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Abstract 
In this paper, the world distribution of personal incomes (WDPI) is estimated using a global 
sample comprising country sample clones. A clone is a random sample that reproduces – with 
predetermined high probability and precision – an unknown survey sample using information 
that is ‘encoded’ in the estimated parameters of a country’s personal income distribution. The 
clone creation method is based on the sequential probability ratio test. The clones discussed in 
this paper are generated from the lognormal distribution using information encoded in 
countries’ Gini indices, and are scaled to both per capita GDP and per capita household final 
consumption expenditures (HFCE). Statistical analysis of a global sample from the WDPI in 
the 1990-2010 period shows the following. The WDPI exhibited a twin-peaks shape in the 
initial years, but such bimodality disappeared in subsequent years. Inequality and poverty 
decreased in accordance with a three-phase pattern over the period. Whether clones are scaled 
to GDP or HFCE matters when evaluating inequality and poverty levels, but not when 
determining the general direction of their trends. 
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I. Introduction 
This paper presents new estimates of the world distribution of personal incomes (WDPI) in 
the 1990-2010 period. Its main novelty is the use of a specially constructed global random 
sample comprising the ‘clones’ of unknown random samples drawn from national household 
surveys. The global sample of incomes is used to estimate all descriptive statistics of the 
WDPI and measures of inequality and poverty. Our biotechnological terminology is inspired 
by a parallel of DNA that encodes the complete structure of an organism. DNA from somatic 
cells is the basis of cloning, i.e. the process of creating a similar population of genetically 
identical individuals.  

We define a clone as a random sample that reproduces – with predetermined high 
probability and precision – a survey sample using information that is ‘encoded’ in the 
estimated parameters of a country’s personal income distribution. We propose a clone 
creation method that is based on the sequential probability ratio test (SPRT) (Wald, 1945, 
1947; Wald and Wolfowitz, 1948; Fisz, 1967; Gosh and Sen, 1970). The global random 
sample from the WDPI is a collection of country clones in which each individual observation 
has a weight equal to the ratio of a country’s population and the size of the clone.  

In this paper, we create clones of unknown samples from national household surveys, 
assuming the lognormal distribution (Aitchison and Brown, 1997) of country-level personal 
incomes. The lognormal distribution is commonly used to assess global inequality and 
poverty (see, e.g., Chotikapanich et al., 1997, 1998; Milanovic, 2002; Lakner and Milanovic, 
2013; López and Servén, 2006; Pinkovsky and Sala-i-Martin, 2009; Shorrocks and Wan, 
2008; Liberati, 2015). Assuming the mean of unity,1 all information on an unknown survey 
sample is encoded solely in estimates of the Gini index.  

We use the Gini index estimates from the Standardised World Income Inequality 
Database (SWIID) developed by Solt (2014). We scale the unit-mean clones to both per capita 
GDP and per capita household final consumption expenditures (HFCE) (PPP adjusted, 
constant 2011 international $). Anand and Segal (2015) recommend HFCE rather than GDP 
for scaling. Our GDP and HFCE data come from the World Development Indicators (World 
Bank, 2015). The global sample from the WDPI comprises the rescaled clones of all 
countries. We apply our own elaborated FORTRAN90 programs to perform the sequential 
procedure, and use Stata12 software assisted by the DASP module (Araar and Duclos, 2009) 
                                                           1 This assumption plays a technical role. Every random variable Y with non-zero mean y  can be normalised to 
unit-mean random variable X = Y/ y .  
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to estimate the inequality and poverty indices and their standard errors and the kernel density 
functions of the WDPI. Statistical analysis of the global sample for the 1990-2010 period 
corroborates the following hypotheses: 
Hypothesis 1. The WDPI is bimodal in the initial years of the sample period (the twin-peaks 
hypothesis2), with bimodality gradually disappearing in subsequent years. 
Hypothesis 2. Mean income and cosmopolitan social welfare are both increasing in the 
sample period. 
Hypothesis 3. Inequality and poverty trends exhibit three phases separated by the years 1996 
and 2002: an inverted U-shaped phase (or slowly decreasing phase), a plateau phase and a 
rapidly decreasing phase.  
Hypothesis 4. Whether clones are scaled to per capita GDP or per capita HFCE matters when 
assessing global inequality and poverty levels, but not when determining the general direction 
of change over time.  

The WDPI concept is a global analogue of a country’s income distribution. However, 
its global scale renders analysis of the WDPI substantially more difficult than the typical 
analysis of income distributions at the country level (Lakner and Milanovic, 2013). In the 
absence of a global household survey, analysts must resort to combining national surveys. The 
collection of national household survey data from as many countries as possible (ideally all of 
them) would be ideal for this purpose, and has been accomplished by Milanovic (2002, 2005) 
and the World Bank (2005). However, such ideal data are available for only a limited number 
of countries and years. Moreover, even when such data exist, they are often rendered useless 
for spatial comparisons by differences in definitions of income, the recipient units used and 
the scope of coverage in different surveys (Fields, 1994; Deininger and Squire, 1996; 
Chotikapanich et al., 1997; Solt, 2014).  

In recent years, two databases have been commonly used: the World Bank DS 
database compiled by Deininger and Squire (1996) and the World Income Inequality 
Database (WIID) compiled by the United Nations University’s World Institute for 
Development Research (UNU-WIDER). These databases present national micro-data on 
incomes or expenditures in the form of summary statistics such as quantile income shares and 
Gini indices and/or means and/or medians.  

Developing efficient methods of extracting underlying micro-data from existing 
summary statistics seems to be a remedy for the scarcity of available data from national 
                                                           2 See Quah (1993, 1997), Jones (1997), and Kremer, Onatsky and Stock (2001) 
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household surveys (Shorrocks and Wan, 2008). Several methods have been proposed. In the 
following paragraphs, we present those approaches most relevant to the problem in question.  

The POVCAL software on the World Bank website3 is commonly used to generate 
raw data from quantile data. However, Shorrocks and Wan (2008) show that this software can 
generate negative values even when the data are positive. Furthermore, the quantile shares 
obtained can differ significantly from the reported values with which the procedure begins 
(Minoiu and Reddy, 2006).  

Sala-i-Martin (2006) uses quintile income shares from the DS and UNU-WIDER 
databases and approximates each country’s annual income distribution by a kernel density 
function. He then decomposes the kernel density-based quintiles into kernels with 100 
centiles, thereby obtaining a sample of 100 personal incomes for each country. Finally, he 
integrates the samples to estimate several measures of poverty and inequality.  

Pinkovsky and Sala-i-Martin (2009) modify the aforementioned method by applying 
two-parameter lognormal distributions of personal income rather than the nonparametric 
kernel density function. For each year, the lognormal distributions of income for all countries 
are integrated to construct an estimate of the world distribution of income and poverty and 
inequality measures. However, the authors do not present details of this integration. It seems 
that they calculate the centiles of the fitted lognormal distributions. 

Shorrocks and Wan (2008) make significant progress in ungrouping summary 
statistics to obtain a country’s individual income observations. They use quantile (decile or 
quintile) income shares and propose a two-stage algorithm.4 Stage I fits a parametric 
distribution (with the unit mean) to the grouped observations, and then generates a sample of 
quantiles of the order i/n, i = 1,…,n-1 (n = 1000 or 2000) from the fitted distribution as an 
initial approximation to the synthetic observations. Stage II of the algorithm then takes the 
raw sample and adjusts the values until the sample statistics match the ‘true’ figures exactly.  

Lakner and Milanovic (2013) recently used the Shorrocks-Wan algorithm to build a 
database of national household surveys across five benchmark years: 1988, 1993, 1998, 2003 
and 2008. Their data consist of country-year average deciles of income/consumption. 

The foregoing methods of ungrouping summary statistics suffer from three limitations. 
First, statistical inferences concerning the WDPI are limited when relaying the available data 
on quantile shares. The DS database and WIID contain data on only about 50% of countries, 
                                                           3 The POVCAL software can be accessed from www.worldbank.org/LSMS/tools/povcal/. 
4 This algorithm is available by calling up the ‘ungroup’ command in the DASP package (a submenu of the Stata software (Araar and Duclos, 2009).   
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and it is unclear whether such an incomplete sample is representative of the whole world. 
Almost all countries report Gini estimates, however, which means that 50% of potentially 
useful information is set aside when dealing with quantile income shares alone. There is thus 
a need to develop efficient methods of using Gini indices to extract raw data. 

Second, the resulting samples of quantiles consist of dependent observations. 
Dependent data may give rise to serious statistical problems concerning, for example, 
estimation of the Gini index and its standard errors (e.g. Modarres and Gastwirth, 2006; 
Ogwang, 2006).  

Third, the size of the generated samples is arbitrarily set, and the weights assigned to 
individual observations are population shares. Such arbitrary settings affect the properties of 
the estimators of the WDPI parameters, e.g. the standard errors of the estimators. In the 
stratifying sampling scheme, the weights are wi = popi/ni, i.e. the inverse of the probability of 
inclusion of an individual from the ith country in the global sample, where ni and popi are the 
size of the generated sample and population of the ith country, respectively, and i = 1,…,K, K 
is the number of countries. If ni = n for all i = 1,…,K, the weights are wi = popi/n. Then, the 
size of the global sample is   ii popnw )/1( . The cited authors apply wages wi* = popi 
instead of popi/n, and therefore the size of the global sample is   iwnpop1 . In other 
words, it is n times greater than the properly calculated sample size.  

Liberati (2015) recently generated random samples assuming the lognormal 
distribution of countries’ personal incomes. His method uses Gini index estimates from the 
WIID and per capita GDP as the estimate of the mean, thereby overcoming the first two 
limitations discussed above. However, his proposal concerning the size of the generated 
samples is controversial. Liberati (2015) assumes sample size nCHN = 500,000 for China, 
whilst other countries are assigned a number of observations ni that is proportional to the ratio 
of their population to that of China, i.e. nj = 500,000·popi/popCHN, where popCHN and popi are 
the populations of China and the ith country, respectively, and i = 1,…,K. Unfortunately, the 
size of the Chinese sample far exceeds the number of persons in China’s household surveys. 
For example, there were 102,860 surveyed households in 1995 (urban and rural), with an 
average household size of 3.23 persons (Fang et al., 1998). These figures give 332,238 
surveyed persons. By assuming 500,000, Liberati is artificially ‘improving’ the data. He 
applies the weights ni when forming the global sample, whereas properly calculated weights 
would be equal to popi/ni. Therefore, Liberati’s approach implies that weight wi = 
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qCH/500,000, i.e. the same for each of K countries, which means that he obtains something 
other than the total sample from the WDPI.  

The cloning method proposed in this paper is free from all of the aforementioned 
limitations. It uses Gini indices alone to generate clones that are random samples of 
independent observations. The sequential procedure results in a sample size that is just 
sufficient to support the null hypothesis, with an assumed high degree of probability, that a 
clone comes from the same distribution as the cloned sample from a household survey.  

The remainder of this paper is organised as follows. Section II presents our 
methodology for creating clones of micro-data from household surveys. Details of the data 
used are provided in Section III. The empirical results are given in Section IV, and Section V 
offers a summary and conclusions.     

II. Methodology 
 

2.1. The cloning of unknown samples  
Let personal incomes in a given country and year be described by positive continuous random 
variable X with density function f(x|θ), X~f(x|θ) for short, where θ is a parameter or vector of 
parameters.5 Let x = (x1,…,xN) be a random sample from this distribution, and 0  be an 
estimate of θ based on that sample. Sample x may come from a national household survey, for 
example.  

We apply the sequential statistical procedure (Wald, 1945; Fisz, 1967; Gosh and Sen, 
1991).6 We predetermine a small constant δ > 0 and significance level α, as well as the 
probability β of committing an error of the second kind (i.e. accepting the null hypothesis 
when the alternative hypothesis is true). We generate successive random numbers xi’ from the 
distribution X’~f(x| 0 ), i = 1,2,…, and control the procedure by using the SPRT as the 
stopping rule. Here, the SPRT is to verify the null hypothesis,  
H0: the sample comes from distribution f(x| 0 ),  
against the alternative hypothesis,  
H1: the sample comes from distribution f(x| 1 ),  
where θ1 = 0 +δ.  
The sequential procedure is halted at n when the null hypothesis is accepted.  
                                                           5 Hereafter, capital letters are reserved for random variables, and small letters for the values of random variables.  6 The details of the sequential procedure are presented below. 
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Definition 1. Original sample x = (x1,…,xN) is called the cloned sample. 
Definition 2. Random sample x’ = (x1’,…,xn’) resulting from the foregoing sequential 
procedure is called the δ-clone of the original sample x, n ≤ N. We use the abbreviation ‘the 
clone’ when δ is known from the context. 
Definition 3. Constant δ refers to the precision of the cloning procedure. 

Our biotechnological terminology is inspired by a parallel of DNA, which encodes the 
whole structure of an organism. DNA from somatic cells is the basis of cloning, i.e. the 
process of creating similar populations of genetically identical individuals. Note that all 
information on original sample x is encoded in the 0 estimate. If the parametric form f(x|θ) of 
the income distribution and 0  are known, but x is unknown, the δ-clone retrieves the 
information contained in x with predetermined high probability 1-β and precision δ. The 
clone’s size n is sufficient to distinguish between distributions f(x| 0 ) and f(x| 0 +δ). We can 
say that clone x’ is genetically identical to unknown original cloned sample x with probability 
1-β and precision δ. 
2.2. Cloning samples from lognormal distributions 
Let X = Y/ y  be the normalised version of the distribution of personal incomes Y with mean 
E[Y] = y  > 0. The mean of X equals 1, and the Gini index in the X distribution is exactly the 
same as that in the Y distribution. In this paper, we assume that X follows two-parameter 
lognormal distribution Λ(µ,σ) with density function  
(1)  



  2

2

2
)(logexp2

1)( 



x

xxf  ,  x, σ >0    
(Aitchison and Brown, 1957; Kleiber and Kotz, 2003 p. 107].  

The lognormal distribution is commonly used as the theoretical distribution of country 
incomes when assessing global inequality and poverty (see, e.g. Chotikapanich et al., 1997, 
1998; Milanovic, 2002; López and Servén, 2006; Pinkovsky and Sala-i-Martin, 2009; 
Shorrocks and Wan, 2009; Liberati, 2015]. Many forms other than lognormal are offered as 
approximations of empirical income distributions (see Kleiber and Kotz (2003) for a review), 
but to the best of our knowledge standard goodness-of-fit tests usually reject them when 
confronted with empirical data. Therefore, any discussion of the advantages of some 
distributions over others seems immaterial from a purely statistical point of view.  

Furthermore, the practice provides ambiguous evidence concerning the poor 
performance of the lognormal distribution even in light of ad hoc chosen criteria. For 
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instance, Chotikapanich and Griffiths (2008) maintain that the gamma distribution 
outperforms the lognormal, Beta2, Dagum and Singh-Maddala distributions of income. 
However, their conjecture seems questionable when relying on the Kolmogorov-Smirnov 
test.7 Also, the ad hoc choice of the root-mean-square error (RMSE) criterion does not seem 
decisive in favouring the gamma distribution over the lognormal and other distributions 
because it is unclear whether ‘by-eye’ observed differences between the RMSE values for the 
selected distributions are statistically significant. Shorrocks and Wan (2008), in contrast, 
observe the lognormal distribution to perform ‘surprisingly well’ in comparison with the 
general quadratic, beta, generalised beta and Singh-Maddala distributions. However, no 
goodness-of-fit test is referred to in their paper. 

 The lognormal distribution of incomes with the mean of unity, i.e. E[X] = 1, implies 
the following formulae for parameters σ and µ.  
(2)   22

11 


   G ;       

(3)   
2

12

2
1

2 


 


   G ,       
where G is the Gini index and Φ(·) is the cumulative distribution function of standard normal 
distribution N(0,1).  

It follows from (2) and (3) that the Gini index provides complete information on 
lognormal distribution Λ(µ,σ). In other words, all information contained in the random 
sample drawn from that distribution is encoded solely in the estimate of the Gini index. If the 
original sample of individual incomes obtained from national household surveys is 
unavailable, but the estimate of the Gini, say G0, is, then we can use the information encoded 
in G0 to generate a clone of the original sample. That clone contains the same ‘genetic’ 
information on the distribution of personal income in the general population as the original 
(cloned) sample.   

We propose a sequential procedure (Wald, 1945; Fisz, 1967, Chapter 17) for creating 
the clone of the original (cloned) sample. Let G0 be the Gini index estimate based on the 
original sample of incomes. Let f0(x) be the density function of lognormal distribution (1) 
Λ(µ0,σ0), where µ0 and σ0 are calculated from (2) and (3), respectively, given G0. Let G1 = G0 
                                                           7 In fact, the authors use the Kolmogorov-Smirnov test erroneously. That test can be applied if the hypothesised distribution is fully specified, i.e. if theoretical distribution function F(x) is known, but Chotikapanich and Griffiths (2008) use estimated distribution function F(x|x) instead of F(x). For such a case, there is no general asymptotic theory (D’Agostine and Stephens, 1986). Therefore, the authors’ calculation of p values from the Kolmogorov λ distribution (or applying 5% critical value Dα= 1.358) is unjustified.  
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+ δ, where δ > 0 is a small number. Let f1(x) be the density function of lognormal distribution 
(1) Λ(µ1,σ1), where µ1 and σ1 are calculated from (2) and (3), respectively, given G1. We then 
generate a random sample from Λ(µ0,σ0) and apply the SPRT to verify the following 
hypotheses against each other.  
H0: The generated sample (clone) comes from lognormal distribution Λ(µ0,σ0). 
H1: The generated sample (clone) comes from lognormal distribution Λ(µ1,σ1). 

The sequential procedure runs as follows. We first generate a random number, say u1, 
from standard normal distribution U~N(0,1).8 The corresponding value x1 of the lognormal 
distribution under the null is9 
(4)    0101 exp   ux .        
We then calculate the value of the SPRT:  
(5)   )(

)(log
10
111 xf

xfZ  .        
Let A and B satisfy inequality 0 < B < 1 < A. We can write a = log A > 0, b = 

log B < 0. The decision regarding our hypotheses will depend on the position of Z1 in relation 
to a and b, as follows. 
C1. If Z1 ≤ b, we accept H0. 
C2. If Z1 ≥ a, we reject H0 and accept H1. 
C3. If b < Z1 < a, we generate the next random number u2 from the standard normal 
distribution, calculate x2 using (4) and then calculate Z2:  
(6)   )()(

)()(log
2010
21112 xfxf

xfxfZ  .        
Next, we compare Z2 with a and b and make a decision according to conditions C1, C2 or C3.  

In general, if a sample of size m-1 does not allow us to accept either H0 or H1, the 
decision-making in the next step depends on the following quantity. 
(7)   )()...()(

)()...()(log
02010
12111

m
mm xfxfxf

xfxfxfZ  , m=1, 2, …,   
which can be expressed as 
(8)    m

i i
im xf

xfZ
1 0

1
)(
)(log .       

                                                           8 In fact, generating random numbers from the uniform distribution (on the [0,1] interval) is sufficient to generate random samples from any probability distribution. 9 For simplicity, we use the symbol xi instead of the xi’ that was used in Subsection II.1 for the clone values. 
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If Zm ≤ b, we accept H0. If Zm ≥ a, we reject H0 and accept H1. If a < Zm < b, we draw the m+1 
element, calculate Zm+1 and compare it with a and b.  

Wald (1945) proved the theorem that if the variance of the random variable10 
(9)   )(

)(log
0
1

xf
xfZ        

exists and differs from zero, then the sequential procedure is finite (almost surely), i.e. either 
H0 or H1 is accepted after a finite number of steps with probability 1 (see also Fisz [1967, p. 
588]). 

In the sequential test, as in the classical testing procedure, it is possible to commit two 
kinds of errors. Let α be the probability of committing an error of the first kind (rejecting H0 
when H0 is true). Let β be the probability of committing an error of the second kind (accepting 
H0 when H1 is true). Wald (1945) showed that A and B can be approximated by 
(10)   

 1A , 

 1B      

(see also Fisz [1967, p. 597]). Although the closed-form solutions of A and B are available for 
several probability models, it is standard practice to use Eq. (10) to approximate the stopping 
bounds in applications. 

It is easy to show that random variable Z (9) has the following form for the lognormal 
distribution,  
(11)   

2

1
1

2

0
0

1
0 log

2
1log

2
1log 


 


  






 xxZ ,   

and that its variance exists and differs from zero. From Wald’s theorem, it follows that the 
sequential procedure of clone generation is finite (with probability 1). Given (11), Zn (8) can 
be expressed as 
(12)     


 


  n

i
in

i
in

xxnZ
1

2

1
1

1

2

0
0

1
0 log

2
1log

2
1log 






 . 

To illustrate the stopping rule, we express (12) in an alternative form. From (4), we 
obtain log xi = σ0·ui + µ0 and substitute it in (12). We can also express µ0 and µ1 in (12) as 

2/2
0  and 2/2

1 , respectively. After simple algebra, we get  
(13)   ),( 10

1
2

i
n

i
in uucndZ       

where  
                                                           10 In Wald’s theorem, f0(x) and f1(x) denote two density functions of any continuous random variables. 
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(14)   


  2
1

2
012

1

c ,     and 2log 22

1
1
0 cd 


  .   

Note that c > 0 (because σ0 < σ1) and d < 0. 
Accordingly, the stopping rule is 
(15)   auucndb i

n

i
i   )( 10

1
2  .  

After rearranging, we finally find that 
(16)   nc

d
c
auunc

d
c
b

i
n

i
i   )( 10

1
2  .  

Now, the thresholds are simply two parallel lines with positive slope -d/c. Sampling 
should stop when component )( 10

1
2

i
n

i
i uu   makes an excursion outside the continued-

sampling region.  
Fig. 1 illustrates the stopping rules for G0 = 0.3 and δ = 0.03. We assume that 

α = β = 0.05. The uis are pseudo-random numbers from the standard normal distribution.  
(Fig. 1 about here) 

It can be seen from Fig.1 that a sample of size 90 is sufficient to accept H0 with 
probability 1 - β = 0.95 that it is true.11 This sample can thus be recognised as the clone of the 
original sample. The clone can distinguish between G0 and G0 + δ, i.e. between 0.3 and 0.33. 
2.3. Expected clone size 
An essential feature of the SPRT is that the number of observations required is not 
predetermined, but is a random variable. In general, the SPRT requires an expected number of 
observations that is considerably smaller than the fixed number of observations needed by the 
most powerful classical tests, which control errors of the first and second kind to exactly the 
same α and β. In this sense, the SPRT is an optimal test. Sequential analysis frequently results 
in approximately 50% savings in the number of observations compared with the most 
powerful classical tests (Wald, 1945).   

The expected number of observations plays an important role in the sequential test. Let 
E0[Zn] denote the conditional expected value of random variable Zn, provided that Zn ≤ log B, 
where the expectation is calculated with respect to f0(·). We need not consider the case of 

                                                           11 This probability is outside the researcher’s control in classical tests. 
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E1[Zn], i.e. the mean with respect to f1(·), because we are concerned with accepting the null 
hypothesis.    

If we can neglect the difference log B-Zn, that is, if we can assume that Zn = log B 
when the decision is made, then, for E0[Z]≠0, the formula for the expected sample size is 

(17)   ][
1log1log)1(

][
0

0 ZENE 


    
(see Fisz, 1967, p. 595).12  

Note that the denominator of (17) can be expressed as 
(18)    






 )||()(

)(log)()(
)(log)(][ 10

1
00

0
100 ffDdxxf

xfxfdxxf
xfxfZE ,  

where D(f0||f1) is the Kulback-Leiber (1951) divergence (KLD) between distributions f0(x) and 
f1(x). If we substitute (18) into formula (17), we obtain 

(19)   )||(
1log1log)1(

][
10

0 ffDNE 


 
 .  

Note that decreasing α or β increases the expected sample size. The expected sample size also 
increases as D(f0||f1) decreases, i.e. as the two densities become less distinguishable.  

It is easy to show that the KLD between two considered lognormal distributions is 
equal to 
(20)   2

1][8
1

2log)||( 22
1

2
02

1
2
1

2
0

0
110  



ffD , 

and differs from zero because σ1 ≠ σ0. After substituting (20) into (19), we obtain the expected 
number of observations that allows us to accept the null hypothesis:  
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According to (2) and the aforesaid hypotheses,   2]2/1[ 0
1

0   G  and 
  2]2/1[ 0

1
1    G . It can be seen that the smaller δ is, the smaller D(f0||f1) (the 

denominator of (21)) is, which means that decreasing δ increases the expected size of the 
generated clone when accepting the null hypothesis.  

                                                           12 We adopt the original Fisz formula (17.6.5) for our symbols. 
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An analyst may apply either an absolute δ, i.e. the same for all countries’ estimates of 
G0, or a relative δ, e.g. a fraction of G0. Fig. 2 illustrates the expected sample sizes for 
absolute δ = 0.006 and relative δ = 0.015f G0 for G0 ranges from [0.15 to 0.8]. We assume 
that α = β = 0.05. 

(Fig. 2 about here) 
 

It can be seen from Fig. 2 that the choice of δ (absolute or relative precision) 
influences the expected sample size necessary to accept the null hypothesis. However, the 
empirical results presented in Section III suggest that the choice between absolute and relative 
δ does not matter when analysing inequality in the WPDI.  
2.4. Forming a global sample from the WDPI 
The created clone (x1,…,xn) has a unit mean by assumption. We can scale the values of the 
clone to any desired constant h > 0 by multiplying each xi by h. If h = y , the scaled clone has 
the same mean as the original sample (y1,…,yN). However, neither the DS database nor WIID 
provides mean income estimates for all collected countries and years. For this reason, 
economists commonly use per capita GDP data from national accounts to scale results derived 
from quantile income shares13 (see, among others, Korzeniewicz and Moran, 1997; 
Chotikapanich et al., 1997; Bourguignon and Morrisson, 2002; Dikhanov and Ward, 2002; 
Dowrick and Akmal, 2005; Sala-i-Martin, 2006; Bourguignon, 2011). Anand and Segal 
(2015) argue for scaling samples to per capita HFCE rather than per capita GDP, and Lakner 
and Milanovic (2013) were the first to scale survey incomes to HFCE.   

The proposed method for generating a random sample from the WDPI can be treated 
as a stratifying sampling scheme. We define the general population as the set of incomes of 
persons (statistical units) living in the selected K countries (strata). If we have scaled clones of 
size n1,…,nK for each K country, then we can form a global sample of size n1 + n2 + … + nK. 
The probability of including individual personal income xij to the jth stratum is equal to nj/qj, 
where qj is the population of the jth country, i = 1,…,nj, j = 1,…,K. Hence, the weight wij 
assigned to each individual observation in the total sample is equal to qj/nj, i.e. to the inverse 
of the probability of inclusion. 
 
                                                           13 Quantile income shares enable the income distribution function to be calculated up to a scale parameter (see, e.g. Iritani and Kuga, 1983).  
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III. Statistical data 
In this paper, we use the Gini index estimates from the SWIID developed by Solt (2014). 
Assuming LIS standards, Solt employs a custom missing-data algorithm. He uses data drawn 
from regional collections, national statistical offices and academic studies. As a result, SWIID 
provides comparable estimates of the Gini index of net- and market-income inequality for 174 
countries from 1960 to 2013. As SWIID’s coverage and comparability far exceed those of 
alternate datasets, it is better suited to broad cross-national research on income inequality than 
other sources. Version 5.0 of the SWIID (SWIID5) dataset is available on Solt’s website: 
http://myweb.uiowa.edu/fsolt. 

Our analysis covers the 1990-2010 period. We generate K clones of household 
samples of personal income in K countries that provide statistical data. We assume relative 
precision δ = 0.015·G0 and α = β = 0.05 when generating the clones.  

A problem with outliers can arise when pseudo-random numbers are generated14 to 
create clones. It is well known that welfare indicators estimated from micro-data can be 
highly sensitive to the presence of a few extreme incomes (Cowell and Victoria-Feser, 1996a, 
1996b, 2002). Several approaches have been proposed to make estimates robust to outlying 
observations (see Van Kerm (2007) for a review). However, we decided not to follow those 
approaches. Lakner and Milanovic (2013) show that the inclusion of top incomes makes the 
resulting income distributions more reliable than those without top incomes. Allowing our 
procedure to generate unrestricted incomes renders the appearance of top incomes more 
probable than a procedure with restrictions. Obviously, the thin upper tail of the lognormal 
distribution does not guarantee that top incomes are generated as frequently as they are in the 
Pareto distribution, for example.   

We scale the clones to both per capita GDP and per capita HFCE (both PPP adjusted, 
constant 2011 international $). The GDP and HFCE data come from the World Development 
Indicators (World Bank, 2015). We form the global sample of personal incomes by pulling all 
of the clones together. We calculate the weights wij = qj/nj assigned to each individual income 
in the global sample, where qj is the population of the jth country and nj is the size of the 
clone for the jth country, j = 1,…K, i = 1,…,nj. The country population data also come from 
the World Development Indicators (World Bank, 2015). 

We use the World Bank’s estimates of GDP rather than those in the Penn World Table 
(PWT). The World Bank and PWT use different methods to calculate PPP. The World Bank 
                                                           14 We use the subroutine RNNOA from the FORTRAN90 MSIMSL library, assuming the same seed of 23457 for every country when generating random numbers. 
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uses the Eletö-Köves-Szulc (EKS) method, whereas the PWT uses the Geary-Khamis (GK) 
method. Anand and Segal (2015) argue that the EKS method has an advantage over the GK 
when the concern is with international comparisons of living standards and inequality.  

The procedure for scaling the clones to per capita GDP or per capita HFCE reduces 
the initial number of countries in SWIID5 because of gaps in the national account data on 
GDP and HFCE in the World Development Indicators (World Bank, 2015). Table 1 presents 
the number of countries and their share of the world population for SWIID5 and its subsets 
according to the version used to scale the clones (i.e. GDP or HFCE).  

(Table 1 about  here) 
It can be seen from Table 1 that the SWIID5 database covers a large fraction of the 

world population.15 The extent to which the scaling version used reduces the initial number of 
countries in that database can also be seen from the table.  
IV. Results 
4.1. The shape of the WDPI  
To aid visualisation of the WDPI’s shape, we estimate the density function by the kernel 
method using the ‘Distributions’ module of the DAD4.5 package (Araar and Duclos, 2006). 
To make that visualisation feasible, we plot the estimated density functions for only three 
years: 1990, 2000 and 2010. The natural logarithms of income are on the horizontal axis.  

Fig. 3 displays the kernel estimates of the WDPI density functions when the clones are 
scaled to per capita HFCE.  

(Fig. 3 about here) 
We can see in Fig. 3 that the WDPI is bimodal in 1990. That bimodality then vanishes 

gradually over the next few years, eventually disappearing entirely in 2010.  
Fig. 4 displays the kernel estimates of the WDPI density functions when the clones are 

scaled to per capita GDP.  
(Fig. 4 about here) 

The bimodality of the WDPI in 1990 is more visible in Fig. 4 than in Fig. 3. We can 
also observe the gradual disappearance of that bimodality, with a unimodal WDPI appearing 
in the final year.   

                                                           15 The number of countries is smaller than that in SWIID5 because of the lack of population data for a small group of countries.  
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It follows from Figs. 3 and 4 that the version of scaling used, i.e. whether the clones 
are scaled to per capita GDP or HFCE, is unimportant for general changes in the WDPI’s 
shape, although the position of its probability mass does depend on the scaling version.  

The basic descriptive statistics of the WDPI are presented in Tables 2 and 3, which 
show scaling to per capita HFCE and GDP, respectively. For the sake of simplicity, the terms 
‘GDP’ and ‘HFCE’ following the given descriptive statistics denote the version used in the 
country’s sample scaling.  

(Tables 2 and 3 about here) 
Analysis of the results in Tables 2 and 3 reveals an increase in the mean and median of 

the WDPI over time. The WDPI in the general population is positively skewed, which means 
that the percentage of people with incomes below the mean is greater than that of those with 
incomes above the mean. It can also be seen that the HFCE version of the WDPI exhibits 
greater dispersion, skewness and concentration than the GDP version in all years.  

Fig. 5 displays the means of personal incomes scaled to per capita HFCE and per 
capita GDP. 

(Fig. 5 about here) 
4.2. Global inequality 

Tables 4 and 5 show global inequality and global (or cosmopolitan) social welfare.  
(Tables 4 and 5 about here) 

It can be seen from the two tables that the level of global inequality, measured by the 
Gini index and Theil’s (1967) entropy index (with θ = 1), is high. The Gini index exceeds 0.6 
in all years considered. Fig. 6 shows the trends in the index for both HFCE and GDP scaling. 

(Fig. 6 about here) 
The graphs in Fig. 6 reveal three phases of global inequality changes separated by the 

years 1996 and 2002. In the first phase, inequality follows an inverted U-shaped trend. In the 
second phase, inequality remains stable (HFCE scaling) or decreases slowly (GDP scaling). 
Finally, in the third phase, a rapid decrease in inequality can be observed.    

Global inequality trends measured by the Theil entropy index are plotted in Fig. 7.  
(Fig. 7 about here) 

It can be seen from Fig. 7 that the trends of the Theil index are similar to those of the 
Gini index in Fig. 6. Analysis confirms the qualitative hypothesis of the three-phase pattern of 
global inequality changes, although the quantitative differences are remarkable. Analysis also 
shows that the sample scaling version used, i.e. scaling to either HFCE or GDP, is important 
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in assessments of inequality levels, but has no influence on the general pattern of global 
inequality trends.  

 Our evaluation of global inequality and its trends in the 1990-2010 period contradicts 
the findings of Lakner and Milanovic (2013). They make Pareto-type adjustments to address 
the possible under-reporting of top incomes in household surveys and obtain a Gini index 
estimate of about 0.76 without a visible downward trend.  

The cosmopolitan welfare function (CWF) is the global counterpart of the social 
welfare function (SWF). Here, we use the cosmopolitan SWF (CSWF) from Sen (1973), 
where CSWF = mean(1-Gini). Fig. 8 displays the CSWF trends.  

(Fig. 8 about here) 
Fig. 8 reveals three phases of change in global welfare, separated by the years 1994 

and 2002. In the first phase, global welfare is constant. In the second phase, it is increasing, 
and, in the third phase, accelerated welfare growth can be observed.  
4.3. Global poverty 
We apply two poverty line measures in analysing global poverty. The first measure, an 
absolute poverty line of $1.25/person/day is used in the World Development Indicators 
(World Bank, 2015). The second, the relative poverty line, is equal to half the per capita mean 
income (for scaling to HFCE or GDP, see Tables 2 and 3, respectively). We use the FGT0 
poverty measure from Foster, Greer and Thornbecke (1984), i.e. a head-count ratio that 
measures the incidence of poverty. Table 6 presents the estimates of this poverty index for the 
absolute and relative poverty lines, with both versions of clone scaling considered. 

(Table 6 about here) 
Fig. 9 displays the global poverty trends for the absolute poverty line. 

(Fig. 9 about here) 
In Fig. 9, the head-count ratio based on HFCE-scaled data shows that the world’s 

percentage of poor declined from 14% in 1990 to 8% in 1998, stabilised at the 8% level in the 
1998-2006 period and then declined further to 6% in 2010. The GDP-scaled time-series of the 
FGT0 also indicates a general decrease in the incidence of poverty from about 5% in the initial 
years of the period analysed to about 2% in 2010, although the level and pattern of changes in 
this measure of poverty differ from those in the HFCE-scaled time-series. The GDP-FGT0 is 
more or less constant from 1990 to 1994, then decreases in the 1995-1999 period, stabilises in 
the 2000-2005 period and decreases again in the following years. 
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Fig. 10 displays the trends of the FGT0 indices when the relative poverty line (equal to 
half the mean income) is used instead of the absolute.  

(Fig. 10 about here) 
The HFCE-scaled graph of FGT0 shows that the incidence of poverty was initially 

stable at a very high level of about 61% in the years from 1990-1999, and then declined 
gradually to reach 55% in 2010. The GDP-scaled graph, in contrast, suggests a slow decline 
in the incidence of poverty in the 1990-1999 period and then a more rapid decrease in 
subsequent years. 
4.4. Absolute or relative δ? 
As noted in Section II, an analyst may apply either absolute δ, i.e. the same for all countries’ 
estimates of G0, or relative δ, i.e. a fraction of G0, when generating clones. Fig. 2 shows that 
the version of δ used influences the expected clone size. However, a more important question 
is the extent to which that version influences the estimates of inequality and poverty measures 
in the WDPI.  

To answer that question, we present six figures (Figs. 11-16) plotting the time-series 
of the Gini index and FGT0. In each figure, the estimates of inequality and poverty measures 
and the 95% confidence interval limits are displayed for relative δ = 0.015·G0. For 
comparison, the estimates of these measures for absolute δ = 0.01 are plotted without 
confidence interval limits. 

(Figures. 11-16 about here) 
It can be seen from Figs. 11-16 that all time-series of the considered measures for 

absolute δ = 0.01 lie within the confidence intervals of those of the measures for relative δ, 
which means that the choice of absolute or relative δ does not influence the estimates of 
global inequality and poverty to any significant degree.  

The practical consequence of the foregoing observation is that a radical reduction in 
clone size can be achieved in assessing global inequality and poverty. Tables 8 and 9 present 
the global sizes of the samples and average sizes of the clones in the 1990-2010 period 
according to absolute and relative δ, respectively. 

(Tables 8 and 9 about here) 
We can see from the tables that the application of 1.5% relative precision to countries’ 

Gini indices requires the creation of clones five times larger in size than the application of 
absolute precision of 0.01. Hence, δ = 0.01 seems to be reasonable because most countries 
present Gini index estimates with two decimal places. However, this degree of precision 
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requires more sizable samples than the 2000 recommended by Shorrocks and Wan (2008). 
Relative precision of 1.5%, in contrast, provides samples of a size close to that recommended 
by EUROSTAT as the minimum efficient sample size for European countries (Wolff et al., 
2010). 
V. Conclusions 

The main contribution of this paper is that it presents a new method of creating a 
global sample from the WDPI. That sample consists of clones, i.e. sets of independent 
observations that reconstruct unknown country samples with predetermined precision and 
high probability. The size of a given clone is not predetermined, but is a random variable. The 
bases of the proposed cloning method are estimates of summary statistics. In this paper, Gini 
index estimates are applied to provide the lognormal distribution of personal incomes, 
although other forms of theoretical distributions and summary statistics could be applied. The 
personal income databases created contain approximately 28 million and 34 million 
observations when the clones are scaled to per capita HFCE and per capita GDP, respectively, 
for the 1990-2010 period.    

Our approach returns some empirical evidence on the evolution of the global income 
distribution during the period under study. In the initial years of the period, that distribution 
displayed a twin-peaks shape that subsequently disappeared. This result confirms earlier 
findings. In addition, the mean and cosmopolitan social welfare were increasing in the period. 

Our other results concern inequality and poverty. Global inequality, measured by the 
Gini and Theil indices, was generally high, but decreased over the 1990-2010 period. The 
inequality trends exhibited three phases separated by the years 1996 and 2002: an inverted U-
shaped phase (or slowly decreasing phase), a plateau phase and a rapidly decreasing phase. 
These results contradict Milanovic’s (20013) hypothesis of constant inequality in the 1988-
2008 period. In our work, the incidence of poverty, according to the absolute $1.25 standard, 
also displayed a three-phase pattern separated by the years 1999-2002: an inverted U-shaped 
phase, a plateau phase and a rapidly decreasing phase. When a relative standard, i.e. half the 
mean income, was applied instead, the level of global poverty was very high (61-62%) and 
remained stable over the 1990-2000 period before declining to the 53-55% level in 2002. 

This paper also sheds light on the problem of scaling income data. It shows that the 
scaling method selected, i.e. scaling to per capita GDP or to per capita HFCE, is important 
when evaluating the level of inequality and poverty but not when determining the general 
direction of their trends.   
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 Despite its many attractive properties, the proposed method of cloning unknown 
samples from national household survey data has several limitations. For example, the method 
works quite well when the parametric form of the income distribution is known and reliable 
estimates of summary statistics are available. The normalised version of the lognormal 
distribution requires knowledge of the Gini index alone, and therefore only a simple statistical 
hypothesis is tested herein. More elaborate theoretical forms of countries’ income 
distributions may require the testing of complex statistical hypotheses. In such cases, the 
generalised SPRT can be applied (e.g. Pavlov, 1987). 
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FIGURE1. The Size of the Clone Provided by Sequential Procedure (G0=0.3, δ=0.03) 
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FIGURE 2. The Mean Sample Size for Absolute and Relative δ 
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FIGURE 3. Kernel Estimate of the Density Function of the WPDI (Clones Scaled to HFCE) 
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 FIGURE 4. Kernel Estimate of the Density Function of the WPDI (Clones Scaled to GDP) 
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FIGURE 5. The Mean of the WDPI 
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 FIGURE 6. Trends of the Global Inequality Measured by the Gini Index 
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FIGURE 7. Trends of the Global Inequality Measured by the Theil Index 
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 FIGURE 8. Cosmopolitan Social Welfare Function: CSWF=Mean·(1-Gini) 
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FIGURE 9. The Incidence of Global Poverty (FGT0).  Absolute Poverty Line = $1.25/person/ 
day 

 
 Scaled to GDP (left)  Scaled to HFCE (right)
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 FIGURE 10. The Incidence of Global Poverty (FGT0).  Relative Poverty Line = Mean/ 2 
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FIGURE 11. The Estimates of Gini for Relative and Absolute Precision δ. (Countries’ Clones 
Scaled to Per Capita GDP) 
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 Note: The limits of 95% confidence interval for Gini, relative δ=0.015·G0 Source: Own elaboration based on data from Table 5. 
 
 FIGURE 12. The Estimates of Gini for Relative and Absolute Precision δ. (Countries’ Clones 

Scaled to Per Capita HFCE) 
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Note: The limits of 95% confidence interval for Gini, relative δ=0.015·G0 Source: Own elaboration based on data from Table 4. 
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FIGURE 13. The Estimates of FGT0 for Relative and Absolute Precision δ. (Absolute poverty 
line, Countries’ Clones Scaled to Per Capita GDP) 
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 Note: The limits of 95% confidence interval for FGT0 relative δ=0.015·G0 Source: Own elaboration based on data from Table 6. 
 

 FIGURE 14. The Estimates of FGT0 for Relative and Absolute Precision δ. (Relative poverty 
line, Countries’ Clones Scaled to Per Capita GDP) 
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  Note: The limits of 95% confidence interval for FGT0 relative δ=0.015·G0 Source: Own elaboration based on data from Table 6. 
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FIGURE 15. The Estimates of FGT0 for Relative and Absolute Precision δ. (Absolute poverty 
line, Countries’ Clones Scaled to Per Capita HFCE) 
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 FIGURE 16. The Estimates of FGT0 for Relative and Absolute Precision δ. (Relative poverty 

line, Countries’ Clones Scaled to Per Capita HFCE) 
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TABLE 1. Countries and Populations in the Years 1990-2010 
Year 

World 
Population 

[mln] 

SWIID5 Scaling to HFCE Scaling to GDP 
No. of 

countries 
% World 

population 
No. of 

countries 
% World 

population 
No. of 

countries 
%  World 
population 

 1990 5278.91 106 90.38 79 84.19 96 88.67 
 1991 5365.43 114 91.35 84 85.11 104 89.76 
 1992 5448.30 123 93.21 88 85.25 114 91.74 
 1993 5531.85 127 93.47 93 85.51 118 92.01 
 1994 5614.43 130 93.76 99 87.21 122 92.39 
 1995 5698.21 136 94.35 102 87.30 132 93.16 
 1996 5780.01 139 94.89 104 87.74 135 93.70 
 1997 5861.97 141 95.16 106 87.82 136 93.72 
 1998 5942.98 142 95.14 106 87.74 137 93.83 
 1999 6023.02 145 95.11 106 87.67 139 93.81 
 2000 6101.96 146 95.09 108 87.73 141 93.79 
 2001 6179.98 149 95.18 111 88.05 143 93.76 
 2002 6257.40 150 95.24 113 88.31 143 93.79 
 2003 6334.78 151 95.32 115 88.30 144 93.87 
 2004 6412.47 148 95.21 112 88.01 142 93.76 
 2005 6490.29 150 95.27 120 89.38 146 93.92 
 2006 6568.34 136 93.47 119 89.86 132 92.11 
 2007 6646.37 131 92.65 115 88.39 127 91.42 
 2008 6725.58 121 91.05 108 86.72 119 90.11 
 2009 6804.92 114 90.24 103 86.21 112 89.31 
 2010 6884.35 105 87.54 95 83.50 103 86.62 
Source: Own elaboration using data from The World Development Indicators (2015) and the SWIID5 database.  
TABLE 2. Descriptive Statistics of the WDPI (Country Samples are Scaled to Per Capita HFCE) 
Year Mean Median Std.dev Skewness Kurtosis N 
1990 5073 1574 8438.37 3.73 22.89 1014452 
1991 5046 1560 8458.75 3.74 23.09 1069710 
1992 5119 1599 8671.47 3.88 25.04 1129251 
1993 5188 1641 8817.47 3.99 26.83 1169207 
1994 5194 1632 8984.86 4.13 29.00 1258594 
1995 5307 1701 9137.77 4.18 29.75 1280002 
1996 5416 1779 9343.89 4.36 33.27 1294550 
1997 5520 1835 9582.89 4.50 36.05 1323441 
1998 5596 1879 9860.48 4.62 37.53 1323839 
1999 5742 1935 10162.79 4.71 39.26 1346946 
2000 5906 2005 10480.83 4.73 39.40 1367859 
2001 6004 2070 10551.36 4.65 38.29 1388836 
2002 6084 2102 10751.82 4.75 40.12 1416106 
2003 6201 2180 10919.12 4.84 41.99 1469341 
2004 6408 2284 11226.99 4.89 43.37 1472569 
2005 6531 2360 11431.91 4.94 44.11 1558333 
2006 6685 2458 11656.70 4.99 45.28 1548972 
2007 7038 2699 11945.05 4.95 45.03 1506093 
2008 7216 2851 11995.50 4.92 45.18 1414276 
2009 7224 2989 11648.73 4.74 41.33 1364408 
2010 7502 3124 11941.84 4.59 38.71 1258774 
Source: Own elaboration. 
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TABLE 3. Descriptive Statistics of the WDPI (Country Samples are Scaled to Per Capita GDP) 
Year Mean Median Std.dev Skewness Kurtosis N 
1990 9191 2714 14545.55 3.29 17.73 1229596 
1991 9102 2735 14604.98 3.34 18.17 1298921 
1992 8957 2764 14702.35 3.54 20.26 1437433 
1993 8968 2874 14755.99 3.65 21.88 1453008 
1994 9065 2974 15078.49 3.77 23.34 1532151 
1995 9194 3072 15304.21 3.82 24.18 1638261 
1996 9362 3218 15593.78 3.97 26.85 1674719 
1997 9598 3361 16036.20 4.10 29.06 1689050 
1998 9668 3432 16350.99 4.19 30.10 1693150 
1999 9891 3535 16717.52 4.25 31.36 1741773 
2000 10225 3673 17253.62 4.23 30.82 1754019 
2001 10357 3756 17245.68 4.13 29.54 1788872 
2002 10523 3809 17512.71 4.18 30.62 1792656 
2003 10774 4018 17738.09 4.23 31.95 1822924 
2004 11199 4269 18258.18 4.29 33.64 1848816 
2005 11569 4515 18673.60 4.27 33.04 1892887 
2006 12152 4877 19286.90 4.24 32.90 1717677 
2007 12734 5265 19790.45 4.18 32.37 1659867 
2008 13058 5584 19907.97 4.15 32.18 1556737 
2009 12939 5798 19143.24 4.04 30.37 1479822 
2010 13678 6234 19911.08 3.92 28.48 1360289 
Source: Own elaboration.  
TABLE 4. Global inequality and Cosmopolitan Welfare in the years 1990-2010  (Country Samples are Scaled to 
Per Capita HFCE) 
Year Gini Theil CSWF Estimate SE LB UB Estimate SE LB UB 
1990 0.6687 0.0006 0.6675 0.6700 0.8387 0.0023 0.8342 0.8433 1681 
1991 0.6725 0.0006 0.6712 0.6737 0.8498 0.0023 0.8452 0.8544 1653 
1992 0.6714 0.0006 0.6701 0.6726 0.8514 0.0024 0.8468 0.8561 1682 
1993 0.6702 0.0006 0.6689 0.6714 0.8493 0.0024 0.8446 0.8541 1711 
1994 0.6743 0.0006 0.6730 0.6755 0.8646 0.0025 0.8598 0.8695 1692 
1995 0.6694 0.0006 0.6681 0.6707 0.8525 0.0025 0.8477 0.8574 1754 
1996 0.6657 0.0007 0.6644 0.6670 0.8446 0.0025 0.8396 0.8496 1811 
1997 0.6655 0.0007 0.6642 0.6668 0.8459 0.0026 0.8408 0.8511 1846 
1998 0.6659 0.0007 0.6645 0.6672 0.8531 0.0026 0.8479 0.8582 1870 
1999 0.6656 0.0007 0.6643 0.6670 0.8541 0.0027 0.8488 0.8594 1920 
2000 0.6663 0.0007 0.6650 0.6677 0.8563 0.0027 0.8510 0.8617 1971 
2001 0.6640 0.0007 0.6626 0.6653 0.8474 0.0027 0.8422 0.8526 2017 
2002 0.6664 0.0007 0.6650 0.6678 0.8535 0.0028 0.8481 0.8589 2030 
2003 0.6631 0.0007 0.6617 0.6646 0.8446 0.0028 0.8391 0.8500 2089 
2004 0.6612 0.0007 0.6598 0.6627 0.8378 0.0028 0.8323 0.8433 2171 
2005 0.6602 0.0007 0.6588 0.6616 0.8348 0.0028 0.8293 0.8403 2219 
2006 0.6576 0.0009 0.6558 0.6593 0.8274 0.0032 0.8212 0.8337 2289 
2007 0.6478 0.0009 0.6460 0.6495 0.7969 0.0031 0.7907 0.8030 2479 
2008 0.6404 0.0009 0.6385 0.6422 0.7743 0.0031 0.7681 0.7804 2595 
2009 0.6297 0.0010 0.6279 0.6316 0.7435 0.0031 0.7375 0.7495 2675 
2010 0.6291 0.0011 0.6269 0.6313 0.7380 0.0034 0.7314 0.7447 2782 
Note:  
CSWF – cosmopolitan social welfare function. SE-standard error, LB, LU- lower and upper boundary of 95% 
confidence interval. 
Source: Author’s elaboration 
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TABLE 5. Global Inequality and Cosmopolitan Social Welfare in the Years 1990-2010 (Country Samples are 
Scaled to Per Capita GDP) 
Year Gini Theil CSWF Estimate SE LB UB Estimate SE LB UB 
1990 0.6649 0.0006 0.6638 0.6660 0.8149 0.0020 0.8109 0.8188 3080 
1991 0.6685 0.0006 0.6674 0.6696 0.8269 0.0020 0.8229 0.8308 3017 
1992 0.6687 0.0006 0.6676 0.6698 0.8348 0.0020 0.8308 0.8388 2967 
1993 0.6661 0.0006 0.6649 0.6672 0.8294 0.0021 0.8254 0.8334 2995 
1994 0.6667 0.0006 0.6655 0.6678 0.8343 0.0021 0.8302 0.8385 3022 
1995 0.6633 0.0006 0.6622 0.6645 0.8278 0.0021 0.8237 0.8319 3095 
1996 0.6598 0.0006 0.6587 0.6610 0.8201 0.0021 0.8159 0.8243 3184 
1997 0.6582 0.0006 0.6570 0.6594 0.8173 0.0022 0.8130 0.8217 3280 
1998 0.6581 0.0006 0.6569 0.6592 0.8219 0.0022 0.8176 0.8263 3306 
1999 0.6566 0.0006 0.6554 0.6578 0.8183 0.0022 0.8139 0.8227 3397 
2000 0.6569 0.0006 0.6557 0.6581 0.8181 0.0022 0.8137 0.8224 3508 
2001 0.6543 0.0006 0.6531 0.6555 0.8076 0.0022 0.8033 0.8118 3581 
2002 0.6553 0.0006 0.6541 0.6565 0.8085 0.0022 0.8041 0.8129 3627 
2003 0.6502 0.0006 0.6489 0.6514 0.7936 0.0022 0.7892 0.7980 3769 
2004 0.6463 0.0006 0.6450 0.6475 0.7817 0.0023 0.7773 0.7861 3961 
2005 0.6421 0.0007 0.6409 0.6434 0.7697 0.0022 0.7653 0.7741 4140 
2006 0.6366 0.0009 0.6350 0.6383 0.7528 0.0027 0.7476 0.7581 4416 
2007 0.6299 0.0009 0.6281 0.6316 0.7326 0.0027 0.7273 0.7378 4714 
2008 0.6230 0.0009 0.6212 0.6247 0.7131 0.0027 0.7078 0.7184 4923 
2009 0.6116 0.0010 0.6097 0.6136 0.6828 0.0029 0.6772 0.6884 5025 
2010 0.6092 0.0012 0.6070 0.6115 0.6737 0.0033 0.6673 0.6802 5345 
Note: see Table 4. 
Source: Author’s elaboration 

  
TABLE 6. Global Poverty Incidences (FGT0) 1990-2010 (Absolute Poverty Line=$1.25/person/day) 

 Scaling to HFCE Scaling to GDP 
Year Estimate SE LB UB Estimate SE LB UB 
1990 0.1321 0.0013 0.1296 0.1346 0.0433 0.0007 0.0420 0.0447 
1991 0.1455 0.0013 0.1430 0.1481 0.0544 0.0008 0.0529 0.0558 
1992 0.1286 0.0012 0.1262 0.1310 0.0495 0.0007 0.0481 0.0508 
1993 0.1258 0.0012 0.1234 0.1281 0.0495 0.0007 0.0482 0.0509 
1994 0.1323 0.0012 0.1299 0.1347 0.0520 0.0007 0.0507 0.0533 
1995 0.1114 0.0011 0.1092 0.1135 0.0430 0.0006 0.0419 0.0441 
1996 0.1006 0.0010 0.0986 0.1026 0.0444 0.0006 0.0433 0.0455 
1997 0.0987 0.0010 0.0966 0.1007 0.0413 0.0005 0.0403 0.0424 
1998 0.0899 0.0010 0.0880 0.0918 0.0385 0.0005 0.0375 0.0394 
1999 0.0842 0.0010 0.0823 0.0861 0.0338 0.0004 0.0330 0.0347 
2000 0.0842 0.0010 0.0823 0.0861 0.0335 0.0005 0.0326 0.0343 
2001 0.0838 0.0010 0.0819 0.0857 0.0316 0.0004 0.0308 0.0325 
2002 0.0947 0.0010 0.0927 0.0967 0.0355 0.0005 0.0345 0.0365 
2003 0.0884 0.0010 0.0865 0.0903 0.0333 0.0005 0.0324 0.0342 
2004 0.0873 0.0010 0.0853 0.0892 0.0325 0.0005 0.0316 0.0335 
2005 0.0887 0.0009 0.0868 0.0905 0.0301 0.0005 0.0292 0.0310 
2006 0.0861 0.0013 0.0835 0.0887 0.0276 0.0005 0.0265 0.0286 
2007 0.0739 0.0013 0.0714 0.0765 0.0248 0.0005 0.0238 0.0258 
2008 0.0661 0.0012 0.0637 0.0685 0.0218 0.0005 0.0208 0.0227 
2009 0.0584 0.0012 0.0560 0.0608 0.0177 0.0005 0.0168 0.0186 
2010 0.0608 0.0015 0.0577 0.0638 0.0178 0.0007 0.0164 0.0191 
Note:  
SE-standard error, LB, LU- lower and upper boundary of 95% confidence interval  
Source: Author’s elaboration.  
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TABLE 7. Global Poverty Incidences (FGT0) 1990-2010 (Relative Poverty Line=Mean/2) 
 Scaling to HFCE Scaling to GDP 

Year Estimate SE LB UB Estimate SE LB UB 
1990 0.6100 0.0009 0.6083 0.6117 0.6118 0.0008 0.6102 0.6134 
1991 0.6134 0.0009 0.6118 0.6151 0.6104 0.0008 0.6088 0.6120 
1992 0.6176 0.0009 0.6159 0.6193 0.6141 0.0008 0.6125 0.6157 
1993 0.6165 0.0009 0.6147 0.6182 0.6106 0.0008 0.6090 0.6123 
1994 0.6198 0.0009 0.6180 0.6215 0.6090 0.0009 0.6073 0.6107 
1995 0.6188 0.0009 0.6171 0.6206 0.6095 0.0009 0.6078 0.6112 
1996 0.6151 0.0009 0.6133 0.6169 0.6050 0.0009 0.6032 0.6068 
1997 0.6133 0.0009 0.6115 0.6151 0.6018 0.0009 0.6000 0.6036 
1998 0.6154 0.0009 0.6136 0.6172 0.6018 0.0009 0.6000 0.6036 
1999 0.6154 0.0010 0.6135 0.6173 0.6003 0.0010 0.5984 0.6021 
2000 0.6129 0.0010 0.6110 0.6148 0.5971 0.0010 0.5952 0.5990 
2001 0.6085 0.0010 0.6066 0.6104 0.5930 0.0010 0.5911 0.5949 
2002 0.6054 0.0010 0.6034 0.6073 0.5897 0.0010 0.5878 0.5916 
2003 0.6015 0.0010 0.5995 0.6035 0.5825 0.0010 0.5806 0.5845 
2004 0.5960 0.0010 0.5941 0.5980 0.5760 0.0010 0.5740 0.5779 
2005 0.5909 0.0010 0.5889 0.5929 0.5696 0.0010 0.5677 0.5716 
2006 0.5871 0.0014 0.5844 0.5897 0.5611 0.0015 0.5582 0.5639 
2007 0.5758 0.0014 0.5731 0.5785 0.5523 0.0015 0.5494 0.5552 
2008 0.5658 0.0014 0.5630 0.5687 0.5436 0.0015 0.5406 0.5466 
2009 0.5546 0.0015 0.5517 0.5575 0.5322 0.0016 0.5291 0.5353 
2010 0.5525 0.0017 0.5491 0.5559 0.5277 0.0018 0.5241 0.5313 
Note:  
SE-standard error, LB, LU- lower and upper boundary of 95% confidence interval  
Source: Author’s elaboration. 
TABLE 8. Global Sample Size (N) and Average Size of Clones for Absolute δ=0.01 and Relative δ=0.015·G0. (Country Samples are Scaled to Per Capita HFCE) 

Year Absolute δ Relative δ No.of 
Countries Total  N Average N Total N Average N 

1990 217511 2540 1014452 12842 79 
1991 238098 2617 1069710 12735 84 
1992 250721 2632 1129251 12833 88 
1993 266039 2645 1169207 12573 93 
1994 287352 2676 1258594 12714 99 
1995 297618 2691 1280002 12550 102 
1996 304667 2704 1294550 12448 104 
1997 309598 2703 1323441 12486 106 
1998 309872 2701 1323839 12490 106 
1999 310777 2701 1346946 12708 106 
2000 316375 2706 1367859 12666 108 
2001 326252 2710 1388836 12513 111 
2002 331720 2706 1416106 12532 113 
2003 338924 2711 1469341 12777 115 
2004 329961 2711 1472569 13148 112 
2005 355048 2730 1558333 12987 120 
2006 350764 2720 1548972 13017 119 
2007 339631 2723 1506093 13097 115 
2008 317916 2710 1414276 13096 108 
2009 301995 2704 1364408 13247 103 
2010 277050 2688 1258774 13251 95 

All years 5882127 2691 27975559 12798 2186 
Source: Author’s elaboration. 
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TABLE 9. Global Sample Size (N) and Average Size of Clones for Absolute δ=0.01 and Relative δ=0.015·G0 (Country Samples are Scaled to Per Capita GDP) 
Year Absolute δ Relative δ No. 

Countries Total  N Average N Total N Average N 
1990   246945 2573 1229596 12809 96 
1991   275113 2646 1298921 12490 104 
1992   303904 2666 1437433 12610 114 
1993   318210 2697 1453008 12314 118 
1994   331654 2719 1532151 12559 122 
1995   360920 2735 1638261 12412 132 
1996   370247 2743 1674719 12406 135 
1997   372759 2741 1689050 12420 136 
1998   375580 2742 1693150 12359 137 
1999   381169 2743 1741773 12531 139 
2000   386888 2744 1754019 12440 141 
2001   392103 2742 1788872 12510 143 
2002   390244 2729 1792656 12537 143 
2003   393442 2733 1822924 12660 144 
2004   388240 2735 1848816 13020 142 
2005   400806 2746 1892887 12965 146 
2006   359690 2725 1717677 13013 132 
2007   346340 2728 1659867 13070 127 
2008   322693 2712 1556737 13082 119 
2009   303291 2708 1479822 13213 112 
2010   277263 2692 1360289 13207 103 

All years 7297501 2718 34062631 12687 2685 
Source: Author’s elaboration. 
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