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Abstract

This paper studies the effect of disclosing conflicts of interest on strategic communication

when the sender has lying costs. I present a simple economic mechanism under which such

disclosure often leads to more informative, but at the same time also to more biased messages.

This benefits rational receivers but exerts a negative externality from them on naive or delegating

receivers; disclosure is thus not a Pareto-improvement among receivers. I identify general con-

ditions of the information structure under which this effect manifests and show that whenever

it does, full disclosure is socially inefficient. These results hold independently of the degree of

receivers’ risk-aversion and for an arbitrary precision of the disclosure statement.
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1 Introduction

A substantial part of the world’s economic activity deals with the elicitation of information by experts

and its communication to non-experts. Examples include stock analysts, researchers, consultants or

managers reporting to shareholders. Too often, experts face a conflict of interest (henceforth COI)

such as sale commissions or affiliations which provide an incentive to bias their reports. Inefficiencies

then arise because of two main reasons: First, receivers of such information may ignore the expert’s

COI and make poor choices by following biased information. Second, receivers lack information

about the COI, e.g. its relative magnitude and the direction of the bias it induces. Without such

information, they cannot accurately correct the expert’s advice. They may then rationally decide

to ignore the expert’s message, at least partially, such that valuable information is lost. Disclosure

of COIs promises to be a simple remedy to this problem. The idea is that information about

the expert’s COI helps at least those receivers who can use it to correct for potential bias. It is

also tempting to policy makers as it carries the, as I will show incorrect, intuition that flattening

information asymmetries is always desirable and should at least not hurt anyone. From a regulatory

view, disclosure is also an appealing option as it is less paternalistic and less costly to regulators

than direct supervision and regulation.1

The objective of this paper is to describe an economic mechanism which shows how such dis-

closure often can lead to consequences opposite to those intended. It does so by considering a

communication game in which the sender’s private type is two-dimensional. This type consists of

the superior information an expert owns and the COI which provides an incentive to communicate

this information not truthfully. The sender faces lying costs of doing so, e.g. reputational or expected

legal costs which are increasing in the size of the lie – talk is thus not cheap. The model also allows

some receivers to be naive towards the sender’s COI while others are fully strategic and rational, in a

Bayesian sense. Alternatively, naivety in this setup is equivalent to the delegation of decisions to an

expert, e.g. to a managed fund. The combination of these factors then unveils a simple economic

mechanism through which disclosure can lead to more biased communication which then hurts naive

receivers who do not anticipate the strategic effects of disclosure.

To understand the source of this adverse effect, consider an analyst (”he”) who knows a share’s

fundamental value but also benefits from demand for this asset, e.g. via sales commissions. When

commenting on the asset, he then faces a COI to overstate its value. The magnitude of this bias is

determined by equalizing the marginal costs of lying to the marginal return of doing so. The latter

1A prominent example of such a policy is contained in the Sarbanes-Oxlay-Act which was enacted in 2002 as
a response to prior corporate frauds, in particular among financial analysts. Among its adopted regulations is the
requirement to ”[...]disclose in each research report, as applicable, conflicts of interest that are known or should have
been known by the securities analysts[...]” United States Congress (2002, Sec. 501b). Other cases of disclosure rules
can be found in Fung et al. (2007), along with reasons why they seem appealing and examples for their failure.
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is given by the average marginal reaction receivers, i.e. demand, to the sender’s message weighted

with the commission’s size. Now regard a client (”she”) who receives a message from the sender

and is aware of the potential bias. She can try to de-bias it by correcting for the bias’ expected

value. However, since the COI is the sender’s private information, she faces uncertainty regarding

the commission’s actual size or even its direction. Her de-biasing of the sender’s message can

thus worsen things when the expected bias differs from the its actual value. Facing such strategic

uncertainty, rational receivers will then form their estimate of the actual state of the world as a

combination between the sender’s imperfectly de-biased message and her prior about the state of

the world. For this, the relative weight which a rational receiver puts on the de-biased message is

inversely related to the strategic uncertainty. Disclosing the sender’s COI decreases this strategic

uncertainty and increases this weight; disclosure thus translates into a larger marginal reaction to the

sender’s message. However, as explained above, the marginal reaction of receivers scales the sender’s

bias which, therefore, increases with disclosure. Delegating or naive receivers who do not account

for the strategic effects of biasing and de-biasing communication are then hurt by this increase.

The above reasoning combines two main insights: First, the reaction to the sender’s message by

rational, risk-averse receivers depends on the quality of information they can extract from it. Second,

an expert who faces a COI and has lying costs biases his message in proportion to the reaction it

induces. Both of these effects are simple in their economic intuition. Combined, however, they deliver

the surprising result that increasing transparency can be a bad idea when the disclosed information

is not used by everyone and that lying costs play a crucial role in creating this adverse effect.

In particular, it disproves the idea that disclosing COIs is a Pareto-improvement among receivers,

except when all of them are fully rational. Accordingly, disclosure can even decrease overall efficiency,

depending on the relative share of receiver types. I model these effects in a framework which allows

for arbitrary degrees of risk-aversion as well as arbitrary quality of the disclosure process. General

conditions under which this effect manifests and which allow evaluating the welfare consequences of

disclosure are identified. The key variable in this regard is the correlation between the expert’s COI

and the information on which he has superior knowledge. For example, whenever this correlation is

weakly positive, disclosure backfires and full disclosure is never optimal for efficiency. I also show

that there can be situations in which disclosure is a Pareto-improvement among all receivers and

that only in these cases, full disclosure is efficient.

Related literature: On the empirical side, the findings Malmendier and Shanthikumar (2014) who

examine the communication by financial analysts relate closely to this paper. They show that

analysts strategically inflate their stock recommendations by tailoring it to the receivers’ reactions,

a feature which is maintained in the following analysis. To do so, they use data which covers a period
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before and after the Sarbanes-Oxlay-Act which requires financial analysts to disclose COIs. Their

analysis shows that the strategic bias did not disappear after the act was put into action in 2001.2

Similarly, Mullainathan et al. (2012) conducted an audit study and show that after the act came

into effect, financial advice remained of poor quality. Clean, causal evidence for negative effects of

disclosure comes from Cain et al. (2005): In their experiment, subjects in the role of experts had

ample opportunities to study a jar filled with coins. These subjects then advised others who had

to estimate the amount of money inside the jar but who could not examine it beforehand. Their

results first confirm the straightforward intuition that when the experts’ pay is based on the final

estimates’ accuracy, their advice and the clients’ resulting estimates are better as when experts are

paid based on how high estimates are. However, they also show that when receivers are made aware

of the experts’ incentive to induce a high estimate, thus when COIs are disclosed, the experts’ bias

increases, relative to when they are unaware. On average, receivers do not account for this effect

and end up making worse decisions than without disclosure. This finding on the adverse effects of

disclosure has also been replicated in similar setups (see Koch and Schmidt, 2010; Inderst et al.,

2010; Cain et al., 2011).3 The effects identified here are in line with these results.

This paper contributes to the theoretical literature on strategic communication. In their seminal

work on the topic, Crawford and Sobel (1982) characterize communication equilibria to be partitional

when talk is cheap, i.e. lying costs are absent: An informed sender with a commonly known COI

endogenously partitions the state space and just announces the partition which contains the actual

state of the world. In consequence, information is lost in communication. This result applies

independently of the specific meaning of language, i.e. how exactly states map to messages by

the sender and back from messages into actions by receivers, as long as this mapping is common

knowledge.4 Often, however, this meaning of language is determined by the circumstances. For

example, if a financial analyst announces ”I expect share X will pay Y this year” many people would

understand its meaning to be literal, thus that Y is the share’s actual performance or at least the

analyst’s best estimate. Studies which conclude that financial analysts’ statements are often upward

biased also adapt this understanding (see Hayes, 1998; Michaely and Womack, 1999; Malmendier and

Shanthikumar, 2014). In contrast, the partitioning result in combination with such a literal meaning

and understanding of messages implies that, on average, the message and the inferred state of the

world should not differ. To reconcile a literal understanding and persistently inflated messages, one

2See Malmendier and Shanthikumar (2014), p.1298: They state that their measure of strategic bias remains sizable
and positive for affiliated analysts when they split the sample by August 2001, the date when the scandals became
public and which contributed to the enactment of the Sarbanes-Oxlay-Act shortly afterward.

3For a further review of the failure of disclosure and psychological approaches to it, see Loewenstein et al. (2014).
4See Sobel (2013) for an overview of the rich literature which has utilized and extended the partitioning result.

Also, see the section on pragmatics therein for a further discussion on language and its meaning in the context of
strategic communication.
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or both of the two crucial assumptions which underlie the partitioning result need to be changed.

Addressing them, Kartik et al. (2007) and Kartik (2009) show that these assumptions are first, the

boundedness of the state space and second, cheap talk, i.e. no costs of lying.5 Capturing these

insights, this paper allows for an unbounded support, for example when the variable on which the

sender has private information is normally distributed. It also allows for lying costs similar to those

used by Kartik (2009), thus costs which increase in the distance of the message to the actual state

of the world. These costs thus reflect a literal interpretation of language which in turns leads naive

receivers to trust the sender and act based on his message’s face value.

In contrast to the above works, I assume that there is strategic uncertainty, i.e. the sender’s COI

is not common knowledge. This relates to Morgan and Stocken (2003) who find in a cheap talk

framework, absent lying costs and with a compact state space, that the messaging strategy remains

partitional when the sender’s COI is described by a binary random variable. Li and Madarasz (2008)

show that when this variable also has an expected value of zero, disclosing its non-zero realization can

decrease informational efficiency, thus the number of equilibrium partitions. Inderst and Ottaviani

(2012) also look on disclosure of COIs which they model as commissions paid by producers to

intermediaries who advise customers on which out of two products to choose. In their model, the

state of the world and the expert’s message are therefore both binary. They show that disclosing

COIs reduces the provision of commissions but less so, in relative terms, for the inferior product.

Consequently, the relative bias rises upon disclosure and consumers make worse decisions. None of

these approaches features lying costs. I show that when communication is not partitional or binary,

disclosure can be harmful too, but due to another reason for which lying costs are crucial.

This paper’s framework, in which I establish these findings, describes strategic communication

when both, the state of the world and the sender’s COI are represented by continuous, possibly

correlated, variables. The model’s specific form extends a framework introduced by Fischer and

Verrecchia (2000). They study a manager who gets linear utility from influencing his company’s

share price through his earnings announcement while facing quadratic costs of lying (this setting is,

among others, also admissible here). I extend this setup to more general, elliptical distributions as

recently used by Deimen and Szalay (2014) who study strategic communication when players cannot

agree on the relative importance of different information they hold. This approach has recently been

adapted by Kartik and Frankel (2017) as a part of their general treatment of projection-based

signaling, i.e. one-dimensional signals sent by two-dimensional sender types.6 Comparative statics

5For one-dimensional sender types Kartik et al. (2007) show that under general conditions, unbounded support is
sufficient for the sender’s messaging strategy to be continuous and revealing; this also applies when there is a lower
bound and lying costs. Kartik (2009) considers a compact state space with lying costs. Equilibria are then of ten of
the ”LSHP (low types separate and high types pool)”-form: An upward-biased sender exaggerates his statement by a
fixed bias if the state is below a certain threshold. If it is above, messaging becomes partitional.

6Technically also related, Bénabou and Tirole (2006) study projection of pro-social motivation in a linear-quadratic-
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in Fischer and Verrecchia (2000) show that a decrease in strategic uncertainty with regard to the

sender’s motives leads to an increase in his bias when strategic incentives are uncorrelated to the state

of the world. Kartik and Frankel (2017) have a similar result when this correlation is non-negative.

This work focuses on this effect and to study it rigorously, I extend the analysis of communication

games in this class along three main dimensions:

First and foremost, the following analysis incorporates the presence of naive receivers and their

strategic effect on the sender’s messaging strategy. This allows to examine the welfare consequences

of disclosure with regard to both, the message’s informativeness which matters for rational receivers

and its bias – the deviation from a honest, literally meant message on which naive receivers rely.

Second, this work explicitly studies the role of correlation between the sender’s COI and the state of

the world, including a negative correlation. Apart from allowing to capture several realistic settings

which imply a negative correlation, I show that this can crucially affect comparative statics: Only

with a negative correlation, disclosure can decrease the sender’s bias and only then, disclosure

is a Pareto-improvement which does not hurt naive receivers. Third and closely related to the

preceding point, I explicitly model disclosure through a signal of arbitrary precision. Just performing

comparative statics with respect to a single parameter, i.e. the variance which describes uncertainty

for the sender’s COI, overlooks the fact that information on one variable also contains information

on correlated variables. The approach presented here allows to analyze the effects of disclosure on

the whole posterior distribution of beliefs and actions.

The next section outlines the model’s structure and evaluates the assumptions made with respect

to several settings of expert advice. In Section 3, I derive the equilibrium behavior of senders and

receivers when the sender’s COI is undisclosed. Section 4 covers the case of disclosure. Section 5

synthesizes the preceding analysis and assesses the consequences of disclosure on receivers and overall

efficiency. Section 6 concludes by summarizing the main insights and discussing policy implications.

2 The model

Consider a mass of receivers. Each would like to know the state of the world, denoted by s ∈ S ⊆ R,

because she has to take a decision d ∈ S whose return is dependent on the realization of s. For

example, s might represent an asset’s return and d the receiver’s optimal position into this asset. A

receiver then suffers a loss which is the greater, the more d and s are misaligned. This is captured

normal framework. Kartik and Frankel (2017) use linear benefits for the sender and costs which are quadratic in an
upward bias but zero for downward-biased messages. In their setup, the sender always wants to induce high beliefs
such that this does not restrict results (see also their footnote 19). I do not allow such free downward deviation as in
settings relevant here and laid out above, the sender might have good reasons to induce downward-biased beliefs.
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by her ex-post utility

uR(d, s) = L(d− s) (1)

where L is a C2 loss function with argument d−s which is strictly concave and symmetric around its

maximum. Without loss of generality, I assume L(0) = 0 for its bliss point’s value. As the leading

example, consider L(d, s) = −1
2(d− s)2, the quadratic loss function.7

Receivers do not know s and refer to a risk-neutral sender who knows its value. The sender

communicates via a public message m ∈ M = S which is understood to mean the value of s. In

doing so, he faces costs of lying which are increasing the size of the lie. I will henceforth assume that

lying costs are quadratically increasing in the lie, i.e. they are given by k(m − s)2 where k > 0 is

a scaling factor. This functional form can capture several possible sources of lying costs, e.g. costs

based on social preferences, moral concerns against lying or reputational concerns in a stage version

of a repeated game.8

If the above were the sender’s only strategic incentive, he would be honest and always send

m = s. Receivers would then just follow the message and implement their optimal choice. However,

such strong influence of the sender on the receivers’ decisions can be exploited. The sender can

be incentivized to induce either a high or low action among receivers, e.g. via sales commissions.

Such a COI of the sender is then denoted by a variable c ∈ C ⊆ R. It scales proportionally to the

aggregate decision of receivers D(m), e.g. expected aggregate demand, which the sender possibly

influences with his message m. A positive value implies that the sender has an incentive to generate

a high demand, for example in the case of sales commissions. Conversely, a negative value rewards

creating a low demand, for example when the sender wants to temporarily decrease the price of an

asset in which he would like to take a position. The magnitude of c then determines the strength

of these incentives, relative to lying costs. By adjusting c and its distribution appropriately, one can

always assume that k = 1
2 . The sender’s expected utility is then given by

E[uS(m) | s, c] = cD(m)− 1

2
(m− s)2. (2)

Note that the commission is proportional to the demand. This differs from other approaches

7This is the canonical example which is put forward by Crawford and Sobel (1982) and used in much of the
literature on strategic communication. Ottaviani (2000) shows that this specific function covers the case of a receiver
with exponential utility who invests d into a risky asset of which she knows its variance but not its expected value s.

8 When L is also quadratic, this cost function captures concerns for the utility of a receiver who follow the sender’s
message at face value. Kartik (2009) uses this specific form of costs as a prominent example, i.e. for intrinsic costs
of lying (see Erat and Gneezy, 2012; López-Pérez and Spiegelman, 2012; Abeler et al., 2014). See also Abeler et al.
(2016) for a recent meta-study on the determinants of lying costs. Reputational concerns in the spirit of Sobel (1985)
or Morris (2001) can also be proxied by it: If the actual value of s became knowledge ex-post, the squared distance of
s and m is part of the nominator of the sender’s coefficient of determination (R2) which one obtains by regressing s
on the sender’s prior messages m; his credulity is thus decreasing in this squared distance.
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which assume that the sender has the same utility functions L as the receivers, only with a shifted

bliss point (see Crawford and Sobel, 1982; Ottaviani and Squintani, 2006; Kartik et al., 2007). In

particular, such approaches implicitly assume that the sender suffers the more a receiver’s action

differs in either direction from the sender’s bliss point. Inducing a too high reaction by receivers

is then as bad as inducing a too low reaction.9 While such an approach can be sometimes valid,

an action or demand as high or low as possible is often preferred, e.g. when a sender gets a sales

commission. The assumption here captures such a motive where the message is only restricted by the

costs of lying and the loss of credulity due to the sender’s resulting bias. Apart from accommodating

such reasoning, this specification also yields an intuitive form of the sender’s optimal message:

Lemma 1. Suppose D(m) is a C2 function. A sender’s optimally chosen message m∗ then solves

the implicit function

m = s+ cD′(m) (3)

and is strictly increasing in s for all (s, c,m) ∈ R3.

Proof : See appendix.

From (3) one gets that the sender’s message equals the state of the world plus a bias. The

bias’ size and direction are determined by the COI’s value c and the marginal reaction of receivers

to the sender’s message. For example, if no-one listens to the sender, i.e. D′(m) = 0 holds, there

is no point of lying and the bias equals zero. More generally, this reflects that, in the presence of

lying costs, a lie should be scaled to the reaction it aims to affect. This feature will be crucial in

understanding the adverse conflicts of disclosure.10

Note also that the sender’s message is strictly increasing in s. If c were commonly known, a

situation I will later treat as a special case, the sender’s strategy would be an univariate, monotone

function from M to S. As such, it would be invertible and the sender’s message would therefore be

revealing. Accordingly, there would be a bias but Bayesian, rational receivers would not be hurt by

it.11 In the following, I will relax two assumptions which ensure that messages can be biased but fully

informative to everyone: First, I will allow that c is the sender’s private information. The message

is then a projection from S × C to M and rational receivers face strategic uncertainty when they

try to infer s from it. Second, I will also allow that some receivers are naive in the sense that they

9Naive receivers who follow the sender’s message one-to-one and overshoot are can then have the same adverse
consequences for the sender as rational ones who do not react enough to his message. In these frameworks (but not the
present one) naive receivers therefore have a similar effect as lying costs for the sender (see Ottaviani and Squintani,
2006; Kartik et al., 2007).

10This crucial feature is independent of the functional form of the lying costs, as long as the lying costs are
differentiable in m and strictly increasing in the distance between m and s.

11See Kartik et al. (2007) who establish this insight in a related but different framework. If their language is
used, that is x denotes s and x̂ denotes D(m) (the receiver action which the sender wants to influence), then their
assumption A.4 on their modeling framework corresponds to ∂2E[uS(m) | s, c]/(∂s∂D(m)) < 0 which is easily verified
to be violated. Nevertheless, messages are biased but yet revealing (w.r.t. s).
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do not account for the sender’s bias and follow his message’s face value. Apart from the immediate

effect that each single of these two features nullifies the result that a bias does not hurt receivers,

their combination leads to the main result that decreasing strategic uncertainty can backfire.

Information: Both, the state of the world s and the COI c are the sender’s private information.

They are assumed to be drawn from an elliptical distribution F with support K × S = R2. The

(multivariate) normal distributions is the prime example for an ellipitical distribution and whenever

convenient, can be assumed in the following for F . Others elliptical distributions to which the fol-

lowing applies include the heavier-tailed Laplace or Student-t-distribution which are often used in

financial and risk modeling or the logistic distribution which is often used to model latent processes

underlying discrete outcomes. Some distributions with compact support such as the uniform distri-

bution are also elliptical. For the sake of simplicity and without much loss of generality, I maintain

the assumption of unbounded support.12

A specific elliptical distribution F such as the normal one can be described by F (η,Σ) where

η and Σ represent the vector of expected values and the variance-covariance matrix with finite,

real-valued elements. Three properties of elliptical distributions will be important:

E1) Elliptically distributed random variables are closed under linear transformations, i.e. a linear

transformation of jointly F -distributed variables is itself F -distributed.

E2) A random variable, conditional on the realization of another random variable, both being jointly

elliptically distributed according to F (η,Σ), is also distributed according to F . The vector

of expected values and the variance-covariance matrix of the resulting conditional distribution

are linear transformations of η and Σ.

E3) Elliptical distributions are symmetric around their vector of expected values.

A more formal statement of these properties, together with a precise definition of elliptical dis-

tributions and references can be found in the appendix. I will denote the elements of η and Σ

by

η =

 s̄

c̄

 and Σ =

 σ2
s σsc

σsc σ2
c

 .
When appropriate, I will refer to the correlation of s and c instead of its covariance σsc. To make

12Note that by choosing the distribution’s parameters appropriately, the probability that realizations of (s, c) are
within some compact set can be made arbitrarily high. For an example of how the uniform distribution can be
generated from the general definition of elliptical distributions see the survey by Gómez et al. (2003), pp. 359/360.
For a related application of elliptical distribution with compact support, see Kartik and Frankel (2017). The additional
assumptions which are, in some cases, necessary to maintain all results presented here are essentially to specify suitable
out-off-equilibrium beliefs, an issue which is bypassed under unbounded support. Embrechts et al. (2002) describes
how elliptical distributions can be used in financial and risk analysis, including the caveats of doings so.
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things interesting, I also assume σsσc > 0 and |Corr[s, c]| = |σsc|
σsσc

< 1 as otherwise, the receiver’s

inference problem would become effectively one-dimensional or vanish entirely.

The above information structure is suited to naturally model how players, in particular, rational

receivers, arrive at their prior. First, assuming unbounded support for (s, c) means that no commonly

known bounds on the state space are required. In contrast, assuming compact support implies

common knowledge of such sharp bounds. Sometimes, this is straightforward and reasonable, e.g.

when the sender communicates the share of one’s wealth which should be invested in a certain asset.

However, once leverages become available or when s reflects asset returns, appropriate bounds are

not clear-cut. A solution to this is then to assume that all real values are theoretically possible

while unrealistic, extreme realizations receive appropriately low probabilities by choosing the above

moment parameters accordingly. Similarly, when the prior is based on the averages of historical data,

e.g. when (3) forms the basis of a structural model, the resulting estimates of (s, c) are, by the

central limit theorem, approximately normally distributed.13

As an import feature, this framework allows to handle the case of σsc 6= 0, e.g. when the COI

is dependent on the state of the world. As the prime example, consider a financial analyst or a

manager who reports on a share for which he holds a call option. Accordingly, he faces an incentive

to shift, via his report, the share price over the option’s strike price. Given some c and that lying

costs determine a limit on the bias, this only works if the share’s fundamental value s is high enough

so that the effect of his biased message can ”bridge” the distance to the strike price. Otherwise,

there is effectively no COI and, thus, σsc > 0 applies. A negative correlation can also be relevant,

for example when the sender owns the asset on which he has superior information. If he faces a bad

outlook, he might want to sell the asset. He then faces a COI to shift demand and the sale price

upwards so that σsc < 0 results.

Rational and naive receivers: From (3) one gets that COIs induce the sender to not report

truthfully. How should receivers then take such a distortion into account? A receiver who is

rational, in a Bayesian sense, should do so by acting on the information she can extract from the

sender’s message such that it maximizes her expected utility. That is, here action is given by

dr(m) ≡ arg maxd∈S E[L(s, d)|m]. In case that L is the quadratic loss function and s and m are

jointly normally distributed, this is clearly E[s|m]. The following result shows that this generalizes

13Another scenario worth to be mentioned and which can be easily captured in this framework is scientific fraud:
First, empirical research and its assessment often boils down to statistics with elliptical distributions, e.g. normally or
student-t-distributed regression coefficients. Second, pressure to publish and publication bias create a COI to inflate
these statistics (Simmons et al., 2011). Third, outright cheating such as making up data or more subtle techniques
such as selective sampling and data mining are methods with which these test statistics can be misrepresent or
manipulated at the costs of ethical, reputational and legal concerns (Fanelli, 2009; Steen, 2011; Simonsohn, 2014).
Finally, disclosure policies are employed in this context, e.g. by many journals. This framework can thus be applied to
study their consequences.

9



to any function L when m and s are jointly elliptically distributed:

Lemma 2. If m is distributed according to F , rational receivers choose dr(m) = E[s|m].

Proof : the proof adapts the proof of part i) of lemma 2 in Deimen and Szalay (2014) to this paper’s

framework and can be found in the appendix.

The optimal decision dr(m) is that of fully rational, Bayesian receiver who is capable of adjusting

for the effect of the sender’s COI on his message and connecting it to the common prior. While

some receivers, e.g. professional ones, can act in such a manner, empirical evidence shows that many

people do not anticipate and correct for others’ strategic behavior or ignore strategically important

information (e.g. Brown et al., 2012; Brocas et al., 2014). In line with such reasoning, Malmendier

and Shanthikumar (2007) show that small investors such as private households follow analysts’

optimistic recommendation more closely than bigger, institutional ones who are more cautious and

adjust for biases. To capture these observations, I allow for the possibility that there are naive

receivers who take the sender’s signal at face value. Their action is thus given by dn(m) = m.

This assumption is also used by Ottaviani and Squintani (2006), Kartik et al. (2007), and Chen

(2011) to model naive receivers in related settings. However, since the sender’s objective is not

to shift demand to a bliss point but to induce a demand as high as possible in the direction of c,

naive receivers do not impose a lying cost in itself (see footnote 9). I denote the share of naive or

delegating receivers by µ ∈ [0, 1).14 The mass of rational receivers is then given by 1 − µ which

yields the following expected demand function for the receiver:

D(m) = µm+ (1− µ)dr(m) (4)

Note that naive receivers who directly implement the sender’s message are strategically equivalent

to receivers who delegate their decision d to the sender, e.g. to a managed fund. This can be

either because of blind trust (Gennaioli et al., 2015) or because handling the assets for oneself and

fully rationally de-biasing a sender’s message creates fixed costs which are too high, relative the

informational gain from acting rationally (Sims, 2003). Finally, note that the above description also

captures a scenario in which a risk-neutral sender faces a single receiver but does not know whether

this receiver is naive (with probability µ) or rational.

14By appropriate scaling of µ one can always account for situations where naive or delegating receivers do not react
one-to-one, e.g. when dn(m) is a positive affine transformation with d′n(m) = r > 0. As an example, suppose that
there is a mass 0.5 of naive receivers for whom, on average, dn(m) = 0.6m holds. From the sender’s point of view, this
is the same as if there were a mass 0.2 of receivers who ignore him, mass 0.3 of naive receivers who follow one-to-one,
and a mass 0.5 of rational receivers. Using µ = 0.3

0.5+0.3
would then be strategically equivalent.
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3 Undisclosed conflicts of interest

The communication game with undisclosed commissions has the following timing:

1) the sender’s type (s, c) is drawn from F and privately observed by the sender,

2) the sender sends a signal m about s,

3) receivers observe m, if rational update their belief about s, then choose d,

4) payoffs are realized.

I look for a Perfect Bayesian Equilibrium of this game. It consists of a pair of equilibrium strategies

m∗ : S × C → M for the sender and d∗r : M → S for a rational receiver such that each player’s

expected utility is maximized, given the other players’ strategies when their beliefs are formed by

Bayes’ rule. Naive receivers are assumed to have a dominant strategy of following the sender.

Therefore, their beliefs do not matter. The key equilibrium belief in this context is belief of rational

receivers about s as, by Lemma 2, they choose d∗r(m) = E[s|m∗] ≡ E[s|m]|m=m∗(s,c).
15

I will use this equilibrium concept under different settings of common knowledge, henceforth

called information structures I. The information structure of the game with undisclosed incentives

is given by IU = {F (η,Σ), µ}, the game’s fundamental parameters and their joint distribution. If

commissions are disclosed, I will denote this information structure by ID and will later specify it

more exactly. Whenever I use the expectations operator or terms based on it such as variance or

covariance, it is with respect to the respective information structure. For example, E[c] = c̄ when

I = IU but this will not hold with disclosed COIs (see next section).

If one plugs (3) into (2) one gets that the sender’s equilibrium messaging strategy m∗(s, c) has

to solve the first order condition

m = s+ c
(
µ+ (1− µ)d∗r

′(m)
)

(5)

where d∗r
′(m) = ∂E[s|m]

∂m |m=m∗(s,c). Thus, the sender’s messaging strategy is not only determined by

the bias’ effect on the demand of naive receivers and lying costs. It is also based on how rational

receiver react to the sender’s messages formed under such a messaging strategy, as captured by

d∗r
′(m). To derive how rational receivers – and in response also senders – behave optimally, I

define the ”equilibrium inference coefficient” ρ∗ as a measure of the equilibrium messaging strategy’s

informativeness. This equilibrium parameter captures how well, given a sender equilibrium messaging

15A complete belief profile over the sender’s type also requires to specify an analogously-defined belief
E[c|m]|m=m∗(s,c). As it is payoff-irrelevant for either player it is omitted here.
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strategy m∗(s, c), variations in the resulting messages capture variations in the underlying state of

the world s:

ρ∗ ≡ Cov[s,m∗]

V ar[m∗]
≡
Cov[s,m]|m=m∗(s,c)

V ar[m]|m=m∗(s,c)
(6)

Throughout this paper, I will focus on the case that ρ∗ is a real, strictly positive number. This

precludes situations where the expert’s message is completely uninformative (ρ∗ = 0) or ”reverted”

(ρ∗ < 0), i.e. where higher values of m are associated with lower values of s – features which are

unlikely to be observed in an information market with experts, especially when this is an equilibrium

feature (see below). Using this concept, one can show that, in equilibrium, the inference coefficient

has to be equal to the marginal reaction of rational receivers’ to the message, i.e. that d∗r
′(m) = ρ∗

holds. Proving this relationship constitutes the main building block for the following proposition

which characterizes the players’ equilibrium actions and the relevant equilibrium beliefs:

Proposition 1. Every pure strategy Perfect Bayesian Equilibrium of the communication game with

strategies m∗(s, c) for the sender and d∗r(m) ∈ C2 for rational receivers takes the form of

m∗(s, c) = s+ c (µ+ (1− µ)ρ∗) (7)

d∗r(m) = (1− ρ∗)E[s] + ρ∗ (m− E[c](µ+ (1− µ)ρ∗)) . (8)

The rational receivers equilibrium belief w.r.t. to s is given by E[s|m∗] = d∗r(m).

Proof. see appendix

The above result characterizes equilibria in which a rational receiver’s reaction to the sender’s

message is smooth in the sense that it is twice continuously differentiable. Note from (4) that

assuming a smooth strategy for rational receivers is a necessary condition for the overall demand

D(m) to be smooth. I focus on such smooth, pure strategy equilibria because it is sufficient but

yet relatively general to demonstrate the main point of this paper, the adverse effects of disclosure.

It also captures the idea that arbitrarily small changes in the sender’s message should yield no large

effect on demand. The sender’s strategy then takes an intuitive form. He announces the state of

the world and adds a bias, given by m∗(s, c)− s = c (µ+ (1− µ)ρ∗). This bias equals D′(m), the

change in expected demand due to a change in the message, scaled by the sender’s COI c. Part of

this change D′(m) is the change in the best response of rational receivers to the sender’s message,

given by d∗r
′(m) = ρ∗, weighed by their population share 1−µ. This reflects that rational receivers’

best response has two parts: The first is the receivers’ prior about the true state of the world E[s].

It is invariant to m and its weight 1− ρ∗ is inversely related to the message’s informativeness. The

other part of their best response is m−E[c] (µ+ (1− µ)ρ∗), the received message corrected by the

expected bias. Its weight on m is ρ∗, the message’s informativeness which, therefore, equals d∗r
′(m).

This interplay between the sender’s bias and rational receivers reaction through ρ∗ will be crucial.

12



As a first step in the analysis of ρ∗, note that the correction by rational receivers for the expected

bias is based on the expected commission. It can thus be wrong in both, direction and magnitude.

This possible error in rational receiver’s de-biasing of the sender’s message and her risk-aversion

provides the reason why she does often not react one-to-one to the corrected message. Whenever

ρ∗ ∈ (0, 1), a rational receiver strategically ignores the sender’s de-biased message and puts weight

on her prior such that information is left unused. For illustration, consider σ2
s to be close to zero

while σ2
c is sufficiently large, i.e. a situation where almost all uncertainty is not of fundamental,

but of strategic nature. It follows then that Cov[s,m∗] and through it, also ρ∗ will be almost zero.

Rational receivers then act almost entirely according to their prior E[s] as almost any variation in the

signal can only be due to the sender’s bias. In equilibrium, the sender then takes into account the

corresponding low, almost absent, reaction of rational receivers and scales his bias down. The above

proposition shows that this is a general behavior: Lower values of ρ∗, thus a lower informativeness

of the message, will lead to decrease in the sender’s bias while higher informativeness increases it.

The underlying reasoning can also be understood by interpreting ρ∗ as the coefficient from a

linear regression of s on m: Both, a regression coefficient and ρ∗, describe the marginal change in

the conditional expectation of a dependent variable due to a marginal change in the independent

variable. The crucial difference is that in a regression, this refers to an exogenous change while

here, it is the change in the endogenously determined equilibrium message. Using the functional

form as stated in Proposition 1, the sender’s messaging strategy can then be used to solve for this

equilibrium inference coefficient:

Proposition 2. In the above game with undisclosed commissions, the equilibrium inference coeffi-

cient ρ∗U = Cov[s,m∗]
V ar[m∗] is a fixed point to

gU (ρ) =
σ2
s + (µ+ (1− µ)ρ)σsc

σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

. (9)

If ρ∗U ∈ (0, 1], such a fixed point is unique. If ρ∗U > 1, such a fixed point is either unique or one of

three such points.

Proof : See appendix.

Together with Proposition 1, this result completely describes the game’s equilibrium strategies and

beliefs. With the parameters contained in IU , precise expressions for the players’ actions and relevant

beliefs can be computed. However, some characteristics of the relevant equilibrium parameters can

also be derived from more general information:

Lemma 3. A fixed point ρ∗U > 0 to (9) exists if and only if σsc > τ∗ for some τ∗ < 0.

Proof : See appendix.
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This lemma links the covariance between s and c, the game’s fundamental random variables, to the

covariance of s and actions induced in the game, the sender’s message m. As a direct consequence

from the above and Proposition 1, an equilibrium requires ρ∗U > 0 and therefore σsc, to be sufficiently

large, i.e. larger than τ∗. In the following, I will assume that this condition is met.

Proposition 2 also shows that multiple equilibria can only arise when the equilibrium inference

coefficient is larger than one. The following result examines these cases in detail and provides general

conditions under which ρ∗U is above and below this threshold of one which will be important in the

following analysis:

Lemma 4. Suppose ρ∗U > 0. Then ρ∗U 5 1 if and only if σsc = −σ2
c .

Proof : See appendix.

As with the preceding lemma, the result maps the game’s parameters into behavior and back. It

shows that whenever fundamental uncertainty as measured by σ2
c is sufficiently high, the rational

receiver’s demand is a unique, strictly convex combination between her prior and the sender’s cor-

rected message. Also note that since the condition is equivalent to Corr[s, c] = −σc
σs

, strategic

uncertainty exceeding fundemental uncertainty (σcσs > 1) or a weakly positive correlation between s

and c are sufficient conditions for this to happen, i.e. for ρ∗U to be less than one.

Non-convex combinations are also possible when σsc ∈ (τ∗,−σ2
c ). The above lemma then implies

that rational receivers ”over-react” – a change in the sender’s message induces a change in rational

receivers’ demand which is greater than that original change in the message. To understand how this

can occur, note that such a sufficiently negative value of σsc implies that rational receivers expect the

sender to have a strong incentive to push demand into a direction opposite to s. However, since ρ∗

is positive, a higher message m does, in expectation, still reflect a higher value of s. In equilibrium,

rational receivers anticipate this positive correlation between m and s by reacting very strongly, i.e.

with ρ∗ > 1, to the de-biased message. Such extreme correction is based on the expected bias.

Since receivers have concave utility, the expected disutility caused by a possible mis-correction is the

greater, the more likely extreme values of c are. Thus, when the COI is too unpredictable relative

to fundamental uncertainty, i.e. when σc
σs
> 1, such over-reaction cannot occur. The limit to such

expectation-based corrections are also reached when σsc ≤ τ∗. In this case, the expected bias is

so strong and opposed in direction to s that the risk of mis-correction outweighs the benefits of

over-reacting and a meaningful communication equilibrium cannot be established.

Figure 1 illustrates these findings. It depicts the equilibrium inference coefficient for possible

correlation between the state of the world and the sender’s COI. The three lines represent different

values of σ2
s , higher ones representing larger variance. This ordering reflects that ceteris paribus,

for a given messaging strategy, higher variation in s explains more variation in the message and
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Figure 1: Stable, positive equilibrium equilibrium inference coefficients ρ∗U over Corr[s, c]
Parameters: µ = 0.5, σ2

c = 1, and σ2
s = 1/2/3 (bottom/middle/top line).

thereby increases its informativeness. This is then expressed in higher values for ρ∗U . Reflecting the

previous lemma, the figure also shows that for any positive correlation and whenever σ2
c ≥ σ2

s holds,

the equilibrium inference coefficient ρ∗U is always contained in the unit interval. The left region

of the upper two lines portrays parameter constellations where the (normalized) covariance σsc is

sufficiently low so that ρ∗U is larger than one. The figure also portrays the normalized cutoff value

τ∗/(σsσc) as a vertical line. For correlations below it, an equilibrium with ρ∗U > 0 does not exist.

4 Disclosed conflicts of interest

The above results show that, due to the sender’s COI, his equilibrium message is biased. This hurts

all receivers. Naive ones are hurt because they are not aware of the bias and follow the sender’s

biased message. Rational receivers try to correct for the bias, but as the sender’s COI almost surely

differs from its expected value, their following action is also sub-optimal. In addition, this strategic

uncertainty often leads them to ignore valuable information. It is then tentative to demand that the

sender discloses his COI so that at least rational receivers can make more use of his message.

Such disclosure of COIs will be modeled through a signal c̃ about c which receivers observe before

they make their choice. The signal is given by c̃ = c+ε where the error term ε is uncorrelated with s

or c but follows the same distribution F with support over the real numbers. It has an expected value

of zero and finite variance σ2
ε ≥ 0. This variance measures the quality signal of the signal c̃. When

it is zero, the signal is perfectly accurate about the sender’s COI, a setting I will henceforth call ”full

disclosure”. Conversely, ”imperfect disclosure” describes settings where σ2
ε > 0. The timing in the

game with a disclosed COI is then the same as before, except that step 1 is split into two sub-parts:

1a) the sender’s type and the signal error (s, c, ε) are drawn,

1b) c̃ = c+ ε becomes common knowledge, (s, c) is privately observed by the sender,

15



Step 2 through 4 remain unchanged, relative to undisclosed COIs. The only difference is thus the

signal c̃ which allows rational receivers to update their prior before they receive the sender’s message.

The procedure for this is similar to the signal extraction from the sender’s message. The updated

belief regarding c is a combination between the relevant prior, given by c̄, and the signal c̃ with weight

for the latter chosen according to its precision. This weight is given by the signal’s informativeness

which, in analogy to the equilibrium inference coefficient, is defined as follows:

ρc ≡
Cov[c, c̃]

V ar[c̃]
=

σ2
c

σ2
c + σ2

ε

∈ (0, 1] (10)

This coefficient reflects how much variation in c can be explained by the signal c̃ about it. Accord-

ingly, ρc is key for the updated prior of rational receivers:

Lemma 5. The posterior distribution of (s, c | c̃ ) is given by F (η̂, Σ̂) with

η̂ =

 s̄+ (σsc
σ2
c

)(c̃− s̄)ρc
c̄(1− ρc) + c̃ρc

 and Σ̂ =

 σ2
s

(
1− Corr[s, c]2ρc

)
σsc(1− ρc)

σsc(1− ρc) σ2
c (1− ρc)


Proof : See appendix.

The signal c̃ directly affects the expected value of c which is used to de-bias the received message.

Its information also reduces the strategic uncertainty σ2
c by a factor 1 − ρc. Also, beliefs about s

are also affected if this variable is correlated with c. In this case, disclosure reduces uncertainty in

all dimensions, i.e. every element of Σ̂ decreases with ρc. These effects would be overlooked if

disclosure were modeled as an univariate comparative static, e.g. with respect to σ2
c . Also note

that full disclosure is a special case of the above. In it, ρc = 1 applies and the sender’s private type

becomes one-dimensional.

To see how these informational consequences of disclosure translate into strategic ones, note that

this new posterior becomes common knowledge for senders and rational receivers. In the previously

analyses communication game with undisclosed COIs, all results depended only on the information

structure IU = {F (η,Σ), µ}. After c̃ has been observed and processed, the new information

structure with disclosed COIs is given by ID = {F (η̂, Σ̂), c̃, µ}. Recall that expectations are with

respect to the information structure, e.g. under ID it holds that E[c] = c̄(1− ρc) + c̃ρc. Using this,

one can proceed as before for undisclosed COI to determine equilibrium behavior by simply using

ID instead of IU . In particular, Proposition 1 applies and the equilibrium messaging strategy is of

the linear form where it equals the state of the world plus an endogenously determined bias. The

equilibrium inference coefficient with disclosed COIs ρ∗D can then be determined analogously to the

case of undisclosed COIs. This yields the following:
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Proposition 3. There exists at least one value ρ∗D = Cov[s,m∗|c̃ ]
V ar[m∗|c̃] > 0. With full disclosure it is given

by ρ∗D = 1. With imperfect disclosure it is a fixed point to

gD(ρ) =
φσ2

s + (µ+ (1− µ)ρ)σsc
φσ2

s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2
c

(11)

with φ ≡ 1−ρc(Corr[s,c])2)
1−ρc > 1.

Proof : See appendix.

Together with Proposition 1, this result completely characterizes equilibrium behavior in games

with disclosed COIs. In the special case of full disclosure, c = c̃ and ρ∗D = 1 applies. In this case,

the sender’s equilibrium strategy is given by m∗(s, c) = s+ c while rational receivers correctly infer

E[s|m, c̃] = m − c̃. Reflecting the case of one-dimensional signaling discussed earlier, the sender’s

message is then biased but revealing to rational receivers.

With imperfect disclosure, the equilibrium inference coefficient ρ∗D solves (11). The only differ-

ence of this expression relative to the case of undisclosed COIs as stated in (9) is the additional

term φ > 1 in the nominator and denominator of (11). Comparing Σ̂ to Σ, one can see that this

ratio represents how much fundamental uncertainty regarding s remains after disclosure, relative to

strategic uncertainty regarding c. Since φ increases in the signal’s informativeness ρc, the effect on

the equilibrium inference coefficient ultimately depends on the relative size of the elements of Σ.

These elements, in turn, determine whether ρ∗U passes the threshold of one (see Lemma 4) which

crucially determines the effects of disclosure.

How the effect of disclosure relates to the threshold of one can be seen easiest by recalling the

effects of full disclosure. By the above proposition, ρ∗D = 1 then holds after disclosure, irrespective

of ρ∗U ’s prior value. Accordingly, if ρ∗U > 1 held before, the coefficient shrinks while if ρ∗U < 1 held,

it increases upon disclosure. The following lemma generalizes this pattern to imperfect disclosure:

Lemma 6. For any IU , the following cases can occur upon imperfect disclosure:

a) When there is a solution ρ∗U ∈ (0, 1), it is unique and there is a unique solution ρ∗D ∈ (ρ∗U , 1).

b) When there is a solution ρ∗U = 1, it is unique and there is a unique solution ρ∗D = 1.

c) When there is a unique solution ρ∗U > 1, there is a unique solution ρ∗D ∈ (1, ρ∗U ).

d) When there are three solution ρ∗U,k > 1 with k ∈ {1, 2, 3}, there is either

a unique solution ρ∗D such that 1 < ρ∗D < ρ∗U,1 < ρ∗U,2 < ρ∗U,3 or there are

three such solutions ρ∗D,k such that 1 < ρ∗D,1 < ρ∗U,1 < ρ∗U,2 < ρ∗D,2 < ρ∗D,3 < ρ∗U,3.

Proof : See appendix.

17



Cases a) through c) show that a unique inference coefficient moves towards a value of one or, in

the special case that ρ∗U = 1, remains at this value. Result d) covers the case when before disclosure,

there were multiple, that is three, possible equilibrium inference coefficients. After disclosure, there

are then either one or three such values. If there is one, the above pattern repeats as its value is

closer to one than all previous values. Only for the second sub-case when there are three solutions

after disclosure, and only for the intermediate value therein, disclosure leads to an increase of the

inference coefficient. All others values also move towards one, i.e. decrease, when COIs are disclosed.

It will be useful to define a comprehensive notation for an equilibrium in this communication

game and introduce a stability criterion for it:

Definition. An equilibrium of this game under information structure I = IU(D) is the collection

E(ρ∗k) of strategies and beliefs as specified in Proposition 1 with ρ∗k as the k-lowest-valued fixed

point to gU(D)(ρ) as described in proposition 2 (3).

An equilibrium E(ρ∗k) is then called an asymptotically ”stable equilibrium” if the corresponding

fixed point ρ∗k obeys d
d ρ

(
gU(D)(ρ)− ρ

)∣∣
ρ=ρ∗k

< 0.

The notation captures the fact than an equilibrium is given by the strategies as specified in

Proposition 1 which, in turn, are affected by disclosure via its effect on the equilibrium inference

coefficient. The second part of the definition introduces the notion of a stable equilibrium based on

the notion of asymptotic stability (Hirsch and Smale, 1974). Although originally a dynamic concept,

asymptotic stability has a long history of being used in the analysis of equilibria which originate

from one-shot situations, e.g. for tâtonnment processes in (general) equilibrium and recently also in

strategic communication settings (Blume and Board, 2014).16 In particular, it captures the notion

that such stable equilibria converge back to their equilibrium value after any small perpetuation, are

locally unique, and can be found via iterative procedures. An equilibrium which is not stable does

not have these properties. As the following result shows, the notion of stability allows to order the

effects of disclosure in a clear way:

Proposition 4. In any stable equilibrium E(ρ∗k) it holds for the associated equilibrium coefficient

before and after disclosure that ρ∗k,U T ρ∗k,D T 1.

Proof : See appendix.

For the remainder of this analysis, I will only focus on stable equilibria because unstable ones,

as they fail to have any of the above-mentioned robustness characteristics, are unlikely to have any

16Adapting the notation and results of Hirsch and Smale (1974), pp. 185-188 to the notation of this paper, a fixed
point is asymptotically stable if f ′(ρ)|ρ=ρ∗

k
< 0 where f(ρ) ≡ g(ρ) − ρ such that f(ρ)|ρ=ρ∗

k
= 0 holds. This then

leads to the above definition. Blume and Board do so in their work to examine endogenously chosen vagueness in
a one-shot communication game. They also provide references on how asymptotic stability relates more generally to
one-shot situations, in particular to Samuelson’s correspondence principle.
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relevance. By Lemma 6, this excludes only the special, intermediate-valued equilibrium in the second

sub-case under d). All other equilibria are stable. For them, disclosure has a systematic effect on

the equilibrium inference coefficient and, therefore, also on the message’s informativeness and bias.

The following section explores this key effect of disclosure in more detail by looking at how it affects

the welfare of the different receiver types and overall efficiency.

5 Consequences of disclosure

In the following, I examine how the strategic changes which disclosure of COIs brings to the above

communication game affect welfare. For this, I will take an ex-ante view, thus before a draw of

the sender’s type takes place. I start with a view on naive receivers. They are agnostic about the

sender’s bias and do not account for the strategic change as for them, d∗n(m) = m holds. Recall

that the utility of receivers decreases in the distance of their decision and the state of the world.

In equilibrium, the sender announces s plus a bias. Since naive receivers follow this message, their

utility’s argument equals this bias. Their expected utility is then given by

E[uRn (E(ρ∗k))] = E[L(c(µ+ (1− µ)ρ∗)] = E[L(|c|(µ+ ρ∗k(1− µ))] < 0 (12)

where the second equality follows from the fact that only c can be non-positive, while L is negatively

valued and symmetric around its maximum of zero. Therefore, the expected utility of naive receivers

strictly decreases in the equilibrium inference coefficient so that, by Proposition 4, this follows:

Corollary 1. Upon disclosure of COIs, the expected utility of naive receivers decreases (increases)

in every asymptotically stable equilibrium E(ρ∗k) if and only if ρU < (>) 1.

Naive receivers can only benefit from disclosure when the equilibrium inference coefficient before

disclosure is larger than one, i.e. if none of the conditions stated in Lemma 4 is fulfilled. Otherwise,

naive receivers suffer from disclosure.

To evaluate the overall effect of disclosure, one needs to also look at its effects on rational

receivers. These receivers de-bias the message based on what they expect to be the sender’s bias.

How much they are hurt when the expected bias differs from the actual one does, therefore, depend

on how much they rely on the corrected message and how volatile this bias is. To obtain a tractable

measure for rational receivers’ expected utility, one can exploit that their decision error d∗r − s is

a linear combination of elliptically distributed random variables and, therefore, is itself elliptically

distributed. One can then show that this is sufficient to represent rational receivers’ expected utility

as mean-variance preferences. As rational receivers’ de-biasing is, on average, correct (i.e. has mean

zero) this admits the following, single-argument representation:
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Lemma 7. The expected utility of rational receivers in equilibrium E(ρ∗k) is given by

E[uRr (E(ρ∗k))] = L
(
σ2
s

[
1−

(
Corr[s,m]m=m∗(s,c)

)2]) ≤ 0

with L′ (x) 5 0 for any x = 0. Furthermore, E[uRr (E(ρ∗k))] = 0 if and only if there is full disclosure

of the sender’s COI.

Proof : The proof adapts some techniques from Meyer (1987) and can be found in the appendix.

The above lemma shows that rational receivers expected utility can be expressed as a function which

is decreasing in σ2
s . This argument is scaled down by the square of one minus the correlation between

about the state of the world s and the sender’s equilibrium message m about it. This alternative

measure of the message’s informativeness also connects to the previously indicated regression anal-

ogy. Its empirical counterpart is the coefficient of determination (the R2) one would obtain if one

regressed past values of s on the corresponding messages by the sender.

This formulation of the expected utility for rational receivers helps in analyzing the opposing

effects of disclosure: If ρ∗ increases upon disclosure, this reflects a greater informativeness of the

sender’s message. However, the sender strategically anticipates this and in turn, also increases

the bias’ magnitude which might make the rational receivers’ inference more complicated again.

Conversely, when ρ∗ decreases, so does the bias. But does such a decrease in the inference coefficient

then not imply that also the message’s informativeness and with it, also the rational receivers’ utility,

decreases? Using the above lemma, the following result shows that in both scenarios, the net effect

of disclosure on rational receivers’ expected utility is positive:

Proposition 5. Upon disclosure of COIs, the expected utility of rational receivers increases in every

stable equilibrium E(ρ∗k).

Proof : See appendix.

While this is good news from the perspective of rational receivers, naive ones are often hurt by

disclosure. The following results immediately follows from the preceding ones:

Corollary 2. In any stable equilibrium E(ρ∗k), disclosure of COIs is a Pareto-improvement among all

receivers if and only if ρ∗U ≥ 1.

The above shows that only when the inference coefficient is at least one, then all receivers benefit

from disclosure. If this is not the case, thus if any of the conditions in Lemma 4 apply, naive receivers

will suffer from disclosure. Based on a Pareto-criterion, disclosure is then not optimal. In this case,

a policy maker who can influence disclosure and the quality of disclosed information might want to

resort to other criteria such as overall efficiency. I capture such a criterion by assuming the following
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welfare function with weights wn, wr, and wk such that wr > 0 and max{wn, wk} > 0:

W (E(ρ∗k)) = wn · E[uRn (E(ρ∗k))] + wr · E[uRr (E(ρ∗k))]− wk · E[(c(µ+ ρ∗k(1− µ)))2] (13)

In the above, the first two terms capture the expected utility of naive and rational receivers. The third

term allows to capture the sender’s expected cost of lying, i.e. the squared bias. The sender’s COI

such as commissions or prices earned on options do no appear in the above as these are essentially

transfers. Choosing appropriate weights can capture several efficiency notions. For example, when

the sender’s lying costs are immaterial and a planner only regards material consequences, then

wk = 0 follows and the planner might assign weights based on population shares, i.e. wn = µ and

wr = 1− µ. If Bayesian inference and the steps involved therein are costly for rational receivers, a

fully informative but biased message is not optimal. In face of such de-biasing costs, only a truthful,

unbiased message would be optimal. A higher value for wn would reflect the relative importance

of these costs, relative to the pure informational content of the sender’s message. Setting wk > 0

allows capturing situations when the sender’s expected costs of lying are also relevant.17

Generally, the exact decision of whether disclosure is efficient and how precise it should be can

only be answered when specific utility functions and parameters are assumed. However, policy-

relevant statements with respect to the effect of disclosure on W can be made even when such

exact parameters are unknown:

Proposition 6. If ρ∗U < (≥) 1, full disclosure never (always) maximizes welfare W in any stable

equilibrium E(ρ∗k).

Proof : See appendix.

The above shows that when ρ∗U < 1 holds, imperfect disclosure is always more efficient than full

disclosure. This follows from the fact that receivers have strictly concave utility. Rational receivers

can achieve maximum utility only with full disclosure (see Lemma 7). When near to this optimum,

some sufficiently low noise is added to perfect signal c̃, the resulting loss can then be made arbitrarily

small, relative to the gain in expected utility which the associated decrease in ρ∗ brings to naive

receivers. Note that while full disclosure is often not optimal, the reverse reasoning does not work:

No or imperfect disclosure can be optimal, in a second-best sense. Determining precise criteria for

this, however, requires more specific assumptions on the informational environment and preferences.

An example where no disclosure at all is efficient is contained in the appendix.

17Apart from a welfare function which takes into account the lying costs per se, such costs may also matter from a
policy point of view when they represent a reduced form of the sender’s reputation. This becomes economically relevant
when the loss in the sender’s credulity impedes his economic function of information elicitation and dissemination.
Alternatively, if the sender’s cost of lying come from a situation where he has to invest own funds, e.g. own equity,
according to his advice, these costs reflect the cost of such mis-allocated resources.
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The preceding results show that the consequences of disclosing COIs depend crucially on whether

ρ∗U is above or below the threshold of one. Besides computing this value via (9), Lemma 4 allows

to determine this directly from the second moments of the prior distribution. However, not even

knowledge of these parameters is always necessary for an outside observer to yield testable predictions

and to make informed decisions. One only needs to observe how receivers react to messages by the

sender: As naive receivers follow the receiver literally, one gets from combining (4) and (8) that

ρ∗D > 1 is equivalent to D′(m) > 1. Thus, when receivers react, on average, stronger than one-to-

one to a change in the sender’s message, it follows from the second case in Proposition 6 that full

disclosure is optimal as it benefits all receivers. Conversely, observing D′(m) < 1, i.e. a less than

one-to-one reaction implies that upon disclosure, naive receivers will be hurt. Full disclosure is then

not optimal from the point of maximizing welfare.

Finally, note that the above welfare results do no necessarily require the presence of naive

receivers. This follows from the fact that the sender’s expected lying costs are a special, parametrized

case of the naive receivers’ expected utility. For both, the sender’s bias is the relevant argument.

Therefore, the above results with regard to welfare also hold if only one of the two respective weights

is positive, e.g. if naive receivers are absent (µ = wn = 0) or do not matter for other reasons while

the sender’s lying costs are relevant (wk > 0). By the same reasoning, Corollary 1 can then be

adapted such that then, net of transfers, disclosure of COIs is a Pareto-improvement among senders

and rational receivers if and only if ρ∗U ≥ 1.

6 Conclusion

This paper describes a setting where a sender communicates the value of a random variable of interest

to uninformed receivers. The sender does so while he faces a conflict of interest to manipulate the

receivers’ actions but, at the same time, also faces costs of lying. I show how, in equilibrium, rational

receivers discount for the resulting bias in the sender’s report, even when they do not know the bias’

magnitude or direction. I also show how, in turn, the sender adjusts to this correction and that,

despite the bias, his messages positively covary with the state of the world they refer to. Crucially,

the model also allows for the co-presence of naive or delegating receivers who are agnostic about

the bias and how they affect the sender’s messaging and the rational receivers’ de-biasing strategy.

This provides a parsimonious framework for studying the effect of disclosing the sender’s COI via a

signal of arbitrary precision within a wide class of distributions and for general levels of the receivers’

risk aversion.

I find that disclosure fulfills the aim of informing rational receivers: Information about the sender’s

COI helps them to infer more from the sender’s biased message and to adjust their actions more
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closely to the actual state of the world. On the downside, this paper’s core result shows that exactly

this desired effect of disclosure backfires on naive or delegating receivers. It does so because, in

equilibrium, the average reaction to the biased signal and the sender’s bias are mutually dependent.

Upon disclosure, as rational receivers get helpful information to de-bias the sender’s message, their

reaction to the sender’s message often increases. With this reaction, the bias contained in the

sender’s message also increases. Naive receivers who do not account for the strategic aspect of

communication are then hurt by disclosure. Disclosure therefore often amplifies a negative externality

which rational receivers exert on their naive peers; it then hurts those who are most vulnerable to

communication biases.

I also determine more precisely when and how these adverse effects of disclosure manifest. In

terms of economic fundamentals, this is always the case when the state of the world and the sender’s

conflict of interest are weakly positively correlated. Another sufficient condition for disclosure to

backfire is when strategic uncertainty regarding the sender’s bias exceeds fundamental uncertainty

regarding the state of the world. In terms of observed behavior, this happens when an expert’s

message does not induce at least a one-to-one average reaction among receivers. Only when they

react stronger than one-to-one to changes in the sender’s message, then disclosure is an improvement

among all, rational and naive, receivers. This is also the only case when full disclosure is optimal

from an efficiency point of view. In all other cases, a less than perfect signal about the sender’s

COI, potentially even an uninformative one, is optimal for maximizing efficiency.

The results presented here show that when some people do not have the ability or the information

and time to act in a completely Bayesian and rational manner, disclosure often hurts. Merely

communicating an expert’s conflict of interest does often not solve the problems which arise – it

rather increases its negative effects. In consequence, disclosure is not the regulatory panacea it

promises to be. This suggests that eliminating conflicts of interest promises much better outcomes

than just announcing them.
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Appendix

Features of elliptically distributed random variables

The following definition is obtained from definition 1 in the survey on elliptical distributions by
Gómez et al. (2003) and Theorem 4 ii) therein:

Definition. A random vector x ∈ Rn is elliptically distributed with expected value η ∈ Rn, positive
definite variance-covariance matrix Σ ∈ Rn×n, and the Lebesque-measurable function g : [0,∞)→
[0,∞) s.t.

∫∞
0 t

n
2
−1g(t)dt <∞ as parameters if it has the density function

f(x;η, Σ̃, g) = cn|Σ̃|−
1
2 g
(

(x− η)T Σ̃−1(x− η)
)

where cn = Γ(n2 )/
(
φ
n
2

∫∞
0 t

n
2
−1g(t)dt

)
and Σ̃ ∝ Σ.

Therefore, the exact form of the distribution depends on the density generator g. In the context
of this paper, it is assumed to be implicitly defined by the by the specific elliptical distribution F
which is used. The generic example is when F denotes the (multivariate) normal distribution which
would imply that g(t) = exp

(
−1

2 t
)
. Other examples include the mutivariate logistic, student-t or

power exponential families of distributions.
The results in this paper do not depend on the specific distribution F as long as it is elliptical,

but just on its first two moments, η and Σ. To illustrate them, consider a random vector x ∈ Rn
with n ≥ 2 which is elliptically distributed according to F (η,Σ). Also consider two non-empty
partitions [x1,x2] of this vector. Partition analogously the corresponding vector of expected values
as η = (η1,η2) and the variance-covariance matrix Σ into blocks (Σ11,Σ12,Σ21,Σ22). Then, the
following properties, which reflect properties E1 through E3 in the main text and which will be used
in the following proofs, hold for x:

E1’: linear combinations of elements of x are distributed according to F

E2’: (x2|x1) is distributed according to

F (η2 + Σ21Σ
−1
11 (x1 − η1),Σ22 −Σ21Σ

−1
11 Σ12)

E3’: x is symmetrically distributed around η

E3’ follows from the above density function. Properties E1’ and E2’ are consequences of Theorem
5 and Theorem 8, respectively in Gómez et al. (2003) which also contains further references on the
original research establishing these properties for elliptical distributions. It will be useful to note that
for the special case that (x2|x1) ∈ R2, E2 implies that (x2|x1) is distributed according to

F

(
E[x2] + (x1 − E[x1])

Cov[x1, x2]

V ar[x1]
, V ar[x2]

(
1− (Corr[x1, x2])2

))
.

Proof of Lemma 1

The implicit function R(s,m, c) = cD′(m) + s −m = 0, stated as (3), follows directly from the
first-order condition for maximizing (2). Note that the associated second-order-condition for an

optimum implies ∂R(s,m,c)
∂m = cD′′(m) − 1 < 0 at each optimally chosen m. Using the implicit

function theorem, one then gets that

d m

d s
= −∂R(s,m, c)

∂s

/∂R(s, c,m)

∂m
=

1

1− cD′′(m)
> 0

for each such optimally chosen message m.
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Proof of Lemma 2

When m is distributed according to F , it is jointly elliptically distributed with s. By E2’, the
resulting distribution of s conditional on m, denoted by its pdf f(s|m), is then also elliptical.
Furthermore, E3’ implies that f(s|m) is symmetric around E[s|m]. By definition, it then has to hold
that dr = argmaxd∈S

∫
R L(d−s)f(s|m)ds. The necessary FOC for a candidate solution dr = E[s|m]

is given by

0 =

∫
S
L′(dr − s)f(s|m])ds =

∫ +∞

−∞
L′(E[s|m]− s)f(s|m])ds

and is also sufficient as L is strictly concave. To verify that this FOC applies for this candidate
solution note that by being strictly concave, L is single peaked and symmetric around its bliss point
s. Let ∆ ≤ 0 be the absolute deviation of the candidate solution from the optimal choice, i.e.
∆ = |dr − s|. By symmetry of L around zero it holds that L′(∆) = −L′(−∆). Since f(s|m) is
symmetric around E[s|m] = dr it then follows that

L′(∆)f(dr −∆|m]) = −L′(−∆)f(dr + ∆|m]) 5 0

applies for any ∆ = 0. Integrating over all ∆ ∈ R+ then validates that the above FOC actually
holds. Since L is single-peaked, it is also the only solution.

Proof of Proposition 1

The following proof constructs a pure strategy equilibrium when the implied demand D(m) is twice
continuously differentiable. To do so, it proceeds in three steps. Step 1 solves the rational receiver’s
problem to choose his optimal action, given that the sender’s message contains information about
s. Step 2 determines how such signal extraction by rational receivers manifests in equilibrium when
the sender anticipates this process. Step 3 combines these results to obtain equilibrium actions and
beliefs.

Step 1: Consider a candidate equilibrium messaging strategy m̃(s, c) such that D(m) = µm+ (1−
µ)d̃r(m) with d̃r(m) ≡ argmaxd∈SE[L(d− s)|m]m=m̃(s,c) exists and is twice differentiable w.r.t. m.

By (3), m̃ has to solve m̃ = s + c(µ + (1 − µ)d̃∗r
′(m̃)). Note that given, the message m̃ and the

candidate equilibrium messaging function d̃r, d̃
′
r(m̃) is a non-random image of the function d̃′r(m),

i.e. a constant. The associated messaging function which yielded m̃ is thus given by

m̃(s, c) = s+ c(µ+ (1− µ)d̃′r(m̃)).

Therefore, m̃(s, c) is a linear combination of s and c and, by E1’, distributed according to F .
Lemma 2 then implies that d̃r(m) = E[s|m]m=m̃(s,c) ≡ E[s|m̃]. Using E2’ then yields that for a
given equilibrium message m̃, it has to hold that

d̃r(m) = E[s] +
(
m− E[s]− E[c](µ+ (1− µ)d̃′r(m)

) Cov[s,m]m=m̃(s,c)

V ar[m]m=m̃(s,c)
(14)

where E[m]m=m̃(s,c) = E[s] + E[c](µ+ (1− µ)d̃′r(m) has been used.

Step 2: In the candidate equilibrium with the associated equilibrium coefficient ρ̃ ≡ Cov[s,m]m=m̃(s,c)

V ar[m]m=m̃(s,c)

the function d̃∗r
′(m) then has to solve the first-order linear differential equation

d̃′r(m) =
(

1− E[c](1− µ)d̃′′r(m)
)
ρ̃.

When d̃′r(m) = 0, it follows that d̃′r(m) = ρ̃ = 0. Similarly, if E[c] = 0, then d̃′r(m) = ρ̃. Now
suppose that ρ̃E[c] 6= 0. One then gets d̃′r(m) as the solution to the above differential equation,
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given by

d̃′r(m) = ρ+ ξ · exp
(
− m

(1− µ)E[c]ρ̃

)
,

where ξ is an integration factor. To determine its value, integrate the obtained d̃′r(m) over M = R:

E[s|m̃] =

∫ +∞

−∞
d̃′r(m)dm = mρ̃− ξ(1− µ)E[c]ρ̃ · exp

(
− m

(1− µ)E[c]ρ̃

)
+ K̃ (15)

In the above, K̃ is a constant of integration. This can expression be plugged into the sender’s
expected utility to obtain E[US(s, c,m)|m=m̃(s,c)] =

cµm+ c(1− µ)

[
mρ̃− ξ(1− µ)E[c]ρ̃ · exp

(
− m

(1− µ)E[c]ρ̃

)
+ K̃

]
− 1

2
(m− s)2 (16)

To determine ξ, I start with the case that c > 0. In this case, US(s, c,m) is increasing in
E[s|m̃∗], the term above in square brackets. If ρ̃E[c] > 0, the sender’s expected utility decreases
exponentially in m while all other terms involving m are either linear or quadratic. If ξ < 0, the
sender would then maximize his expected utility by choosing m→ −∞ and there is no equilibrium.
Therefore, ξ ≥ 0 has to hold in this case for any equilibrium. For any ξ > 0, however, US(s, c,m)
would be lower than with ξ = 0. Since ξ is part of the endogenous inference of the sender’s signal,
he will not send a signal which allows such an inference. It follows that with c > 0 and ρE[c] > 0,
only ξ = 0 can be the equilibrium integration factor.

Continue to suppose that c > 0 but now ρE[c] < 0 holds. Inverse to the the preceding reasoning,
E∗[s|m̃] now increases exponentially in m which implies a global maximum of the sender’s expected
utility at m → +∞ whenever ξ > 0. Thus, for an equilibrium, ξ ≤ 0 has to hold. Also inverse to
the above, any ξ < 0 would decrease the sender’s expected utility so that ξ = 0 is chosen in any
equilibrium with c > 0 and ρE[c] < 0.

For the case that c < 0, US(s, c,m) is decreasing in E[s|m̃]. The same reasoning as for the case
of c > 0, but with reversed signs can then be repeated which rules out any ξ 6= 0 in an equilibrium
with c < 0 and ρ̃E[c] 6= 0 holds.

Eventually, when c = 0 the inference E[s|m] does not enter US(s, c,m); it is equivalent to ξ = 0.
Thus, ξ = 0 is the unique integration factor and d̃∗r(m) = ρ̃ holds.

Step 3: Given the above, one can determine the integration constant

K̃ = E[s]− (E[s] + E[c] (µ+ (1− µ)ρ̃))ρ̃

by combining (14) and (15). Using ξ = 0 then allows to write (16) as

US(s, c,m) = mc (µ+ (1− µ))− 1

2
(m− s)2 + c(1− µ)K

It is then easily verified that the unique message which maximizes the above expression is given
by m = s + c (µ+ (1− µ)) ρ̃. In equilibrium, it has to hold that m∗(s, c) = s + c

(
µ+ (1− µ)ρ̃∗

with ρ∗ = ρ̃ = d∗r
′(m) =

Cov[s,m]m=m∗(s,c)
V ar[m]m=m∗(s,c)

, as stated in (7). Using ρ̃ = ρ∗, ξ = 0, and the above

expression for K̃ on (15) then yields the rational receivers belief and strategy as stated in (8).
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Proof of Proposition 2, part 1

By using m∗(s, c) = s + c(µ + (1 − µ)ρ) from Proposition 1 and the definition of ρ∗ = Cov[s,m∗]
V ar[m∗] ,

the latter must be a solution to

ρ =
Cov[s,m∗]

V ar[m∗]
=
Cov[s,m]m=m∗(s,c)

V ar[m]m=m∗(s,c)
=

E[(s− E[s])[(s− E[s]) + (µ+ (1− µ)ρ)(c− E[c])]]

E[((s− E[s]) + (µ+ (1− µ)ρ)(c− E[c]))2]

=
σ2
s + (µ+ (1− µ)ρ)σsc

σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c
(17)

which yields (9). It will be useful to denote the above nominator and denominatorby the following
functions:

N(ρ) ≡ σ2
s + (µ+ (1− µ)ρ)σsc

D(ρ) ≡ σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

For the rational function (17), expressed as gU (ρ) ≡ N(ρ)/D(ρ), the following properties hold:

Property a) N(ρ)/D(ρ) is continuous with D(ρ) > 0 for all ρ ∈ R.

Proof: Since both, D(ρ) and N(ρ) are continuous in ρ, it is sufficient to show that D(ρ) > 0
always holds. Suppose to the contrary it would not. Rearranging D(ρ), this would requiere that
ρ2 + aρ+ b = 0 with

a =
2(σsc + µσ2

c )

(1− µ)σ2
c

b =
σ2
s + 2µσsc + µ2σ2

c

(1− µ)2σ2
c

has at least one real solution, thus that (a/2)2 − b ≥ 0 holds. Plugging in and rearranging, this
yields (σsc/(σcσs)

2 ≥ 1 – a contraction to |Corr[s, c]| < 1.

Property b) limρ→+∞

(
N(ρ)
D(ρ)

)
= 0− if σsc < 0 and limρ→+∞

(
N(ρ)
D(ρ)

)
= 0+ if σsc ≥ 0

Proof: N(ρ) strictly decreases (weakly increases) linearly in ρ when σsc < 0 (σsc ≥ 0) and attains
negative (positive) values for ρ large enough. From a), D(ρ) is strictly positive and it grows
quadratically in ρ. Therefore, for large values of ρ, the ratio N(ρ)/D(ρ) is negative (positive) and
arbitrarily close to zero.

Property c) N(ρ)
D(ρ) has at most two extreme points.

Proof: Any extreme point has to set the first derivative(
N(ρ)

D(ρ)

)′
=

(1− µ)σscD(ρ)− 2(1− µ)N(ρ)(σsc + (µ+ (1− µ)ρ)σ2
c )

(D(ρ))2

=
(1− µ)

D(ρ)
·
(
σsc −

N(ρ)

D(ρ)
· 2(σsc + (µ+ (1− µ)ρ)σ2

c )

) (18)

equal to zero. By a) and µ ∈ [0, 1), the first factor is non-zero. Extreme points therefore have to
solve

σscD(ρ) = N(ρ) · 2(σsc + (µ+ (1− µ)ρ)σ2
c )

Plugging in the functions for N(ρ) and D(ρ) yields an equation which is quadratic in ρ and, therefore,
has at most two real solutions.

Before I continue with the remaining part of the proof of Proposition 2, I first proof Lemma 3 and
4. While they are stated in the main text after Proposition 2 for reasons of better exposure, they
only rely on properties proved so far.
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Proof of Lemma 3

Necessitiy: By property a) as derived above, it follows that for a fixed point ρ∗U which solves
gU (ρ∗U ) = N(ρ∗U )/D(ρ∗U ) > 0, N(ρ∗U ) > 0 has to hold. This is equivalent to σsc > τ(ρ∗U ) where
τ(ρ) = −σ2

s/(µ + (1 − µ)ρ) < 0 is defined for any ρ > 0 ≥ −µ/(1 − µ) and for which τ ′(ρ) > 0
holds whenever ρ ≥ 0. For ρ∗U > 0 it therefore has to hold that σsc > τ∗ ≡ τ(ρ∗U ) with τ∗ < 0.

Sufficiency: To see that σsc > τ∗ is also sufficient for (9) to have a solution ρ∗U > 0, note that by
the above reasoning σsc > τ(ρ∗) > τ(0) holds and therefore, Cov[s,m∗]|ρ=0 = N(0) > 0 applies.
Since V ar[m∗]ρ=0 = D(0) > 0, it then follows that gU (0) = N(0)/D(0) > 0. Together with
continuity and a limit of zero of gU (ρ) = N(ρ)/D(ρ) as derived in properties a) and b) above, this
means that there has to be at least one fixed point, i.e. at least one intersection of gU (ρ) with the
45-degree line over R++.

Proof of Lemma 4

Necessitiy: By proposition (17) in the hitherto part of the proof of Proposition 2, ρ∗U ≤ 1, condi-
tional on ρ∗U > 0, holds if and only if

σ2
s + (µ+ (1− µ)ρ)σsc

σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

∣∣∣∣
ρ=ρ∗U

= ρ∗U ≤ 1 (19)

This condition simplifies to σsc ≥ −(µ+ (1−µ)ρ∗U ))σ2
c . This inequality becomes slacker for higher,

positive values of ρ∗U . Inserting ρ∗U = 1, the upper bound on the desired value range, then yields
σsc ≥ −σ2

c as a necessary condition.

Sufficiency: To see that that this condition is also sufficient first note from (19) that, for any σsc ≥
0, ρ∗U ∈ (0, 1) follows immediately. Second, from the above reasoning it also follows immediately
that σsc = σ2

c implies ρ∗U = 1. Now suppose σsc ∈ (−σ2
c , 0), i.e. σ2

c = −σsc
λ for some λ ∈ (0, 1).

To show that then, ρ∗U < 1 follows, suppose the opposite and substitute into (19) to get

σ2
s + (µ+ (1− µ)ρ)σsc

σ2
s + (µ+ (1− µ)ρ∗U )σsc ·

(
2− µ+(1−µ)ρ∗U

λ

)∣∣∣∣∣
ρ=ρ∗U

≥ 1.

Since the above denominator represents, in equilibrium, V ar[m∗] = D(ρ∗) > 0 (see property a) in
the preceding proof), this simplifies to

0 ≥ (µ+ (1− µ)ρ)σsc ·
(

1− µ+ (1− µ)ρ

λ

) ∣∣∣∣
ρ=ρ∗U

Clearly, this is a contradiction as, with σsc < 0, ρ = ρ∗U ≥ 1 and λ ∈ (0, 1), both of the above
RHS’s factors will be strictly negative.

Proof of Proposition 2, part 2

A solution ρ∗U to (9) requires an intersection of the 45-degree line and N(ρ)/D(ρ). Note that every
such fixed point has to be a root of k(ρ) = ρD(ρ)−N(ρ), i.e. the following cubic equation:

k(ρ) = (1− µ)2σ2
c︸ ︷︷ ︸

≡ A

·ρ3 + 2(1− µ)(σsc + µσ2
c )︸ ︷︷ ︸

≡ B

·ρ2 + σ2
s + µ2σ2

c + (3µ− 1)σsc︸ ︷︷ ︸
≡ C

·ρ−σ2
s − µσsc︸ ︷︷ ︸
≡ D

(20)

To examine multiplicity of roots to k(ρ), I use the following result:
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Theorem. (Descarte’s rule of signs) Consider a n-degree polynominal p(x) =
∑n

d=0 cd · xd with
real coefficients. Order the non-zero coefficients ck in an descending order of the exponent d. The
number of positive, real roots of the polynomial is less by an even number or equal to the number
of sign changes between successive coefficients in this ordering.

It always holds that A > 0. Furthermore, by the proof of Lemma 3, a solution ρU > 0 implies
D < 0 because this is equivalent to σsc > τ(0) and τ(0) > τ(ρ∗U ) = τ∗. By the sign rule, the only
configuration for more than one sign change, given that A > 0 > D, is C > 0 > B. Thus, there
are either one or three positive roots, which correspond to fixed points of gU (ρ).

Multiple fixed points require B < 0 and, therefore, σsc < 0. Suppose they exist. By property
a) and b) derived in the first part of this proof, this means that gU (ρ) = N(ρ)/D(ρ) continu-
ously approaches zero from below when ρ becomes large enough. Also, it has been shown that
N(0)/D(0) > 0 (see proof of Lemma 3). Together, this implies that gU has to have a negatively
valued local minimum on R++ denoted by ρ−, i.e. gU (ρ−) < 0. If ρ− is the only extreme value
over R++ this implies only one intersection with the 45-degree line, thus a unique fixed point. If it
is not the unique extreme value then, by property c) derived in the first part of the proof, there is
exactly one other extreme value of gU over R++. Given that ρ− is a local minimum, it has to be a
local maximum and is denoted by ρ+. It then follows from limρ→+∞ gU (ρ) = 0− that 0 < ρ+ < ρ+

and gU (ρ−) < 0 < gU (ρ+) have to hold. Accordingly, gU (ρ) = N(ρ)/D(ρ) is non-increasing on
[ρ+, ρ−]. This, together with N(0)/D(0) > 0 implies that ρU (ρ) cuts the 45-degree line exactly
only once within this interval and never on (ρ−,+∞) such that the unique fixed-point in (ρ+, ρ−) is
the highest-valued one. As multiple, positively valued fixed points of gU (ρ) number to three, their
coordinates can be denoted w.l.o.g. by 0 < ρ∗U,1 < ρ∗U,2 < ρ∗U,3. It then has to hold that

0 < ρ∗U,1 < ρ∗U,2 < ρ+ < ρ∗U,3 < ρ−

As there is no further extreme point over [ρ∗U,1, ρ
∗
U,2] ⊂ (0, ρ+) while 0 < gU (0) < gU (ρ+) holds, it

follows that gU (ρ) is non-decreasing on [ρ∗U,1, ρ
∗
U,2]. Three fixed points of gU (ρ) at ρ∗U,1 < ρ∗U,2 and

ρU,3 ∈ (ρ+, ρ−) then imply that gU (ρ) = N(ρ)/D(ρ) cuts the 45-degree line (which has slope 1)
thrice: First from above at ρ∗U,1, then from below at ρ∗U,2 (which requires a slope larger than 1), and
then from above at ρ∗U,3. It thus holds that

gU (ρ)′|ρ=ρ∗U,3
< 0 < gU (ρ)′|ρ=ρ∗U,1

< 1 < gU (ρ)′|ρ=ρ∗U,2
(21)

Using the fact that if this indeed an equilibrium, ρ∗U,1 = gU (ρ∗U,1) = N(ρ∗U,1)/D(ρ∗U,1) has to hold,
the requirement of a positive slope greater at ρ∗U,1 > 0 translates via (18) into(

N(ρ)

D(ρ)

)′ ∣∣∣∣
ρ=ρ∗U,1

=
(1− µ)

D(ρ∗U,1)
·
(
σsc − 2ρ∗U,1(σsc + (µ+ (1− µ)ρ∗U,1)σ2

c )
)
> 0

For this to hold, σsc+(µ+(1−µ)ρ∗U,1)σ2
c < 0 is a necessary condition as ρ∗U,1 > 0 > σsc. Multiplying

by (µ+ (1− µ)ρ∗U,1) > 0 yields the equivalent necessary condition

(µ+ (1− µ)ρ∗U,1)σsc + (µ+ (1− µ)ρ∗U,1)2σ2
c = D(ρ∗U,1)−N(ρ∗U,1) < 0

Rearranging this inequality then yields

1 < N(ρ∗U,1)/D(ρ∗U,1) = ρ∗U,1 < ρ∗U,2 < ρ∗U,3

as a necessary condition for multiple fixed points ρ∗U .
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Proof of Lemma 5

The assumptions on ε as stated in the main text can be re-stated as follows: s
c
ε

 ∼ F
 s̄

c̄
0

 ,
 σ2

s σsc 0
σsc σ2

c 0
0 0 σ2

ε


Using E1’ establishes that c̃ = c + ε is distributed according to F and so is the random vector
(c̃, s, c). Note that because ε is not correlated with s or c and has an expected value of zero,
Cov[s, c̃] = E[(s − E[s])(c + ε − E[c])] = E[(s − s̄)(c − c̄)] = σsc, V ar[c̃] = E[(c + ε − E[c])2] =
E[(c + ε − c̄)2] = σ2

c + σ2
ε , and Cov[c, c̃] = E[(c − E[c])(c + ε − c̄)] = E[(c − c̄)(c − c̄)] = σ2

c .
Therefore, it holds that  c̃

s
c

 ∼ F
 c̄

s̄
c̄

 ,
 σ2

c + σ2
ε σsc σ2

c

σsc σ2
s σsc

σ2
c σsc σ2

c

 .

Using E2’ with the parameters from the above distribution then yields, after some rearranging, the
stated conditional moments for (s, c | c̃).

Proof of Proposition 3

Using again the equilibrium mapping m∗(s, c) from Proposition 1, now with information structure ID
and the associated conditional distribution of (s, c | c̃), means that with disclosed COIs an inference
coefficient ρ∗D has to solve the following expression:

ρ =
Cov[s,m∗|c̃]
V ar[m∗|c̃]

=

(
1− ρc(Corr[s, c])2

)
σ2
s + (µ+ (1− µ)ρ)(1− ρc)σsc

(1− ρc(Corr[s, c])2)σ2
s + 2(µ+ (1− µ)ρ)(1− ρc)σsc + (µ+ (1− µ)ρ)2(1− ρc)σ2

c

=

(
1−ρc(Corr[s,c])2

1−ρc

)
σ2
s + (µ+ (1− µ)ρ)σsc(

1−ρc(Corr[s,c])2)
1−ρc

)
σ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c

Under full disclosure, σ2
ε = 0 holds and ρc = 1 applies such that a unique solution ρ = ρ∗D = 1

follows from the second line. The last transformation assumes ρc 6= 1, i.e. σ2
ε > 0. Substituting φ

for (1− ρc(Corr[s, c])2/(1− ρc) then yields (11).

Proof of Lemma 6

Analogously to the first part of the proof of Proposition 2, define gD(ρ) = Ñ(ρ)/D̃(ρ) with

Ñ(ρ) ≡ φσ2
s + (µ+ (1− µ)ρ)σsc > N(ρ)

D̃(ρ) ≡ φσ2
s + 2(µ+ (1− µ)ρ)σsc + (µ+ (1− µ)ρ)2σ2

c > D(ρ)

to express (11). It is easily verified that Ñ(ρ)/D̃(ρ) inherits the properties a) through c) of
N(ρ)/D(ρ) as stated in the proof of Proposition 2.

Similar to the second part of that proof, where fixed points to gU (ρ) were expressed as roots to
k(ρ) = ρD(ρ)−N(ρ), one can define and solve for the cubic function k̃(ρ) = ρD̃(ρ)− Ñ(ρ):

k̃(ρ) = (1− µ)2σ2
c︸ ︷︷ ︸

≡ Ã

·ρ3+2(1− µ)(σsc + µσ2
c )︸ ︷︷ ︸

≡ B̃

·ρ2+φσ2
s + µ2σ2

c + (3µ− 1)σsc︸ ︷︷ ︸
≡ C̃

·ρ−φσ2
s − µσsc︸ ︷︷ ︸
≡ D̃

(22)
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Comparing these coefficients to those of k(ρ) as stated in (20), one then gets Ã = A > 0, B̃ = B,
C̃ > C, and D̃ < D < 0. Applying the sign rule again implies that there are either one or three
roots to k̃(ρ), and therefore to gD(ρ).

This proof uses this cubic function k̃ with coefficients Ã through D̃ whose roots denote fixed
points to gD(ρ). It also uses the cubic function k as stated in (20) with coefficients A through D
and whose roots denote fixed points to gU (ρ) as stated in (9). Recall from Proposition 2 that this
function gU has either one or three fixed points, with any solution ρ∗U ∈ (0, 1] being unique.

Given these prerequisites, note from (20) and (22) that these function relate to each other as
follows: k̃(0) = D̃ < k(0) = D < 0 and k̃′(ρ) = 3Ãρ2 + B̃ρ+ C̃ > k′(ρ) = 3Aρ2 +Bρ+ C for all
ρ ∈ R+. Furthermore, k̃(ρ) = k(ρ) if and only if (D̃ −D)/(C − C̃) = ρ which is easily verified to
be equivalent to ρ = 1. It then holds that k(ρ) > k̃(ρ) if ρ ∈ (0, 1) and k(ρ) < k̃(ρ) if ρ > 1.

Taken together, the above means that if there is a (unique) root ρ∗U ∈ (0, 1) of k , there must
be a unique root k̃ on (ρ∗U , 1) and and if ρ∗U = 1, ρ∗D = 1 applies. To see that a root ρ∗D < 1 is
unique, one can repeat the same reasoning as in the second part of the proof of Proposition 2 to
show that multiple solutions require all of them to have a value larger than one. This proves cases
a) and b).

For case c), thus when there is a unique ρ∗U > 1 it has to hold that k̃(1) = k(1) < 0 by the above
reasoning. A unique root of k at ρ∗U > 1 implies that gU never cuts the real line again on (ρ∗U ,+∞).
Neither does then k̃ since k̃(ρ) > k(ρ) for ρ > 1. This, in addition with k̃(1) = k(1) < 0, means
that k̃ cuts the real line once over (1, ρ∗U ) which proves the case.

Now consider case d), i.e that there are three positively-valued fixed points to gU (ρ). By
Proposition 2, their coordinates have to obey 1 < ρ∗U,1 < ρ∗U,2 < ρ∗U,3. The continuous, cubic
function k obeys k(0) = D < 0 (see the second part of the proof of Proposition 2). This implies
that k cuts the real line from below at ρ∗U,1, from above at ρ∗U,2, and again from below at ρ∗U,3.
Since it is a continuous polynomial, it has to have a local maximum and minimum in between these
points. They are denoted by ρk− and ρk+, respectively so that

1 < ρ∗U,1 < ρk+ < ρ∗U,2 < ρk− < ρ∗U,3

holds. If k̃ also has three roots, denoted by ρ∗D,1 < ρ∗D,2 < ρ∗D,3, it is a similarly-shaped polynomial

by analogous reasoning. Therefore, k̃ cuts the real line from below at ρ∗D,1, from above at ρ∗D,2, and

from below at ρ∗D,3. From k̃(1) = k(1) < 0 and k̃(ρ) > k(ρ) for ρ > 1, it follows that when k̃ cuts
the real line from below (above), it has to do so at lower (higher) values than k. For three roots of
k̃, this implies that

1 < ρ∗D,1 < ρ∗U,1 < ρ∗U,2 < ρ∗D,2 < ρ∗D,3 < ρ∗U,3

which proves the second part of case d). If k̃ has only one root (two have been ruled out by the
sign rule), k̃(1) = k(1) < 0 and k̃(ρ) > k(ρ) again imply that it cuts the real line from below, i.e.
at a lower value of ρ than for k. It follows that 1 < ρ∗D,1 < ρ∗U,1 < ρ∗U,2 < ρ∗U,3 which proves the
first part of case d).

Proof of Proposition 4

Fixed points to gU (ρ) can be founds as roots to f(ρ) = gU (ρ) − ρ. Such a fixed point ρ∗U is then
(asymptomatically) stable if f ′(ρ)|ρ=ρ∗k

< 0 (see Hirsch and Smale, 1974, pp. 185-188 and footnote
16). From the first part of the proof of Proposition 2 one gets that f(0) = gU (0) = N(0)/D(0) > 0
holds. It follows that for f to have three roots, it has to cut the real line from above at ρ∗U,1,
from below at ρ∗U,2, and again from above at ρ∗U,3. This implies f ′(ρ∗U,1) < 0, f ′(ρ∗U,2) > 0, and
f ′(ρ∗U,3) < 0 which proves stability of ρ∗U,1 and ρ∗U,3, and that ρ∗U,2 is not stable. By the same
reasoning, a unique root ρ∗U has to obey f ′(ρ∗U ) < 0 and is thus stable.

For the case of undisclosed commissions one can repeat the above procedure by using gD(ρ) =
Ñ(ρ)/D̃(ρ) with Ñ(ρ) and D̃(ρ) as defined in the proof of Proposition 3. In particular, when ρ∗U > 0
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exists, Ñ(ρ) > N(ρ) > 0 holds for all ρ > 0. By the same reasoning, D̃(ρ) > D(ρ) > 0 applies
such that gD(0) = Ñ(0)/D̃(0) > 0. Preceding as above, one can then define f̃(ρ) = gD(ρ) − ρ
whose roots correspond to fixed points of gD(ρ) and for which f̃(0) = Ñ(0)/D̃(0) > 0 applies. The
above reasoning regarding the shape of f then applies analogously for f̃ , i.e. ρ∗D,1, ρ∗D,3, and unique
fixed points ρ∗D are stable while ρ∗D,2 is not stable. The proposition is then obtained by connecting
these findings to the inequalities stated in Lemma 6.

Proof of Lemma 7

The argument of the sender’s (expected) utility is given by

z ≡ d∗r(m)− s = (1− ρ∗)E[s] + ρ∗ [m∗(s, c)− E[c] (µ+ (1− µ)ρ∗)] − s
= −(s− E[s]) + ρ∗ [m∗(s, c)− E[s]− E[c] (µ+ (1− µ)ρ∗))]

= −(s− E[s]) + (m∗(s, c)− E[m∗(s, c)]) ρ∗n

(23)

Note that by (7), m∗(s, c) is a linear transformation of the vector (s, c). By E1’, it is therefore
distributed according to F . Similarly, s is also distributed according to F . By the same argument, z
is then distributed according to F (E[z], V ar[z]). One can normalize z via the linear transformation
ẑ(z) = z/

√
V ar[z] − E[z] such that ẑ follows F (0, 1). The associated probability density function

will be denoted ψ(ẑ). The expected utility of rational receivers can then be expressed as

E[L(z)] =

∫ +∞

−∞
L
(

E[z] + ẑ
√
V ar[z]

)
ψ(ẑ)dẑ ≡ V

(
E[z],

√
V ar[z]

)
≤ 0.

From (23) it follows that E[z] = 0. Therefore, one can define the univariate function L (V ar[y]) ≡
V (0, V ar[z]) ≤ 0 which denotes a rational receiver’s expected utility. This function’s derivate is
then given by

L′ (V ar[z]) =
∂V
(

E[z],
√
V ar[z]

)
∂ V ar[z]

∣∣∣∣∣
E[z]=0

=
1

2
√
V ar[z]

·
∫ +∞

−∞

[
ẑ · L′

(
ẑ
√
V ar[z]

)]
ψ(ẑ)dẑ.

Because L is strictly concave and symmetric around zero, sgn[ẑ] = − sgn
[
L′
(
ẑ
√
V ar[z]

)]
and

therefore, the above expression is non-positive. Since ψ(ẑ) is symmetric around zero L′(V ar[z]) = 0
holds if and only if V ar[z] = 0. It has been shown in the main text that under full disclosure,
uRr (ρ∗, ·) = 0 holds since rational receivers can then fully extract s from the message and implement
their optimal choice. Full disclosure therefore implies L(0) = 0.

To see that full disclosure is also necessary for L(0) = 0 to hold, note from the above that this
requires V ar[z] = 0 and therefore d∗r(m) = s. Suppose that this held under imperfect disclosure.
For d∗r(m) = s to apply in this case, (8) requires both, ρ∗ = 1 and c = E[c] to hold simultaneously
for any realization (s, c). This is a contradiction to the fact that under imperfect disclosure with
ρc ∈ (0, 1), V ar[c|c̃] > 0 and V ar[s|c̃] > 0 applies (see Lemma 5).

To see the alternative representation of the argument V ar[z] of L, note that by using the
definition of ρ∗, one gets the following:

V ar[z] = V ar[d∗r(m)− s]
= E[(−(s− E[s]) + (m∗(s, c)− E

[
m∗(s, c)])ρ∗)2]

= (σ2
s − 2ρ∗Cov[s,m∗] + (ρ∗)2V ar[m∗])

= σ2
s − ρ∗Cov[s,m∗]
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From the law of total variance and using again the definition of ρ∗, it also holds that

E [V ar[s|m∗]] = V ar[s]− V ar[E[s|m∗]]
= σ2

s − E[(d∗r(m)− E[s]])2]

= σ2
s − E[((m∗ − E[m∗]) ρ∗)2]

= σ2
s − (ρ∗)2V ar[m∗]

= V ar[z] = σ2
s − ρ∗Cov[s,m∗]

= σ2
s −

Cov[s,m∗]2

V ar[m∗]

= σ2
s

(
1− Corr[s,m∗]2

)
≥ 0

where Corr[s,m∗] = Corr[s,m]m=m∗(s,c) = Cov[s,m∗]/
(
σs
√
V ar[m∗]

)
.

Proof of Proposition 5

Lemma 7 shows that the expected utility of rational receivers strictly increases in Corr[s,m∗]2. For
equilibria with ρ∗ > 0, and therefore Cov[s,m∗] > 0, it is then sufficient to show that Corr[s,m∗] >
0 increases upon disclosure. For this note that

Corr[s,m∗] =
Cov[s,m∗]

V ar[m∗]
·
√
V ar[m∗]

σs
= ρ∗ ·

√
V ar[m∗]

σs
. (24)

I first consider the case that 1 ≥ ρ∗D > ρ∗U > 0. According to (7) one gets

D(ρ∗) = V ar[m∗] = V ar[σ2
s + 2(µ+ (1− µ)ρ∗)σsc + (µ+ (1− µ)ρ∗)2σ2

c ]. (25)

Since the first factor on the RHS of (24) increases upon disclosure, it is then sufficient to show that
also D(ρ∗D) > D(ρ∗U ) holds. From the fact that σsc + (µ + (1 − µ)ρ∗U )σ2

c > 0 is a necessary and
sufficient condition for ρ∗U ∈ (0, 1) (see proof of Lemma 4) this then follows from

D′(ρ∗)|ρ∗=ρ∗U = 2(1− µ) ·
(
σsc + (µ+ (1− µ)ρ∗U )σ2

c

)
> 0. (26)

Now consider the case of asymptotically stable equilibria with ρ∗U > 1. From Lemma 6 and 4 it
then follows that for such equilibria, 1 < ρ∗D < ρ∗U holds, thus disclosure decreases ρ∗. To show
that Corr[s,m∗] does also increase upon disclosure in this case, I will use again that in equilibrium
ρ∗ = N(ρ∗)/D(ρ∗) holds with

N(ρ∗) = Cov[s,m∗(s, c)] = Cov[s, s+ c(µ+ (1− µ)ρ∗] = σ2
s + (µ+ (1− µ)ρ∗)σsc (27)

and D(ρ∗) = V ar[m∗(s, c)] as defined in (25). From (24) one gets that

Corr[s,m∗(s, c)]

∂ρ∗

∣∣∣∣
ρ∗=ρ∗U

=

[(
N(ρ∗)

D(ρ∗)

)′
·

(√
D(ρ∗)

σs

)
+

(
N(ρ∗)

D(ρ∗)

)
·

(
D(ρ∗)′

2σs
√
D(ρ∗)

)] ∣∣∣∣
ρ∗=ρ∗U

(28)

Multiplying the above with
√
D(ρ∗) > 0 and using ρ∗ = N(ρ∗)/D(ρ∗) again yields for its sign

sgn

[
N(ρ∗)′|ρ∗=ρ∗U − ρ

∗ ·
D(ρ∗)′|ρ∗=ρ∗U

2

] ∣∣∣∣
ρ=ρ∗U

= sgn
[
σsc − ρ∗U (σsc + (µ+ (1− µ)ρ∗U )σ2

c )
]
.

Substituting the above RHS with ρ∗U = N(ρ∗U )/D(ρ∗U ) and this again with (25) and (27) then yields,
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after multiplying it with D(ρ∗U ) > 0 (and some transformations), that the sign of the above equals

sgn[(σ2
sc − σ2

cσ
2
s)] = sgn

[
(Corr[s, c]2 − 1)

]
< 0.

In consequence, a decrease in ρ∗ > 1 upon disclosure increases Corr[s,m∗(s, c)].
Finally, consider the case of ρ∗U = 1. By case c) in Lemma 6, the inference coefficient then

remains constant upon disclosure. Furthermore, by Lemma 4, it has to apply that σ2
c = −σsc.

Proposition 1 then implies that E[s|m∗] = m∗(s, c) − E[c] = s + c − E[c]. From Lemma 7 and its
proof, σ2

s

(
1− Corr[s,m∗]2

)
= E[V ar[s|m∗] is the argument of the loss function L which describes

that rational receivers expected utility. Applying the law of total variance again yields

E[V ar[s|m∗] = V ar[s]− V ar[E[s|m∗]]
= V ar[s]− E

[
(s+ c− E[c]− E[s+ c− E[c]])2

]
= −2Cov[s, c]− V ar[c] = σ2

c

with undisclosed COIs. By analogous reasoning and using the posteriors from Lemma 5 one obtains
for disclosed COIs, after the signal c̃ has been obtained, E[V ar[s|m∗, c̃] = (1− ρc)σ2

c . As with full
or imperfect disclosure, ρc ∈ (0, 1] applies so that L strictly increases upon disclosure.

Proof of Proposition 6

I start with wk = 0 and denote, with slight abuse of notation, W (σ2
ε ) ≡ W (E(ρ∗D(σ2

ε , ·))) via the
analogously defined E[uRr (σ2

ε )] ≡ E[uRr (E(ρ∗D(σ2
ε , ·)))] and E[uRn (σ2

ε )] ≡ E[uRn (E(ρ∗D(σ2
ε , ·)))]. This

reflects that in the case of disclosed COIs, the coefficient ρ∗D is the only term which contains σ2
ε

via the ratio φ (see Proposition 3) which, in turn, contains ρc = σc
σ2
c+σ2

ε
. Using Ñ(ρ) and D̃(ρ) as

defined in the proof of Proposition 3, together with ρ∗D = Ñ(ρ)/D̃(ρ) then yields

∂ρ∗D
∂φ

=
∂
(
Ñ(ρ∗D)/D̃(ρ∗D)

)
∂φ

=
σ2
sD̃(ρ∗D)− Ñ(ρ∗D)σ2

s

(D̃(ρ∗D))2
=

(1− ρ∗D)σ2
s

D̃(ρ∗D)

From ∂φ/∂σ2
ε = (∂φ/∂ρc) · (∂ρc/∂σ2

ε ) < 0 and Lemma 6 it follows that

sgn

[
∂ρ∗D
∂σ2

ε

]
= − sgn

[
∂ρ∗D
∂φ

]
= sgn [ρ∗D − 1] = sgn [ρ∗U − 1] .

Since E[uRn (ρ∗)]
∂ρ∗ is positive (negative) if and only if ρ∗U > 1 (ρ∗U < 1) one then gets from (12) and

the above for any σ2
ε ≥ 0 the following:

sgn

[
E[uRn (σ2

ε )]

∂σ2
ε

]
= sgn

[
E[uRn (σ2

ε )]

∂σ2
ε

]
= sgn

[
E[uRn (ρ∗)]

∂ρ∗

∣∣∣
ρ∗=ρ∗D

·
∂ρ∗D
∂σ2

ε

]
= − sgn [ρ∗U − 1] (29)

When ρ∗U ∈ (0, 1), every decrease in σ2
ε therefore hurts naive receivers. In contrast, it has been

shown in the main text that when there is full disclosure, i.e. σ2
ε = 0, rational receivers achieve their

maximum utility, thus that E[uRr (0)]′ = 0 holds.
The first part of the proposition (that full disclosure, i.e. setting σ2

ε = 0, is never optimal)
can then be established by showing the following: When ρ∗U ∈ (0, 1), there exists a ∆ > 0
such that starting from full disclosure with σ2

ε = 0, the gradual increase of this variance to
σ2
ε = ∆ increases W (σ2

ε ) = wr · E[uRr (σ2
ε ] + wn · E[uRn (σ2

ε )]. This is equivalent to showing that
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lim∆→0+ (W (∆)−W (0)) is positive, i.e. that

sgn

[
lim

∆→0+

(
W (∆)−W (0)

∆

)]
= sgn

∑
j=r,n

wj · lim
∆→0+

(
E[uRj (∆)]− E[uRj (0)]

∆

)
= sgn

[
wr ·

∂E[uRr (σ2
ε )]

∂σ2
ε

∣∣∣∣
σ2
ε=0

+ wn ·
∂E[uRn (σ2

ε )]

∂σ2
ε

∣∣∣∣
σ2
ε=0

]

= sgn

[
wn ·

∂E[uRn (σ2
ε )]

∂σ2
ε

∣∣∣∣
σ2
ε=0

]
= − sgn [ρ∗U − 1] > 0

holds. The second-last equality in the above follows from the fact that by Lemma 7, rational receivers

expected utility w.r.t to σ2
ε is maximized under full disclosure, i.e. ∂E[uRr (σ2

ε )]
∂σ2
ε

∣∣
σ2
ε=0

= 0, while the

last one follows from (29).
For the case that wk > 0, note that the above proof applies for any loss function uRn (·) = L(·)

which is strictly concave and symmetric around zero. It therefore also holds when in addition to
E[uRn (σ2

ε )], positive weight is assigned to −E[c(µ+ρ∗(σ2
ε , ·)(1−µ))2]. This then yield the first part

of the proposition.
The second statement is an immediate consequence of the fact that when ρ∗U > 1, according

to (29), increasing the signal precision (decreasing any σ2
ε > 0) helps naive receivers and that full

disclosure maximizes the utility of rational receivers (see Lemma 7).

Example for non-disclosure to be optimal

As a concrete example for a scenario where non-disclosure is optimal, consider the parameters
σ2
s = σ2

c = 1, s̄ = c̄ = σsc = 0, together with µ = wn = wr = 0.5, wk = 0, and the loss function
L(d − s) = −(d − s)2. Plugging these parameters into (9) and solving yields ρ∗U ≈ 0.6. Following
Lemma 6, disclosure then increases the inference coefficient. Using Proposition 1 and (13) yields

W (E(ρ∗k)) = −0.5
(
E[(ρ[m∗(s, c)− c̄(µ+ (1− µ)ρ)] + (1− ρ)s̄− s)2] + E[(m∗(s, c)− s)2]

) ∣∣
ρ=ρ∗k

= −0.5
(
E[(ρm∗(s, c)− s)2] + E[(m∗(s, c)− s)2]

) ∣∣
ρ=ρ∗k

= −0.5
(
E[(s(ρ− 1) + cρ(0.5 + 0.5ρ))2] + E[(c(0.5 + 0.5ρ))2]

) ∣∣
ρ=ρk

= −0.5
(

(ρ− 1)2E[s2] + 2(ρ− 1)ρ(0.5 + 0.5ρ)E[sc] + (ρ2 + 1)(0.5 + 0.5ρ)2E[c2]
∣∣
ρ=ρ∗

= −0.5
(
(ρ− 1)2 + (ρ2 + 1)(0.5 + 0.5ρ)2

) ∣∣
ρ=ρ∗k

which is easily verified to be strictly decreasing in ρ when ρ > 0.4. Therefore, non-disclosure
maximizes W .
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