
Letina, Igor; Schmutzler, Armin

Working Paper

Inducing variety: A theory of innovation contests

Working Paper, No. 200

Provided in Cooperation with:
Department of Economics, University of Zurich

Suggested Citation: Letina, Igor; Schmutzler, Armin (2017) : Inducing variety: A theory of
innovation contests, Working Paper, No. 200, University of Zurich, Department of Economics,
Zurich,
https://doi.org/10.5167/uzh-111830

This Version is available at:
https://hdl.handle.net/10419/173407

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5167/uzh-111830%0A
https://hdl.handle.net/10419/173407
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
 

 
Working Paper No. 200 

 
 

Inducing Variety:  
A Theory of Innovation Contests 

 
 
 
 

Igor Letina and Armin Schmutzler 
 
 
 

Revised version, June 2017 
 

 

 

 

 
 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
 

 

 



Inducing Variety: A Theory of Innovation Contests
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Abstract

This paper analyzes the design of innovation contests when the quality of an innovation
depends on the research approach, but the best approach is unknown. Inducing a variety
of research approaches is desirable because it generates an option value. We show that
suitable contests can induce such variety. The optimal contest is a bonus tournament,
where suppliers can choose only between a low bid and a high bid. We then compare
the optimal contest to other commonly studied institutions, such as scoring auctions and
�xed-prize tournaments.
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1 Introduction

The use of contests to procure innovations has a long history, and it is becoming ever more
popular. Recently, private buyers have awarded the Net�ix Prize, the Ansari X Prize, and
the InnoCentive prizes. Public agencies have organized, for instance, the DARPA Grand
Challenges, the Lunar Lander Challenge and the EU Vaccine Prize.1 Re�ecting the increasing
importance of these prizes, a literature on contest design has developed. This literature
focuses almost exclusively on how incentives for costly innovation e¤ort can best be provided.
However, e¤ort is by no means the only important requirement for a successful innovation.
A case in point is the 2012 EU Vaccine Prize to improve what is known as the cold-chain
vaccine technology. The ultimate goal of the prize was to prevent vaccines from spoiling at
higher temperatures, which is particularly challenging in developing countries. The rules of
the competition contain the following statement:

"It is important to note that approaches to be taken by the participants in
the competition are not prescribed and may include alternate formulations, novel
packaging and/or transportation techniques, or signi�cant improvements over ex-
isting technologies, amongst others."2

This statement explicitly recognizes the fundamental uncertainty of the innovation process:
Even when the buyer communicates a well-speci�ed objective (such as �nding a way to pre-
vent vaccine spoilage), neither she nor the suppliers will necessarily know the best approach
to achieving this goal. This uncertainty about the quality of innovation resulting from a
particular approach will only be resolved by the act of innovation itself. The innovator will
therefore have to choose between several conceivable approaches without being sure whether
they lead to the goal. If innovators pursue di¤erent approaches, chances are higher that the
best of these approaches yields a particularly valuable (high-quality) innovation. Thus, even
if variety of research approaches has no intrinsic value, it has an option value. Our �rst ques-
tion is therefore: Can innovation contests be used to incentivize suppliers to diversify their
research approaches so as to generate a high expected value of the innovation?

In addition to e¢ ciency (the expected value of the innovation), contest design may also
a¤ect distribution. A contest that induces diversity may yield a high expected value of the
innovation and thereby foster e¢ ciency, but at the same time leave high rents to the suppliers.
Thus, the main question of our paper will be: Which contests are optimal for the buyers,
when the expected value (re�ecting the induced variety of approaches) as well as the expected
payments to the suppliers are taken into account?

The diversity of potential approaches, which is highlighted in the guidelines of the Vaccine
Prize cited above, played an important role in many other examples of innovation procure-
ment. First, the often cited Longitude Prize of 1714 for a method to determine a ship�s
longitude at sea featured two competing approaches.3 The lunar method was an attempt
to use the position of the moon to calculate the position of the ship. The alternative, ulti-
mately successful, approach relied on a clock which accurately kept Greenwich time at sea,
thus allowing estimation of longitude by comparison with the local time (measured by the
position of the sun). Second, when the Yom Kippur War in 1973 revealed the vulnerability of

1See "Innovation: And the winner is. . . ", The Economist. Aug 5, 2010.
2European Comission (2012), "Prize Competition Rules." August 28, 2012 (accessed on April 3, 2015).

http://ec.europa.eu/research/health/pdf/prize-competition-rules_en.pdf
3See, e.g., Che and Gale (2003) for a discussion of the Longitude Prize.
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US aircraft to Soviet-made radar-guided missiles, General Dynamics sought to resolve the is-
sue through electronic countermeasures, while McDonnell Douglas, Northrop, and eventually
Lockheed, attempted to build planes with small radar cross-section.4 Third, the announce-
ment of the 2015 Horizon Prize for better use of antibiotics contains a similar statement as
the announcement of the vaccine prize.5

Architectural contests share some important properties with innovation contests. A buyer
who thinks about procuring a new building usually does not know what exactly the ideal
building would look like, but once she examines the submitted plans, she can choose the
one she prefers. Guidelines for architectural competitions explicitly recognize the need for
diversity. For example, the Royal Institute of British Architects states: �Competitions enable
a wide variety of approaches to be explored simultaneously with a number of designers.�6

Motivated by this long list of examples, we focus in the following on the design of contests
for innovation, with a view towards the induced variety of research approaches. As we will
sketch below, however, our analysis also has interesting implications for the case that suppliers
on anonymous markets decide on the introduction of new products.

In line with the examples, we consider innovation contests in a setting where both the
buyer (the contest designer) and the suppliers (contestants) are aware that there are multiple
conceivable approaches to innovation. Furthermore, none of the participants knows the best
approach beforehand. However, after the suppliers have followed a particular approach, it is
often possible to assess the quality of innovations, for instance, by looking at prototypes or
detailed descriptions of research projects. In such settings, can buyers design contests in such
a way that suppliers have incentives to provide variety? And will they bene�t from doing so?

The existing literature on innovation contests mainly focuses on the problem of providing
incentives for costly innovation e¤ort.7 To our knowledge, we are the �rst to analyze the
optimal design of innovation contests with multiple conceivable research approaches. Our
baseline model is chosen to isolate this design problem in a particularly stark way. We
assume that there are two homogeneous suppliers who have to decide whether to exert costly
research e¤ort and which research approach to choose. In the baseline, we equip the buyer
with strong instruments to induce e¤ort: We assume that, once a supplier joins the contest,
he cannot shirk. This enables the buyer to use subsidies to ensure that e¤ort is exerted. This
assumption, which we will relax later on, allows us to focus on the e¤ects of contest design
on the choice of approaches rather than on e¤ort choice.8

We model the research approach as a point on the unit interval. We assume all approaches
are equally costly, so as to exclude trivial reasons for buyers to prefer some approaches over
others. Crucially, the quality of an innovation and thus the value to the buyer depends
inversely on the distance between the chosen research approach and an ideal approach that
is unknown to all parties. The suppliers and the buyer agree about the distribution of this

4See Paul Crickmore (2003), Nighthawk F-117: Stealth Fighter. Airlife Publishing Ltd.
5�The rules of the contest specify the targets that need to be met but do not prescribe the methodol-

ogy or any technical details of the test, thereby giving applicants total freedom to come up with the most
promising and e¤ective solution, be it from an established scientist in the �eld or from an innovative new-
comer.�European Commision (2015), "Better use of antibiotics." March 24, 2015 (accessed on April 3, 2015).
http://ec.europa.eu/research/horizonprize/index.cfm?prize=better-use-antibiotics

6See Royal Institute of British Architects (2013), "Design competitions guidance for clients." (accessed on
Apr 3, 2015); http://competitions.architecture.com/requestform.aspx.

7Section 6 discusses this literature.
8 If the suppliers can shirk, subsidies cannot be used to induce participation, as the suppliers can always

collect subsidies and then shirk. We study this case in Section 5.1.
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ideal approach, which has a strictly positive, symmetric and single-peaked density. If di¤erent
suppliers try di¤erent approaches, this creates an option value for the buyer who can choose
the preferred innovation once uncertainty is resolved.

In line with the literature on innovation contests, we assume that neither research inputs
(approaches) nor research outputs (qualities) are veri�able, because they are both di¢ cult
to evaluate and the relation between them is stochastic. The lack of veri�ability of research
activity precludes any kind of contract that conditions on research inputs or outputs, and it
motivates the focus on contests.9 The notion of contest design that we use was suggested by
Che and Gale (2003). The buyer prescribes a possible set of prices and commits herself to
paying the price chosen by the supplier from which the innovation is procured. The class of
such contests is very rich.10 Examples include �xed-prize tournaments (when the price set
is a singleton) as well as scoring auctions (when the price set is the set of non-negative real
numbers).11 Contest design in this setting is the choice of the allowable price set and the
subsidies.12

The sequence of moves in our model is as follows: After the buyer has communicated
the rules of the game (and, in particular, the price set), the suppliers choose whether to
enter and, if so, which approach to pursue. Then qualities become common knowledge. After
having observed qualities, suppliers choose bids from the price set. Finally, the buyer selects
the preferred supplier.

We show that the optimal contest for the buyer is what we call a bonus tournament. In a
bonus tournament, the price set consists of two elements � a low price and a high (�bonus�)
price. After qualities have been realized, the suppliers thus can only choose whether to ask
for the high price or the low price. The selected supplier will be paid his bid. Anticipating
this, the suppliers diversify in the hope that their quality advantage over the competitor will
be su¢ ciently high that they can bid the bonus price and win even so. It will turn out that
the amount of diversity implemented in a bonus tournament is determined by the di¤erence
between the bonus price and the low price. We show that, with a bonus tournament, the
buyer can implement essentially any level of diversity. In particular, a bonus tournament with
suitably chosen prices (and possibly a subsidy) implements the socially optimal diversity.
However, full rent extraction is not always possible, and the buyer must trade o¤ e¢ ciency
against rent extraction. Bonus tournaments are still optimal for the buyer: They induce any
desired level of diversity while minimizing rent extraction. This will not lead to the socially
optimal level of diversity, except when research costs are very high. Thus the buyer resolves
the trade-o¤ between e¢ ciency and rent extraction in favor of the latter.

The existing literature on innovation contests has put particular emphasis on �xed-prize
tournaments and on scoring auctions (henceforth auctions for brevity). We therefore also
analyze how these institutions perform in our setting and why they fail to be optimal for the
buyer. Unrestricted auctions induce the social optimum, while auctions with price ceilings
induce less variety. The price ceiling determines the amount of variety. While auctions
can in general implement the same diversity as the optimal bonus tournaments, they always
generate higher revenues for the suppliers. Thus the buyer prefers bonus tournaments to
auctions. Fixed-prize tournaments do not induce any diversity and are therefore less e¢ cient
than auctions and optimal bonus tournaments. Nevertheless, for low research costs, the buyer

9For an extensive discussion see Che and Gale (2003) and Taylor (1995).
10See Che and Gale (2003) for a detailed discussion.
11The term "auction", though common in the literature, is imprecise (see Section 2 for a discussion).
12We exclude participation fees in the baseline model (re�ecting for instance, limited liability).
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prefers the ine¢ cient �xed-prize tournaments to the socially e¢ cient unrestricted auctions.13

We then extend the analysis by showing that, with some caveats, bonus tournaments
perform well even in more general environments. In particular, we extend the model by
allowing the suppliers to shirk. The contests now not only need to incentivize the suppliers to
choose the appropriate research approach, but also to avoid shirking. We show that, as long
as the cost of e¤ort is not too high, bonus tournaments are still optimal contests. However, as
e¤ort costs increase, it becomes more di¢ cult to induce diversity, and for high enough costs,
no contest can implement any diversity. In this case, the optimal contest for the buyer is a
�xed-prize tournament. In addition, we study contests with more than two suppliers, and
contests with more general distributions and quality functions. We also discuss heterogeneous
suppliers, multiple prizes and multiple approaches per supplier. Under very general conditions,
suitable bonus tournaments still induce the social optimum and for large parameter regions,
they still are optimal contests. Moreover, the buyer may bene�t from inviting a large number
of suppliers, which is a straightforward implication of the option value provided by additional
suppliers.

As we discuss in more detail in the conclusion, our analysis has potential applications
beyond innovation contests organized by a single buyer. Our model can be applied to sit-
uations when suppliers in a new market choose products in the face of uncertain demand
by a potentially large number of homogeneous buyers. If we interpret the prize as the ex-
pected product market pro�t of a successful innovator, contest design then corresponds to the
choice of alternative regulatory frameworks for the new market. Our approach shows that
unregulated markets provide incentives for suppliers to choose the socially optimal products,
but at the cost of endowing them with ex-post market power. As a result, regulation may
yield higher expected consumer surplus, even though it does not induce the optimal expected
product quality.

While our main application is to the design of innovation contests, the model is not
limited to innovation settings. Our results have important implication for any contest where
contestants can choose some measure of correlation of outcomes. In particular, prize rules
that award winners based on the margin by which they outperform the second-best contestant
(like auctions or bonus tournaments) will incentivize the contestants to choose less correlated
outcomes. Alternatively, �xed-prize contests will cause contestants to choose too correlated
outcomes.

In Section 2, we introduce the model. Section 3 deals with the design of optimal contests
for the buyer. Section 4 compares several commonly used contests, such as �xed-prize tour-
naments and auctions with and without price ceilings. Section 5 presents extensions of the
model. Section 6 discusses the relation of our paper to the literature. Section 7 concludes,
pointing in particular to the above-mentioned re-interpretation of our model for a world with
many buyers. Proofs are in the Appendix.

2 The Baseline Model

A risk-neutral buyer B needs an innovation that two risk-neutral suppliers (i 2 f1; 2g) can
provide. Each supplier simultaneously chooses whether to carry out costly research and which
approach vi 2 [0; 1] to pursue. Without loss of generality, we assume that v1 � v2; if the
13When, contrary to the assumptions of our main model, su¢ ciently high participation fees are possible, the

buyer implements the social optimum and appropriates the surplus with the participation fees. Whether he
uses a bonus tournament or an auction for implementation is immaterial.
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Figure 1: Illustration of an outcome given v1 and v2 where the ideal approach is �̂.

ordering of approaches does not matter, we use the generic notation vi (and vj , j 6= i). The
cost of approach vi is C (vi) � C � 0. Thus all approaches are equally costly, so that, once
a supplier has decided to participate in the contest, he cannot in�uence the research cost
anymore. This assumption allows us to study the e¤ects of contest design on the choice of
research approaches in isolation and to develop clear intuition for the results. In Section 5.1
we will analyze a model that allows for shirking in the contest, and we will show that the
results from the main model are robust.

The quality qi of the resulting innovation and thus the value to the buyer depends on a
state � 2 [0; 1], which is distributed with density f (�), and corresponds to an (ex-post) ideal
approach. Unless speci�ed otherwise, we maintain two assumptions on qi and �:

Assumption (A1) qi = q (vi; �) � 	� b jvi � �j with b 2 (0;	].14

Thus, the quality di¤erence between the ideal approach �̂ and vi is proportional to the
distance between vi and �̂ (the dashed line for supplier 1, and the horizontal dotted line for
supplier 2 in Figure 1). By (A1), the quality is bounded below by 	� b and bounded above
by 	.

We restrict the distribution of the ideal state as follows.

Assumption (A2) The density function f (�) is (i) symmetric: f (1=2� ") = f (1=2 + ")
8" 2 [0; 1=2], (ii) single-peaked: f(�) � f(�0) 8� < �0 < 1=2, (iii) has full support: f (�) > 0
8� 2 [0; 1] and (iv) satis�es f 0(x) < 2f(0) for all x 2 [0; 1=2].

A wide class of distributions (including the one in Figure 1) satis�es (A2). For each of these
distributions, there is an approach which has the highest expected quality ex ante, namely
the median. Furthermore, single-peakedness makes it more di¢ cult to induce diversity: As
there is less mass on approaches that are further away from the median, contestants will not
choose them without additional incentives. Part (iv) excludes the possibility that some states
are much less probable than others; in this sense, it requires that the amount of uncertainty
about the ideal approach is su¢ ciently high.

In this setting, the buyer chooses an innovation contest determining the procedure for
choosing and remunerating suppliers. These contests are closely related to those analyzed

14	 needs to be large enough so that it is worthwhile for the buyer to hold a contest. A simple su¢ cient
condition is 	 > b+ 2C: This assumption is innocuous as none of our results depend on 	.
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by Che and Gale (2003), where suppliers choose e¤orts rather than approaches. In line with
these authors, we assume that neither vi nor qi is contractible.15 The environment (b;	; C) of
a contest consists of the utility and cost parameters. The buyer chooses a set P of allowable
prices (bids), where P is an arbitrary �nite union of closed subintervals of R+.16 We denote
the minimum of P as P and the maximum, if it exists, as P . Moreover, we allow that the
buyer can o¤er subsidies t � 0 to the suppliers.17

To sum up, an innovation contest is the extensive-form game between the buyer and the
suppliers given by the buyer�s choice of fP; tg and the following rules:

Period 1: Suppliers simultaneously choose whether to engage in research and
they select approaches vi 2 [0; 1].

Period 2: The state is realized. All players observe qualities q1 and q2.
Period 3: Suppliers simultaneously choose prices pi 2 P.
Period 4: The buyer observes prices; then she chooses a supplier i 2 f1; 2g. She pays

pi + t to the chosen supplier and t to the other supplier.

Importantly, the suppliers potentially receive two types of payments, namely the revenue
from the contest (that is paid only to the successful supplier) and the subsidies paid to both
suppliers. For ease of exposition, we sharpen the requirement that qualities are observable
by assuming that all players observe vi and �, as this allows us to apply the subgame perfect
equilibrium (SPE). It will be obvious that, as long as qualities are observable, the observability
of vi and � plays no role; as these variables are payo¤-relevant only inasmuch as they a¤ect
qualities. As long as all players can observe qualities, all results still hold with the SPE
replaced by a Perfect Bayesian Equilibrium with suitably speci�ed beliefs.18

Moreover, we provide an extensive discussion of the case that not even quality is observable
in the working paper (Letina and Schmutzler 2015); we summarize the discussion brie�y in
Section 5.3.2.
The following are examples of innovation contests:

1. P = R+: an auction without a price ceiling.

2. P =
�
0; P

�
: an auction with a price ceiling P .

3. P = fAg, where A � 0: a �xed-prize tournament (FPT).

4. P = fA; ag, where A > a � 0: a bonus tournament.

As to the �rst two examples, the (common) auction terminology is slightly misleading.
While suppliers choose bids as in a standard auction, the rules do not commit the buyer to
selecting the supplier with the lowest bid. Instead, the buyer�s choice is fully discretionary. As
the result, the buyer behaves as if she had committed to a scoring rule, which weighs prices

15For example, Che and Gale (2003) and Taylor (1995) assume that neither inputs nor outputs of innovative
activity are veri�able. As an example of the veri�ability problem, Che and Gale (2003) point to the protracted
battle between John Harrison, the inventor of the marine chronometer, and the Board of Longitude, over
whether his invention met the requirements of the 1714 Longitude Prize. See also references in Taylor (1995).
16Formally, P is chosen from I(R+) �fP � R+ : P = [�kk=1[ak; bk] or P = [�kk=1[ak; bk] [

�
ak+1;1

�
for

ak � bk 2 R+; �k 2 Ng.
17 In the current setting the buyer cannot bene�t from using individualized subsidies; this is di¤erent with

more than two suppliers (see Section 5.2).
18Proof available on request.
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and (the monetary value of) quality in the same way. The last example di¤ers from an FPT
in that the supplier has to specify whether she accepts a low price a if chosen, or asks for
the higher "bonus" price A instead. The bonus tournament will turn out to be the optimal
contest for the buyer.

To �nish the description of the contests, we require several further conventions. First, we
apply the following tie-breaking rules, which can be interpreted as second-order lexicographic
preference for winning and for higher quality.

(T1) (Preference for quality) If suppliers o¤er the same surplus, the buyer prefers the higher
quality one. If both have the same quality, the tie is randomly broken.

(T2) (Preference for winning) Given equal monetary payo¤s, the suppliers prefer to partici-
pate in the contest rather than to stay out and to win the contest rather than not.

(T1) and (T2) guarantee that the outcomes are robust to in�nitesimal changes in the
reward structure.

Second, we assume that, in cases where only one supplier decides to participate, the contest
is called o¤ and players obtain zero overall payo¤.

Third, we will con�ne our analysis to the case of pure-strategy equilibria for simplicity.

3 The Optimal Contest for the Buyer

In this section, we characterize the optimal contest for the buyer.19 We start with some
auxiliary results. These results characterize the social optimum, and they deal with the
pricing subgames.

3.1 Auxiliary Results

We introduce the following terminology which applies when both suppliers participate. For
(v1; v2) 2 [0; 1]�[0; 1], the (expected) total surplus is ST (v1; v2) � E� [max fq (v1; �) ; q (v2; �)g]�
2C. The social optimum is (v�1; v

�
2) � argmax(v1;v2)2[0;1]2 ST (v1; v2). Thus, we are focusing

here on the optimal choice of approaches for a given number of suppliers (two). In Section
5.2, we deal with the optimal number of suppliers.

For (v1; v2), implemented as an equilibrium of a contest (P; t), S(P;t)i (v1; v2), the (ex-
pected) surplus of supplier i in an equilibrium, is the sum of the expected revenue and the
subsidies, net of research costs. The (expected) buyer surplus, S(P;t)B (v1; v2), is expected max-
imal quality minus the expected revenues and subsidies of the suppliers. We usually drop the
superscript (P; t) when there is no danger of confusion. For precise de�nitions of S(P;t)B (v1; v2)

and S(P;t)i (v1; v2), we refer the reader to Appendix 8.1.1.
As the costs of each approach are the same, the social optimum (v�1; v

�
2) maximizes the ex-

pected maximal quality E� [max fq (v1; �) ; q (v2; �)g] or, equivalently, minimizes the expected
19An attentive reader might conjecture that the buyer could implement arbitrary outcomes with a mechanism

where he just pays unconditional transfers t = C and sets a singleton prize set P = f0g. The suppliers are
then indi¤erent between entering and not entering, and, in monetary terms, between all approaches. However,
our "preference for winning" assumption (T2) would ensure that such a mechanism would have a unique
equilibrium with v1 = v2 = 1=2. Even if we dispensed with assumption (T2), the equilibrium structure of such
a mechanism would not be robust to small changes in the cost of di¤erent approaches or to assuming that
duplicating an approach is less costly than developing an original one.
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minimal distance to the ideal approach, E� [min fjv1 � �j ; jv2 � �jg]. With only one poten-
tial supplier i, the optimal approach would correspond to vi = 1=2, as this maximizes the
expected quality. With two suppliers, the optimization needs to take into account the option
value generated by having di¤erent choices once qualities have been observed. It is always
socially optimal to have at least some diversi�cation. This simple but important observation
holds without the restrictions on distributions coming from (A2), as long as there is any un-
certainty about the ideal approach. The intuition is simple: Starting from a situation with
identical approaches, suppose one of the suppliers chooses an arbitrary alternative approach,
whereas the other supplier continues to choose the same one. After this modi�cation, the
minimal distance decreases for a set of ideal states with positive measure. There can be no
� for which the expected minimal distance to the best approach increases, as the initial ap-
proach is still available. The following result provides a sharper characterization of the social
optimum:20

Lemma 1 The unique social optimum with v�1 � v�2 satis�es F (v�1) = 1=4 and F (v�2) = 3=4
and thus v�2 = 1� v�1.

Hence v�1 and v
�
2 are symmetric around 1=2. The result relies on (A2(iv)), which states

that the ideal state distribution is su¢ ciently dispersed.21 The socially optimal location of
approaches is fully determined by the distribution F , whereas the level of research costs has no
in�uence on the optimal diversity. We now characterize the equilibria of the pricing subgames,
using the following notation.

Notation 1 p (�) = p (�; v1; v2) � max fp 2 Pj p � jq(v1; �)� q(v2; �)j+ Pg.

In words, for any realization of �, p (�) is the maximal allowed price which guarantees
that the supplier with higher quality wins the contest, irrespective of the price chosen by
the supplier with the lower quality. The following result is closely related to the familiar
�asymmetric Bertrand� logic that ine¢ cient �rms choose minimal prices, whereas e¢ cient
�rms translate their e¢ ciency advantage into a price di¤erential.22

Lemma 2 The subgame of an innovation contest corresponding to (qi; qj) has an equilibrium
such that pi (qi; qj) = p (�) if qi � qj and pi (qi; qj) = P if qi < qj. In any equilibrium of any
contest, pi (qi; qj) = p (�) if qi � qj.

Lemma 2 sharpens the Bertrand logic to account for bounded and/or non-convex price
sets: The price di¤erential will only fully re�ect the quality di¤erential when the corresponding

20The result is similar to the familiar �nding that, in a Hotelling model (with uniformly distributed consumers
and without price competition), �rms should optimally spread equally.
21The condition guarantees that the expected quality is a strictly concave function of the approaches. It is

thus more restrictive than necessary. A simple necessary condition for the optimum to satisfy F (v�1) = 1=4
and F (v�2) = 3=4 is f(1=2) < 2f(v

�
1); otherwise the objective function is not even locally concave. Moreover,

this condition turns out to be necessary for the existence of a social optimum with v�2 = 1� v�1 . It is simple to
provide examples where f(1=2) < 2f(v�1) is violated.
22The adequacy of pure-strategy equilibria in asymmetric Bertrand games has received some attention,

in particular, but not only, because they tend to involve weakly dominated strategies (see Blume 2003 and
Kartik 2011). In our setting, these issues are resolved by the appeal to the "preference for quality" (T1) and
"preference for winning" (T2). In some of our contests (in particular, in auctions with and without price
ceilings), constructions as in Blume (2003) and Kartik (2011) exist, where the low-quality �rm mixes over a
small interval of prices.
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bid of the high-quality supplier is in the price set P. In many cases, the equilibrium described
in Lemma 2 is unique.23 We need further notation:24

Notation 2 �q(vi; vj) � jq(vi; vi)� q (vj ; vi)j is the maximum quality di¤erence given (vi; vj).

To understand why �q(vi; vj) is the maximum quality di¤erence, note that, for � 2
[0; v1][[v2; 1] the quality di¤erence between the two approaches is equal to jq(vi; vi)� q (vj ; vi)j
and thus constant; whereas it is smaller for � 2 (v1; v2). By Lemma 2, in any subgame the
successful supplier chooses the highest available price not exceeding the sum of the qual-
ity di¤erential and the minimum bid. We now sharpen this result for subgames following
equilibrium choices (v1; v2).

Lemma 3 Let v1 � v2. (i) If a contest implements (v1; v2), then �q (v1; v2) + P 2 P. (ii) If
� 2 [0; v1] [ [v2; 1], the successful supplier bids pi (qi; qj) = �q (vi; vj) + P .

Lemma 3 is a key result. It implies that the amount of diversity that any contest can
implement is limited by the highest price that the contest allows. Intuitively, (i) states that,
if �q (v1; v2) + P =2 P, suppliers could increase their chances of winning by small moves
towards the approach of the other party, without reducing the price in those cases where they
win. (ii) shows that in all states outside the interval (v1; v2) the buyer pays a constant price,
re�ecting the (maximal) quality di¤erence between the two suppliers. Therefore, to implement
any (v1; v2), a buyer has to pay at least �q (v1; v2) (F (v1) + 1� F (v2)) in expectation to the
suppliers.

3.2 Characterizing the Optimum

We now turn to our main results. Before identifying the optimal contest for the buyer, we
�rst show that bonus tournaments can implement a wide range of allocations.

Proposition 1 Any (v1; v2) such that 0 < v1 � 1=2 � v2 < 1 can be implemented by a
bonus tournament with su¢ ciently high subsidies. In particular, the social optimum can be
implemented.

Thus, the buyer can implement any desired diversity in a bonus tournament. The proof
shows that implementation works with P = fA; 0g and A = �q(v1; v2), so that A is the
corresponding maximal quality di¤erence. For instance, to induce the social optimum, the
buyer has to set A = �q(v�i ; v

�
j ). The equilibrium pricing strategies turn out to be p1(); p2()

such that pi (qi; qj) = A if qi � qj � A and 0 otherwise.25 The supplier only asks for the
bonus A when his quality advantage is maximal (� 2 [0; v1] [ [v2; 1]); otherwise he accepts
23 If P is convex and supP > �p (�) for all �, then pi (qi; qj) = P for qi < qj in every equilibrium. To see this,

note that, according to Lemma 2, pj = p (�) = P + q (vj ; �)� q (vi; �) in any equilibrium for the high-quality
supplier j. If pi > P , then j can choose a slightly higher prize, and he still wins. Hence, this is a pro�table
deviation.
24Here and in the following, q(vi; vi) = q(vi; �)j�=vi , etc.
25 Implementation is not unique, and a bonus tournament will generally admit many equilibria. In particular,

if v�i < v�j is an equilibrium of a bonus tournament, then any vi; vj such that jvi � vj j =
��v�i � v�j �� and

vi � 1=2 � vj are equilibria of the same bonus tournament. The natural equilibrium to focus on is the
equilibrium which is symmetric around the mean, which will be the equilibrium that the principal will want
to implement.
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the low price. Therefore, the buyer pays the lowest price compatible with Lemma 3 for
� 2 [0; v1] [ [v2; 1]. Clearly, the price 0 is also minimal on (v1; v2). The bonus tournament
is thus a �exible instrument with which the buyer can �ne-tune diversity with low supplier
revenues. This suggests that the optimal contest is in this class. However, this intuition is
incomplete, as it does not account for subsidies. We now show that it is nevertheless always
optimal for the buyer to use bonus tournaments. However, she will not always implement the
social optimum.

Theorem 1 (i) The buyer optimum can be implemented with a suitable bonus tournament
(fA; 0g; t) where the suppliers obtain an expected surplus of zero.
(ii) If C � F (v�1)�q(v

�
i ; v

�
j ), the optimal contest for the buyer is a bonus tournament that

implements the social optimum, with subsidies used to ensure break even.
(iii) If C < F (v�1)�q(v

�
i ; v

�
j ), the optimal contest for the buyer is a bonus tournament that

implements suboptimal diversity.

Whereas (i) states the optimality of bonus tournaments, (ii) and (iii) specify the details
for the two di¤erent parameter regions. In both cases, the suppliers earn zero surplus. When
research costs are high enough and quality di¤erences in the social optimum are low (ii), the
buyer implements the social optimum. When research costs are low, this is no longer true.
Intuitively, diversity yields high quality for the buyer, but gives ex-post monopoly power to the
supplier.26 As a result, whenever there is a tradeo¤ between rent extraction and e¢ ciency,
the buyer resolves it in favor of rent extraction by distorting variety relative to the social
optimum.

To understand the desirable properties of bonus tournaments, recall from Lemma 3 that
in any contest implementing (v1; v2), the price �q(v1; v2) +P has to be in the price set. This
�xes the price that the buyer has to pay in any state of the world when the quality di¤erence
is maximal. What contest design can achieve, then, is to reduce prices paid in those states
of the world when � 2 (v1; v2), implying that the quality di¤erence is not maximal. With
a bonus tournament (A; a), the buyer commits herself not to pay prices between a and A
in these states: Even when the quality di¤erence is greater than a, she only pays a. Setting
a = 0 clearly minimizes the revenues of the suppliers. The only remaining question is how
much diversity the buyer optimally induces. Through the option value it generates, diversity
can increase e¢ ciency. However, it is costly for the buyer to induce. As mentioned before,
the theorem shows that whenever there is a tradeo¤ between e¢ ciency and rent extraction,
the buyer sacri�ces e¢ ciency.

Participation fees: We now brie�y discuss what would happen if buyers could charge
participation fees e > 0. She would do this only if C < F (v�1)�q(v

�
i ; v

�
j ), in which case the

optimal fee e� satis�es C + e� = F (v�1)�q(v
�
i ; v

�
j ), so that she achieves the �rst-best.

27 With
or without participation fees, the buyer thus designs the contest so that the suppliers exactly
break even on expectation. Moreover, the bonus tournament is still optimal with participation
fees. However, contrary to the case without participation fees, its incentive properties are used
for e¢ ciency reasons rather than for rent extraction.

26Recall that, to implement (v1; v2), the buyer sets A = �q(v1; v2). Thus, for small diversity the bonus
price is small.
27 If the buyer is limited to setting fees below e�, she will charge the maximum allowable fee.
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4 Auctions and Fixed Prize Tournaments

In Section 3.2, we characterized the optimal contest. We now study two other types of contests
that are discussed in the literature, namely auctions and �xed prize tournaments.

Auctions generally have good incentive properties; for example, auctions are the optimal
contest in the setting of Che and Gale (2003). On the other hand, �xed prize tournaments
are very common innovation contests. Next, we examine how these contests perform in our
setting, where the choice of research approaches is important.

Proposition 2 (i) For any t such that the suppliers� participation constraints are met, the
auction mechanism (P = R+) implements the social optimum. (ii) For any A � 2C, the
unique equilibrium of an FPT (P = fAg) implements (v1; v2) = (1=2; 1=2). (iii) Whenever
C < F (v�1)�q(v

�
i ; v

�
j ), the buyer prefers the ine¢ cient FPT to the e¢ cient auction.

Proposition 2(i) states that the auction induces the e¢ cient amount of diversity. It is
intuitively clear that an auction implements some diversity: With identical approaches, no
supplier will earn a positive revenue. Any move away from the other supplier will lead to
quality advantages in a measurable set of states and thereby to positive expected revenues.
Auctions implement the socially e¢ cient outcome because they align the externalities of the
choice of an approach vi with the private bene�ts. For example, �x some v2 and consider a
marginal change of v1. Such a change generates externalities only in the states of the world
for which the quality of supplier 2 is greater than the quality of supplier 1. Furthermore, the
size of the externality is exactly the change in the quality di¤erence. Since supplier 1 wins
the auction only when his quality is higher and he bids exactly the quality di¤erence, the
private incentives and the externalities are aligned. While we prove Proposition 2(i) directly
in Appendix 8.4, an analogous result also applies for more general state distributions and
quality functions and for arbitrary numbers of suppliers. It also holds when suppliers are
heterogeneous. This result extends beyond auctions to any type of institution that gives the
chosen supplier a positive share of the quality di¤erence to the next-best alternative.

Proposition 2(ii) states that an FPT induces no diversity at all. The intuition for the
absence of diversity is straightforward and well-known; it corresponds to the principal of
minimum di¤erentiation in the standard model of locational competition with �xed prices
(Hotelling, 1929) and to the median voter theorem (Downs, 1957).28 As the size of the prize
is independent of quality di¤erences in an FPT, the suppliers care only about maximizing
the expected winning probability. By (A2), this requires moving to the center. In particular,
there is no diversity.

As to (iii), even though an auction implements the social optimum, it leaves rents to the
successful supplier whenever research costs are low enough. Because it avoids such rents, the
buyer may prefer to use a suitable FPT. A bonus tournament combines the advantages of
FPTs and auctions: It can achieve the same e¢ ciency as an auction, while reducing supplier
rents, as the Figure 2 illustrates. If the realized state of the world is � 2 [0; v1] [ [v2; 1], the
payment is the same in the auctions and in the bonus tournament by Lemma 3. However, for
� 2 (v1; v2) the winning supplier captures the entire quality di¤erence in the auction, while
in the bonus tournament the winning supplier receives only the low price a.

28However, the voting literature has also discussed why parties might di¤erentiate by choosing "polarized
platforms" (as in Wittman, 1977, 1983). On a broadly related note, the relative weight on accuracy and
publicity of forecasts determines whether or not experts want to cluster on the most likely outcome (Laster
et al., 1999).
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Figure 2: Comparison of payments in an auction and a bonus tournament.

The trade-o¤ between e¢ ciency and rent extraction also shows up when analyzing price
ceilings in auctions.

Corollary 1 An outcome (vi; vj) that is implemented in an auction with price ceiling �P
satis�es �q(vi; vj) � �P . Thus diversity is bounded by the price ceiling.

If the maximal quality di¤erence between the two suppliers were above the maximum
feasible bid, the supplier could not charge the buyer for this quality di¤erence. He could
thus choose an approach slightly closer to the competitor to increase his chances of winning
without reducing the price.

Corollary 1 embeds the auction without price ceiling and the FPT as polar cases. In
an auction without price ceiling, suppliers are free to choose the bid and thus capture the
bene�ts of diversi�cation. This results in optimal diversity. By Corollary 1, price ceilings
limit this possibility: They determine an upper bound on equilibrium diversity. A reduction
in the price ceiling leads to lower equilibrium diversity. Thus, the choice of the price ceiling
involves a trade-o¤ between e¢ ciency-increasing diversity and market power for the suppliers.
Consistent with the logic of Theorem 1(iii) and Proposition 2(ii), the following result shows
that the buyer never resolves the trade-o¤ in favor of e¢ ciency when costs are low.

Corollary 2 Let C = 0. Among all contests where P is convex, the buyer�s surplus is maxi-
mal in an FPT with A = 0.

The proof of Corollary 2 relies heavily on the fact that higher quality suppliers bid the sum
of the quality di¤erential and the minimum P whenever available (Lemma 2). Thus the buyer
surplus, as the di¤erence between the expected maximal quality and the expected payment,
is the di¤erence between the expectation of the minimum quality and the minimum bid. The
buyer�s best choice is an FPT with A = 0, because this maximizes the minimum quality and
minimizes the minimum bid.

Remember that the price set in a bonus tournament is of the form fA; ag. The last result
thus clearly underlines the role of non-convex price sets in a bonus tournament for the buyer
optimum. A buyer who is con�ned to the class of contests with convex price sets (including
auctions and FPTs) cannot pro�tably induce diversity.

5 Extensions

In this section, we extend the model in several directions and study the robustness of our
main results. When suppliers have the option to shirk, the analysis is more subtle, because
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the buyer can no longer rely on subsidies. Nevertheless, we show that as long as the cost of
e¤ort is not too high, bonus tournaments are still optimal. Moreover, we show that, even with
more than two suppliers, bonus tournaments still have desirable properties and are optimal
contests under some circumstances. Finally, we study more general distributions and quality
functions and several other extensions.

5.1 Inducing E¤ort and Diversity

The baseline model assumes that once a supplier joins a contest, his only choice is which
research approach to pursue. Importantly, all approaches are equally costly, so that the
supplier cannot shirk by reducing e¤ort. Because of this property of the baseline model, it
was possible to focus on implementing diversity in contests, while shutting down the e¤ects
of contest design on the incentives to induce e¤ort. In this section, we consider contest design
when both the e¤ort choice and the research approach choice a¤ect the �nal quality of the
innovation. We show that our main result is robust as long as the cost of e¤ort is not too
high. In this case, a bonus tournament is an optimal contest for the buyer. However, for
su¢ ciently high costs, we show that no contest can implement any diversity. Consequently,
the optimal contest is an FPT.

In the baseline model, a supplier i was forced to choose an approach vi 2 [0; 1] and all
approaches were equally costly. In this section, we allow the suppliers to shirk, by choosing
an approach f�1g. That is, each supplier i chooses an approach vi 2 f�1g [ [0; 1]. The
cost of shirking is zero, that is C(�1) = 0, while all other approaches are equally costly, i.e.
C(v) = C > 0 for all v 2 [0; 1]. Shirking produces zero quality, irrespective of �, while the
quality of other approaches is determined as before. As in the main model, we assume that
the value of the innovation 	 is large enough, so that q(v; �) > q(�1; �) for any v 2 [0; 1] and
all �: One major di¤erence to the baseline model is that subsidies cannot be used to induce
agents to choose an approach v 2 [0; 1], as a supplier could simply collect the subsidy and
then shirk. Hence, the buyer will not use subsidies, and has to rely on expected revenues from
the contest to induce the suppliers to exert e¤ort.

The next result examines the optimal contests which induce both diversity and e¤ort.

Proposition 3 Suppose (A1) and (A2) hold and shirking is possible. Denote the social opti-
mum with v�1; v

�
2.

(i) If C < F (v�1)�q(v
�
i ; v

�
j ), the optimal contest for the buyer is a bonus tournament with

prizes P =fA; 0g, which implements less diversity than socially optimal.
(ii) If F (v�1)�q(v

�
i ; v

�
j ) � C � F (v�2)�q(v�i ; v�j ), the optimal contest for the buyer is a bonus

tournament that implements the socially optimal diversity. The prizes are P =fA; ag; where
A = 2C +�q(v�i ; v

�
j )=2 and a = 2C ��q(v�i ; v�j )=2.

(iii) There exists �C such that if C > �C, no contest can implement strict diversity and the
optimal contest for the buyer is an FPT.

Part (i) of Proposition 3 is a direct implication of Theorem 1(iii), which shows that,
even when subsidies are available, a bonus tournament without subsides is optimal if C <
F (v�1)�q(v

�
i ; v

�
j ). Thus, a fortiori, when this condition holds, the buyer also optimally uses a

bonus tournament when subsidies are not available. However, the buyer implements subopti-
mal diversity, and in equilibrium the expected revenues of the suppliers are equal to C, so that
the suppliers just break even. In the baseline model of Section 2, when C � F (v�1)�q(v�i ; v�j )
the buyer implements the socially optimal diversity, and uses subsidies to make sure that the
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suppliers break even. However, in the current setting subsidies are not feasible. Proposition
3(ii) shows that the buyer can actually use the low price in the bonus tournament as an
(imperfect) substitute for the subsidies. A positive low price a acts as a subsidy because it
increases expected revenues of the suppliers. It is imperfect because, as we know from Lemma
3, A�a = �q(v�i ; v�j ) in any bonus tournament that implements the social optimum. Thus as
a grows, the relative di¤erence between the bonus and the low price ((A� a) =A) decreases;
as a result, it becomes more attractive to deviate and increase the probability of winning the
low price (at the cost of never winning the bonus price). This can be shown to imply that
there is a bound to the revenue that can be given to the suppliers in a bonus tournament,
while implementing the socially optimal diversity � which is given by F (v�2)�q(v

�
i ; v

�
j ). More

generally, as the proof of 3(iii) shows, there is a bound on the revenue that can be given to
suppliers in any contest implementing any (strict) diversity of research approaches. If the
costs C are su¢ ciently high, then there does not exist any contest which implements any
diversity of approaches when subsidies are not available, and the best the buyer can do is to
use an FPT.

In the following, we simplify the analysis by assuming that the distribution of � is uniform.

Assumption (A2)� f (�) = 1 8� 2 [0; 1].
In this case, Proposition 3 has a particularly simple interpretation.

Corollary 3 Suppose research costs are C > 0 and that (A1) and (A2)�hold.
(i) If C < b

8 , the optimal contest for the buyer is a bonus tournament with prizes P =fA; 0g,
which implements less diversity than socially optimal.
(ii) If b8 � C �

3b
8 , the optimal contest for the buyer is a bonus tournament that implements the

socially optimal diversity. The prizes are P =fA; ag; where A = 2C + b=4 and a = 2C � b=4.
(iii) If C � 9b

16 , the optimal contest for the buyer is an FPT.

When the state distribution is uniform, we can explicitly derive the value of a bound
above which no contest can implement diversity. Moreover, Corollary 3 reveals an alternative
intuition for when the bonus tournament is optimal. For a �xed C an increase in b will
eventually lead to a situation where a bonus tournament is optimal. Remember that b captures
the cost (quality loss) resulting from an approach to innovation that is not ideal. Thus, when
b is high, the suppliers know that the buyer is willing to o¤er high bonus prizes for diversity,
which will in turn make it easier to induce suppliers to exert e¤ort.

The main message of this extension is that bonus tournaments remain optimal contests
for inducing diversity, as long as the e¤ort costs are not too high. When the e¤ort costs are
high, we have shown that no contest can induce variety, leading to the optimality of FPTs.

5.2 The Number of Suppliers

In innovation contests there are usually more than two suppliers. For example, there were
49 registered competitors in the EU Vaccine Prize, 12 of which submitted �nal designs for
evaluation.29 We therefore now deal with the possibility that there are many suppliers. For
simplicity, we also assume that the distribution of ideal states is uniform. Otherwise the
model corresponds to the baseline case of Section 2. In this framework, we can characterize
the social optimum and the equilibria of the main contests previously discussed. Though most
29European Commision (2014), "German company has won the EU�s e 2 million vaccine prize." March 10,

2014 (accessed on April 3, 2015). http://ec.europa.eu/research/health/vaccine-prize_en.html
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Figure 3: Equilibria when n = 6.

results also apply to the case n = 3, an FPT does not have a pure strategy equilibrium in
this case.30 To allow for simple formulations, we con�ne ourselves to n > 3. Finally, in this
extension as well as in the case of more general distributions of the ideal state � (Section
5.3.1), some suppliers will ex ante be in a more favorable position than others. Thus, the
minimum subsidy needed to satisfy the participation constraints will generally be di¤erent
across suppliers. To focus on the incentives of suppliers to diversify, we will allow the buyer
to o¤er di¤erent subsidies to di¤erent suppliers. That is, for each supplier i, the buyer will
o¤er a subsidy ti. We consider the case of individualized subsidies here; we brie�y sketch the
main arguments for common subsidies (t1 = � � � = tn) below.

Lemma 4 Suppose there are n > 3 suppliers and (A1) and (A2)�hold.
(i) The social optimum is (v�1; :::; v

�
n) = (1=2n; 3=2n; 5=2n; :::; (2n� 1) =2n).

(ii) The social optimum can be implemented with a suitable bonus tournament or with an
auction.
(iii) In any equilibrium of an FPT with n suppliers, there is duplication, and the amount of
diversity (de�ned as the distance between the highest and lowest approach) is ine¢ ciently low.
As n increases, the di¤erence between the socially optimal diversity and the minimal diversity
in any FPT equilibrium converges to zero.

Figure 3 illustrates the result for n = 6. In line with Lemma 4(i), there is no duplication
in the social optimum, and the approaches are evenly spread. The buyer can implement
the social optimum with a bonus tournament or an auction. The two other constellations
describing the equilibria of the FPT highlight implications of Lemma 4(iii). First, the two
most extreme approaches are not as far apart as the most extreme approaches of the social
optimum; in this sense, there is less than optimal diversity. Second, there is duplication.31

Part (iii) of Lemma 4 is very closely related to familiar results for locational competition
(Eaton and Lipsey, 1975). We nevertheless state it here for completeness because we are
interested in the comparison between the di¤erent institutions.
30This has been observed for the equivalent Hotelling model with �xed prizes by Eaton and Lipsey (1975);

see Shaked (1982) for a calculation of the mixed-strategy equilibrium.
31The remaining features of the depicted FPT hold in a class of FPT equilibria given in Lemma 10 in

Appendix 8.6: The two most extreme approaches are always chosen by two suppliers. Moreover, depending on
the speci�c equilibrium, there may be additional duplication for intermediate approaches.
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Proposition 4 Suppose there are n > 3 suppliers and (A1) and (A2)�hold.
(i) If C � b=2n2, a suitable bonus tournament is an optimal contest for the buyer.
(ii) If C < b=2n2 the buyer strictly prefers to implement the social optimum with a bonus
tournament rather than with an auction.
(iii) The buyer prefers to implement the social optimum with a bonus tournament over any
outcome of an FPT whenever C � b(n� 4)=4n2(n� 2).

For the case n = 2, we know that a bonus tournament is an optimal contest for the
buyer for any C. Furthermore, we know that when C is high, the buyer will implement the
social optimum and extract the entire surplus. On the other hand, as C becomes lower, the
buyer trades o¤ e¢ ciency for surplus extraction and implements less diversity than socially
optimal. Proposition 4(i) is analogous to the �rst of these results for n = 2: Namely, when C is
su¢ ciently high, the buyer can still use bonus tournaments to implement the social optimum
and extract the surplus from the suppliers. For the case of lower C, we cannot characterize
the optimal contest, as the tradeo¤ between surplus extraction and e¢ ciency becomes more
complicated. We therefore con�ne ourselves to the comparison of auctions and FPTs with a
bonus tournament which implements the social optimum.

Proposition 4(ii) shows that the buyer still prefers to implement the social optimum with
a bonus tournament rather than with an auction even when C is arbitrarily low. The intuition
is the same as for n = 2, as a suitable bonus tournament requires lower ex post payments
than an auction.

Proposition 4(iii) compares the bonus tournament implementing the social optimum with
the (ine¢ cient) FPTs. It says that when C 2 [b(n� 4)=4n2(n� 2); b=2n2); the buyer prefers
bonus tournaments to FPTs, without claiming that bonus tournaments are optimal contests.
For C < b(n� 4)=4n2(n� 2), an FPT can outperform a bonus tournament implementing the
social optimum. Intuitively, to implement the social optimum the buyer has to give positive
surplus to the suppliers, while an appropriately designed FPT can extract all surplus from the
suppliers. However, b(n� 4)=4n2(n� 2) is equal to zero for n = 4 and it approaches zero as
n!1, so the parameter range in which FPTs outperform bonus tournaments is restricted.

With uniform subsidies (t1 = � � � = tn), Lemma 4 still applies. Nevertheless, the analysis
becomes more complicated. This re�ects the fact that in certain contests the supplier revenues
are not symmetric. When this is the case, in order to satisfy the participation constraint of
suppliers with low revenues, uniform (as opposed to individual) subsidies must leave rents to
suppliers with high revenues. Since the revenues in auctions and FPTs are more symmetric
then those in bonus tournaments, the rents left to the suppliers will be lower. This makes it
more likely that the buyer will prefer auctions and FPTs to bonus tournaments.

Lemma 4 has another simple but important implication: It may be socially optimal to
invite a large number of suppliers. This di¤ers from the case of contests that merely in�uence
the suppliers� e¤orts: Several papers show that, in those settings, the optimal number of
participants is typically two.

Corollary 4 Suppose research costs are C > 0 and that (A1) and (A2)� hold. De�ne

n� (C) = max
n
n 2 Nj 2 � n �

p
b
.
2
p
C
o
and n+(C) = n� (C) + 1. Auctions or bonus

tournament with n� (C) or n+(C) suppliers maximize total surplus in the set of all contests
with an arbitrary number of suppliers.

With straightfoward additional arguments, Corollary 4 is implied by the previous results.
Lemma 4(i) characterizes the socially optimal allocation for given n, and auctions and bonus
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tournaments implement this allocation. Corollary 4 describes the number of suppliers that
optimally balances the gains from higher expected quality against the losses from higher
research costs. The result implies that the optimal number of suppliers increases in b and
decreases in C. While the corollary is stated for the socially optimal contest, it is simple to
show that the buyer can also often bene�t from inviting more than two suppliers and that the
comparative statics are similar. In particular, in a bonus tournament an increase in n leads
not only to an increase in the expected quality (re�ecting higher option value), but also to a
reduction in rents that suppliers 1 and n obtain (re�ecting an increase in competition).

5.3 Other Extensions

We now discuss several other extensions of the baseline model of Section 2. We deal with
heterogeneous suppliers, multiple prizes and multiple research approaches of each supplier.
In particular, the �rst issue is treated in much more detail in the working paper (Letina and
Schmutzler 2015).

5.3.1 Generalized distributions and quality functions.

In this subsection, we assume that there are two suppliers, but we generalize the assumptions
as follows:
Assumption (A1)�qi (vi; �) = 	��(jvi � �j), where �(jvi � �j) is increasing and continuous.
Assumption (A2)�The density function f (�) is (i) symmetric and (ii) has full support:
f (�) > 0 8� 2 [0; 1].

Thus, we relax the requirements that the distribution be single-peaked and relatively �at
and that the distance function be linear. As in Section 5.2, we allow for individual subsidies
t1 and t2.

Lemmas 2, 3 and Proposition 1 also hold under the relaxed assumptions (A1)�and (A2)�.
The proofs are analogous and are therefore omitted here. As a result, the main contests that
we previously dealt with have the same properties as before:

Corollary 5 Modify the baseline model by assuming that (A1)� and (A2)� hold. Then, (i)
the bonus tournament (P = f�q(v�1; v�2); 0g) and the auction mechanism (P = R+) implement
the social optimum. Moreover, (ii) in any FPT (P = fAg for A � 2C), the unique equilibrium
is such that v1 = v2 and F (vi) = 1=2 for i = 1; 2.

We are not able to prove the optimality of the bonus tournaments in general when assump-
tions on distributions and quality functions are relaxed. However, as the next result shows,
when C is high enough the bonus tournament is an optimal mechanism. Furthermore, we can
compare bonus tournaments to auctions and FPTs and we can show that bonus tournaments
generally perform better (from the buyer�s perspective) then the other two institutions.

Proposition 5 Modify the baseline model by assuming that (A1)�and (A2)�hold and denote
with (v�1; v

�
2) the social optimum. (i) If C � max fF (v�1)�q (v�1; v�2) , (1� F (v�2))�q (v�1; v�2)g

then a suitable bonus tournament is an optimal contest for the buyer. (ii) The buyer strictly
prefers a suitable bonus tournament to the FPT whenever C > 0. (iii) The buyer prefers to
implement the social optimum with a bonus tournament rather than with an auction. The
preference is strict for low enough C.
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According to (ii), a suitable bonus tournament is still always preferable to an FPT in
the more general set-up. On the other hand, (iii) shows that when implementing a social
optimum, it is better for the buyer to use a bonus tournament than an auction. The intuition
is similar to that in Section 5.2.

5.3.2 Heterogeneous Suppliers

The assumption of homogeneous suppliers simpli�es the analysis. In many contexts, it is
nevertheless natural to allow for exogenous heterogeneity: Suppliers may di¤er with respect to
expertise or research capabilities. Architects may have di¤erent and essentially �xed styles. In
Letina and Schmutzler (2015), we extend the model to allow for such exogenous heterogeneity.
To this end, we consider a two-dimensional state space [0; 1]2 to capture both exogenous
and endogenous heterogeneity. A �rm�s choice of approach is still one-dimensional, however,
corresponding to the �rst argument of a point in [0; 1]2. The second argument is �xed by
the identity of the �rm, re�ecting exogenous heterogeneity.32 We focus on uniform state
distributions and the case C = 0.

We show that the social optimum only involves diversi�cation if exogenous heterogeneity
is not too strong. As in the case of homogeneous suppliers with low research costs, however,
�xed-prize tournaments do not induce any diversi�cation, but buyers prefer them to auctions.

The framework with heterogeneous suppliers has an additional advantage: For su¢ ciently
heterogeneous buyers, the modi�ed framework allows us to use the alternative informational
assumption that suppliers cannot observe qualities when they submit bids, which is intractable
for homogeneous suppliers. We show that there is no diversi�cation in this equilibrium for an
auction.

5.3.3 Fixed-Prize Tournaments with Multiple Prizes

The US military research agency DARPA carried out various contests to foster the devel-
opment of unmanned vehicles capable of navigating in rugged terrain. In the 2005 DARPA
Grand Challenge, only the winner of the contest was eligible for the prize ($2 million), while
the other contestants received nothing. This corresponds to an FPT as introduced above.
However, in the subsequent DARPA contest, known as the 2007 Urban Challenge, rules spec-
i�ed that not only would the winner receive a prize (which was again $2 million), but the
next two participants would also receive prizes ($1 million and $0.5 million).33 While a full
analysis is beyond the scope of this paper, we can show that a buyer is worse o¤ in an FPT
with two prizes than with a single prize.34 The following result shows that the buyer has
nothing to gain from using multiple prizes.

Lemma 5 In the model with n > 3 players of Section 5.2, suppose that t is su¢ ciently large.
For any equilibrium in an FPT with two prizes A1 > A2 > 0, there exists an equilibrium in
an FPT with a single prize which makes the buyer strictly better o¤.

Clearly, when there are only two suppliers, a second prize has no e¤ect, as the suppliers
would consider it as a pure subsidy, and the e¤ective prize would be the di¤erence between

32Speci�cally, �rm 1 (2) lives on the lower (upper) edge of [0; 1]2.
33See Section 1.4 of the DARPA Urban Challenge Rules (2007) (accessed on June 24, 2015).

http://archive.darpa.mil/grandchallenge/docs/Urban_Challenge_Rules_102707.pdf
34The results can be extended to more than two prizes.
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the �rst and the second prize. The proof of Lemma 5 shows that any equilibrium of an FPT
with two prizes involves more duplication than the chosen equilibrium of an FPT with a single
prize, which leads to a lower buyer surplus. This result suggests that multiple prizes do not
improve diversity.35

5.3.4 Multiple Designs by the Same Supplier

We have assumed so far that each supplier can only develop a single approach. However, in
the 2005 DARPA Grand Challenge, vehicles designed by the Red Team from Carnegie Mellon
University took the second and third place. By developing multiple designs, a supplier inter-
nalizes some of the resulting option value. It is thus natural to allow for multiple approaches
of di¤erent suppliers. The modi�ed model is analytically intractable, but a numerical analysis
suggest that our main results are robust. We study the cases with n 2 f2; :::; 5g suppliers,
each of which can develop m = 2 approaches, and the case with n = 2 suppliers, each of which
can develop m = 3 approaches. We assume that (A1)�and (A2) hold and that C = 0. We
also �x values of 	 and b.36

Numerical Result: Modify the framework of Section 5.2 with n > 3 suppliers by as-
suming that each of them develops m approaches, then: (i) Both a bonus tournament and an
auction implement the socially optimum described in Lemma 4(i), with n replaced by n �m.
(ii) In an FPT, there exists an equilibrium which is identical to the maximally duplicative
equilibrium of an FPT with n �m suppliers, each of which develops one approach.

The notion of a maximally duplicative equilibrium is made precise in Lemma 10 in Appen-
dix 8.6: There, we consider a class of equilibria where maximal duplication occurs when each
active research approach is chosen by two suppliers. While the analysis is clearly incomplete,
the numerical result suggests that the case where n suppliers each develop m approaches can
be analyzed using the framework where n �m suppliers each develop one approach (see Section
5.2).

6 Relation to the Literature

This paper contributes to the literature on optimal contest design, especially the design of
innovation contests. The existing design literature focuses exclusively on e¤ort incentives. In
models of �xed-prize tournaments, Taylor (1995) shows that free entry is undesirable, and
Fullerton and McAfee (1999) show that the optimal number of participants is two. Fullerton
et al. (2002) �nd that buyers are better o¤with auctions rather than �xed-prize tournaments.
In a very general framework, Che and Gale (2003) show that an auction with two suppliers is
the optimal contest. Contrary to the previous literature, our paper focuses on the suppliers�
choice of research approaches rather than on e¤ort levels. We characterize the optimal contests
in such settings, highlighting in particular the useful role of bonus tournaments.

Letina (2016) also studies the diversity of approaches to innovation, but the objects of
analysis and the employed models are very di¤erent. He focuses on a market context with

35Of course, there may be reasons outside of the model which would make multiple prizes a desirable choice
for a contest designer. For example, if suppliers are risk averse, providing multiple prizes may be a way of
increasing their expected utility.
36For details and the code used to obtain numerical results, see Supplementary Material, available at

https://sites.google.com/site/iletina/research.
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anonymous buyers, and he deals with comparative statics rather than optimal design. In
particular, the paper �nds that a merger decreases the diversity of approaches to innovation.

While we are not aware of any other paper that considers optimal contest design when
diversity plays a role, some authors compare contests in related, but di¤erent settings. In
Ganuza and Hauk (2006), suppliers choose both an approach to innovation and a costly
e¤ort.37 However, these authors focus exclusively on �xed-prize tournaments, while we study
the optimal contest design. Erat and Krishnan (2012) analyze a �xed-prize tournament where
suppliers can choose from a discrete set of approaches.38 The authors �nd that suppliers
cluster on approaches delivering the highest quality. This result is related to our result that
there is duplication of approaches in the equilibria of �xed-prize tournaments. In addition to
allowing for alternative contests, our model also considers correlated rather than independent
qualities; it is thus meaningful to speak of similar approaches.39 Schöttner (2008) considers
two contestants who in�uence quality stochastically by exerting e¤ort. She �nds that, for large
random shocks, the buyer prefers to hold a �xed-prize tournament rather than an auction to
avoid the market power of a lucky seller in an auction. This resembles the trade-o¤ underlying
our Proposition 2. However, her analysis does not speak to optimal design and the role of
bonus tournaments. It also does not address the setting with n > 3 suppliers.40

Gretschko and Wambach (2016) analyze the design of mechanisms for public procurement
when exogenously di¤erentiated suppliers o¤er di¤erent speci�cations, and the buyer does
not know her preferences. The modelling of buyer utility is similar to ours, except that the
authors use a Salop circle rather than a Hotelling line. Contrary to our study, however, the
paper does not deal with the question of inducing variety. Instead the authors ask whether
intransparent negotiations or transparent auctions yield higher social surplus.

Our paper is also related to the literature on innovation contests with exponential-bandit
experimentation (see Halac, Kartik and Liu (2016) and references therein). In these models, it
is uncertain whether the innovation is feasible. Suppliers participating in the contest expend
costly e¤ort to learn the state, and they also learn from the experimentation of their opponents.
The goal of the contest is to induce experimentation. However, each supplier experiments in
the same way. In our model, experimentation arises at the industry level for suitable contests,
as the heterogeneity of approaches allows the buyer to pick the best available choice.

More broadly, our paper is related to the literature on policy experimentation. For in-
stance, Callander and Harstad (2015) show that decentralized policy experimentation yields
too much diversity. In their model, there are two heterogeneous political districts which choose
whether or not to experiment with policy. In addition, they choose which policy to experiment
with. A policy experiment is successful with some probability and a successful experiment

37 In Ganuza and Pechlivanos (2000), Ganuza (2007) and Kaplan (2012), the buyer has to choose the design
or alternatively can reveal information about the preferred design.
38See also Terwiesch and Xu (2008) for the e¤ect of number of suppliers when exogeneous random shocks

are large. For empirical evidence see Boudreau, Lacetera and Lakhani (2011).
39See also Konrad (2014) for a variant of Erat and Krishnan�s model where �rst best is restored if the

tie-breaking is decided via costly competition (for example lobbying) as opposed to randomly.
40More broadly related is Bajari and Tadelis (2001) who do not deal with innovations, but with construction

projects. The issue of the right approach to the problem arises in such settings as well. The supplier obtains
new information during the period when the contract is being executed, which allows him to adapt the original
approach at some cost. Since the relationship is between a buyer and only one supplier, the question of
diversity of approaches does not arise. This is also true for the related work by Arve and Martimort (2016)
who study risk-sharing considerations in the design of contracts with ex-post adaptation. Additionally, Ding
and Wolfstetter (2011) consider a case where a supplier can choose to bypass the contest and negotiate with
the buyer directly in an environment where innovation quality is obtained by expending costly e¤ort.
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increases the value of that policy (for all districts) by a �xed amount. Since experimentation
is costly, there is a free riding problem, which is especially severe when the districts want to
experiment with similar policies. To reduce the free riding problem, a district will choose to
experiment with a policy which is not desirable from the perspective of the other district.
Hence, in equilibrium the policy experiments will be ine¢ ciently diverse. Next, they show
that centralization of political power can improve the outcome by reducing diversity. Con-
trary to our model, Callander and Harstad (2015) assume that the success probabilities of
di¤erent experiments are independent, no matter how similar the policies are. This assump-
tion removes the option value of having di¤erent experiments, which is central to our model.
If there existed an ideal policy (in terms of quality) as in our model, then the option value
would have to be traded o¤ against the bene�ts of convergence emphasized by Callander and
Harstad (2015). It would be interesting to see whether and how centralization would help to
resolve this trade o¤.

In a related paper, Bonatti and Rantakari (2016) consider a setting where two agents
choose which project to develop. To successfully develop a project, an agent exerts e¤ort until
a success occurs. For a successful project to be adopted (and yield a positive payo¤) both
agents have to consent to the adoption. By assumption, the agents have opposite preferences
over the set of projects. The agents have an incentive to pursue extreme projects (which
they like the most) but the veto power of the other agent forces them to compromise. As in
Callander and Harstad (2015) the success of one approach is unrelated to the success of any
other approach. This removes the option value of diversity that we identify in our paper.

7 Conclusions and Discussion

The ideal approach to solving an innovation problem is usually unknown to suppliers and buy-
ers. Our paper investigates the implications of this uncertainty for contest design. Under very
general conditions, it is socially optimal for suppliers to take diverse research approaches, and
the social optimum can be obtained with both bonus tournaments and auction mechanisms.
Inducing diversity of approaches to innovation is costly for the buyer. To reduce supplier
rents, she may therefore want to induce suboptimal diversi�cation. Bonus tournaments are
in the set of optimal contests under quite general conditions. The di¤erence between the
bonus and the low price provides incentives for suppliers to diversify, which allows the buyer
to �ne-tune the amount of diversity induced. At the same time, bonus tournaments minimize
the power of suppliers to exploit their quality advantage. The non-convexity of the price set
is decisive for this feature.

Our results have practical implications for the design of innovation contests. While today
most innovation contests feature �xed prizes, our results suggest that a better outcome could
be achieved if an additional bonus prize was paid whenever the winner outperformed the
second-best contestant by a su¢ cient margin. Such bonus prizes would be easy to implement
and would not make the innovation tournaments signi�cantly more complicated then they are
today. Bonus prizes would give incentives to contestants to not only win the contest, but to
win with a large margin. Our model suggests that this incentive would lead to an increase in
the diversity of approaches to innovation.

Beyond innovation contests, our model can be used to analyze how institutions a¤ect
the incentives for experimentation when the optimal approach to solving a given problem is
not known. We can think of our model as capturing product choice in markets with a unit
mass of homogeneous buyers, each of which has unit demand. We can then interpret the
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uncertainty about the ideal state in two ways. First, it may re�ect uncertainty about the
buyers�taste. Second, it may capture an "engineering uncertainty" where the suppliers know
what the buyers would like, but are uncertain about how to achieve this. Our results imply
that an unregulated market maximizes expected total surplus.41 The unregulated market
gives incentives for �rms to optimally diversify, but leaves them with market power. The
trade-o¤ resembles the one between ex-ante incentives and ex-post monopoly power in the
innovation literature. In our case, however, the higher expected quality from the unregulated
market does not result from higher innovation incentives at the individual �rm level, but
rather from the higher diversi�cation incentives at the market level. Our results point to
a novel source of potential ine¢ ciency stemming from price regulation: Firms in industries
with regulated competition will be less likely to su¢ ciently experiment by introducing diverse
products. At the same time, this result also points to the importance of vigorous competition.
The incentive to diversify would be diminished if �rms colluded or divided the market.

41An unregulated market has analogous properties to an unrestricted auction in our contest setting.
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8 Appendix

8.1 Basics

In the following, we introduce some notation that we use throughout the Appendix. We also
formulate the restrictions implied by subgame perfection.

8.1.1 Notation

We consistently use subscripts B for buyers, i = 1; 2 for suppliers and T for "total" (buyers
plus suppliers). Superscripts such as fpt for �xed-price tournament, bt for bonus tournament
or a for auction refer to the contest P under consideration. We will drop these superscripts
whenever there is no danger of confusion.

1. pi (qi; qj) 2 P [	�b;	]
2

is a price strategy function.42

2. �i (pi; pj j qi; qj) is the realized revenue that supplier i earns with prices p1 and p2, con-
ditional on qualities q1 and q2, assuming that the buyer chooses the i sequentially ra-
tionally, i.e., the i that maximizes qi � pi in contest P.43

3. b�i (vi; vj ; pi; pj) is the expectation over �i (pi; pj j qi; qj) when suppliers choose v1,v2, p1 ()
and p2 (), where the expectation is taken over all pairs of quality realizations for given
(v1; v2).

4. �Pi (vi; vj) = b�i (vi; vj ; pi; pj), where pi () and pj () are the subgame equilibria for the
contest P as in Lemma 2, is the (expected) revenue of supplier i.

5. SPi (vi; vj) = �
P
i (vi; vj) + t� C is the (expected) surplus of supplier i.

6. SPB (vi; vj) = E� [max fq (v1; �) ; q (v2; �)g]��P1 (vi; vj)��P2 (vi; vj)�2t is the (expected)
surplus of the buyer.

8.1.2 Subgame-Perfect Equilibrium

A subgame-perfect equilibrium of the innovation contest given by P consists of supplier strate-
gies si = (vi; pi) 2 [0; 1]� P [	�b;	]

2

and buyer strategies � 2 fv1; v2g(P�[	�b;	])
2

such that:

(DC1) �1 and v2 are sequentially rational.

(DC2) �i (pi (qi; qj) ; pj (qj ; qi)j qi; qj) � �i (p0i; pj (qj ; qi) jqi; qj) for all p0i 2 P,(qi; qj) 2 [	� b;	]
2

(sequential rationality of supplier i)

(DC3) b�i (vi; vj ; pi (qi; qj) ; pj (qj ; qi)) � b�i (v0i; vj ; epi (qi; qj) ; pj (qj ; qi)) for all v0i 2 [0; 1] and allepi (qi; qj) 2 P [	�b;	]�[	�b;	] (best-response condition for supplier i).
42For sets X and Y , Y X is the set of all mappings from X to Y .
43When q1 � p1 = q2 � p2, we appeal to tie-breaking rule (T1) below.
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8.2 Proofs of Auxiliary Results (Section 3.1)

8.2.1 Proof of Lemma 1

Suppose, without loss of generality, that v1 � v2. The total surplus is

ST (v1; v2)� 2C =

Z 1

0
maxfq(v1; �); q(v2; �)gdF (�)� 2C =

	� b

0BBBBBBBB@

v1Z
0

(v1 � �) dF (�) +
(v1+v2)=2Z
v1

(� � v1) dF (�)+

v2Z
(v1+v2)=2

(v2 � �) dF (�) +
1Z

v2

(� � v2) dF (�)

1CCCCCCCCA
� 2C.

This is a continuous function with a compact domain, hence it attains the maximum. Note
that

@ST (v1; v2)

@v1
= b (�2F (v1) + F ((v1 + v2) =2)) (1)

@ST (v1; v2)

@v2
= b (1� 2F (v2) + F ((v1 + v2) =2)) . (2)

(1) and (2) imply that there are no boundary optima. To see this, �rst note that @ST (0;v2)@v1
>

08v2 > 0 and @ST (v1;1)
@v2

< 08v1 < 1. Moreover (v1; v2) = (0; 0) and (1; 1) are both dominated
by (1=2; 1=2). Thus, the optimum must satisfy

�2F (v1) + F ((v1 + v2) =2) = 0 (3)

1� 2F (v2) + F ((v1 + v2) =2) = 0: (4)

Together these conditions imply F (v�2) = 1=2 + F (v
�
1).

For v1 2 [0; 1=2], let g (v1) = F�1
�
F (v1) +

1
2

�
. F�1 is well-de�ned because of (A2)(iii).

Inserting v2 = g (v1) in (3) and (4), the �rst-order conditions hold for (v1; v2) = (v1; g (v1)) if

v1 = F
�1
�
F ((v1 + g (v1)) =2)

2

�
: (5)

(5) has at least one solution v�1 2 (0; 1=2). This holds because both sides of (5) are strictly
increasing, and the r.h.s. is positive for v1 = 0 and strictly less than 1=2 for v1 = 1=2. Now
consider (v�1; v

�
2) = (v�1; g (v

�
1)) such that F (v

�
1) = 1=4 and F (v�2) = 3=4. Thus F (v�2) =

F (v�1) + 1=2. Moreover, symmetry implies v
�
1 + v

�
2 = 1 and thus the r.h.s. of (5) is F

�1 �1
4

�
,

so that the �rst-order condition holds for (v�1; v
�
2).

Before proceedingm, we prove one intermediate step.

Lemma 6 If A2 is satis�ed, then f(x) < 2f(y) for all x; y 2 [0; 1].

Proof: By the second fundamental of calculus, f(1=2) =
R 1=2
0 f 0 (x) dx + f (0). Since by

(A2)(iv) f 0 (x) < 2f (0) for all x 2 [0; 1=2], it follows that f(1=2) <
R 1=2
0 2f (0) dx + f (0) <
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2f(0): By (A2)(ii) f (x) � f(1=2) and f (0) � f (y) for all x; y 2 [0; 1], the statement in the
Lemma follows.�

Finally, consider the Hessian matrix

H =

24 @2ST
@v21

@2ST
@v1@v2

@2ST
@v1@v2

@2ST
@v22

35
=

�
�2f (v1) + 1

2f ((v1 + v2) =2)
1
2f ((v1 + v2) =2)

1
2f ((v1 + v2) =2) �2f (v2) + 1

2f ((v1 + v2) =2)

�
.

First, H is negative de�nite at (v�1; v
�
2) if and only if f (1=2) < 2f (v

�
1). To see this, note

that f (v�1) = f (v
�
2) and f ((v

�
1 + v

�
2) =2) = f (1=2). Hence,

�2f (v�1) +
1

2
f ((v�1 + v

�
2) =2) = �2f (v�1) +

1

2
f (1=2) < 0, f (1=2) < 4f (v�1) :

In addition,

jHj = 4f (v�1) f (v�2)� (f (v�1) + f (v�2)) f ((v�1 + v�2) =2) = 4f (v�1)
2 � 2f (v�1) f (1=2) .

This condition holds if and only if f (1=2) < 2f (v�1), which holds by Lemma 6.
Second, H is negative de�nite 8 (v1; v2) if f (1=2) < 2f (0). To see this, note that f (v) is

minimized at v = 0 and maximized at v = 1=2. Hence, f (1=2) < 2f (0) < 4f (0) implies

�2f (vi) +
1

2
f

�
v1 + v2
2

�
� �2f (0) + 1

2
f

�
1

2

�
< 0 8i 2 f1; 2g .

and

jHj = f (v1)
�
2f (v2)� f

�
v1 + v2
2

��
+ f (v2)

�
2f (v1)� f

�
v1 + v2
2

��
> 0.

Therefore, f (1=2) < 2f (0), which holds by Lemma 6, is a su¢ cient condition for (v�1; v
�
2) to

be the unique global optimum.

8.2.2 Proof of Lemma 2

Step 1: Pricing subgame for q1 = q2.
Consider the equilibrium for the subgame de�ned by (v1; v2; �) and the resulting quality

vector (q1; q2). If q1 = q2, the standard Bertrand logic implies that (p (�) ; p (�)) = (P ; P ) is
the unique equilibrium.
Step 2: Pricing subgame for qi > qj
Clearly, if qi > qj . the suggested strategy pro�le is a subgame equilibrium. To see that i must
bid p (�) in equilibrium, �rst suppose pi > p (�). If pi > pj + q (vi; �) � q (vj ; �), supplier j
wins. By setting pi = p (�) � pj + q (vi; �) � q (vj ; �), supplier i can ensure that he wins,
which is a pro�table deviation by (T2). If pi > p (�) and pi � pj+q (vi; �)�q (vj ; �), supplier
i wins. By setting pj = P , supplier j can pro�tably deviate. If pi < p (�), supplier i can
deviate upwards to p (�). He then still wins by (T1), and revenues are higher.
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8.2.3 Proof of Lemma 3

(i) The result is trivial for v1 = v2. For v1 < v2, we show that supplier 1 can pro�tably deviate
to some v01 > v1 if �q (v1; v2)+P =2 P. This immediately follows from the following two steps:
Step 1: If v1 < v2 and �q (v1; v2)+P =2 P, there exists a deviation to v01 2 (v1; v2] such that
the set of states in which supplier 1 wins after the deviation is a strict superset of the set of
states in which the supplier wins before the deviation.
Before the deviation, by Lemma 2, if � 2 [0; v1], supplier 1 wins and p(�) < �q (v1; v2) + P .
By continuity, 9 v01 2 (v1; v2] such that p(�) < �q (v01; v2)+P < �q (v1; v2)+P . By deviating
to v01, supplier 1 wins whenever � < (v

0
1 + v2) =2 rather than when � < (v1 + v2) =2. Step 1

thus follows.
Step 2: After this deviation, the buyer pays a weakly higher price than before.
For � 2 [0; v1], the price is una¤ected. For � 2 (v1; (v01 + v2) =2], the price is at least as high
as before the deviation. Thus, v01 is a pro�table deviation by (T2).
(ii) follows directly from Lemmas 2 and 3 (i).

8.3 Proofs of Main Optimality Results (Section 3.2)

8.3.1 Proof of Proposition 1

Let A = �q(v1; v2) for some (v1; v2). We will show that, in the bonus tournament with
P = fA; 0g and su¢ ciently high subsidies, the strategy pro�les (v1; v2; p1 () ; p2 ()) such that
pi (qi; qj) = A if qi � qj � A and 0 otherwise, form an equilibrium.

Sequential rationality of pi () follows from Lemma 2. We now show that (v1; p1 ())is a best
response of supplier 1 to (v2; p2 ()); the argument for supplier 2 is analogous. For A = 0,
only (v1; v2) = (1=2; 1=2) satis�es the above conditions. Thus, the statement for A = 0 will
follow from Proposition 2(ii). If v1 < v2, �q (v1; v2) > 0, and the probability that supplier
1 wins with a positive prize is F (v1). Deviating to v01 < v1 is not pro�table, because the
winning probability falls to F (bv1), with bv1 < v1 implicitly de�ned by q (v01; bv1)� q (v2; bv1) =
�q (v1; v2) ; and the prize does not rise. It is not pro�table to deviate to v001 2 (v1; ev), whereev = min (2v2 � v1; 1) � 1=2: For such deviations, �q (v001 ; v2) < �q (ev; v2) � �q (v1; v2)8�, so
that the probability of winning a positive prize is 0. Finally, if ev < 1, deviating to v0001 2 [ev; 1]
is not pro�table, because ev � 1=2+v2�v1 implies 1�ev � 1=2�(v2 � v1) � v2�(v2 � v1) = v1
and therefore, by symmetry of the state distribution, 1 � F (v0001 ) � 1 � F (ev) � F (v1). By
analogous arguments, there are no pro�table deviations for supplier 2.

By Lemma 1, the social optimal satis�es F (v�1) = 1=4 and F (v
�
2) = 3=4. Clearly, it must

be that 0 < v�1 � 1=2 � v�2 < 1, and the social optimum can be implemented.

8.3.2 Proof of Theorem 1

The buyer optimally chooses (v1; v2; p1; p2;P; t) 2 [0; 1]2 �P [	�b;	]
2 �I (R+)� [0;+1) so as

to maximize
ST (v1; v2)� b�1 (v1; v2; p1; p2)� b�2 (v1; v2; p1; p2)� 2t

such that, for all i 2 f1; 2g and j 6= i; (DC1)-(DC3) hold and

b�i (vi; vj ; pi; pj) + t� C � 0 for all i; j 2 f1; 2g and i 6= j. (6)

(i) The statement follows from three lemmas. Lemma 7 shows that allocations maximizing
buyer surplus satisfy the conditions of Proposition 1 and can thus be implemented by a bonus
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tournament. Lemma 8 shows that implementation requires lower expected transfer than any
alternative; hence buyer surplus is maximal. Finally, Lemma 9 shows that the suppliers
optimally break even on expectation.

Lemma 7 If
�
vB1 ; v

B
2 ; p1; p2

�
is an equilibrium of a contest that maximizes buyer surplus, then

0 < vB1 � 1
2 � v

B
2 < 1.

We prove this lemma in two steps.
Step 1: If

�
vB1 ; v

B
2 ; p

B
1 ; p

B
2

�
is an equilibrium where w.l.o.g. vB1 � vB2 , then vB1 � 1=2 � vB2 .

Proof : We will show that v1 � 1=2 � v2 must hold in any contest equilibrium. Suppose, to
the contrary, that v1 � v2 < 1=2: The case that 1=2 < v1 � v2 follows analogously. Let p1; p2
be the associated pricing strategies. Then, the expected revenue of supplier 1 is �1 (v1; v2) =R v1+v2

2
0 p1 (q1 (�) ; q2 (�)) dF (�). Consider the deviation v01 = 2v2� v1 < 1 with the same pric-
ing function. Supplier 1 now wins whenever � > (v2 + v01) =2. We can write the expected rev-
enue as �1 (v01; v2) =

R 2v2
v01+v2
2

p1 (q1 (�) ; q2 (�)) dF (�) +
R 1
2v2
p1 (q1 (�) ; q2 (�)) dF (�). Clearly,

(v1 + v2) =2 = 2v2 � v01+v2
2 . Moreover, there exists a bijective mapping [0; (v1 + v2) =2] !

[(v01 + v2) =2; 2v2]; �
0 7! �00 such that q (v1; �0)� q (v2; �0) = q (v01; �00)� q (v2; �00) and f (�0) �

f (�00). Thus
R v1+v2

2
0 p1 (q1 (�) ; q2 (�)) dF (�) �

R 2v2
v01+v2
2

p1 (q1 (�) ; q2 (�)) dF (�). As a result,

�1 (v1; v2) � �1 (v
0
1; v2) and v

0
1 leads to strictly higher probability of winning, hence v

0
1 is

a pro�table deviation.44 Thus, v1 � 1=2 � v2 must hold in any equilibrium; in particular,
therefore vB1 � 1=2 � vB2 .
Step 2: If

�
vB1 ; v

B
2 ; p

B
1 ; p

B
2

�
is an equilibrium maximizing buyer surplus, then 0 < vBi < 1 for

i 2 f1; 2g.
Proof : By Step 1, we know that v1 � 1=2 � v2. Suppose vB1 = 0 and vB2 = 1. We

will distinguish two cases, C = 0 and C > 0. First suppose C = 0. By single-peakedness
(A2), v1 = v2 = 1=2 results in weakly higher total surplus than

�
vB1 ; v

B
2

�
. As the allocation

(v1; v2) = (1=2; 1=2) can be implemented with an FPT and A = 2C by Proposition 2(ii),
the buyer would be strictly better o¤ than in any contest implementing vB1 = 0 and v

B
2 = 1

where the suppliers earn positive surplus. Finally, observe that vB1 = 0 and vB2 = 1 cannot
be implemented so that the suppliers earn zero surplus, as the suppliers could increase their
probability of winning by deviating to the interior, which by (T2) would be a pro�table
deviation. Next suppose C > 0. There exists some small " such that ST

�
vB1 = 0; v

B
2 = 1

�
<

ST ("; 1� ") and F (")�q ("; 1� ") < C. But then a bonus tournament with subsidy t0 =
C � F (")�q ("; 1� "), and P =f�q ("; 1� ") ; 0g implements ("; 1� "), achieves higher total
surplus, and the supplier surplus not higher than in any contest implementing vB1 = 0 and
vB2 = 1. Hence, the buyer surplus is higher, which is a contradiction.

Next suppose v1 = 0 and v2 < 1 (the case that v1 > 0 and v2 = 1 follows analo-

gously). By Lemma 2, the revenue is �1 (0; v2) =
R v2

2
0 �p (q1 (�) ; q2 (�)) dF (�) for supplier 1

and �2 (v2; 0) =
R v2
v2
2
�p (q2 (�) ; q1 (�)) dF (�)+

R 1
v2
�p (q2 (�) ; q1 (�)) dF (�) for supplier 2. More-

over, �1 (0; v2) > 0, because otherwise supplier 1 could increase his probability of winning
by deviating to the interior, which by (T2) would be a pro�table deviation. By single-

peakedness (A2) it holds
R v2

2
0 �p (q1 (�) ; q2 (�)) dF (�) �

R v2
v2
2
�p (q2 (�) ; q1 (�)) dF (�). Suppose

that this equilibrium is implemented with transfers t such that t+�1 (0; v2) � C. This implies
44Given the tie-breaking rule T2, this is even true for p = 0.
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t+�2 (v2; 0) > C. Further, using (1),dST
�
vB1 ; v

B
2

�
=dvB1

��
vB1 =0

= bF (v2=2) > 0, so that there

exists some �" > 0 such that ST
�
"; vB2

�
> ST

�
0; vB2

�
for every " 2 (0;�"). Fix " such that

F (")�q ("; v2) � �1 (0; v2) and F (") < 1 � F (v2). Let t0 = t + �1 (0; v2) � F (")�q ("; v2).
Now consider a bonus tournament with subsidy t0 and P =f�q ("; v2) ; 0g. By Proposition 1,
this bonus tournament will implement ("; v2) if the participation constraint is met. This con-
dition holds for both suppliers, because t0 + (1 � F (v2))�q ("; v2) > t0 + F (")�q ("; v2) � C.
Compared to the original situation with v1 = 0 and v2 < 1, the rent of supplier 1 is un-
changed, but the rent of supplier 2 decreases since

R v2
v2
2
�p (q2 (�) ; q1 (�)) dF (�) + t > t0 andR 1

v2
�p (q2 (�) ; q1 (�)) dF (�) > (1 � F (v2))�q ("; v2). Since the total surplus increases and the

suppliers�surplus decreases, the buyer�s surplus must increase. Therefore, the bonus tourna-
ment that implements ("; v2) increases the buyer surplus, which is a contradiction.�

Lemma 8 If
�
vB1 ; v

B
2 ; p

B
1 ; p

B
2

�
is an equilibrium of a contest maximizing buyer surplus, then

it can be implemented by a contest with P = fA; 0g.

Proof: From Proposition 1 and Lemma 7, we know that the bonus tournament with
A = �q

�
vB1 ; v

B
2

�
implements

�
vB1 ; v

B
2

�
. It remains to be shown that the buyer cannot im-

plement
�
vB1 ; v

B
2

�
with lower expected total transfers with any other contest. First, sup-

pose that vB1 + v
B
2 = 1. By Lemmas 2 and 3, in any contest that implements

�
vB1 ; v

B
2

�
the price paid by the buyer is exactly �q(vB1 ; v

B
2 ) + P if � 2 [0; vB1 ] [ [vB2 ; 1] and it is

at least 0 if � 2
�
vB1 ; v

B
2

�
. Thus, if �q(vB1 ; v

B
2 )F (v

B
1 ) > C, a bonus tournament imple-

ments
�
vB1 ; v

B
2

�
with the lowest possible expected total transfers. If �q(vB1 ; v

B
2 )F (v

B
1 ) � C,

a bonus tournament with an appropriate t implements
�
vB1 ; v

B
2

�
with zero expected sup-

plier surplus. Next, consider an arbitrary contest implementing
�
vB1 ; v

B
2

�
with vB1 + v

B
2 < 1

with subsidy t (the case vB1 + v
B
2 > 1 is analogous). The surplus of supplier 1 is then

S1 = �q(v
B
1 ; v

B
2 )F (v

B
1 )+

R vB1 +v
B
2

2

vB1
�p (q1 (�) ; q2 (�)) dF (�)+ t�C, and for supplier 2 it is S2 =

�q(vB1 ; v
B
2 )(1� F (vB2 ))+

R v2
vB1 +v

B
2

2

�p (q1 (�) ; q2 (�)) dF (�) + t�C. By similar arguments as in

Lemma 7, �q(vB1 ; v
B
2 )F (v

B
1 ) < �q(v

B
1 ; v

B
2 )(1� F (vB2 )) and

R vB1 +v
B
2

2

vB1
�p (q1 (�) ; q2 (�)) dF (�) �R v2

vB1 +v
B
2

2

�p (q1 (�) ; q2 (�)) dF (�). Now consider a bonus tournament with P =f�q
�
vB1 ; v

B
2

�
; 0g

and t0 =
R vB1 +v

B
2

2

vB1
�p (q1 (�) ; q2 (�)) dF (�) + t. The surplus of supplier 1 now becomes S01 = S1

by construction. On the other hand, S02 � S2, but S02 > S01. Thus, the proposed bonus tour-
nament implements

�
vB1 ; v

B
2

�
with lowest possible net supplier surplus, which implies that

the buyer surplus is maximized.�

Lemma 9 In the buyer optimum, the suppliers obtain zero expected surplus.

Proof: The proof follows from the three steps below.
Step 1: In an optimal contest vB1 + v

B
2 = 1.

Consider any (v1; v2) such that v1 + v2 < 1. We show that (v1; v2) 6=
�
vB1 ; v

B
2

�
; the

case v1 + v2 > 1 follows analogously. By Step 1, the optimal outcome can be implemented
by some P = fA; 0g and t � 0. The equilibrium values of pi in this contest are zero if
and only if � 2 (v1; v2). Hence, the participation constraint for supplier 1 implies that
F (v1)A + t � C; thus v1 + v2 < 1 implies (1� F (v2))A + t > C. Now suppose the buyer
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implements (v1 + "; v2 + ") ; where " is su¢ ciently small. We know that (v1 + "; v2 + ") can
also be implemented with P = fA; 0g. Thus, we can write the buyer surplus as

SB (") = ST (v1 + "; v2 + ")� F (v1 + ")A� (1� F (v2 + "))A� 2t

for " � 0. Thus

dSB (")

d"
= dST (v1 + "; v2 + ") =d"�Af(v1 + ") +Af(v2 + "):

Since v1 + v2 < 1, single-peakedness and symmetry (A2) imply f(v1 + ") < f(v2 + "). Thus
dSB (") =d" > dST (v1 + "; v2 + ") =d". We will show that dST (v1 + "; v2 + ") =d" > 0; because
F (v1 + ")A+t > C and (for su¢ ciently small ") (1� F (v2))A+t � C, the buyer will thus be
better o¤ implementing (v1 + "; v2 + ") than (v1; v2). Maximizing total surplus is equivalent
to minimizing the expected distance

D (v1 + "; v2 + ") =

Z v1+"

0
(v1 + "� �) f(�)d� +

Z v1+v2
2

+"

v1+"
(� � v1 � ") f(�)d�

+

Z v2+"

v1+v2
2

+"
(v2 + "� �) f(�)d� +

Z 1

v2+"
(� � v2 � ") f(�)d�.

From this we obtain

dD (v1 + "; v2 + ")

d"
=

Z v1+"

0
f(�)d� �

Z v1+v2
2

+"

v1+"
f(�)d� +

Z v2+"

v1+v2
2

+"
f(�)d� �

Z 1

v2+"
f(�)d�

= 2F (v1 + ") + 2 (F (v2 + "))� 2F
�
v1 + v2
2

+ "

�
� 1:

We will show that this expression is negative for v1 + v2 < 1 and su¢ ciently small ". To

see this, �x any v2 such that 1=2 � v2 < 1. Note that h (v1; v2) � dD(v1+";v2+")
d"

���
"=0

= 0 for

v1 = 1� v2. Furthermore

@h

@v1
= 2f(v1)� f

�
v1 + v2
2

�
> 0,

were the last inequality follows by Lemma 6. Thus, v1+ v2 < 1 implies 2F (v1) + 2 (F (v2))�
2F ((v1 + v2) =2)�1 < 0 and thus dD (v1 + "; v2 + ") =d" < 0 for small enough ". This in turn
implies that ST (v1 + "; v2 + ") increases in " so that buyer surplus also increases in ".
Step 2: The buyer surplus when implementing any (v1; 1� v1) with �xed t is strictly convex
in v1.

Arguing as in the proof of Proposition 1, the buyer surplus when implementing any
(v1; 1� v1) with �xed t can be expressed as

SB (v1; 1� v1) = 2
"Z v1

0
(	� b(1� v1 � �)) dF (�) +

Z 1=2

v1

(	� b(� � v1)) dF (�)
#
:

Straightforward calculations show that @
2SB(v1;1�v1)

@v21
= 2f (v1)+2v1f

0 (v1)�f 0 (v1) � 2f (v1)�
f 0 (v1) > 0, where the last inequality follows from (A2)(iv).
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Step 3: In the buyer optimum, suppliers earn zero expected surplus.
From Proposition 1 and Step 1 we know that the buyer optimum can be implemented

by a suitable bonus contest P = f�q
�
vB1 ; 1� vB1

�
; 0g and some transfer t. This implies

that the suppliers have symmetric payo¤s. Suppose, in contradiction to the statement above,
that the suppliers do not break even on expectation. If t > 0, the buyer can increase her
surplus by marginally reducing t. Hence, it must be that t = 0. Then, the supplier pay-
o¤ is F

�
vB1
�
�q
�
vB1 ; 1� vB1

�
� C > 0 and thus �q

�
vB1 ; 1� vB1

�
> 0. Thus vB1 < 1=2 <

1 � vB1 : By Step 2 of Lemma 7 we know that vB1 > 0. Hence, vB1 2 (0; 1=2). Since
F
�
vB1
�
�q
�
vB1 ; 1� vB1

�
� C is a continuous function, then there exists " > 0, such that

F
�
vB1 + "

�
�q
�
vB1 + "; 1� vB1 � "

�
�C � 0 and F

�
vB1 � "

�
�q
�
vB1 � "; 1� vB1 + "

�
�C � 0.

But since SB (v1; 1� v1) is strictly convex, than either SB
�
vB1 ; 1� vB1

�
< SB

�
vB1 + "; 1� vB1 � "

�
or SB

�
vB1 ; 1� vB1

�
< SB

�
vB1 � "; 1� vB1 + "

�
, a contradiction. Hence, suppliers earn zero ex-

pected surplus.�
(ii) Suppose C � F (v�1)�q (v

�
1; v

�
2). From Proposition 1 we know that for the proposed

P = fA; 0g, (v�1; v�2) emerges in equilibrium; and the result also gives the pricing strategies p1
and p2. For t = C � F (v�1)�q (v�1; v�2), the buyer surplus in the proposed equilibrium is

ST (v
�
1; v

�
2)��1 (v�1; v�2)��2 (v�1; v�2) + 2t (7)

= ST (v
�
1; v

�
2)� 2F (v�1)�q (v�1; v�2) + 2 (F (v�1)�q (v�1; v�2)� C) = ST (v�1; v�2)� 2C

This is the highest surplus that the buyer can achieve without violating the suppliers�partic-
ipation constraints.

(iii) Suppose C < F (v�1)�q (v
�
1; v

�
2). By Lemma 3, the minimum supplier revenue in any

contest implementing (v�1; v
�
2) is F (v

�
1)�q (v

�
1; v

�
2). Thus, in any such contest the suppliers

would earn a positive expected surplus. By Part (i) this is suboptimal.

8.4 Proofs on Auctions and Tournaments (Section 4)

8.4.1 Proof of Proposition 2

(i) By Lemma 2, the unique equilibrium of the pricing subgame induced by q1 and q2 is
pi = max fqi � qj ; 0g for i; j 2 f1; 2g; j 6= i. Suppose that an auction does not implement the
social optimum (v�1; v

�
2). Then, for some i, there exists �vi 6= v�i such that�i(�vi; v�j ) > �i(v�i ; v�j ).

Let �i (vi; vj) = f� 2 [0; 1]j q (vi; �) � q (vj ; �)g and ��i (vi; vj) = [0; 1] n �i (vi; vj). Thus
�i(�vi; v

�
j ) > �i(v

�
i ; v

�
j ) if and only ifZ

�i(�vi;v�j )

�
q (�vi; �)� q

�
v�j ; �

��
dF (�) >

Z
�i(v�i ;v�j )

�
q (v�i ; �)� q

�
v�j ; �

��
dF (�) ,

or equivalently Z
�i(�vi;v�j )

�
q (�vi; �)� q

�
v�j ; �

��
dF (�) +

Z 1

0
q
�
v�j ; �

�
dF (�) >Z

�i(v�i ;v�j )

�
q (v�i ; �)� q

�
v�j ; �

��
dF (�) +

Z 1

0
q
�
v�j ; �

�
dF (�)
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Splitting [0; 1] into �i
�
�vi; v

�
j

�
and ��i

�
�vi; v

�
j

�
in the �rst line and into �i

�
v�i ; v

�
j

�
and

��i
�
v�i ; v

�
j

�
in the second line and simplifying, this is equivalent withZ

�i(�vi;v�j )
q (�vi; �) dF (�) +

Z
��i(�vi;v�j )

q
�
v�j ; �

�
dF (�) >Z

�i(v�i ;v�j )
q (v�i ; �) dF (�) +

Z
��i(v�i ;v�j )

q
�
v�j ; �

�
dF (�) .

and thus Z 1

0
maxfq(�vi; �); q(v�j ; �)gdF (�) >

Z 1

0
maxfq(v�i ; �); q(v�j ; �)gdF (�) ,

contradicting optimality of (v�1; v
�
2).

(ii) This follows from the more general statement in Corollary 5(ii) below.
(iii) Using Proposition 2(ii), any FPT such that the supplier breaks even has a unique

equilibrium with (v1; v2) = (1=2; 1=2). For A = 2C and t = 0, the participation constraint of
the suppliers binds. Hence, buyer surplus is maximized in the class of FPTs. It is

SfptB =

Z 1=2

0

�
	� b

�
1

2
� �

��
f (�) d� +

Z 1

1=2

�
	� b

�
� � 1

2

��
f (�) d� � 2C

= 	+

Z 1=2

0
b�f (�) d� �

Z 1

1=2
b�f (�) d� � 2C

The surplus of supplier 1 (supplier 2 follows by symmetry) is

Sa1 = F (v�1)�q (v
�
1; v

�
2) +

Z 1=2

v�1

(q (v�1; �)� q (v�2; �)) f (�) d�

=
b (v�2 � v�1)

4
+

Z 1=2

v�1

(q (v�1; �)� q (v�2; �)) f (�) d�.

Thus whenever C < b (v�2 � v�1) =4, the participation constraint of the suppliers is satis�ed
even with t = 0. By Lemma 2, in an auction the winning supplier bids exactly the quality
di¤erence. This implies that the value the buyer receives, in any state of the world, is equal
to the quality of the losing supplier. Then, the buyer surplus in an auction with t = 0 is

SaB =

Z 1=2

0
(	� b (v�2 � �)) f (�) d� +

Z 1

1=2
(	� b (� � v�1)) f (�) d�

= 	+

Z 1=2

0
b�f (�) d� �

Z 1

1=2
b�f (�) d� � bv

�
2

2
+
bv�1
2

The buyer prefers FPT to the auction if SfptB �SaB > 0, which holds whenever
bv�2
2 �

bv�1
2 �2C > 0

or equivalently
b(v�2�v�1)

4 > C.

When
b(v�2�v�1)

4 < C, the participation constraints require positive subsidies. In this case,
the buyer implements the social optimum by using an auction with t = C � �a1 with zero
supplier surplus. Obviously this outperforms the ine¢ cient FPT.

31



8.4.2 Proof of Corollary 2

Denote the minimum allowable price with P . If v1 6= v2 in equilibrium, by Proposition 2(ii),
the contest is not an FPT. Suppose that v1 < v2: By Lemmas 2 and 3, the buyer pays
qi � qj + P to the supplier with qi � qj in equilibrium. Thus, for any �, the buyer surplus is
minfq1; q2g � P . Hence, the surplus of a buyer who induces v1 < v2 with P is

SB (v1; v2 ;P ) =

Z 1

0
minfqi (vi; �) ; qj (vj ; �)gdF (�)� P

=

Z v1+v2
2

0
q2 (v2; �) dF (�) +

Z 1

v1+v2
2

q1 (v1; �) dF (�)� P

Thus
dSB
dv1

=

Z 1

v1+v2
2

@q1
@v1

dF (�) > 0;
dSB
dv2

=

Z v1+v2
2

0

@q2
@v2

dF (�) < 0.

Thus, the buyer surplus is maximal for v1 = v2 and P = 0. Given v1 = v2, the buyer surplus
is maximal for v1 = v2 = 1=2, the unique equilibrium of an FPT with A arbitrarily close to
0. Given (T2), it is an equilibrium for A = 0.

8.5 Extensions: Inducing E¤ort and Diversity (Section 5.1)

8.5.1 Proof of Proposition 3

Proof. (i) Follows directly from Theorem 1(iii).
(ii) As F (v�1)�q(v

�
i ; v

�
j ) � C by assumption, both prizes are weakly positive. For supplier

1, the expected pro�t of following the candidate equilibrium is �1 (v�1; v
�
2) = F (v�1)A +

(1=2� F (v�1)) a � C. Inserting the values of A and a and F (v�1) = 1=4, �1 (v�1; v
�
2) = 0.

By symmetry, both suppliers just break even on expectation. Thus, the suggested allocation
maximizes total surplus, with full rent appropriation by the buyer. It thus su¢ ces to show
that fA; ag implements (v�1; v�2). Consider supplier 1. First, any deviation v1 = v�2 + " is
dominated by v01 = v�2 � ". Next, a deviation to v01 < v�1 cannot increase expected supplier
pro�t, as the probability of winning decreases and the price charged in any state of the world
does not increase. Thus, the only remaining case is a deviation to v01 2 (v�1; v�2]. The expected
gross pro�t can be written as �1 (v01; v

�
2) = aF ((v

0
1 + v

�
2) =2). This is clearly increasing in v

0
1

and the pro�t of supplier 1 is at most �1 (v01; v
�
2) = aF (v

�
2). The expected pro�t of following

the candidate equilibrium is �1 (v�1; v
�
2) = F (v

�
1)A+ (1=2� F (v�1)) a. Thus there is no prof-

itable deviation to values just below v�2 if and only if F (v
�
1)A + (1=2� F (v�1)) a � aF (v�2).

Inserting the values of A and a and F (v�1) = 1=4 and F (v
�
2) = 3=4 shows that (v

�
1; v

�
2) is an

equilibrium.
(iii) The proof proceeds in two steps. Step 1 shows that the expected revenues in any contest
implementing v1 6= v2 are bounded. Thus, for high enough costs, no contest can implement
any v1 6= v2. In this case, the best the principal can do is implement no diversity. Step 2
shows that this can be optimally done with a FPT.
Step 1: Suppose that a contest implements some v1 6= v2, where v1; v2 2 [0; 1]. Denote with
�i(vi; vj) the expected revenue of supplier i. Suppose (w.l.o.g.) that �1 (v1; v2) � �2 (v2; v1).
By Lemma 2 of the buyer, supplier 1 wins the contest if q1(v1; �) � q2(v2; �) and obtains the
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price p1(v1; v2; �) � q1(v1; �) � q2(v2; �) + P . But then, in any contest implementing v1; v2,
we have

�1 (v1; v2) � F (v1)(�q (v1; v2) + P ) +
Z v1+v2

2

v1

(q1(v1; �)� q2(v2; �) + P ) f (�) d� (8)

� F (v1)b(v2 � v1) +
Z v1+v2

2

v1

b(v1 + v2 � 2�)f (�) d� + F
�
v1 + v2
2

�
P � �1 (v1; v2; P )

where �1 (v1; v2; P ) is the upper bound on the supplier�s revenue, given that a contest imple-
ments v1; v2 and the lowest feasible price is P . Observe that by deviating to v2� ", supplier 1
can obtain an expected payo¤ which is arbitrarily close to F (v2)P . Since the contest imple-
ments v1; v2 there can be no pro�table deviations, so that �1 (v1; v2) � F (v2)P . Therefore

F (v1)b(v2 � v1) +
Z v1+v2

2

v1

b(v1 + v2 � 2�)f (�) d� + F
�
v1 + v2
2

�
P � F (v2)P ,

F (v1)b(v2 � v1) +
R v1+v2

2
v1

b(v1 + v2 � 2�)f (�) d�
F (v2)� F

�
v1+v2
2

� � P

Using this upper bound for P , we obtain that for any P

�1 (v1; v2; P ) � F (v1)b(v2 � v1) +
Z v1+v2

2

v1

b(v1 + v2 � 2�)f (�) d�

+F

�
v1 + v2
2

�
F (v1)b(v2 � v1) +

R v1+v2
2

v1
b(v1 + v2 � 2�)f (�) d�

F (v2)� F
�
v1+v2
2

�
�

 
F (v1)b(v2 � v1) +

Z v1+v2
2

v1

b(v1 + v2 � 2�)f (�) d�
!

F (v2)

F (v2)� F
�
v1+v2
2

�
To show that the RHS of the expression is �nite for any v1 and v2, it su¢ ces to show that
the last expression converges to a �nite value as v1 ! v2, in which case the denominator
F (v2) � F

�
v1+v2
2

�
approaches zero. As the numerator also converges to 0 as v1 ! v2, Both

are di¤erentiable with respect to v1 on the interval (0; v2) and d
dv1

�
F (v2)� F

�
v1+v2
2

��
6= 0

for v1 < v2. Hence, we can use L�Hôpitals Rule to evaluate the RHS as v1 ! v2. Standard
calculations show that

lim
v1!v2

 
F (v1)b(v2 � v1) +

Z v1+v2
2

v1

b(v1 + v2 � 2�)f (�) d�
!

F (v2)

F (v2)� F
�
v1+v2
2

� = bF (v2)
2

f (v2)
1
2

.

which is �nite for any v2. Thus �1 (v1; v2) is bounded. Then there exists �C such that
�C > �1 (v1; v2) for any contest and any v1 6= v2, where v1; v2 2 [0; 1], so that no supplier can
break even in expectation in a contest without subsidies.
Step 2: By Step 1, diversity cannot be implemented if C > �C. Therefore, in an optimal
contest both suppliers must choose the same research approach, or one supplier must shirk
(vj = �1). One supplier shirking generates higher surplus than both suppliers exerting e¤ort
and choosing the same approach, regardless of which approach is chosen. Furthermore, when
only one supplier exerts e¤ort, the surplus is maximized if that supplier chooses the approach
1=2. Consider an FPT with A = C. Then vi = 1=2, vj = �1 is clearly an equilibrium and the
suppliers receive no rent. Thus, the FPT with A = C is an optimal contest for the buyer.
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8.5.2 Proof of Corollary 3

Proof. (i) and (ii) follow directly from Proposition 3(i) and (ii). For (iii), from the proof of
3(iii) above we have

�1 (v1; v2; P ) �
 
F (v1)b(v2 � v1) +

Z v1+v2
2

v1

b(v1 + v2 � 2�)f (�) d�
!

F (v2)

F (v2)� F
�
v1+v2
2

�
�

 
v1b(v2 � v1) +

Z v1+v2
2

v1

b(v1 + v2 � 2�)d�
!
2

v2
v2 � v1

While in the proof of Proposition 3, we showed that a bound exists, in this proof we need to
�nd the bound. Let the RHS be �1 (v1; v2), the bound on the revenues for any P . Assume
(w.l.o.g.) that v1 + v2 � 1. Observe that �1 (v1 + "; v2 + "; P ) + �2 (v2 + "; v1 + "; P ) is
constant in " as long as v1 + "; v2 + " 2 [0; 1]. In order to incentivize both suppliers to exert
costly e¤ort, the revenues of the supplier who is worse o¤ will be binding. Since the suppliers
are splitting a constant sum, the revenue of the worse o¤ supplier is maximized when the
payo¤s are symmetric. That is,

min
�
�1 (v1; v2) ;�2 (v2; v1)

	
� min

�
�1 (v1 + �"; v2 + �") ;�2 (v2 + �"; v1 + �")

	
for �" = (1� v1 � v2) =2. Thus, the upper bound on supplier revenue is determined by v1+v2 =
1, which is assumed from now on. Substituting v2 = 1�v1 into the expression above we obtain

�1 (v1; v2; P ) �
 
v1b(1� 2v1) +

Z 1
2

v1

b(1� 2�)d�
!
2
1� v1
1� 2v1

� 1

2
b (2v1 + 1) (1� v1)

The expression on the RHS is maximized for v1 = 1=4 and is equal to b(9=16), which represents
the upper bound on supplier revenues in any contest in which v1 6= v2.

8.6 Extensions: n>3 (Section 5.2)

8.6.1 Proof of Lemma 4

(i) Arguing as for two suppliers, v�i 6= v�j for all i 6= j 2 f1; :::; ng. Thus

ST (v) =

Z v1+v2
2

0
q1 (v1; �) d� +

n�1X
k=2

Z vk+vk+1
2

vk�1+vk
2

qk (vk; �) d� +

Z 1

vn�1+vn
2

qn (vn; �) d�

The maximum of this function exists and it obviously does not involve corner solutions. Hence,
it is given by the �rst order conditions

@ST (v)

@v1
= �bv1 + b

v2 � v1
2

= 0 (9)

@ST (v)

@vk
= �bvk � vk�1

2
+ b

vk+1 � vk
2

= 0 (10)

for k 2 f2; :::; n� 1g
@ST (v)

@vn
= �bvn � vn�1

2
+ b (1� vn) = 0 (11)
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(10) can be rearranged to give vk�vk�1 = vk+1�vk � �v for k = 2; :::; n�1. (9) and (11) give
v1 = 1�vn = �v=2. Inserting these equations into v1+(v2 � v1)+:::+(vn � vn�1)+(1� vn) =
1 gives �v = 1

n . Thus, v1 =
1
2n and vk =

1
2n +

k�1
n = 2k�1

2n for k 2 f2; :::; ng.
(ii) To ensure participation set ti = C for all i. The proof of the result on auctions is analogous
to the proof of Proposition 2(i) above. Consider the bonus tournament. If suppliers 1; :::; n
choose v�1; v

�
2; :::; v

�
n; then suppliers 2; ::; n�1 receive no revenues, but they break even because

of the subsidy. There are no feasible deviations for which they can earn a positive price.
Consider supplier 1 (supplier n is analogous): His surplus is 1

2n

�
b
n

�
+C�C = b

2n2
. Deviating

to v1 < v�1 would reduce the probability of winning the prize, with no compensating bene�ts.
Deviating to v1 > v�1 would mean that supplier 1 would only win the low prize 0. This is
clearly not pro�table.
(iii) Let v = [v1; :::; vn] be the vector of approaches, ordered so that v1 � ::: � vn. In Step
1-5, we show that diversity is less than socially optimal in the FPT. In Step 6, we consider
the e¤ect of increasing n.
Step 1: In any equilibrium of the FPT, v1 = v2 and vn�1 = vn. This implies that there are
at most n� 2 active approaches.

Suppose v1 < v2. Then the revenue of supplier 1 is Av1+v22 . For v01 = v1 + ", " > 0, such

that v01 < v2; the revenue is A
v01+v2
2 > Av1+v22 . A similar argument holds for vn�1 < vn.

We prove the second claim (that there is an ine¢ ciently low amount of diversity) in several
steps. For any supplier i, let P i�<vi (P

i
�>vi) be the probability that supplier i wins and, in

addition, � < vi (� > vi). Let P i = P i�<vi + P
i
�>vi be the total probability that supplier i

wins.
Step 2: If for suppliers i and j there exist k 6= i and l 6= j such that vi = vk and vj = vl,
then P i�<vi = P

i
�>vi = P j�<vj = P

j
�>vj in any equilibrium.

Suppose �rst that P i�<vi 6= P
i
�>vi for some supplier i using the same approach as another

one. Suppose that P i�<vi > P i�>vi (the opposite case is analogous). Then, a deviation to
vi � " for some su¢ ciently small " > 0 leads to a winning probability of 2P i�<vi > P i�<vi +

P i�>vi ,
45 which is a pro�table deviation. Next, suppose that P i�>vi < P

j
�<vj (the opposite case

is analogous). Then, a deviation of supplier i to vj � " for su¢ ciently small " > 0 leads to a
winning probability of 2P j�<vj > P

i
�<vi + P

i
�>vi ,

46 which is a pro�table deviation.
Step 3: In any equilibrium of an FPT with n suppliers, P � P 1 = P 2 = Pn�1 = Pn � 1

2(n�2) .
By Step 2, all extreme approaches are duplicate. The three equalities thus follow from

Step 1. Suppose that the inequality does not hold. Then P 1 + P 2 + Pn�1 + Pn < 2
n�2 which

in turn implies that
Pn�2
j=3 P

j � n�4
n�2 . But then there exist at least one k 2 f3; :::; n � 2g

such that P k � 1
n�2 . By deviating to vk, each supplier 1; 2; n � 1 or n would win with a

probability of at least 1
2(n�2) , which would be a pro�table deviation.

Step 4: Any equilibrium of an FPT with n suppliers satis�es maxi vTi �mini vTi � n�3
n�2 .

Suppose not. As 2(n�2)�1
2(n�2) � 1

2(n�2) =
n�3
n�2 , there exists an equilibrium of an FPT such

that either maxi vTi >
2(n�2)�1
2(n�2) or mini vTi <

1
2(n�2) or both. If maxi v

T
i >

2(n�2)�1
2(n�2) , then

Steps 1 and 2 imply Pn < 1
2(n�2) , which is impossible by Step 3. If mini v

T
i <

2�1
2(n�2) , then

P 1 < 1
2(n�2) by Steps 1 and 2, which is again impossible by Step 3.

Step 5: The diversity in an FPT is lower than socially optimal.
45The winning probability is approximately 2P i�<vi if vi = minfv1; :::; vng:
46The winning probability is approximately 2P i�<vj if vj = minfv1; :::; vng:
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By (i), the socially optimal diversity is n�1n . By Step 4, the diversity in an FPT is at most
n�3
n�2 <

n�1
n .

Step 6: The di¤erence between the FPT and the social optimum converges to zero as the
number of suppliers increases.

By Step 3, we know that each supplier 1; 2; n� 1; n wins with probability P . Then in any
equilibrium of an FPT, there exists a supplier j such that P j � 1�4P

n�4 . A deviation to v1 � "
would result in a probability of winning approximately P . Then, a necessary condition for an
equilibrium is that P � 1�4P

n�4 , which implies that P � 1=n and consequently v1 � 1=n and
vn � (n� 1) =n. Then, maxi vTi �mini vTi � n�2

n in any equilibrium of an FPT. By (i), the
socially optimal diversity is (n� 1) =n, so the di¤erence between the socially optimal diversity
and diversity in any equilibrium of an FPT is at most n�1n � n�2

n = 1=n. Thus, the di¤erence
converges to zero as n increases.

8.6.2 Su¢ cient Conditions for FPT equilibria

We now provide su¢ cient conditions for equilibria in the FPT. These conditions hold in the
equilibria described in Figure 3.

Lemma 10 An outcome with k active approaches (r1; :::; rk) can be supported in an equilib-
rium if the following conditions both hold:
(a) k 2 fk; :::; �kg, where �k = n� 2 and k = n=2 if n is even and k = (n+ 1) =2 if n is odd;
(b) (r1; :::; rk) = (1=2k; 3=2k; 5=2k; :::; (2k � 1) =2k).
Two suppliers choose the extreme approaches r1 and rk; each of the intermediate approaches
r2; :::; rk�1 is chosen by one or two suppliers.

Proof. Step 1: Suppose n is even and k = n=2. Then any choice of r1; :::; rk as stated in
part (b) of the lemma can be supported as an equilibrium.
In the suggested equilibria, the active approaches are equidistant. Also, r1 = 1=n and rn=2 =
1 � 1=n. For any 1 < m < n=2, rm � rm�1 = 2=n, any of the active approaches o¤ers the
highest quality with probability 1=k = 2=n. Now suppose each approach r1; :::; rk is chosen
by exactly two suppliers. Then each supplier has a revenue of �i = A=n. Deviating to any
other active approach leads to payo¤ of 2A=3n; hence it is not pro�table. A deviation to
[0; r1) or (rn=2; 1] results in a winning probability strictly lower than 1=n, so this is not a
pro�table deviation either. Finally, consider a deviation to v 2 (rm�1; rm), m 2 f2; :::; n=2g.
The deviating supplier wins if and only if � is in the set [v+rm�12 ; v+rm2 ], so that the winning
probability is 1=n and this is also not a pro�table deviation.
Step 2: Now suppose n is even or odd and k > n=2. Then any choice of r1; :::; rk as stated
in part (b) of the lemma is an equilibrium.
Arguing as in Step 1, any of the active approaches o¤ers the highest quality with probability
1=k. Suppose two suppliers choose r1 and rk, respectively. Moreover, suppose that each of the
approaches r2; :::; rk�1 is chosen by one or two suppliers. Thus, if there are two suppliers using
an approach, each of them wins with probability 1=2k, and if there is only one supplier using
this approach, he wins with probability 1=k. Consider a supplier who wins with probability
1=2k. By the same argument as in Step 1, if he deviates to [0; r1) or (rk; 1], he wins with
probability strictly lower than 1=2k. Deviating to any approach in some interval (rl; rl+1);
l 2 f1; :::; k � 1g, he wins with probability of at most 1=2k; hence such a deviation is not
pro�table either. If he deviates to any active approach, he wins with a probability of at most
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1=2k. Thus, such suppliers do not have pro�table deviations. Finally consider a deviation
by a supplier who is the only one to choose some rm, where 1 < m < k. Any deviation to
[0; rm�1] or [rm+1; 1] leads to strictly lower revenues, by the same argument as above. For
any approach v 2 (rm�1; rm+1), he wins whenever � 2 [v+rm�12 ; v+rm+12 ], so that the winning
probability is v+rm+12 � v+rm�1

2 = rm+1�rm�1
2 = 1=k. Hence, this is not a pro�table deviation

either.

8.6.3 Proof of Proposition 4

(i) Arguing as in Proposition 1, the bonus tournament (b=n; 0) implements the social optimum.
Thus, to prove the optimality of the bonus tournament it is su¢ cient to show that the buyer
can extract all surplus from the suppliers. Let t2 = � � � = tn�1 = C and t1 = tn = C�b=(2n2).
Suppliers i 2 f2; : : : n � 2g win the bonus price with probability zero, hence their revenue is
zero, and their participation constraint binds. Suppliers 1 and n win the bonus price with
probability 1=2n, and their expected revenue is �1 = �n = (1=2n)(b=n) = b=2n2. Thus,
their participation constraint binds as well, and hence the bonus tournament implements the
optimum for the buyer.

(ii) In an auction, the conditional transfers to suppliers 1 and n di¤er from those for the
remaining suppliers. The revenue of supplier 1 is

�1 =
b

2n2
+

Z 2=2n

1=2n

�
	� b

�
� � 1

2n

�
�
�
	� b

�
3

2n
� �

���
d� =

3b

4n2

For supplier 2 it is

�2 = 2

Z 3=2n

2=2n

�
	� b

�
3

2n
� �

�
�
�
	� b

�
� � 1

2n

���
d� =

2b

4n2

By symmetry, �1 = �n and �2 = �i for all i 2 f2; :::n� 1g. As �1 > �2 = b=(2n2) > C,
the participation constraint of all suppliers is satis�ed without any subsidies. Then, the buyer
optimally sets ti = 0 for all i in the auction. The total transfers of the buyer to the suppliers
are thus �ni=1�i = (n� 2)�2 + 2�1 = (n� 2) b

2n2
+ 3b

2n2
= (n+ 1) b

2n2
.

Now consider a bonus tournament with (b=n; 0), t2 = � � � = tn�1 = C and t1 = tn = 0.
As argued before, this bonus tournament implements the social optimum if participation con-
straints are met. For suppliers 2 to n � 2 the subsidy ensures participation. For suppliers
1 and n the expected revenue is �1 = �n = b=(2n2) > C. Hence, participation is ensured.
Thus the total transfers of the buyer to the suppliers are �ni=1(�i+ ti) = �1+�n+�

n�1
i=2 ti =

b
n2
+(n� 2)C. The buyer will strictly prefer the bonus tournament to the auction if and only

if (n+ 1) b/ 2n2 > b/n2 + (n� 2)C, or equivalently, (n� 1) b/ 2n2 > (n� 2)C. This always
holds since b=(2n2) > C.
(iii) According to the proof of Lemma 4(iii), an FPT can implement at most n � 2 di¤erent
approaches. By Lemma 10, an FPT implementing n� 2 approaches exists. The FPT imple-
menting maximum diversity (hence maximizing total surplus) thus implements k = n�2 with
A = 0 and ti = C for all i. The participation constraint of all suppliers binds, so that this is the
best outcome for the buyer. In the FPT, the buyer has expected costs from suboptimal quality
of b

4(n�2) . Moreover, she pays subsidies nC. Now consider the bonus tournament implement-

ing the socially optimal outcome, as above. If C � b=(2n2), the bonus tournament extracts
the entire surplus like the FPT, but implements a strictly more e¢ cient outcome. Hence, the
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buyer payo¤ is strictly higher. Next, suppose that C < b=(2n2), and let the subsidies be as in
(ii). Then, the buyer has expected costs from suboptimal quality of b

4n , pays expected bonus
prizes b

n2
and subsidies (n� 2)C; together these costs amount to b

4n +
b
n2
+ (n� 2)C. Thus,

the buyer is better of in the bonus tournament if b
4n +

b
n2
+ (n� 2)C < b

4(n�2) + nC. This is
equivalent with the condition in the proposition.

8.6.4 Proof of Corollary 4

According to Lemma 4(i), the social optimum is given by the choices v�k = (2k � 1) =2n
(k 2 f1; :::; ng): The average quality in the social optimum is thus 	 � b=4n. Therefore the
total surplus is 	� b=4n� nC. The maximum of this expression in R+ is n =

p
b=2
p
C. By

concavity of the objective function, the optimal choice of n 2 N is thus given by n� (C) or
n+(C). According to Lemma 4(ii), the social optimum for any given number of suppliers can
be implemented with an auction.

8.7 Other Extensions (Section 5.3)

8.7.1 Proof of Corollary 5

Proof. (i) The proof of the result on auctions is the same as the proof of Proposition 2(i)
above. By the generalized Proposition 1, the social optimum can be implemented with a
bonus tournament if 0 < v�1 � 1=2 � v�2 < 1. Thus, we only need to show that the social
optimum always satis�es these conditions. Therefore, �rst consider any v1 = 0 (v2 = 1 is

analogous). Clearly, @ST (v1;v2)@v1

���
v1=0

> 0. Hence, in the social optimum v�1 > 0. Next, consider

(v1; v2) such that v1 � v2 < 1=2 (the case 1=2 < v1 � v2 is analogous). Supplier 2 o¤ers
higher quality than supplier 1 in the interval

�
v1+v2
2 ; 1

�
. We can write the total surplus from

this interval as

ST (v1; v2)j�� v1+v2
2

=

	

�
1� F

�
v1 + v2
2

��
�
Z v2

v1+v2
2

�(jv2 � �j)f (�) d� �
Z 1=2

v2

�(jv2 � �j)f (�) d�

�
Z 1�v2

1=2
�(jv2 � �j)f (�) d� �

Z 1� v1+v2
2

1�v2
�(jv2 � �j)f (�) d� �

Z 1

1� v1+v2
2

�(jv2 � �j)f (�) d�

Consider a deviation to v02 = 1 � v2. Symmetry of f (�) implies that
R 1� v1+v2

2
v1+v2
2

�(jv2 �

�j)f (�) d� =
R 1� v1+v2

2
v1+v2
2

�(jv02 � �j)f (�) d�. As the highest available quality determines the
total surplus, it follows ST (v1; v2)j v1+v2

2
���1� v1+v2

2

� ST (v1; v
0
2)j v1+v2

2
���1� v1+v2

2

. Observe

that
R 1
1� v1+v2

2
�(jv2 � �j)f (�) d� <

R 1
1� v1+v2

2
�(jv02 � �j)f (�) d�, because � is increasing. Thus

ST (v1; v2)j�� v1+v2
2

< ST (v1; v
0
2)j�� v1+v2

2

. For � < v1+v2
2 , the highest quality always comes

from v1. Thus ST (v1; v2)j�< v1+v2
2

= ST (v1; v
0
2)j�< v1+v2

2

. Thus, we obtain ST (v1; v2) <

ST (v1; v
0
2). Thus, there can be no social optimum with v�1 � v�2 < 1=2.

(ii) The unique equilibrium in an FPT is such that v1 = v2 and F (vi) = 1=2 for i = 1; 2.
First, we show that the suggested (v1; v2) emerges as an equilibrium. Denote the prize with
A. Let vj be such that F (vj) = 1=2. Since f is everywhere positive, such a vj is unique.
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Now if supplier i 2 f1; 2g plays vi = vj , his revenue is �i (vi; vj) = A=2. For any vi < vj
the revenue is �i (vi; vj) = AF ((vi + vj) =2) < A=2. Similarly, for any vi > vj the revenue
is �i (vi; vj) = A (1� F ((vi + vj) =2)) < A=2. Thus, vi = vj is an equilibrium. Second,
v0i = v0j is an equilibrium only if F (v0j) = 1=2. Suppose not. Then, a supplier i can prof-
itably deviate to vi such that F (vi) = 1=2, since his revenue will be �i (vi; vj) > A=2. Third,
vi 6= vj is never an equilibrium. Suppose it was. Let v1 < v2. Then, the revenue of sup-
plier 1 is �1 (v1jv2) = AF ((v1 + v2) =2), while deviating to (v1 + v2) =2 leads to a revenue of
AF ((v1 + 3v2) =4) > AF ((v1 + v2) =2).

8.7.2 Proof of Proposition 5

(i) By Corollary 5(i) the bonus tournament with (�q (v�1; v
�
2) ; 0) implements the social op-

timum with appropriate subsidies. Let the subsidies be t1 = C � F (v�1)�q (v�1; v�2) and
t2 = C � (1� F (v�2))�q (v�1; v�2). C � max fF (v�1)�q (v�1; v�2) , (1� F (v�2))�q (v�1; v�2)g im-
plies t1; t2 � 0, and the participation constraint of both suppliers bind. Thus, the bonus
tournament implements the social optimum and extracts all surplus from the suppliers and
hence it is the optimal contest for the buyer.

(ii) By Corollary 5(ii), the FPT uniquely implements v1 = v2 = 1=2 and F (vi) = 1=2
for i = 1; 2. Then there exists " > 0, such that F (1=2� ")�q (1=2� "; 1=2 + ") = (1 �
F (1=2� "))�q (1=2� "; 1=2 + ") < C. Then, by the generalized version of Proposition 1, a
bonus tournament with prices P = f�q (1=2� "; 1=2 + ") ; 0g and transfers t1 = t2 = C �
F (1=2� ")�q (1=2� "; 1=2 + ") implements (v1; v2) = (1=2� "; 1=2 + "). This yields strictly
greater total surplus, with weakly lower supplier surplus than any FPT. Hence, buyer surplus
is strictly greater in such a bonus tournament than in any FPT.

(iii) By Corollary 5(i), both the auction and the bonus tournament implement the social
optimum with appropriate subsidies. We can write the revenues for each supplier in an auction
as

�a1 = F (v�1)�q (v
�
1; v

�
2) +

Z v�1+v
�
2

2

v�1

(q (v�1; �)� q (v�2; �)) f (�) d�

�a2 = (1� F (v�2))�q (v�1; v�2) +
Z v�2

v�1+v
�
2

2

(q (v�2; �)� q (v�1; �)) f (�) d�

while the revenues in the bonus tournament (�q (v�1; v
�
2) ; 0) are

�bt1 = F (v�1)�q (v
�
1; v

�
2)

�bt2 = (1� F (v�2))�q (v�1; v�2) :

Let ta1; t
a
2 � 0 be the minimum subsidies needed for the suppliers to be willing to participate

in the auction. Then, given subsidies

tbt1 = ta1 +

Z v�1+v
�
2

2

v�1

(q (v�1; �)� q (v�2; �)) f (�) d�

tbt2 = ta2 +

Z v�2

v�1+v
�
2

2

(q (v�2; �)� q (v�1; �)) f (�) d�
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both suppliers are willing to participate in the bonus tournament. Furthermore, since both
the auction and the bonus tournament implement the social optimum and have the same total
transfers to the suppliers (�j1+�

j
1+ t

j
1+ t

j
2, for j = a; bt), the buyer is indi¤erent between the

auction and the bonus tournament. However, suppose C < maxf�a1;�a2g and suppose w.l.o.g.
that maxf�a1;�a2g = �a1. Because �a1 = �bt1 +tbt1 , there exists " > 0 such that �bt1 +tbt1 �" � C.
Then, a bonus tournament with (�q (v�1; v

�
2) ; 0) with subsidies t̂

bt
1 = t

bt
1 � " and t̂bt2 = tbt2 still

implements the social optimum but with strictly lower total transfers than the auction with
the minimum subsidies. Thus, the buyer strictly prefers this bonus tournament to the auction
with any subsidies.

8.7.3 Proof of Lemma 5

This section provides the proof of Lemma 5 from Section 5.3.3. Suppose that there are n
suppliers and that assumption (A2)�holds. Consider an FPT with two prizes A1 > A2 > 0,
where the supplier with the highest quality receives A1 and the supplier with the second-
highest quality receives A2.47 For notational convenience, suppose that v1 � v2 � � � � � vn.
We �rst provide an intermediate result.

Lemma 11 If v1; v2; : : : ; vn is an equilibrium of an FPT with two prizes, then v1 = v2 = v3
and vn�2 = vn�1 = vn.

Proof. We will prove that v1 = v2 = v3. The other claim follows by an analogous argument.
Step 1: v1 = v2. Suppose not. Then v1 < v2. Thus, the revenue of supplier 1 is

�1 (v1; v�1) =
v1 + v2
2

A1 +
v3 � v2
2

A2:

Therefore, a deviation to any v01 2 (v1; v2) increases the probability of winning the �rst prize,
while not a¤ecting the probability of winning the second prize. Hence, it is pro�table.
Step 2: v1 = v2 < v3 = v4 cannot be an equilibrium. Denote with P

i;1
�<vi the probability

that supplier i wins the �rst prize when � < vi. Analogously de�ne the probabilities of
winning when the state is greater than the chosen approach and the probabilities of winning
the second prize. By random tie breaking we have P 1;1�<v1 = P 2;1�<v2 = P 1;2�<v1 = P 2;2�<v2 and
P 1;1�>v1 = P

2;1
�>v2 = P

1;2
�>v1 = P

2;2
�>v2 . We will show that P

1;1
�<v1 = P

1;1
�>v1 . Suppose that this was

not true. First, suppose P 1;1�<v1 > P
1;1
�>v1 . Then, there exist "; "

0; "00 > 0 arbitrarily small such
that a deviation v01 = v1 � " leads to revenues

�1
�
v01; v�1

�
= 2

�
P 1;1�<v1 � "

0
�
A1 + 2

�
P 1;1�>v1 � "

00
�
A2:

For su¢ ciently small " this constitutes a pro�table deviation. The case P 1;1�<v1 < P
1;1
�>v1 follows

by an analogous argument, but the incentives to deviate are even stronger.
Now suppose that P 1;1�<v1 = P 1;1�>v1 and v1 = v2 < v3 = v4. We will show that this

cannot be an equilibrium. In the proposed equilibrium P 1;1�<v1 = v1=2 and P
1;1
�<v1 + P

1;1
�>v1 =

P 1;2�<v1 + P
1;2
�>v1 = v1. Hence, the expected revenue is

�1 (v1; v�1) = v1A1 + v1A2:

47Ties are broken randomly, with equal chance of winning for each �rm with the respective quality.
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For any deviation v01 2 (v2; v3) the probability of winning the �rst prize is

v01 + v3
2

� v
0
1 + v2
2

=
v3 � v2
2

= v1

where the last equality follows from P 1;1�<v1 = P
1;1
�>v1 . Using v3 = v4, the probability of winning

the second prize is
v2 + v

0
1

2
> v1

thus it follows that �1 (v01; v�1) > �1 (v1; v�1).
Step 3: v1 = v2 < v3 < v4 cannot be an equilibrium. The revenue of supplier 1 is

�1 (v1; v�1) =
v1
2
A1 +

v3 � v1
4

A1 +
v3 + v1
4

A2 +
v4 � v3
4

A2: (12)

Consider a deviation to v01 2 (v1; v3). The revenue is

�1
�
v01; v�1

�
=
v3 � v1
2

A1 +
v01 + v1
2

A2 +
v4 � v3
2

A2:

If �1 (v01; v�1) > �1 (v1; v�1), then this is a pro�table deviation. If �1 (v
0
1; v�1) � �1 (v1jv�1)

is equivalent with

v1
2
A1 �

v3 � v1
4

A1 +
v3 � v1
4

A2 �
v01
2
A2 �

v4 � v3
4

A2 � 0 (13)

But consider in that case a deviation to v001 = v1�" for small positive ". The expected revenue
is

�1
�
v001 ; v�1

�
=
v001 + v1
2

A1 +
v3 � v1
2

A2

and lim"!0�1 (v001 ; v�1) = v1A1 +
v3�v1
2 A2. Together with (12), this implies

lim
"!0

�1
�
v001 ; v�1

�
��1 (v1; v�1) =

v1
2
A1 +

v3 � v1
4

A2 �
v3 � v1
4

A1 �
v1
2
A2 �

v4 � v3
4

A2:

Since v01 > v1, (13) implies lim"!0�1 (v
00
1 ; v�1)� �1 (v1; v�1) > 0. Hence, there always exists

" > 0 small enough such that �1 (v001 ; v�1)��1 (v1; v�1) > 0.
The lemma implies that the maximal number of active approaches in an FPT with two

prizes is n�4. By Lemma 10 an FPT with a single prize implements an equilibrium with n�2
active approaches. By Lemma 4(ii), it is possible to implement the socially optimal allocation
with n � 2 approaches in an FPT with a single prize. Implementing this equilibrium in a
single-prize FPT, where the prize size is the sum of the two prizes in an FPT with two prizes,
strictly increases the total payo¤. On the other hand, the payo¤ of the suppliers remains the
same, as the total size of the �xed prize remains the same. Hence, the expected buyer payo¤
strictly increases.
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