.35 73.45 92.85 84.85 91.30 87.55 89.10 82.15

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 24

Näıve 20.15 50.60 35.90 44.05 41.85 44.65 36.15 46.85 34.00

BB 64.75 87.5 67.00 88.00 83.80 80.65 84.45 83.35 78.30

Bonferroni 81.30 94.65 71.75 90.60 83.50 85.80 87.45 87.00 81.50

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 28

Näıve 17.70 46.95 31.90 43.65 42.30 38.75 36.65 48.60 29.85

BB 61.40 84.70 64.80 87.15 85.75 80.50 83.80 85.15 76.10

Bonferroni 76.95 94.50 69.25 92.40 86.40 83.80 88.60 89.95 78.80

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

Table 11: Empirical coverage probabilities of nominal 90% joint confidence bands based on the

endogenous bootstrap with T = 100, normal errors, and AIC lag selection.
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Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 64.35 74.20 70.50 78.15 76.10 79.45 74.60 72.85 68.90

BB 88.75 88.30 89.30 88.95 90.05 89.75 88.55 89.05 90.90

Bonferroni 86.45 92.35 93.05 93.40 85.10 95.35 92.60 89.75 88.75

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 8

Näıve 58.95 66.75 68.25 66.80 68.20 72.65 67.00 64.45 63.05

BB 90.35 88.90 90.40 90.35 90.10 88.70 89.40 89.45 89.90

Bonferroni 90.65 95.40 95.40 95.70 88.95 94.85 94.20 92.95 89.90

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 12

Näıve 59.00 67.45 67.45 66.00 62.05 66.20 65.05 64.15 62.00

BB 89.25 89.35 89.55 89.70 89.35 88.80 87.85 88.90 90.60

Bonferroni 91.20 95.45 95.80 94.80 89.85 95.90 94.40 92.60 92.05

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 16

Näıve 57.25 62.65 64.30 61.10 57.85 65.80 62.70 58.95 61.10

BB 88.55 90.05 89.70 88.50 89.30 89.25 89.70 89.25 90.35

Bonferroni 92.20 96.15 96.50 95.45 90.95 95.75 96.10 93.20 92.15

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 20

Näıve 58.35 61.55 63.15 61.25 56.50 60.70 60.60 56.80 57.90

BB 88.30 90.20 89.50 88.95 88.25 89.40 88.05 89.75 91.95

Bonferroni 92.60 97.10 95.95 95.60 91.60 96.05 95.00 95.05 94.25

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 24

Näıve 55.80 58.10 60.65 57.50 54.50 58.15 58.85 55.05 57.85

BB 89.50 90.05 89.10 88.40 89.25 89.35 87.40 89.15 89.85

Bonferroni 93.55 97.05 96.60 94.70 92.35 96.65 95.25 94.35 93.95

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 28

Näıve 51.60 58.55 61.00 56.20 52.35 59.60 59.00 55.35 56.75

BB 89.10 90.55 87.70 88.60 89.50 90.10 89.35 90.75 91.10

Bonferroni 94.25 96.65 95.90 96.05 92.35 96.90 95.90 95.65 94.50

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

Table 12: Empirical coverage probabilities of nominal 90% joint confidence bands based on the

endogenous bootstrap with T = 400, normal errors, and AIC lag selection.
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L Volumes for DGP-2 with Exogenous Bootstrap

Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 3.32 1.71 1.46 1.27 0.83 0.55 4.51 3.06 2.25

BB 5.05 2.14 1.85 1.73 1.09 0.67 6.77 4.03 2.98

Bonferroni 4.86 2.50 2.11 1.98 1.23 0.80 6.81 4.61 3.31

Wald 7.41 3.89 3.23 3.28 1.93 1.22 10.88 7.56 5.27

Adj-Wald 4.60 2.20 1.92 1.67 1.16 0.67 5.86 4.17 3.19

H = 8

Näıve 6.10 3.99 3.11 2.65 1.94 1.32 8.47 6.47 4.58

BB 9.35 5.24 4.14 3.98 2.70 1.77 12.98 8.79 6.30

Bonferroni 9.85 6.36 4.99 4.58 3.15 2.16 14.06 10.43 7.38

Wald 13.34 8.98 6.92 6.57 4.46 2.98 19.94 14.91 10.35

Adj-Wald 8.97 5.56 4.31 3.84 2.90 1.80 11.94 9.45 6.82

H = 12

Näıve 9.18 6.36 4.90 4.22 3.17 2.17 12.50 9.81 6.91

BB 13.59 8.64 6.67 6.43 4.53 3.02 18.68 13.68 9.74

Bonferroni 15.14 10.73 8.33 7.36 5.41 3.75 21.29 16.49 11.77

Wald 18.98 14.38 10.93 9.73 7.32 4.91 27.76 22.08 15.52

Adj-Wald 13.55 9.33 6.97 6.14 4.91 3.13 18.00 15.08 10.63

H = 16

Näıve 12.19 8.45 6.57 5.73 4.40 3.05 16.24 12.59 9.04

BB 18.20 12.01 9.29 9.03 6.54 4.41 25.12 18.66 13.33

Bonferroni 20.77 15.24 11.83 10.41 7.93 5.56 29.47 22.86 16.45

Wald 25.03 19.86 15.04 13.12 10.34 7.05 36.74 29.65 20.96

Adj-Wald 18.43 13.14 9.79 8.72 7.14 4.61 24.76 20.81 14.62

H = 20

Näıve 15.46 10.59 8.26 7.38 5.70 3.96 20.46 15.59 11.25

BB 23.49 15.19 11.86 12.15 8.75 6.00 31.88 23.17 16.74

Bonferroni 27.04 19.73 15.40 13.98 10.75 7.69 37.78 28.94 20.95

Wald 31.59 25.25 19.20 16.97 13.70 9.50 45.59 36.87 26.19

Adj-Wald 23.94 16.91 12.48 11.67 9.57 6.31 31.52 26.10 18.38

H = 24

Näıve 18.37 12.60 9.94 9.04 7.02 5.01 24.08 18.26 13.38

BB 28.32 18.51 14.47 14.79 10.78 7.51 38.20 27.88 20.23

Bonferroni 33.22 24.43 19.05 17.30 13.37 9.70 46.07 35.24 25.64

Wald 38.45 30.80 13.34 20.50 16.75 11.83 54.63 44.31 31.49

Adj-Wald 29.01 20.66 15.40 14.39 11.85 7.95 37.98 31.65 22.32

H = 28

Näıve 21.87 14.53 11.51 11.11 8.32 6.02 28.92 21.10 15.65

BB 33.56 21.78 17.05 18.03 13.07 9.20 45.26 32.56 23.75

Bonferroni 39.83 29.29 22.84 21.31 16.50 12.06 55.26 42.00 30.51

Wald 45.63 36.42 27.61 24.79 20.35 14.46 64.53 51.93 37.03

Adj-Wald 34.86 24.51 18.25 17.80 14.47 9.81 45.35 37.21 26.26

Table 13: Average volumes of nominal 90% joint confidence bands based on the exogenous

bootstrap with T = 100, normal errors, and AIC lag selection.
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Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 0.85 0.76 0.69 0.38 0.36 0.27 1.16 1.18 0.98

BB 1.17 0.97 0.90 0.48 0.46 0.33 1.51 1.53 1.30

Bonferroni 1.21 1.07 0.98 0.54 0.51 0.39 1.64 1.65 1.39

Wald 1.76 1.57 1.43 0.79 0.75 0.56 2.41 2.42 2.02

Adj-Wald 1.22 1.01 0.93 0.49 0.48 0.34 1.55 1.59 1.35

H = 8

Näıve 1.64 1.72 1.39 0.74 0.85 0.61 2.30 2.66 2.03

BB 2.32 2.32 1.88 1.00 1.15 0.80 3.14 3.62 2.80

Bonferroni 2.55 2.64 2.15 1.15 1.30 0.94 3.56 4.08 3.14

Wald 3.38 3.54 2.88 1.55 1.74 1.25 4.77 5.45 4.18

Adj-Wald 2.41 2.40 1.95 1.04 1.21 0.82 3.24 3.78 2.90

H = 12

Näıve 2.58 2.81 2.15 1.14 1.38 0.95 3.52 4.21 3.04

BB 3.68 3.88 2.96 1.59 1.95 1.30 4.92 5.94 4.30

Bonferroni 4.19 4.53 3.48 1.86 2.22 1.54 5.74 6.78 4.94

Wald 5.23 5.81 4.42 2.39 2.83 1.96 7.29 8.63 6.26

Adj-Wald 3.77 4.02 3.04 1.66 2.05 1.36 5.07 6.21 4.43

H = 16

Näıve 3.62 3.82 2.94 1.58 1.94 1.33 4.81 5.58 4.01

BB 5.19 5.37 4.09 2.24 2.81 1.86 6.77 8.00 5.74

Bonferroni 6.03 6.38 4.90 2.65 3.21 2.22 8.04 9.24 6.71

Wald 7.19 7.95 6.00 3.27 3.98 2.74 9.78 11.42 8.19

Adj-Wald 5.27 5.61 4.18 2.34 2.96 1.94 6.94 8.40 5.91

H = 20

Näıve 4.73 4.72 3.74 2.06 2.50 1.72 6.10 6.65 4.95

BB 6.83 6.70 5.26 2.98 3.69 2.46 8.71 9.73 7.18

Bonferroni 8.03 8.06 6.39 3.55 4.24 2.97 10.48 11.34 8.50

Wald 9.23 9.87 7.60 4.24 5.13 3.56 12.31 13.75 10.14

Adj-Wald 6.91 7.03 5.34 3.10 3.89 2.56 8.94 10.29 7.37

H = 24

Näıve 5.86 5.48 4.52 2.59 3.04 2.13 7.46 7.61 5.91

BB 8.53 7.96 6.42 3.78 4.55 3.09 10.71 11.33 8.60

Bonferroni 10.08 9.67 7.87 4.54 8.27 3.74 12.95 13.32 10.29

Wald 11.32 11.66 9.20 5.27 6.27 4.41 14.78 15.91 12.07

Adj-Wald 8.64 8.40 6.51 3.91 4.80 3.20 10.95 12.02 8.79

H = 28

Näıve 7.03 6.22 5.28 3.19 3.55 2.55 8.94 8.62 6.88

BB 10.25 9.08 7.54 4.66 5.33 3.73 12.71 12.76 9.98

Bonferroni 12.14 11.13 9.31 5.63 6.22 4.56 15.41 15.13 12.05

Wald 13.39 13.24 10.69 6.38 7.32 5.28 17.17 17.84 13.93

Adj-Wald 10.30 9.60 7.65 4.78 5.63 3.86 12.95 13.51 10.21

Table 14: Average volumes of nominal 90% joint confidence bands based on the exogenous

bootstrap with T = 400, normal errors, and AIC lag selection.
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M Volumes for DGP-2 with Endogenous Bootstrap

Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 2.55 1.55 1.33 1.04 0.75 0.50 3.41 2.68 2.04

BB 3.79 1.98 1.75 1.37 1.08 0.61 4.97 3.65 2.85

Bonferroni 3.70 2.21 1.92 1.54 1.07 0.72 5.00 3.87 2.96

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 8

Näıve 4.74 3.53 2.75 2.13 1.73 1.17 6.45 5.69 4.08

BB 7.26 4.78 3.80 3.08 2.55 1.57 9.72 8.12 5.92

Bonferroni 7.46 5.52 4.39 3.48 2.70 1.87 10.38 8.88 6.52

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 12

Näıve 7.15 5.55 4.20 3.27 2.79 1.86 9.53 8.53 5.98

BB 11.02 7.73 5.98 4.95 4.19 2.63 14.55 12.45 8.89

Bonferroni 11.69 9.20 7.14 5.58 4.61 3.17 16.10 13.99 10.13

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 16

Näıve 9.51 7.42 5.63 4.43 3.93 2.64 12.61 11.15 7.85

BB 14.75 10.60 8.22 6.86 5.99 3.86 19.41 16.63 11.93

Bonferroni 16.00 12.93 9.98 7.78 6.74 4.69 21.96 19.16 13.85

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 20

Näıve 11.82 9.05 6.99 5.72 5.09 3.47 15.72 13.59 9.72

BB 18.51 13.29 10.41 8.99 7.87 5.19 24.52 20.75 15.05

Bonferroni 20.32 16.53 12.84 10.24 9.04 6.38 28.04 24.38 17.74

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 24

Näıve 14.22 10.68 8.44 6.98 6.10 4.29 18.57 15.68 11.52

BB 22.55 15.98 12.70 11.09 9.56 6.55 29.29 24.38 18.09

Bonferroni 24.93 20.28 15.96 12.64 11.17 8.11 33.70 29.15 21.57

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 28

Näıve 16.52 12.26 9.71 8.39 7.19 5.13 21.60 17.95 13.27

BB 26.50 18.69 14.86 13.50 11.46 7.99 34.46 28.40 21.18

Bonferroni 29.66 24.13 18.92 15.41 13.62 9.94 40.01 34.54 25.53

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

Table 15: Average volumes of nominal 90% joint confidence bands based on the endogenous

bootstrap with T = 100, normal errors, and AIC lag selection.
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Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

H = 4

Näıve 0.87 0.76 0.70 0.38 0.36 0.27 1.17 1.18 0.99

BB 1.21 0.96 0.89 0.47 0.47 0.33 1.49 1.54 1.32

Bonferroni 1.21 1.04 0.96 0.52 0.49 0.38 1.60 1.62 1.35

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 8

Näıve 1.66 1.72 1.40 0.74 0.85 0.61 2.31 2.67 2.04

BB 2.40 2.28 1.87 0.99 1.16 0.79 3.10 3.61 2.80

Bonferroni 2.54 2.58 2.10 1.12 1.26 0.91 3.47 3.97 3.05

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 12

Näıve 2.61 2.81 2.16 1.15 1.39 0.95 3.54 4.24 3.05

BB 3.78 3.78 2.91 1.57 1.94 1.28 4.88 5.84 4.26

Bonferroni 4.16 4.38 3.39 1.82 2.15 1.50 5.61 6.56 4.80

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 16

Näıve 3.65 3.83 2.95 1.58 1.94 1.33 4.82 5.59 4.02

BB 5.33 5.26 4.05 2.23 2.78 1.83 6.76 7.88 5.70

Bonferroni 6.03 6.20 4.80 2.60 3.11 2.17 7.92 8.97 6.54

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 20

Näıve 4.76 4.72 3.74 2.07 2.51 1.72 6.13 6.67 4.96

BB 6.93 6.55 5.19 2.96 3.65 2.43 8.70 9.62 7.13

Bonferroni 7.96 7.84 6.25 3.50 4.13 2.90 10.33 11.08 8.32

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 24

Näıve 5.90 5.50 4.54 2.62 3.06 2.14 7.53 7.68 5.95

BB 8.62 7.74 6.33 3.77 4.47 3.03 10.69 11.13 8.49

Bonferroni 9.98 9.37 7.69 4.47 5.10 3.63 12.77 12.94 10.02

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

H = 28

Näıve 7.03 6.24 5.31 3.19 3.56 2.56 8.90 8.63 6.89

BB 10.33 8.88 7.45 4.66 5.27 3.68 12.75 12.66 9.94

Bonferroni 12.04 10.84 9.14 5.56 6.08 4.46 15.29 14.87 11.87

Wald Na Na Na Na Na Na Na Na Na

Adj-Wald Na Na Na Na Na Na Na Na Na

Table 16: Average volumes of nominal 90% joint confidence bands based on the endogenous

bootstrap with T = 400, normal errors, and AIC lag selection.
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Figure N.1: DGP-2: Empirical coverage rates of nominal 90% joint confidence bands for Θi,j ,

where i, j ∈ {1, 2, 3}. The sample size is T = 100 and the maximum propagation horizon is

H ∈ {4, 16, 28}.
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Figure N.2: DGP-2: Empirical coverage rates of nominal 90% joint confidence bands for Θi,j ,

where i, j ∈ {1, 2, 3}. The sample size is T = 400 and the maximum propagation horizon is

H ∈ {4, 16, 28}.
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Figure N.3: DGP-1: Empirical coverages of the BB bands with a maximum propagation horizon

of H = 10 with T = 100 and exogenous bootstrap (solid line, circle), with T = 400 and

exogenous bootstrap (dashed line, circle), with T = 100 and endogenous bootstrap (solid line,

cross) and with T = 400 and endogenous bootstrap (dashed line, cross).
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Figure N.4: DGP-2: Empirical coverages of the BB bands with the exogenous bootstrap

(solid line) and the endogenous bootstrap (dashed line) with T = 100.
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Figure N.5: Estimated impulse response of ∆prodt to a one-standard-deviation shock in εt,1

over a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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Figure N.6: Estimated impulse response of realt to a one-standard-deviation shock in εt,1 over

a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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Figure N.7: Estimated impulse response of rpot to a one-standard-deviation shock in εt,1 over

a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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Figure N.8: Estimated impulse response of realt to a one-standard-deviation shock in εt,2 over

a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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Figure N.9: Estimated impulse response of rpot to a one-standard-deviation shock in εt,2 over

a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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Figure N.10: Estimated impulse response of ∆prodt to a one-standard-deviation shock in εt,3

over a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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Figure N.11: Estimated impulse response of realt to a one-standard-deviation shock in εt,3

over a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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Figure N.12: Estimated impulse response of rpot to a one-standard-deviation shock in εt,3 over

a maximum propagation horizon of H = 18 (solid line with circles) and the corresponding

nominal 90% joint confidence bands.
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