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Abstract. This paper considers all-pay contests in which the relationship between

bids and allocations reflects a small amount of noise. Prior work had focused on

one particular equilibrium. However, there may be other equilibria. To address this

issue, we introduce a new and intuitive measure for the proximity to the all-pay

auction. This allows, in particular, to provide simple conditions under which actually

any equilibrium of the contest is both payoff equivalent and revenue equivalent to

the unique equilibrium of the corresponding all-pay auction. The results are shown

to have powerful implications for monopoly licensing, political lobbying, electoral

competition, optimally biased contests, the empirical analysis of rent-seeking, and

dynamic contests.
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1. Introduction

Many types of strategic interaction entail an element of rivalry in which costly re-

sources are irrevocably spent in an attempt to obtain a privileged position compared

to others.1 Hillman and Riley (1989) distinguished two main classes of game-theoretic

models of such rivalry. In a perfectly discriminating (or deterministic) contest, i.e.,

in a first-price all-pay auction, the prize is awarded always to the highest bidder.2 In

an imperfectly discriminating (or probabilistic) contest, however, a prize is allocated

according to a stochastic success function, where a higher bid raises the player’s prob-

ability of winning—but typically not too strongly.3 These two classes of models have

traditionally been analyzed separately and sometimes with different conclusions.4 In

fact, due to a lack of equilibrium characterizations, most work in the area has been

forced to restrict attention to technologies that are either perfectly discriminating or

very probabilistic, sometimes leaving doubts regarding the robustness of the results.5

The first paper that ventured into the no man’s land between the two extremes

was Baye et al. (1994). They showed that the symmetric two-player Tullock contest

with finite R ą 2 allows a mixed-strategy Nash equilibrium. That equilibrium was

found as the limit of equilibria corresponding to a sequence of contests with finite

strategy spaces. Since the size of the smallest positive bid in the finite contest turns

1For example, in a patent race (Loury, 1979; Dasgupta and Stiglitz, 1980), sunk and irreversible
research investments determine which firm is more likely to be the first in the market. For an
introduction to the literature on contests, see Konrad (2009).

2Early work includes Nalebuff and Stiglitz (1983), Moulin (1986), Hillman and Samet (1987),
and Hillman and Riley (1989). Baye et al. (1996) accomplished the game-theoretic analysis. The
model of the all-pay auction has been applied in various areas such as sales promotion (Varian,
1980; Narasimhan, 1988), competitive screening (Rosenthal and Weiss, 1984), interbank competition
(Broecker, 1990), monopoly (Ellingsen, 1991), political lobbying (Baye et al., 1993), and market
microstructure (Dennert, 1993). More recent extensions of the theoretical framework include Che
and Gale (1998), Clark and Riis (1998a), Konrad (2002), Siegel (2009, 2010), Klose and Kovenock
(2015), and Xiao (2016), among others.

3See, in particular, Rosen (1986), Nti (1997), and Cornes and Hartley (2005).
4For example, while in an all-pay auction, it may be optimal for a revenue-maximizing politician

to exclude the lobbyist with the highest valuation (Baye et al., 1993), this is never the case for the
lottery contest (Fang, 2002).

5Cf. Konrad and Kovenock (2009, p. 259): “A full characterization of equilibrium for contests
with small noise remains, up to now, an open question.”
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out to be an upper bound for any player’s equilibrium payoff, the limit construction

guarantees that rent dissipation in the symmetric equilibrium of the continuous con-

test must be complete. Che and Gale (2000) addressed related issues in a somewhat

different framework. Considering a contest of the difference form with uniform noise,

they identified two main classes of equilibria, and proved convergence to the equi-

librium of the all-pay auction. For success functions in the tradition of the Tullock

contest, however, Che and Gale (2000, p. 23) noted that it was not known if the qual-

itative properties of the mixed equilibrium in the all-pay auction, such as preemption

under heterogeneous valuations, would be similarly preserved if the success function

is slightly perturbed.

Substantial progress in this regard has been made by Alcade and Dahm (2010).

Specifically, they identified conditions under which a given probabilistic contest allows

an all-pay auction equilibrium that, as the term indicates, shares important charac-

teristics with an equilibrium of the corresponding all-pay auction.6 The construction

starts from a symmetric equilibrium with complete rent dissipation in a two-player

contest with homogeneous valuations, and subsequently exploits the fact that, in the

considered class of contests, a positive bid of any size wins against a zero bid with

probability one. Therefore, introducing a mass point at the zero bid of one player

(leaving the conditional distribution over positive bids unchanged) implies a propor-

tional reduction in the other player’s marginal willingness to pay to win the prize.

Since additional, lower-valuation players have little incentive to enter the active con-

test, this indeed allows to construct an all-pay auction equilibrium in the rent-seeking

game. As Alcade and Dahm (2010, p. 5) concluded, however, their results are partial

without an improved understanding of the entire equilibrium set. As a matter of

6If the corresponding all-pay auction has a unique equilibrium, then an all-pay auction equilibrium
is equivalent to that equilibrium in terms of participation probabilities, average bid levels, winning
probabilities, expected payoffs, and expected revenue. Otherwise, the definition requires equivalence
to an equilibrium in which all but two of the strongest players remain passive.
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fact, it will be shown below that additional, payoff-nonequivalent equilibria exist if

the probabilistic contest is not sufficiently “close” to the all-pay auction.

In this paper, the proximity of a given probabilistic contest to the all-pay auc-

tion is measured by the extent to which a player’s odds of winning, i.e., the ratio

between his respective probabilities of winning and losing, is raised by a small per-

centage change to his own bid. We call this measure decisiveness, and show that it

is closely related to a variety of existing concepts. Our central result says that, if a

probabilistic contest is sufficiently decisive, and if the corresponding all-pay auction

has a unique equilibrium, then actually any equilibrium of the probabilistic contest

is an all-pay auction equilibrium and is, consequently, both payoff-equivalent and

revenue-equivalent to the corresponding all-pay auction. Additional results cover the

remaining non-generic cases in which the corresponding all-pay auction allows either

multiple revenue-equivalent equilibria or multiple revenue-inequivalent equilibria. Fi-

nally, regarding the robustness of the all-pay auction, it is shown that payoffs resulting

from any equilibrium in the probabilistic contest converge to the unique payoff pro-

file of the corresponding all-pay auction as the decisiveness of the contest exceeds all

bounds. Taken together, these results offer a quite comprehensive characterization

of the equilibrium set, and thereby resolve the above-mentioned issues. Moreover,

powerful conclusions can be drawn in a wide range of specific applications.

The analysis proceeds as follows. After introducing a class of probabilistic n-player

contests with potentially heterogeneous valuations, it is shown first that a mixed-

strategy Nash equilibrium exists in any such contest. Then, the equilibrium set is

examined with a focus on the minimum of the support of the players’ bid distributions,

as previously done by Baye at al. (1994) and Alcade and Dahm (2010) in discrete

settings.7 In that part of the analysis, to accomplish the step from homogeneous

7For a discussion of the related analysis of Klumpp and Polborn (2006), see the applications
section.
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to heterogeneous valuations, we essentially reverse the construction of Alcade and

Dahm (2010). However, we also work with a couple of new inequalities for winning

probabilities when bids are close to each other. Finally, the tools developed mainly

for the characterization of the equilibrium set are re-used to establish the above-

mentioned robustness property of the all-pay auction.

The equilibrium characterization obtained for any sufficiently decisive n-player

contest provides additional and strong support for the view that the deterministic

relationship between bids and allocations assumed in the all-pay auction is a useful

simplification, in the sense that a probabilistic element could be introduced into

that relationship without affecting the equilibrium prediction too much. In a similar

vein, the all-pay auction is known to be robust with respect to the introduction of

private information. Indeed, as Amann and Leininger (1996) have shown, a symmetric

two-player all-pay auction with independent types has a unique Bayesian equilibrium

that converges to the complete information outcome as the distributions of valuations

degenerate.

The remainder of this paper is organized as follows. Section 2 introduces the

set-up. Existence of a mixed-strategy equilibrium is established in Section 3. Section

4 contains the equilibrium characterization. Section 5 deals with the robustness of

the all-pay auction. Multiple equilibria are discussed in Section 6. Section 7 offers

applications. Section 8 concludes. All proofs have been collected in an Appendix.

2. Set-up and notation

We consider a set-up that is familiar from the standard analysis of the first-price all-

pay auction (Baye at al., 1996), yet with the modification that the highest bid need

not win with certainty.8 Thus, there are n ě 2 players i “ 1, ..., n that simultaneously

8An even more flexible set-up is considered in the working paper version (2014). The present
article corresponds roughly to the second part of that paper. Using the standard set-up of a proba-
bilistic contest right from the beginning simplifies the exposition and allows us to do justice to the
specific implications of our arguments in the context of the all-pay auction.
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and independently choose a bid bi ě 0. Player i’s valuation of the prize, denoted by

Vi, is assumed to be positive. Without loss of generality, players may then be renamed

such that V1 ě V2 ě ... ě Vn ą 0. By a contest success function Ψ, or CSF in short,

we mean a vector of functions Ψi : Rn
` Ñ r0, 1s, one for each player i “ 1, ..., n, such

that
n
ÿ

i“1

Ψipb1, ..., bnq “ 1 (1)

for any profile of bids b “ pb1, ..., bnq P Rn
`.9 Player i’s payoff is given by

uipbi, b´iq “ Ψipbi, b´iqVi ´ bi.
10 (2)

It is easy to see that bids exceeding Vi are strictly dominated by a zero bid. Thus,

it may be assumed without loss of generality that each player i “ 1, ..., n chooses his

bid from the compact interval Bi “ r0, Vis. Given valuations pV1, ..., Vnq, we will refer

to the resulting non-cooperative game as the n-player contest with CSF Ψ.

The following four assumptions will be imposed on the contest technology.

Assumption 1. (Monotonicity) Ψipbi, b´iq is weakly increasing in bi, for any

i P t1, ..., nu and any b´i P Rn´1
` ; moreover, Ψi,jpbi, bj, b´i,jq is weakly declining in bj,

for any i, j P t1, ..., nu such that i ‰ j, any bi P R`, and any b´i,j P Rn´2
` .

Assumption 2. (Zero bids) Ψip0, b´iq “ 0 for any i P t1, ..., nu and any b´i ‰ 0´i;

moreover, Ψipbi, b´iq ą 0 for any i P t1, ..., nu, any bi ą 0, and any b´i P Rn´1
` .

Assumption 3. (Anonymity) Ψipbq “ Ψϕpiqpbϕp1q, ..., bϕpnqq for any i P t1, ..., nu,

any b P Rn
`, and any permutation ϕ : t1, ..., nu Ñ t1, ..., nu.

Assumption 4. (Smoothness) Ψi is continuous on Rn
`zt0u, for any i P t1, ..., nu;

9The axiomatic approach to the CSF has been pioneered by Skaperdas (1996). For an overview
of recent developments, see Jia et al. (2013).

10Here and in the subsequent development, it will be convenient to use the notation Ψipbq “
Ψipbi, b´iq “ Ψi,jpbi, bj , b´i,jq, where b´i “ pb1, ..., bi´1, bi`1, ..., bnq is the profile of bids of all players
except i, and b´i,j “ b´j,i “ pb1, ..., bi´1, bi`1, ..., bj´1, bj`1, ..., bnq is the profile of bids of all players
except i and j, with j ‰ i. For better readability, we will also use the symbols 0, 0´i and 0´i,j to
denote the respective vectors of zero bids in Rn

`, Rn´1
` , and Rn´2

` .
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moreover, the partial derivative BΨipbi, b´iq{Bbi exists and is continuous in bi, for any

i P t1, ..., nu, any bi ą 0, and any b´i P Rn´1
` .

Assumption 1 requires a player’s probability of winning to be monotone increasing

in his own bid, and monotone decreasing in the bid of any other player. Assumption

2 says that a zero bid never wins against a positive bid, whereas a positive bid

always has a positive probability of winning. This assumption indeed imposes a

certain structure on the CSF.11 Assumption 3 says that any player’s probability to

win does not depend on his identity, i.e., not on his index i P t1, ..., nu, but only on

his bid and on the unordered vector of bids of the other players. This assumption

can be relaxed to a certain extent. In particular, as will be explained, our results

extend directly to the biased Tullock contest (which is not anonymous).12 Finally,

smoothness is assumed for convenience, and could probably be relaxed. For example,

the conclusions of Propositions 1 through 5 below hold for the all-pay auction even

though its technology does not satisfy Assumption 4.

The set-up is illustrated by the following examples that will be taken up later as

well.

Example 1. Following Tullock (1980), let

ΨTUL
i pbq ” ΨTUL

i pb1, ..., bn;Rq “
bRi

řn
j“1 b

R
j

(3)

if b “ pb1, ..., bnq ‰ 0, and ΨTUL
i p0q “ 1

n
, where R ą 0 is the usual parameter.

Example 2. The ratio-form CSF (Rosen, 1986) is given by

ΨRAT
i pbq ” ΨRAT

i pb1, ..., bn;hq “
hpbiq

hpb1q ` ...` hpbnq
(4)

11Specifically, Assumption 2 excludes continuous games that possess slightly different properties.
For example, as pointed out by Che and Gale (2000), two players involved in a difference-form
contest may each have a small positive equilibrium payoff even when there is very little noise.

12In general, however, when the contest is not anonymous, even though one can still find conditions
that guarantee that at most one player has a positive equilibrium payoff, it can be more difficult to
identify that player, or to pin down the size of the equilibrium rent.
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if b ‰ 0, and by ΨRAT
i p0q “ 1

n
otherwise, where h : R` Ñ R` is strictly increasing,

differentiable, and satisfies hp0q “ 0.

Example 3. The serial CSF (Alcade and Dahm, 2007) is given by

ΨSER
i pbq ” ΨSER

i pb1, b2;αq “

$

&

%

1
2
pbi{bjq

α if bi ă bj

1´ 1
2
pbj{biq

α if bi ě bj,
(5)

if b ‰ p0, 0q, and by ΨSER
i p0, 0q “ 1

2
otherwise, where α ą 0 is a scale parameter.13

Example 4. In a simultaneous electoral competition (Snyder, 1989; Klumpp and

Polborn, 2006), candidates i’s probability of winning a majority of an odd number of

p2s` 1q districts may be specified as

ΨMAJ
i pbq ” ΨMAJ

i pb1, b2; s, Rq (6)

“

2s`1
ÿ

t“s`1

ˆ

2s` 1

t

˙

pΨTUL
i pb, Rqqtp1´ΨTUL

i pb, Rqq2s`1´t, (7)

where the binomial coefficient in (7) is defined as usual by
`

2s`1
t

˘

“
p2s`1q!

t!p2s`1´tq!
. This

technology will be referred to as the majority CSF.14

3. Existence

This section introduces some terminology regarding randomized strategies and es-

tablishes existence of a mixed-strategy Nash equilibrium for the considered class of

contests.

Following Dasgupta and Maskin (1986), a mixed strategy for player i is a probabil-

ity measure µi on the interval Bi “ r0, Vis. Thus, for any measurable set Yi Ď r0, Vis,

the real number µipYiq is the probability that the bid realization chosen by player i is

contained in Yi. We write DpBiq for the set of player i’s mixed strategies. As usual,

pure strategies may be considered as degenerate probability measures. The support of

13For expositional reasons, we restrict attention to the case of two players. Lemma 2 below holds,
however, also for the serial contest with any finite number of players.

14The assumption that bidders allocate resources equally across districts will be relaxed later in
the paper. Similarly, we will drop the assumption that the district CSF is of the Tullock form.
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a mixed strategy µi P DpBiq will be denoted by Spµiq. Since the support is contained

in the compact interval Bi “ r0, Vis, we may define bi “ minSpµiq and b̄i “ maxSpµiq.

Mass points at the zero bid level will play an important role in the analysis. We refer

to πi “ 1 ´ µipt0uq as player i’s probability of participation. Player i will be called

passive if πi “ 0, active if πi ą 0, and always active if πi “ 1. If some player i is

active, then his lowest positive bid will be defined as b`i “ infpSpµiqzt0uq ě 0. If

b`i “ 0, then player i will be said to use arbitrarily small positive bids.

A mixed equilibrium is an n-tuple µ˚ “ pµ˚1 , ..., µ
˚
nq, with µ˚i P DpBiq, such that

each player maximizes his ex-ante expected payoff, i.e., such that

Eruipbi, b´iq|µ˚i , µ˚´is “ max
µiPDpBiq

Eruipbi, b´iq|µi, µ˚´is, (8)

for any i “ 1, ..., n, where µ˚´i “ pµ˚1 , ..., µ
˚
i´1, µ

˚
i`1, ..., µ

˚
nq. For a given equilibrium

µ˚, denote by p˚i “ ErΨipbi, b´iq|µ˚i , µ˚´is and b˚i “ Erbi|µ˚i s, respectively, player i’s

ex-ante probability of winning and player i’s average bid level. Player i’s equilibrium

payoff, or rent, is then given as u˚i “ p˚i Vi ´ b
˚
i . Clearly, because of the option to bid

zero, u˚i ě 0. Moreover, u˚i “ Eruipbi, b´iq|µ˚´is for any bi P Spµ
˚
i qzt0u.

15 Finally, the

expected revenue is R “
řn
i“1 b

˚
i , i.e., the total of players’ average bid levels.

To prove existence of a mixed equilibrium, one notes that any contest with het-

erogeneous valuations is strategically equivalent to a contest with homogeneous val-

uations but heterogeneous marginal costs. The latter case, however, has been dealt

with in prior work by Bagh (2010).16

Lemma 1. A mixed equilibrium µ˚ exists in any n-player contest.

15For a proof, see Lemma A.1 in the Appendix. To understand why the zero bid is excluded, think
of a two-player all-pay auction with valuations V1 ą V2. For player 1, any positive bid b1 P p0, V2s
yields the equilibrium payoff u˚1 “ V1 ´ V2 ą 0, yet the zero bid, even though it is contained in the
support Spµ˚1 q “ r0, V2s, yields strictly less, viz. pV1 ´ V2q{2. The situation here is similar because
the CSF is discontinuous at the origin.

16Similar results that do not cover the present situation can be found in Baye et al. (1994), Yang
(1994), and Alcade and Dahm (2010).
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4. Equilibrium characterization

This section contains the central parts of the analysis. We start by introducing, on the

set of CSFs, a measure of proximity to the technology of the all-pay auction. Then,

after explaining the logic of the main argument, the equilibrium characterizations are

presented, first for two players and subsequently for more than two players.

4.1 Measuring the proximity to the all-pay auction

For a given CSF Ψ, the ratio Qi “ Ψi{p1´Ψiq will be referred to as player i’s odds

of winning. At a bid vector pbi, b´iq P Rn
`, the own-bid elasticity of player i’s odds of

winning is given as

ρi “
B lnQi

B ln bi
“

bi
Ψip1´Ψiq

¨
BΨi

Bbi
. (9)

One can convince oneself that, under the present assumptions, ρipbi, b´iq is well-

defined if bi ą 0 and b´i P Rn´1
` zt0´iu. Define now the decisiveness of the CSF Ψ by

ρ ” ρpΨq “ inftρipbi, b´iq : i P t1, ..., nu, bi ą 0, b´i ‰ 0´iu, i.e., as the joint infimum

of the functions ρi over the relevant domains.17

The following result provides information about the decisiveness of the Tullock,

ratio-form, serial, and majority CSFs.

Lemma 2. ρpΨTULq “ R, ρpΨRATq “ infxą0 xh
1pxq{hpxq, ρpΨSERq “ α, and

ρpΨMAJq “
p2s`1q!
ps!q24s

R.

The lemma illustrates that the decisiveness notion is closely related to a variety of

existing concepts. In Tullock’s model, the parameter R is an immediate measure for

the proximity to the all-pay auction simply because, as R Ñ 8, the CSF converges

pointwise to the technology of the all-pay auction.18 The fact that the own-bid elastic-

17As an elasticity, the decisiveness parameter allows the usual graphical interpretation. For in-
stance, in a pure lottery (i.e., a Tullock contest with parameter R “ 0), the odds of winning are
constant and equal to Qi “ 1{pn´ 1q, hence perfectly inelastic. At the other extreme, the all-pay
auction, the odds of winning jump from zero to infinity at the highest competing bid, and hence,
are perfectly elastic. We are interested here in the case where that elasticity is large but still finite.

18Consistent with this property, the parameter R has been interpreted alternatively as a measure
of military mass-effect (Hirshleifer, 1989), political culture (Che and Gale, 1997), noise (Jia, 2008),
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ity of the odds of winning is constant and equal to R is the result of a straightforward

computation.19 More generally, the decisiveness of a contest of the ratio form can be

seen to correspond to the infimum of Rosen’s (1986) elasticity ηpxq “ xh1pxq{hpxq

over all positive bid levels x ą 0. In the case of the serial contest, the own-bid elastic-

ity of the odds of winning assumes values in the interval pα, 2αs, where lower values

correspond to more unbalanced bidding. Here, taking the limit in the definition of de-

cisiveness is indeed necessary. Finally, the decisiveness of the majority contest turns

out to correspond to the probability of a given voter being pivotal in a random voting

model (Penrose, 1946), multiplied with the decisiveness of the individual contest. If

the district CSF Ψ is not of the Tullock type, then this relationship generalizes into

a useful lower bound, viz. ρpΨMAJq ě 2s`1
4s

`

2s
s

˘

¨ ρpΨq ą
?
s ¨ ρpΨq.20 In particular, for

any given district CSF Ψ with ρpΨq ą 0, the majority contest becomes arbitrarily

decisive as the number of districts grows large.

4.2 Intuitive discussion of the main idea

The main observation of this paper is that a high decisiveness parameter renders

competition in an imperfectly discriminating contest nearly as ruthless as in the all-

pay auction. To understand why this is so, consider the best-response correspondence

in a two-player contest with ρ ą 2. Suppose that player 2 uses a mixed strategy µ˚2

with a positive lowest bid realization b2 ą 0. It is claimed that player 1 will then never

find it optimal to bid in the interval p0, b2s. Indeed, suppose that player 1 considers

submitting a bid b1 in that interval. Then, for any b2 in the support of player 2’s bid

distribution, Ψ1pb1, b2q ď Ψ1pb2, b2q “
1
2
, by monotonicity and anonymity. Combining

and incomplete information (Eccles and Wegner, 2014), for instance.
19Indeed, as noted by Wang (2010, fn. 4), for any bi ą 0 and any b´i ‰ 0´i,

ρipbi, b´iq “
bi

ΨTUL
i p1´ΨTUL

i q

BΨTUL
i

Bbi
“
bip

řn
j“1 b

R
j q

2

bRi p
ř

j‰i b
R
j q

RbR´1
i p

ř

j‰i b
R
j q

p
řn

j“1 b
R
j q

2
“ R. (10)

The claim follows.
20For the second inequality, see, e.g., Sasvári (1999).
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this with the fact that the decisiveness exceeds two leads to the key inequality21

BΨ1

Bb1

“
Ψ1

b1

¨ p1´Ψ1q
looomooon

ě1{2

¨ ρ1
loomoon

ěρpΨqą2

ą
Ψ1

b1

. (12)

From here, taking expectations, one arrives at

BE ru1|µ
˚
2s

Bb1

“ E

„

BΨ1

Bb1

ˇ

ˇ

ˇ

ˇ

µ˚2



V1 ´ 1 ą E

„

Ψ1

b1

ˇ

ˇ

ˇ

ˇ

µ˚2



V1 ´ 1 “
E ru1|µ

˚
2s

b1

, (13)

which says that, either player 1 incurs a loss (viz. if the right-hand side is negative),

or player 1 has a strict incentive to raise his bid (viz. if the right-hand side is weakly

positive). Thus, precisely as in the all-pay auction, it is never optimal for player 1 to

place a bid in the interval p0, b2s.

From the above, it follows that a given positive bid b1 ą 0 of player 1 can be

a best response only if player 2 uses, with some positive probability, bids strictly

below b1. Since this argument remains unchanged when the roles of players 1 and

2 are reversed, there is a sense in which the equilibrium unravels.22 But, because

the CSF is discontinuous at the origin, at least one player must be always active.

Thus, the other player cannot have a positive rent. This basic logic generalizes in a

straightforward way, and is used in the present paper to show that, in any n-player

contest with ρ ą 2, there is at most one player with a positive equilibrium payoff.

4.3 The case of two players

For the case of two players, the implications of this observation are particularly strong.

Specifically, using additional arguments that revert the construction in Alcade and

21For example, for the Tullock contest with decisiveness R ą 2, inequality (12) reads

BΨ1pb1, b2q

Bb1
“

bR´1
1

bR1 ` b
R
2

¨
bR2

bR1 ` b
R
2

looomooon

ě1{2

¨R ą
bR´1
1

bR1 ` b
R
2

“
Ψ1pb1, b2q

b1
. (11)

Further elaboration on this example as well as many additional results can be found in a companion
paper (2015). Special thanks goes to Casper de Vries for suggesting the separate documentation of
the Tullock case.

22I am indebted to Benny Moldovanu for suggesting this analogy.
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Dahm (2010), we show that any rent necessarily accrues to player 1 and equals V1´V2.

As a consequence, it turns out that any equilibrium of the imperfectly discriminating

contest shares several key characteristics with the unique equilibrium of the corre-

sponding all-pay auction (Hillman and Riley, 1989, Prop. 2).

Proposition 1. Consider a two-player contest with CSF Ψ and valuations V1 ě V2 ą

0. Then, provided that ρpΨq ą 2, any mixed equilibrium µ˚ satisfies the following three

properties:

(A1) Player 1 participates with probability π1 “ 1, uses arbitrarily small positive bids,

bids an average amount of b˚1 “ V2{2, wins with probability p˚1 “ 1 ´ V2{p2V1q, and

receives a rent of V1 ´ V2.

(A2) Player 2 participates with probability π2 “ V2{V1, uses arbitrarily small positive

bids, bids an average amount of b˚2 “ pV2q
2{p2V1q, wins with probability p˚2 “ V2{p2V1q,

and receives no rent.

(A3) The expected revenue from the contest is R “ RAPA ” V2pV1 ` V2q{p2V1q.

The conclusions of Proposition 1 indeed match precisely those for the all-pay auction.

In particular, rent dissipation is complete in any equilibrium of any two-player contest

with homogeneous valuations and ρ ą 2.23

Proposition 1 strengthens the conclusions of Alcade and Dahm (2010) in two

ways. First, properties (A1-A3) are shown to hold for any mixed equilibrium of the

probabilistic contest, rather than for some equilibrium. Second, both players are

shown to use arbitrarily small positive bids. It is easy to see that this excludes, in

particular, the use of pure strategies.24 But also the assumptions of Proposition 1

23Uniqueness remains an interesting issue. For example, it would directly imply some results of the
present paper. However, proving uniqueness is not straightforward, e.g., because mixed equilibrium
strategies are not available in explicit form. Even in cases where equilibrium strategies have been
characterized, as in the Tullock case, it is not presently known if the equilibrium is unique for R ą 2.

24As noted by Rosen (1986), a pure-strategy equilibrium cannot exist in any two-player contest
of the ratio form if the elasticity η exceeds two at the local equilibrium. Similarly, it follows from
our results that a pure-strategy equilibrium cannot exist in any n-player contest with ρ ą 2.
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differ from existing conditions. For example, as shown by Alcade and Dahm (2010),

the two-player Tullock contest with parameter exactly equal to R “ 2 allows an all-

pay auction equilibrium. Yet this case is not covered by Proposition 1. Intuitively,

this makes sense because, in the considered equilibrium, at least one of the players

uses a pure strategy, which disallows the application of our methods. Similarly, an

all-pay auction equilibrium exists in the serial contest with parameter α “ 1, yet this

case is not covered by our arguments.25 In this sense, the present paper complements

the analysis of Alcade and Dahm (2010).

4.4 More than two players

The characterization of the equilibrium set complicates for n ě 3 players. One reason

for this is the well-known fact that the all-pay auction allows a continuum of equilibria

if V2 “ V3 (Baye et al., 1996). While those equilibria are all payoff-equivalent in the

sense that a preemptive rent of V1´V2 goes to player 1 whereas all other players earn

zero, they need not be equivalent in terms of revenue. The following result starts the

analysis of the case of n ě 3 players by dealing with precisely those cases in which

the corresponding all-pay auction has a unique equilibrium.

Proposition 2. Consider an n-player contest with CSF Ψ and valuations V1 ě

V2 ą V3 ě ... ě Vn ą 0. Then, provided that ρpΨq is sufficiently large, any mixed

equilibrium µ˚ satisfies properties (A1-A3). Moreover, players 3, ..., n remain passive.

Proposition 2 may be understood as a variation of the corresponding uniqueness result

for the all-pay auction (Hillman and Riley, 1989, Prop. 4). The main point to prove

is that players 3, ..., n remain passive in any equilibrium. This is accomplished by

noting that if, say, player 3 was active, then players 1 and 2 could, in a sufficiently

decisive contest, each ensure a positive expected payoff by bidding player 3’s highest

25However, the cases α P p1, 2s can be dealt with. This is because, in Proposition 1, the condition
on the decisiveness may be replaced by the somewhat weaker assumption that the own-bid elasticity
of the probability of winning for the player with the weakly lower bid is strictly larger than one.
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bid realization b̄3. But this would imply that more than one player receives a positive

rent, which is impossible, as discussed above. Thus, provided that V2 ą V3, and that ρ

is sufficiently large, all but the two strongest players remain passive. However, as will

be explained later in the paper, this conclusion need not hold when the decisiveness

is merely larger than two.

Suppose, next, that at least three contestants share the highest valuation. In

this case, the all-pay auction allows a continuum of equilibria, all of which are still

equivalent in terms of payoffs and revenues. Following Baye et al. (1996), we are also

interested in the case of “symmetric” equilibria, i.e., equilibria in which players with

identical valuations use identical mixed strategies.

Proposition 3. Assume that V1 “ ... “ Vm ą Vm`1 ě ... ě Vn ą 0, where m ě 3.

Then, for ρ sufficiently large, in any mixed equilibrium µ˚, there is a player i P

t1, ...,mu such that u˚j “ 0 for any j ‰ i, players m ` 1 through n remain passive,

and the expected revenue from the contest satisfies R “ V1 ´ u˚i . In particular, all

“symmetric” equilibria entail complete rent-dissipation.

Thus, if more than two players share the same, highest valuation, then all players

with a strictly lower valuation remain passive, at most one of the active players earns

a positive rent, and that rent reduces the expected revenue in a zero-sum fashion

compared to full dissipation. In particular, payoff and revenue equivalence holds

under the assumptions of Proposition 3 when attention is restricted to “symmetric”

equilibria. For equilibria that are not “symmetric”, however, our findings leave the

theoretical possibility that one player has a small positive rent even if ρ is large.26

Finally, assume that one strong player fights against at least two weaker players

that share the same valuation. For the all-pay auction, payoff equivalence continues

26Numerical computations suggest that this possibility might indeed be a real one. E.g., a three-
player Tullock contest allows staggering equilibria similar to those identified by Che and Gale (2000).
However, if two or more players are always active, then rent dissipation is necessarily complete, and
each of the always active players uses arbitrarily small positive bids, just as in the all-pay auction.
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to hold, yet revenue equivalence breaks down. For the probabilistic contest, one can

still show that the strongest player receives a positive rent, while all other players earn

zero. Moreover, as in the all-pay auction, the expected revenue from any equilibrium

is strictly lower than the second-highest valuation.

Proposition 4. Assume that V1 ą V2 “ ... “ Vm ą Vm`1 ě ... ě Vn ą 0, where m ě

3. Then, for ρ sufficiently large, in any mixed equilibrium µ˚, player 1 participates

with probability π1 “ 1 and receives a positive rent u˚1 ą 0, all other players have a

zero rent u˚2 “ ... “ u˚n “ 0, players m` 1 through n remain passive, and the expected

revenue from the contest satisfies R “ V2 ` p
˚
1pV1 ´ V2q ´ u

˚
1 ă V2.27

To elucidate the expression for the expected revenue somewhat, recall that in the all-

pay auction, u˚1 “ V1 ´ V2 and p˚1 “
V1´V2`b

˚
1

V1
. Plugging this into the equation above

yields, after some manipulation, the well-known expression for the expected revenue

in the n-player all-pay auction, RAPA “ V2
V1
V2 ` p1 ´

V2
V1
qb˚1 . Thus, like the previous

result, Proposition 4 leaves, compared to the prediction for the all-pay auction, one

additional degree of freedom.28 Overall, while Propositions 3 and 4 are somewhat less

explicit than their counterparts for the all-pay auction, powerful conclusions remain

feasible, as will be shown in the applications section.

5. Robustness of the all-pay auction

We arrive at the promised robustness result.

Proposition 5. Fix arbitrary valuations V1 ě V2 ě V3 ě ... ě Vn ą 0, and

δ ą 0. Then, provided that ρ is sufficiently large, any mixed equilibrium µ˚ satis-

fies |u˚1 ´ pV1 ´ V2q| ă δ, and u˚j ă δ for j “ 2, ..., n.

Thus, for any finite number of players and arbitrary valuations, a small change in

27For expositional clarity, we mention that the last inequality in the statement of Proposition 4,
i.e., R ă V2, relies on the robustness result that will be stated and proved in the next section.

28It is conjectured that the equilibrium rent for the strongest player may differ from V1´ V2 even
if attention is restricted to “symmetric” equilibria.
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the technology of the all-pay auction does not affect equilibrium payoffs very much.

For example, for the Tullock technology, Proposition 5 assures us that, for any given

ordered set of valuations V1 ě V2 ě V3 ě ... ě Vn ą 0, and for any given level

of precision δ ą 0, there is a parameter value R˚ such that for any R ą R˚, the

expected payoff of any player i “ 1, ..., n in any mixed equilibrium of the probabilistic

contest is δ-close to i’s expected payoff in the corresponding all-pay auction. Payoff

equivalence may be reached for some or all players already at a finite ρ, as follows from

Propositions 1 through 4. In general, however, the approximation seems necessary.29

The proof combines several arguments. First, it will be intuitively clear that, in

a sufficiently decisive contest, player 1 can secure a rent arbitrary close to V1 ´ V2.

After all, player 1’s probability of winning from overbidding all his competitors by

a small increment approaches one as the contest becomes very decisive. Conversely,

in a very decisive contest, player 2 need not accept that player 1 gets away with

a rent substantially larger than V1 ´ V2, because that would imply that player 1

bids strictly below V2 with probability one, and hence could be overbid. Indeed, it

turns out that, even if there are additional bidders, such overbidding yields winning

probabilities arbitrarily close to the probability that player 1 achieves in equilibrium

with his highest bid realization b1. As a consequence, player 2 would be able to

obtain a positive payoff from overbidding player 1. But then, two players would have

a positive equilibrium payoff, which is impossible. Thus, the limit payoff for player

1 is indeed V1 ´ V2, and zero for the other players, as in the corresponding all-pay

auction.30

29Also, answering a question raised by Wolfgang Leininger, given that the equilibrium character-
izations in the limit are tighter than those available for an approximating sequence of probabilistic
contests, Proposition 5 unfortunately cannot be used as a tool for equilibrium selection.

30Is the expected revenue robust with respect to the introduction of noise? Provided that all
equilibria of the corresponding all-pay auction are revenue-equivalent to each other, our earlier
results imply that, indeed, Proposition 5 can be enriched by the conclusion that, like expected
payoffs, also the expected revenue is δ-close to that of the all-pay auction, i.e.,

ˇ

ˇR´RAPA
ˇ

ˇ ă δ.
However, it looks harder to get substantially beyond the inequality R ă V2 in the case in which a
single strongest player fights against at least two equally strong but weaker opponents.
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In prior work, Che and Gale (2000) obtained a related robustness result for con-

tests of the difference-form. Specifically, as the variance of the uniform noise vari-

able goes to zero, equilibrium bid distributions of the probabilistic contest converge

uniformly to the unique equilibrium of the corresponding two-player all-pay auction.

Since uniform convergence implies convergence in the mean, this proves revenue equiv-

alence and, in particular, full rent dissipation in the case of homogeneous valuations.

The present paper complements their contribution by developing an alternative ap-

proach that allows deriving structurally similar results for another important class of

contest technologies, but covering also many cases in which an explicit characteriza-

tion of equilibrium strategies cannot be hoped for.

6. Payoff-nonequivalent equilibria

This section documents an important fact that also serves as a motivation for the

present paper. Specifically, it will be shown that, provided that the decisiveness

measure is not high enough, an n-player contest may possess, in addition to the

equilibrium identified by Alcade and Dahm (2010), another equilibrium that does

not resemble any equilibrium of the corresponding all-pay auction. We start with a

simple example that illustrates this possibility.

Example 5. Consider a three-player Tullock contest with R “ 2. Assume that

valuations satisfy V1{V3 ă
?

2, and V3{V2 “ 1 ´ ε for ε ą 0 small. Then, there

is an equilibrium in which player 1 remains passive, player 2 bids b2 “ V3{2 with

probability 1, whereas player 3 chooses b3 “ V3{2 with probability 1 ´ ε and b3 “ 0
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with probability ε. Indeed, player 1’s expected payoff satisfies

Eru1pb1, b´1q|µ
˚
´1s

“ p1´ εq

ˆ

b2
1V1

b2
1 ` V

2
3 {4` V

2
3 {4

´ b1

˙

` ε

ˆ

b2
1V1

b2
1 ` V

2
3 {4

´ b1

˙

(14)

“ b1

"

p1´ εq
V 2

1 ´ 2V 2
3 ´ pV1 ´ 2b1q

2

4b2
1 ` 2V 2

3

` ε
V 2

1 ´ V
2

3 ´ pV1 ´ 2b1q
2

4b2
1 ` V

2
3

*

(15)

ď b1

"

p1´ εq
V 2

1 ´ 2V 2
3

4b2
1 ` 2V 2

3

` ε
V 2

1 ´ V
2

3

4b2
1 ` V

2
3

*

. (16)

By assumption, the first ratio in (16) is negative and the second positive, so that

Eru1pb1, b´1q|µ
˚
´1s ď b1

"

p1´ εq
V 2

1 ´ 2V 2
3

4V 2
1 ` 2V 2

3

` ε
V 2

1 ´ V
2

3

V 2
3

*

(17)

for any b1 ď V1.31 Taking then the ε sufficiently small, the first term in the brackets

dominates the second part. Hence, b1 “ 0 is optimal. Moreover, the equilibrium

property for players 2 and 3 can be verified exactly as in Alcade and Dahm (2010,

Ex. 3.3). However, since player 2 receives a positive rent, this equilibrium is not

payoff-equivalent to any equilibrium of the corresponding all-pay auction.

The following result shows more generally that, for any number of players and arbi-

trarily high levels of decisiveness, there are robust specifications of valuation vectors

such that player 1 may find it optimal to stay entirely out of the contest—even if his

valuation is strictly higher than the valuation of any other player.

Proposition 6. For any R ě 2 and any n ě 3, there is a nonempty open set

of valuation vectors pV1, ..., Vnq such that the corresponding n-player Tullock contest

admits a mixed equilibrium µ˚ that does not satisfy any of the conditions (A1-A3).

The proposition above shows that existing equilibrium characterizations for contests

with small noise are indeed of a partial nature. The result also helps to see why it is

essential to assume that the decisiveness is sufficiently high, rather than higher than

31I am grateful to a referee for pointing out a typo in an earlier version.
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two, when the number of contestants exceeds two.32

7. Applications

This section illustrates the results by applying them in more specific environments.

7.1 Buyer lobbying

Ellingsen (1991) pointed out that buyer lobbying is socially desirable when a given

number of sellers strive to obtain a monopoly license through an all-pay auction.

As will be explained now, that policy conclusion remains valid in a somewhat noisy

environment. Specifically, without buyer lobbying, there are two or more sellers that

have an identical valuation of winning the contest, viz. the monopoly profit T ą 0

(the “Tullock costs”). From Propositions 1 and 3, for ρ large enough, total rent-

seeking expenditures are given by Rwithout “ T ´ u˚,without
i , where i is the seller that

potentially manages to end up with a positive rent u˚,without
i ě 0. Since monopoly is

certain, the social waste in this case is Wwithout “ H `Rwithout “ H ` T ´ u˚,without
i ,

where H ą 0 denotes “Harberger costs.” On the other hand, with lobbying, a buyer

organization with valuation H ` T enters the contest. By Proposition 4, total rent-

seeking expenditures are given now by Rwith “ T ` p˚1H ´u
˚,with
1 , where p˚1 ą 0 is the

probability that the buyers win the contest, and u˚,with
1 is their equilibrium payoff.

Social waste in this case is Wwith “ p1 ´ p˚1qH ` Rwith “ T ` H ´ u˚,with
1 . Thus,

buyer lobbying is socially desirable if u˚,with
1 ą u˚,without

i . But for the all-pay auction,

u˚,with
1 “ H ą 0 “ u˚,without

i . Hence, from Proposition 5, we may conclude that for ρ

large enough, buyer lobbying is indeed socially desirable, even if the political contest

is not perfectly discriminating, and regardless of the equilibrium.33 We have shown:

Corollary 1. If the contest is sufficiently decisive, buyer lobbying is socially desirable.

32In an interesting recent paper, Amegashie (2012) has shown that, even in a two-player con-
test, an all-pay auction equilibrium may coexist with a payoff-nonequivalent equilibrium when the
assumptions of the present analysis are violated.

33This is even true when, as in Baye at al. (1996), only a proportion 0 ď λ ď 1 of lobbying
expenditures is assumed to be socially wasteful.
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7.2 The exclusion principle

Baye et al. (1993) consider the problem of a revenue-maximizing politician that se-

lects, from a given set of lobbyists with known valuations V1 ě V2 ě ... ě Vn ą 0,

a subset of finalists that participate in an all-pay auction. Let k P t1, ..., nu be the

largest index such that Rk ”

´

1` Vk`1

Vk

¯

Vk`1

2
ě

´

1` Vi`1

Vi

¯

Vi`1

2
for all i “ 1, ..., n.

For the all-pay auction, the maximum expected revenue of the politician is Rk, and

that revenue can be implemented by excluding all lobbyists j P t1, ..., k ´ 1u.34 This

is equally true for any sufficiently decisive contest.

Corollary 2. In any sufficiently decisive contest, the politician optimally excludes

lobbyists j P t1, ..., k ´ 1u, and earns an expected revenue of Rk.

To see this, denote by 11, 21, ... the indices of the finalists, in increasing order. If there

are only two finalists, or if there are more than two finalists and V21 ą V31 , then

revenue equivalence to the all-pay auction holds in the final by Propositions 1 and 2.

But otherwise, we have either V11 “ V21 “ V31 , which cannot yield more revenue than

the corresponding all-pay auction by Proposition 3, or V11 ą V21 “ V31 , which is even

strictly suboptimal by Proposition 4 because a final between 21 and 31 yields a higher

expected revenue of V21 . Clearly, these considerations imply the corollary above.

7.3 Electoral competition

In the simultaneous electoral competition model (Snyder, 1989; Klumpp and Polborn,

2006), two candidates i P t1, 2u participate in p2s` 1q probabilistic district contests.

There is a single prize, homogeneously valued at V ą 0, that is allocated to the

candidate that wins the majority of districts. Dropping an earlier assumption, each

candidate may now choose a campaign strategy bi “ pb
p1q
i , ..., b

p2s`1q
i q P r0, V s2s`1,

i.e., a separate bid for each district. A mixed campaign strategy is, consequently, a

34Baye et al. (1993) exclude all lobbyists with valuations strictly exceeding Vk. Our solution yields
the same revenue, but leaves at most two lobbyists with valuation Vk in the final. For example, if
V1 “ 50, V2 “ V3 “ V4 “ 40, and V5 “ 38, then our solution excludes lobbyist 1 and 2, rather than
only lobbyist 1. Either way, the expected revenue from the perfectly discriminating final is R “ 40.
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probability measure on r0, V s2s`1. For the special case of the Tullock district CSF

with R ď 1, it has been noted that, in any equilibrium of the electoral competition

model, mixed campaign strategies are necessarily uniform, in the sense that b
p1q
i “

... “ b
p2s`1q
i holds with probability one. This observation is very valuable because it

implies that our earlier results may be used to characterize also the equilibrium set of

the much more complicated electoral competition model. For instance, Proposition 1

and Lemma 2 now jointly imply that, for ρpΨMAJq “
p2s`1q!
ps!q24s

R ą 2, there is full rent

dissipation in any equilibrium of the electoral competition model.35 One can check

(details omitted) that similar conclusions hold provided that the district CSF is of

the ratio form with h concave.

Corollary 3. Let ΨRAT be a district CSF of the ratio form with concave h and ρ ą

0. Then any mixed equilibrium in the electoral competition model employs uniform

strategies and, provided that s ě 4{ρ2, entails full rent dissipation.

Thus, the present analysis offers rigorous proofs of existing equilibrium character-

izations for the two-candidate electoral competition model, and also extends those

results to a somewhat more flexible class of district CSFs.

7.4 Biased Tullock contests

For arbitrary weights a1 ą 0, ..., an ą 0 such that
řn
i“1 ai “ 1, let the biased

Tullock technology ΨBIAS be given by ΨBIAS
i ppbq “ aipb

R
i {

řn
j“1 aj

pbRj if pb ‰ 0, and

ΨBIAS
i p0q “ ai.

36 Simple substitutions bi “ a
1{R
i

pbi, for i “ 1, ..., n, transform the

biased game with payoffs puippbq “ ΨBIAS
i ppbqpVi´pbi into an anonymous contest with CSF

ΨTUL “ ΨTULpbq “ ΨBIASppbq, unordered valuations Vi “ a
1{R
i

pVi, and payoffs uipbq “

35While familiar, this specific claim has so far lacked a solid foundation. For example, full rent
dissipation has been considered a consequence of negative marginal payoffs at the origin, the idea
being that marginal costs are positive, whereas the probability to win is supposedly constant close
to the origin. That argument is circular, however, because it ignores the possibility of arbitrarily
small positive bids.

36This CSF has been used widely in the literature. See, e.g., Clark and Riis (1998b), Hirshleifer
and Osborne (2001), and Beviá and Corchón (2010).
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a
1{R
i puippbq. Thereby, our findings have immediate implications also for biased Tullock

contests. For example, Franke et al. (2014) proved that the optimally biased all-pay

auction extracts a revenue of pV1 ` V2q{2, and conjectured that this expression is an

upper bound also for the Tullock contest. Using Proposition 1, it is straightforward to

establish that the biased two-player contest with R ą 2 is, in fact, revenue-equivalent

to the biased all-pay auction, which confirms their conjecture in this case.

Corollary 4. The optimally biased two-player Tullock contest with R ą 2 yields an

expected revenue of pV1 ` V2q{2.

7.5 Empirical measures of rent-seeking expenditures

The complete dissipation hypothesis is an important instrument for measuring the

welfare losses resulting from rent-seeking activities (Krueger, 1974; Posner, 1975).

The following result lends additional support to that hypothesis.

Corollary 5. Assume V1 “ ... “ Vn ” V . Then, provided that ρ ą n
n´1

, it holds that

u˚1 “ ... “ u˚n “ 0 and R “ V in any symmetric equilibrium.

The improved lower bound on ρ follows by a straightforward adaptation of the proof

of Proposition 1, exploiting symmetry.37 Needless to say, complete rent dissipation

holds for homogeneous valuations in approximation in any equilibrium, symmetric or

not, as a consequence of Proposition 5, provided that ρ is sufficiently large.

7.6 Dynamic settings

In dynamic contests, the principle of backwards induction implies that decisions at an

earlier stage depend solely on expected payoffs in later stages. Hence, the properties

of payoff and revenue equivalence stated in Proposition 1 extend naturally to any

type of sequential pairwise tournament. E.g., elaborating on Groh et al. (2012),

optimal seedings do not change when some noise enters the respective technologies

37See also the companion paper (2015, p. 69), where a similar result is obtained for the Tullock
contest.
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for semifinals and finals.38 Also the sequential multi-prize auction of Clark and Riis

(1998a) can be dealt with. Under their assumptions, the n-player all-pay auction in

each stage has a unique equilibrium, so that Proposition 2 applies if ρ is large enough.

8. Conclusion

In this paper, it has been shown that the relationship between contests with small

noise and the all-pay auction is much closer than previously thought. In particu-

lar, properties that prior work had derived for some equilibrium of the probabilistic

contest have been established, under a similar set of assumptions, for any equilib-

rium. The distinction is important because, as has been seen, even in a Tullock

contest with strictly heterogeneous valuations and R ě 2, there may be multiple,

payoff-nonequivalent equilibria if the decisiveness parameter is not sufficiently high.

Although the equilibrium characterizations obtained for the probabilistic contest

are overall somewhat less explicit than their counterparts for the all-pay auction, sev-

eral specific applications have shown that the findings are sufficiently comprehensive

to allow powerful conclusions in many settings of interest. In particular, based on the

obtained findings for probabilistic contests, the analysis has established an important

and general rent-dissipation result in the theory of electoral competition. We have,

further, introduced with the decisiveness parameter a natural measure for the degree

of noise in a probabilistic contest that might be of some independent interest. The

analysis has, finally, provided a potentially useful existence result for mixed equilib-

ria in contests with heterogeneous valuations, and has revealed new properties of the

equilibrium set of the n-player Tullock contest.39

38Analogous conclusions may be drawn in dynamic contests considered by Rosen (1986), Agastya
and McAfee (2006), Klumpp and Polborn (2006), Konrad and Kovenock (2009), Sela (2012), and
Fu et al. (2015).

39In fact, the analysis paves the way for a complete characterization of equilibrium payoffs and
expected revenue in the two-player Tullock contest with heterogeneous valuations and any R P p0,8q,
as will be reported elsewhere.
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Appendix: Proofs

This appendix is structured as follows. First, the proofs of Lemmas 1 and 2 are pro-

vided. Then, we state and prove a sequence of auxiliary results (Lemmas A.1 through

A.9) that prepare the equilibrium analysis. Lemma A.1 establishes the continuity of

the equilibrium payoff function at positive bid levels, and may be of independent

interest. Lemmas A.2 and A.3 are key to the equilibrium analysis. Lemma A.4 cap-

tures an argument crucial for the case of two players. Lemmas A.5 through A.8 are

successive steps dealing with the case of three or more players. Lemma A.9 is needed

for the robustness result. Finally, we provide the proofs of Propositions 1 through 6.

Proof of Lemma 1. Suppose that, instead of maximizing ui, each player i “ 1, ..., n

maximizes normalized payoffs Uipbi, b´iq ”
uipbi,b´iq

Vi
“ Ψipbi, b´iq ´

bi
Vi

. Clearly, this

change of units does not affect the equilibrium set. For the resulting game, however,

existence of a mixed equilibrium has been shown by Bagh (2010). l

Proof of Lemma 2. The case of the Tullock contest is dealt with in the text. In

the case of the ratio form, Qipbq “ hpbiq{
ř

j‰i hpbjq, so that ρipbq “ bih
1pbiq{hpbiq.

The claim follows. Next, for the serial contest, simple calculations show that ρipbq “

α{p1 ´ ΨSER
i pbqq if bi ă bj and ρipbq “ α{ΨSER

i pbq if bi ě bj. Hence, ρpΨSERq ě α.

But ΨSER
i pbq Ñ 0 when bi Ñ 0 with bj ą 0 fixed. Therefore, ρpΨSERq “ α. Finally,

consider the majority contest. Using Snyder (1989, Comment 4.2), one finds

BΨMAJ
i pb; s, Rq

Bbi
“ p2s` 1q

ˆ

2s

s

˙

pΨTUL
i pb;Rqqsp1´ΨTUL

i pb;Rqqs
BΨTUL

i pb;Rq

Bbi
. (18)

Combining this with equation (10), player i’s own-bid elasticity of the odds of winning

in the majority contest is seen to equal

ρipbq “
p2s` 1q!

ps!q2
pΨTUL

i pb;Rqqs`1p1´ΨTUL
i pb;Rqqs`1

ΨMAJ
i pb; s, Rqp1´ΨMAJ

i pb; s, Rqq
¨R. (19)

Hence, ρipbq “ pρipΨ
TUL
i pb;Rqq, where the function pρi : p0, 1q Ñ R` is given by

pρippq “
p2s` 1q!

ps!q2
ps`1p1´ pqs`1R

`
ř2s`1
t“s`1

`

2s`1
t

˘

ptp1´ pq2s`1´t
˘ `

řs
t“0

`

2s`1
t

˘

ptp1´ pq2s`1´t
˘ . (20)
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Since pρip
1
2
q “

p2s`1q!
ps!q24s

R, it remains to be checked that pρi assumes its minimum at

p “ 1
2
. For this, note that differentiating lnpρi using relationship (18) yields

B lnpρi
Bp

“
s` 1

p
´

ps` 1q
`

2s`1
s`1

˘

psp1´ pqs
ř2s`1
t“s`1

`

2s`1
t

˘

ptp1´ pq2s`1´t
´
s` 1

1´ p
`

ps` 1q
`

2s`1
s

˘

psp1´ pqs
řs
t“0

`

2s`1
t

˘

ptp1´ pq2s`1´t

(21)

“
s` 1

p
¨

ř2s`1
t“s`2

`

2s`1
t

˘

ptp1´ pq2s`1´t

ř2s`1
t“s`1

`

2s`1
t

˘

ptp1´ pq2s`1´t
´
s` 1

1´ p
¨

řs´1
t“0

`

2s`1
t

˘

ptp1´ pq2s`1´t

řs
t“0

`

2s`1
t

˘

ptp1´ pq2s`1´t
.

(22)

Multiplying through with the common denominator, and dividing by p1´ pq4s`3, one

finds that the derivative pB lnpρi{Bpq is positive if and only if
˜

s´1
ÿ

t“0

`

2s`1
t`s`2

˘

Qt

¸˜

s
ÿ

t“0

`

2s`1
t

˘

Qt

¸

ą

˜

s
ÿ

t“0

`

2s`1
t`s`1

˘

Qt

¸˜

s´1
ÿ

t“0

`

2s`1
t

˘

Qt

¸

, (23)

where Q “ p
1´p

. Multiplying out, and collecting terms, this is seen to be equivalent

to the polynomial inequality ξpQq ”
ř2s´1
t“0 γtQ

t ą 0, with negative coefficients

γt “
ÿt

t1“0

"ˆ

2s` 1

t1 ` s` 2

˙

´

ˆ

2s` 1

t1 ` s` 1

˙*

looooooooooooooooooomooooooooooooooooooon

ă0

ˆ

2s` 1

t´ t1

˙

ă 0 (24)

for t P t0, ..., s´ 1u, and positive coefficients

γt “
s´1
ÿ

t1“t´s

ˆ

2s` 1

t1 ` s` 2

˙"ˆ

2s` 1

t´ t1

˙

´

ˆ

2s` 1

t´ t1 ´ 1

˙*

looooooooooooooooomooooooooooooooooon

ą0

ą 0 (25)

for t P ts, ..., 2s ´ 1u. Hence, by Descartes’ rule of signs, ξpQq has precisely one

positive root, and as γ0 ă 0, changes sign there from negative to positive. Since the

right-hand side of (21) vanishes at p “ 1
2
, this is indeed the minimum of pρi. l

Lemma A.1 Let µ˚ be a mixed equilibrium in an n-player contest. Then, for any

player i P t1, ..., nu, (i) the equilibrium payoff function bi ÞÑ Eruipbi, b´iq|µ˚´is is

continuous at any bi ą 0, and (ii) u˚i “ Eruipbi, b´iq|µ˚´is for any bi P Spµ
˚
i qzt0u.

Proof. (i) Let tb
pνq
i u

8
ν“1 be a sequence of bids converging to some bi ą 0. Then, by

smoothness, the sequence tuipb
pνq
i , ¨qu8ν“1 converges pointwise to uipbi, ¨q. Noting that
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|uipbpνqi , ¨q| ď maxtVi, b
pνq
i u for any ν, and that the convergent sequence tb

pνq
i u

8
ν“1 is

necessarily bounded, the claim follows now directly from Lebesgue’s theorem.

(ii) Clearly, Eruipbi, b´iq|µ˚´is ď u˚i for any bi P R`. To provoke a contradiction,

suppose that Eruipb
0
i , b´iq|µ˚´is ă u˚i for some b0

i P Spµ
˚
i qzt0u. Then, by part (i),

there is an ε ą 0 such that Eruipbi, b´iq|µ˚´is ă u˚i for all bi P N ” pb0
i ´ ε, b0

i ` εq.

But µ˚i pN q ą 0, since N is an open neighborhood of b0
i P Spµ

˚
i q. Hence, one may

define a conditional probability measure through µ´i pYiq “ µ˚i pYi XN q{µ˚i pN q for

any measurable set Yi Ď r0, Vis. Moreover, Eruipbi, b´iq|µ´i , µ˚´is ă u˚i . Denote the

complement of N by N c “ r0, ViszN . Then µ˚i pN cq ą 0 because, otherwise, µ´i “

µ˚i , in conflict with the suboptimality of µ´i . Hence, one may also define µ`i pYiq “

µ˚i pYi XN cq{µ˚i pN cq. Since µ˚i “ wµ´i ` p1 ´ wqµ`i , with w ” µ˚i pN q P p0, 1q, it

follows that

u˚i “ wEruipbi, b´iq|µ´i , µ˚´is
loooooooooooomoooooooooooon

ău˚i

`p1´ wqEruipbi, b´iq|µ`i , µ˚´is. (26)

But then, Eruipbi, b´iq|µ`i , µ˚´is ą u˚i , which is the desired contradiction. l

Lemma A.2. Consider an n-player contest. Then, in any mixed equilibrium µ˚,

there are players i and j with i ‰ j such that πi “ 1 and πj ą 0.

Proof. Suppose that πi ă 1 for all i “ 1, ..., n. Then player 1, say, could raise his

zero bids to some small ε ą 0, thereby increasing the probability of winning against

coincident zero bids of players 2, ..., n from Ψ1p0q “
1
n

to Ψ1pε,0´1q “ 1. Further, if

we had πj “ 0 for all j ‰ i, then i could profitably shade his positive bids. l

Lemma A.3. Consider an n-player contest with ρ ą 2. Then, in any mixed equilib-

rium µ˚ with πi “ 1 for some i P t1, ..., nu, it holds that (i) bj “ 0 for any j ‰ i, and

(ii) u˚j “ 0 for any j ‰ i.

Proof. The proof follows closely the discussion in the body of the paper.
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(i) To provoke a contradiction, suppose that bj ą 0 for some j ‰ i. There are

three cases. Assume first that bj ě bi ą 0. Fix some arbitrary profile of bids b´i “

pbj, b´i,jq, where bj ě bj and b´i,j P Rn´2
` . Then, from anonymity, 1 ě Ψi,jpbj, bj, ¨q `

Ψj,ipbj, bj, ¨q “ 2Ψi,jpbj, bj, ¨q, so that Ψi,jpbj, bj, ¨q ď
1
2
. Hence, if i lowers his bid from

bj to bi, monotonicity implies Ψi,jpbi, bj, ¨q ď
1
2
. Therefore, p1´Ψipbi, b´iqqρipbi, b´iq ą

1, or equivalently, Ψipbi, b´iq{bi ă BΨipbi, b´iq{Bbi. Taking expectations, and invoking

Lemma A.1, one finds

0 ď
u˚i
bi
“ E

„

Ψipbi, b´iq

bi

ˇ

ˇ

ˇ

ˇ

µ˚´i



Vi ´ 1 ă E

„

BΨipbi, b´iq

Bbi

ˇ

ˇ

ˇ

ˇ

µ˚´i



Vi ´ 1. (27)

It is claimed now that the right-hand side of (27) is, in fact, weakly negative, which

yields the desired contradiction. For this, consider the differential quotient ψipbi, ¨q ”

Ψipbi,¨q´Ψipbi,¨q

bi´bi
, for bi ą bi. From monotonicity, ψipbi, ¨q ě 0. Moreover, since bi is

optimal, Erψipbi, b´iq|µ
˚
´is ď 1{Vi. Therefore, using Fatou’s Lemma,

Er
BΨipbi,b´iq

Bbi
|µ˚´is “ Erlim inf

biŒbi
ψipbi, b´iq|µ

˚
´is ď lim inf

biŒbi
Erψipbi, b´iq|µ

˚
´is ď

1
Vi

. (28)

Plugging the resulting inequality into (27) proves the claim and completes the first

case. Assume next that bi ą bj ą 0. This case follows from the first by exchanging

the roles of players i and j. Assume, finally, that bi “ 0. In this case, πi “ 1 implies

b`i “ 0. Hence, there is some b`i P Spµ
˚
i q with bj ą b`i ą 0. The proof now proceeds

as in the first case, with bi replaced by b`i .

(ii) Consider some player j ‰ i. Assume first that j is not always active. Then, by

Assumption 2, any zero bid submitted by j loses with certainty against i. Hence,

u˚j “ 0, as claimed. Assume next that j is always active. Since bj “ 0, this implies

b`j “ 0. Hence, there is a sequence tb
pνq
j u

8
ν“1 in Spµ˚j qzt0u such that limνÑ8 b

pνq
j “ 0.

By Lemma A.1, u˚j “ Erujpb
pνq
j , b´jq |µ

˚
´js, for any ν. Hence, by Lebesgue’s theorem,

u˚j “ ErlimνÑ8 ujpb
pνq
j , b´jq|µ

˚
´js. If now b´j ‰ 0´j, then Assumptions 4 and 2 imply

that limνÑ8 ujpb
pνq
j , b´jq “ ujp0, b´jq “ 0. If, however, b´j “ 0´j, then by Assumption
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2, limνÑ8 ujpb
pνq
j ,0´jq “ limνÑ8pVj´b

pνq
j q “ Vj. It follows that u˚j “ Vj ¨

ś

k‰jp1´πkq.

But πi “ 1 and i ‰ j, so that u˚j “ 0, as claimed. l

Lemma A.4. Consider a mixed equilibrium µ˚ “ pµ˚1 , µ
˚
2q in a two-player contest

such that u˚1 “ u˚2 “ 0. Then, V1 “ V2 and p˚1 “ p˚2 “
1
2
.

Proof. Since u˚2 “ 0, a deviation by player 2 to player 1’s strategy µ˚1 returns a weakly

negative expected payoff, i.e., V2
2
´ b˚1 ď 0. Combining this with u˚1 “ p˚1V1 ´ b˚1 “ 0

delivers p˚1V1 ě
V2
2

. By symmetry, p˚2V2 ě
V1
2

. Summing up, one obtains

p˚1V1 ` p
˚
2V2 ě

V1 ` V2

2
, (29)

with p˚1 ` p
˚
2 “ 1. If V1 ą V2, then (29) implies p˚2 ď

1
2
, so that, using p˚2V2 ě

V1
2

, one

arrives at V1 ď V2, a contradiction. The case V1 ă V2 is similar. Hence, V1 “ V2, and

(29) is an equality. But then, p˚1V1 ě
V2
2

and p˚2V2 ě
V1
2

must be equalities as well.

Thus, also p˚1 “ p˚2 “
1
2
. l

Lemma A.5. Ψi,jpbi, 0, b´i,jq ď 2Ψi,jpbi, bi, b´i,jq, for any pbi, b´i,jq P Rn´1
` .

Proof. Since winning probabilities across players sum up to one,

Ψi,jpbi, bj, b´i,jq `Ψj,ipbj, bi, b´j,iq `
ÿ

k‰i,j

Ψk,jpbk, bj, b´k,jq “ 1, (30)

for any b P Rn
`. Evaluating at bj “ bi, anonymity and monotonicity imply

2Ψi,jpbi, bi, b´i,jq “ 1´
ÿ

k‰i,j

Ψk,jpbk, bi, b´k,jq (31)

ě 1´
ÿ

k‰i,j

Ψk,jpbk, 0, b´k,jq (32)

ě 1´Ψj,ip0, bi, b´j,iq ´
ÿ

k‰i,j

Ψk,jpbk, 0, b´k,jq (33)

Using now (30) again with bj “ 0, the lemma follows. l

Lemma A.6. Fix κ ą 1. Then, provided that ρ is sufficiently large, Ψi,jpκbj, bj, b´i,jq ą

Ψi,jpbj, 0, b´i,jq{κ for any bj ą 0 and any b´i,j P Rn´2
` .
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Proof. Suppose that Ψi,jpκbj, bj, b´i,jq ď Ψi,jpbj, 0, b´i,jq{κ for some bj ą 0 and some

b´i,j P Rn´2
` . Then, obviously, Ψi,jpκbj, bj, b´i,jq ď 1{κ, and hence, by monotonicity,

Ψi,jpκ̃bj, bj, b´i,jq ď 1{κ̃ for any κ̃ P r1, κs. Writing b´i “ pbj, b´i,jq, this implies

B ln Ψipκ̃bj, b´iq

B ln κ̃
“ p1´Ψipκ̃bj, b´iqqρipκ̃bj, b´iq ě p1´

1

κ̃
qρ (34)

for any κ̃ P r1, κs. Consequently, using the fundamental theorem of calculus,

ln

ˆ

Ψipκbj, b´iq

Ψipbj, b´iq

˙

“

ż κ

1

B ln Ψipκ̃bj, b´iq

B ln κ̃

dκ̃

κ̃
ě plnκ`

1

κ
´ 1q

looooooomooooooon

ą0

ρ. (35)

Since, for ρ large, the right-hand side of (35) exceeds all bounds, Ψi,jpκbj, bj, b´i,jq ą

2
κ
Ψi,jpbj, bj, b´i,jq. Lemma A.5 with bi “ bj leads then to the desired contradiction. l

Lemma A.7. Consider an n-player contest, and let κ ą 1. Then, for any i ‰ j,

and for ρ sufficiently large, ErΨipκb̄j, b´iq|µ
˚
´is ą ErΨjpb̄j, b´jq|µ

˚
´js{κ in any mixed

equilibrium µ˚ with bj ą 0.

Proof. For ρ large enough, monotonicity and Lemma A.6 imply Ψi,jpκb̄j, bj, ¨q ě

Ψi,jpκb̄j, b̄j, ¨q ą Ψi,jpb̄j, 0, ¨q{κ for any bj P Spµ˚j q. Moreover, by anonymity and

monotonicity, Ψi,jpb̄j, 0, ¨q “ Ψj,ipb̄j, 0, ¨q ě Ψj,ipb̄j, bi, ¨q for any bi P R`. Hence,

Ψi,jpκb̄j, bj, ¨q ą Ψj,ipb̄j, bi, ¨q{κ. Taking expectations w.r.t. µ˚, the claim follows. l

Lemma A.8. Fix Vi ą Vj, for some i ‰ j. Then, in any n-player contest with ρ

sufficiently large, πj ą 0 implies u˚i ą 0.

Proof. Since πj ą 0, clearly b̄j ą 0. Hence, Lemma A.1 implies E
“

Ψjpb̄j, b´jq
ˇ

ˇµ˚´j
‰

Vj´

b̄j “ u˚j ě 0. Multiplying through with κ ”
a

Vi{Vj ą 1 delivers E
”

Ψjpb̄j ,b´jq

κ

ˇ

ˇ

ˇ
µ˚´j

ı

Vi´

κb̄j ě 0. From Lemma A.7, E
“

Ψipκb̄j, b´iq
ˇ

ˇµ˚´i
‰

Vi´κb̄j ą 0, i.e., player i’s expected

payoff from choosing the bid level bi “ κb̄j against µ˚´i is positive. Since the equilib-

rium strategy µ˚i must perform at least as well as bi, it follows that u˚i ą 0. l

Lemma A.9 Let bi ą 0 and ε ą 0. Then, for ρ sufficiently large, it holds that

Ψipbip1` εq, b´iq ě 1´ ε for any b´i P Rn´1
` satisfying bj ď bi for all j ‰ i.
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Proof. If Ψipbi, b´iq “ 1, then the claim follows directly from monotonicity. Assume,

therefore, that Ψipbi, b´iq ă 1. Then, monotonicity and anonymity imply Ψipbi, b´iq ě

Ψipbi, ..., biq “
1
n
. Hence, player i’s odds of winning satisfy Qipbi, b´iq “

Ψipbi,b´iq

1´Ψipbi,b´iq
ě

1
n´1

. If i raises his bid to b#
i “ p1`εqbi, then by the fundamental theorem of calculus,

ln

˜

Qipb
#
i , b´iq

Qipbi, b´iq

¸

“

ż b#i

bi

ρip
rbi, b´iq

drbi
rbi
ě ρ lnp1` εq. (36)

Applying the exponential function delivers

Qipb
#
i , b´iq ě p1` εq

ρ
¨Qipbi, b´iq ě p1` εq

ρ
¨

1

n´ 1
. (37)

But the right-hand side of inequality (37) grows above all bounds as ρ Ñ 8, and

so do player i’s odds of winning Qipb
#
i , b´iq, regardless of b´i. Therefore, for ρ large

enough, Ψipb
#
i , b´iq “

Qipb
#
i ,b´iq

1`Qipb
#
i ,b´iq

ě 1´ ε, as claimed. l

Proof of Proposition 1. Let µ˚ “ pµ˚1 , µ
˚
2q be any mixed equilibrium in the two-

player contest. By Lemma A.2, there are indices i, j P t1, 2u with i ‰ j such that

πi “ 1 and πj P p0, 1s. We now reverse the trick of Alcade and Dahm (2010). For

this, consider the modified contest in which the always active player’s valuation Vi is

weakly scaled down to V 1i “ πjVi P p0, Vis. Define a mixed strategy pµj in the modified

contest via pµjpYjq “ µ˚j pYjzt0uq{πj, for any measurable set Yj Ď r0, Vjs. Intuitively,

strategy pµj samples only from the active part of µ˚j . It is straightforward to check

that pµ˚i , pµjq is a mixed equilibrium in the modified contest. In that equilibrium,

both players are always active. As a consequence, by Lemma A.3, both players use

arbitrarily small positive bids and have a zero rent in the modified contest. Lemma

A.4 implies now that Vj “ V 1i , where V 1i “ πjVi by construction. Hence, πj “

Vj{Vi. Yet πj is a probability, so that Vj ď Vi. Thus, i “ 1 and j “ 2 (necessarily

so if V1 ą V2, and without loss of generality if V1 “ V2). It follows that player

2 participates with probability π2 “ V2{V1 in the original contest. Moreover, in

the modified contest, by Lemma A.4, each player wins with probability 1/2 and,
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consequently, bids on average V2{2. In sum, player 1 realizes in the original contest

a rent of u˚1 “ π2
V1
2
` p1 ´ π2qV1 ´

V2
2
“ V1 ´ V2. The remaining claims are now

immediate. l

Proof of Proposition 2. Suppose there is a mixed equilibrium µ˚ in which some

player j P t3, ..., nu is active. Then, since V1 ě V2 ą V3 ě Vj, Lemma A.8 implies

u˚1 ą 0 and u˚2 ą 0, provided that ρ is large enough. From Lemmas A.2 and A.3,

however, there can be at most one player with a positive rent in this case, which

yields a contradiction. The assertion follows now from Proposition 1. l

Proof of Proposition 3. By Lemmas A.2 and A.3, some player i is always active,

and u˚j “ 0 for all j ‰ i. Hence, provided that ρ is large enough, Lemma A.8

implies V1 “ Vi, or equivalently, i ď m. Since, by assumption, at least two (even

three) players have a valuation of V1, a similar argument shows that πj “ 0 for any

j “ m ` 1, ..., n. As for the revenue, note that u˚j “ p˚jV1 ´ b˚j for all j “ 1, ...,m.

Summing up yields u˚i “ V1 ´ R. Finally, if the equilibrium is “symmetric,” then

necessarily u˚1 “ ... “ u˚m. Since m ą 1, this is only feasible if u˚i “ 0. l

Proof of Proposition 4. By Lemma A.2, there are players i and j with j ‰ i such

that πi “ 1 and πj ą 0. Since either i ą 1 or j ą 1, Lemma A.8 implies u˚1 ą 0.

By Lemma A.3, this is only possible if i “ 1 and u˚2 “ ... “ u˚n “ 0. Next, for

any k ě m ` 1, the inequality V2 ą Vk and Lemma A.8 imply that πk “ 0. As for

the expected revenue, note that b˚1 “ p˚1V1 ´ u˚i , and that b˚k “ p˚kV2 for k “ 2, ...,m.

Summing up yields R “ V2`p
˚
1pV1´V2q´u

˚
1 , as claimed. It remains to prove R ă V2.

For this, fix some small δ ą 0. By Proposition 5 below,40 we have u˚1 ą p1´δqpV1´V2q

if ρ is large enough. It therefore suffices to show that, for ρ large, p˚1 ď 1 ´ δ in any

mixed equilibrium. Suppose that, instead, p˚1 ą 1´ δ in some equilibrium µ˚. Then,

obviously, p˚j ă δ for all j “ 2, ...,m. But, u˚j “ p˚jV2 ´ b˚j “ 0, so that b˚j ă δV2.

40As explained in the body of the paper, this use of a later result is for expositional purposes only
and does not constitute any circularity.
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Hence, prpbj ě
V2
2
q ă 2δ. It follows that prpbj ă

V2
2

for j “ 2, ...,mq ą p1 ´ 2δqm´1.

Fix now some ε ą 0. Then, for ρ large, Lemma A.9 implies that bidding p1`εqV2
2

yields

player 1 a payoff strictly above p1 ´ εqp1 ´ 2δqm´1V1 ´
p1`εqV2

2
. However, for δ and

ε small enough, this is strictly larger than p1 ` δqpV1 ´ V2q, a contradiction. This

completes the proof of the proposition. l

Proof of Proposition 5. Fix valuations V1 ě V2 ě ... ě Vn ą 0 and δ ą 0. It is

shown first that, for ρ sufficiently large, u˚1 ě V1 ´ V2 ´ δ in any equilibrium µ˚. To

see this, let b#
1 “ p1 ` εqV2, for some ε ą 0. Then, by Lemma A.9, for ρ sufficiently

large, Ψ1pb
#
1 , b´1q ě 1´ ε holds for any b´1 P r0, V2s

n´1. Hence,

u˚1 ě Eru1pb
#
1 , b´1q|µ

˚
´1s ě p1´ εqV1 ´ p1` εqV2 “ V1 ´ V2 ´ εpV1 ` V2q. (38)

Choosing ε “ δ{pV1 ` V2q, the claim follows. Next, it is shown that, for ρ sufficiently

large, u˚1 ď V1´V2`δ in any mixed equilibrium. To provoke a contradiction, suppose

that u˚1 ą V1 ´ V2 ` δ in some equilibrium µ˚. Then, u˚1 ą 0 and, hence, via Lemma

A.2, b̄1 ą 0. Therefore, by Lemma A.1, u˚1 “ ErΨ1pb̄1, b´1q|µ
˚
´1sV1´ b̄1. It follows that

ErΨ1pb̄1, b´1q|µ
˚
´1sV2´b̄1 ě u˚1´pV1´V2q ą δ. Choose ε ą 0 such that pε2`2εqV1 ă δ.

Then ErΨ1pb̄1, b´1q|µ
˚
´1sV2´p1`εq

2 b̄1 ą 0. For ρ is large enough, Lemma A.7 implies

now ErΨ2pb
#
2 , b´2q|µ

˚
´2sV2 ´ b#

2 ą 0, where b#
2 “ p1 ` εqb̄1. Thus, u˚2 ą 0, which is

impossible in view of Lemma A.3. The claim follows. It remains to be shown that

u˚j ă δ for any j ‰ 1. There are two cases. If V1 “ Vj, then, after exchanging the roles

of players 1 and j, the claim follows from earlier arguments. If, however, V1 ą Vj,

then u˚j “ 0 from Propositions 2, 3 and 4. This completes the proof. l

Proof of Proposition 6. Fix valuations V1 ą V2 ą ... ą Vn, and some R ě 2.

Assume for the moment that player 1 remains passive. Then, as shown by Alcade

and Dahm (2010), there exists an all-pay auction equilibrium pµ˚2 , ..., µ
˚
nq in the pn´1q-

player contest between players 2 through n. In that equilibrium, only players 2 and

3 are active. Suppose now that player 1 considers entering the active contest with a
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bid b1 ą 0. If player 1 were to face only µ˚2 (i.e., ignoring player 3), then player 1

would win with probability p12 “ E
”

bR1
bR1 `b

R
2

ˇ

ˇ

ˇ
µ˚2

ı

ą 0, and have an expected payoff

of u˚12 “ p12V1 ´ b1. We claim that u˚12 ď p12pV1 ´ V3q. Suppose not. Then, in the

smaller contest, player 3’s expected payoff from a bid equal to b1 (instead of µ˚3) would

amount to p12V3 ´ b1 “ p12V1 ´ b1 ´ p12pV1 ´ V3q ą 0, contradicting the fact that

pµ˚2 , ..., µ
˚
nq is an all-pay auction equilibrium. Thus, indeed, u˚12 ď p12pV1 ´ V3q. Note

next that player 1’s probability of winning, once µ˚3 is taken into account, is lowered

by

E
”

bR1
bR1 `b

R
2
´

bR1
bR1 `b

R
2 `b

R
3

ˇ

ˇ

ˇ
µ˚2 , µ

˚
3

ı

“ E
”

bR1
bR1 `b

R
2
p1´

bR1 `b
R
2

bR1 `b
R
2 `b

R
3
q

ˇ

ˇ

ˇ
µ˚2 , µ

˚
3

ı

(39)

“ E
”

bR1
bR1 `b

R
2
E
”

bR3
bR1 `b

R
2 `b

R
3

ˇ

ˇ

ˇ
µ˚3

ı
ˇ

ˇ

ˇ
µ˚2

ı

(40)

ě E
”

bR1
bR1 `b

R
2

ˇ

ˇ

ˇ
µ˚2

ı

¨
Er bR3 |µ

˚
3 s

3V R
1

(41)

ě p12 ¨
pEr b3 |µ˚3 sq

R

3V R
1

(42)

“ p12 ¨
1

3V R
1
¨ p

V 2
3

2V2
qR (43)

ą p12 ¨
1

2R`2 ¨ p
V3
V1
q2R, (44)

where Jensen’s inequality has been used. Therefore, player 1’s expected payoff from

bidding b1 in the n-player contest against µ˚2 and µ˚3 satisfies

E

„

bR1 V1

bR1 ` b
R
2 ` b

R
3

´ b1

ˇ

ˇ

ˇ

ˇ

µ˚2 , µ
˚
3



ă p12 ¨

"

V1 ´ V3 ´
V1

2R`2
¨ p
V3

V1

q
2R

*

. (45)

If V1 and V3 are sufficiently close to each other, so that V1 ´ V3 ă V1{2
R`3 and

pV3{V1q
2R ą 1{2, then the right-hand side of (45) is easily seen to be negative. Thus,

with µ˚1 giving all weight to the zero bid, pµ˚1 , µ
˚
2 , ..., µ

˚
nq becomes an equilibrium in the

n-player contest. Moreover, u˚2 “ V2´V3 ą 0, which is impossible in an all-pay auction

equilibrium. Finally, it is noted that R “
V3pV2`V3q

2V2
differs from RAPA “

V2pV1`V2q
2V1

unless V1V3pV2 ` V3q “ V 2
2 pV1 ` V2q. Hence, R ‰ RAPA on an nonempty open set of

valuation vectors. This completes the proof. l
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