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ABSTRACT
A fundamentally important role of the Web economy is Online

Resource Allocation (ORA) from producers to consumers, such as

product allocation in E-commerce, job allocation in freelancing

platforms, and driver resource allocation in P2P riding services.

Since users have the freedom to choose, such allocations are not

provided in a forced manner, but usually in forms of personalized

recommendation, where users have the right to refuse.

Current recommendation approaches mostly provide allocations

to match the preference of each individual user, instead of treat-

ing the Web application as a whole economic system where users

therein are mutually correlated on the allocations. �is lack of

global view leads to Pareto ine�ciency, i.e., we can actually improve

the recommendations by be�ering some users while not hurting

the others, and it means that the system did not achieve its best

possible allocation. �is problem is especially severe when the total

amount of each resource is limited, so that its allocation to one (set

of) user means that other users are le� out.

In this paper, we propose Pareto E�cient Economic Recommen-
dation (PEER) – that the system provides the best possible (i.e.,

Pareto optimal) recommendations, where no user can gain further

bene�ts without hurting the others. To this end, we propose a Multi-
Objective Optimization (MOO) framework to maximize the surplus
of each user simultaneously, and provide recommendations based

on the resulting Pareto optima. To bene�t the many existing recom-

mendation algorithms, we further propose a Pareto Improvement
Process (PIP) to turn their recommendations into Pareto e�cient

ones. Experiments on real-world datasets verify that PIP improves

existing algorithms on recommendation performance and consumer

surplus, while the direct PEER approach gains the best performance

on both aspects.

KEYWORDS
Pareto E�ciency; Online Resource Allocation; Multi-Objective Op-

timization; Economic Recommendation; Computational Economics
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1 INTRODUCTION
With the trending of human activities shi�ing from o�ine to online,

the Web has turned into a whole uni�ed economic system just like

our physical world, where users can accomplish various types of

daily tasks conveniently.

Same as our real-world economic system that has been drawing

the a�ention of economists for centuries, an important functionality

of the Web is Online Resource Allocation (ORA), which distributes

online products or services from producers to consumers at the

speed of internet. For example, E-commerce systems like Amazon

distribute normal goods from retailers to users, while house sharing

applications like Airbnb distribute housing facilities from hosts to

guests.

Because users are granted by law the freedom to choose, en-

forced online resource allocation is not favorable. As a result, such

allocation processes are usually conducted implicitly by personal-

ized recommendation [37], which “suggests” the users to choose

particular services.

Since the beginning of modern economics, economists have been

taking care of the e�ciency of economic systems [14]. �e key

insight is Pareto e�ciency, named a�er economist Vilfredo Pareto

(1906) [32] – one of the pioneers of microeconomics, who is also

famous for his “80/20 rule” derived from this concept. Pareto ef-

�ciency claims that an e�cient system should be one in such an

optimal status – that no one can gain further bene�ts without hurt-

ing the others. If a system is not Pareto e�cient, we can promote

it by Pareto improvements – to increase the bene�ts of some users

while not decreasing the others’ – until the system is e�cient.

Pareto e�ciency is widely considered not only in economic anal-

ysis [12], but in various engineering tasks, e.g., electric power distri-

bution [47], network bandwidth allocation [50], and task scheduling

in cloud computing systems [45], etc.

However, though as a major form of service allocation on the

Web, current recommender systems seldom consider whether the al-

locations are Pareto e�cient or not in an economic sense. Basically,

both the content-based [33] and Collaborative Filtering (CF)-based

[11, 19] approaches a�empt to maximize the degree that user pref-

erences are matched by the recommended items [37], rather than

viewing the Web economy as a whole, where the bene�ts of dif-

ferent users can be mutually correlated. �is results in the Pareto

ine�ciency of the recommendations – that the system is not su�-

ciently optimized to reach the best status, so that it is still possible

to bene�t the experience of some users without hurting the others.

In this work, we propose Pareto E�cient Economic Recommen-

dation (PEER) for optimal online resource allocation. With solid

economic theories and real-world user behavior records, we esti-

mate the per-user utility and surplus on each item to measure the
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user bene�ts. Based on this, we propose a Multi-Objective Opti-

mization (MOO) framework to maximize the user bene�ts jointly,

so as to �nd the Pareto optimal solution for e�cient service alloca-

tion among users. �is allocation can thus be adopted to provide

personalized recommendations in recommender systems.

Over the years, many e�ective recommendation algorithms have

been developed and they are widely applied to practical systems.

Although their provided recommendation results may not be Pareto

e�cient, taking advantage of the many existing algorithms can help

to reduce the complexity in practical applications. �erefore, we

further propose a Pareto Improvement Process (PIP) on top of any

given recommendation algorithm, which promotes the recommen-

dation results to Pareto e�cient ones by Pareto improvements.

Results on real-world E-commerce datasets show that, PIP in-

creases both the recommendation performance and allocation ef-

�ciency of traditional recommendation algorithms, while a direct

PEER approach gains the best performance on both aspects.

In the rest of the paper, Section 2 introduces some basic concepts

for the work. In Section 3 we propose our Pareto e�cient economic

recommendation framework based on MOO, and in Section 4, we

further provide the Pareto improvement process to boost the e�-

ciency of existing recommendation algorithms. Some discussions

are made in Section 5, with experimental results provided in Sec-

tion 6. We present the related work in Section 7 and conclusions in

Section 8.

2 BASIC CONCEPTS AND DEFINITIONS
In this section, we formally introduce the key concepts of utility,

surplus, and Pareto e�ciency from economics, which will serve as

the theoretical basis of our framework.

2.1 Utility and Surplus
In economics, utility measures one’s satisfaction over one or a

portfolio of goods or services. Utility can be measured in terms of

money, and it is the basic concept that serves as the underpinning

of the rational choice theory [10].

Utility U (q) is usually a function of the consumption quantity

q, and is inherently governed by the Law Of Diminishing Marginal
Utility [38], which states that as a person increases the consumption

of a product, there is a decline in the marginal utility that he derives

from consuming each additional unit of the product, e.g., when

forcing a person who is full to consume an additional bread. �is

gives U ′′(q) < 0, while the marginal utility U ′(q) > 0.

Economists have introduced various forms for utility, for exam-

ple, the most representative King-Plosser-Rebelo (KPR) utility:

U (q) = a ln(1 + q) (1)

where the parameter a measures the risk aversion as well as the

overall li� of the curve.

Based on the theories of rational choice, a consumer would

purchase a product/service only if she thinks that the utility she

gains from the product is higher than the price that she has to pay,

and surplus measures the extra amount of satisfaction she gains

beyond the paid price in the transaction. Let P be the per-product

price, thus the surplus S(q) is:

S(q) = U (q) − P · q (2)

In modern economics, the concept of surplus has solid theoretical

origins from the supply-demand economic analysis framework

[5, 6], and it is adopted to quantify the bene�ts of consumers in

economic systems.

2.2 Multi-Objective Optimization
Multi-Objective Optimization (MOO) originally grew out of three

areas [28]: economic equilibrium and welfare theories, game theory,

and pure mathematics. �e mathematical and economic approaches

to MOO were united with the inception of game theory by Borel in

1921 [44]. �e general MOO problem is posed as follows:

maximize

x
F(x) = [F1(x), F2(x), · · · , Fk (x)]ᵀ

s .t . дr (x) ≤ 0, r = 1, 2, · · · , s
hl (x) = 0, l = 1, 2, · · · , e

(3)

where k is the number of objective functions, s is the number of

inequality constraints, and e is the number of equality constraints.

x ∈ Rn is a vector of decision variables, and F(x) ∈ Rk is a vector of

objective functions Fi (x): Rn → R. All vectors are column vectors,

and any comparison (≤, ≥, etc.) of vectors applies to each element.

�e objective functions Fi (x) in multi-objective optimization

problems are usually mutually correlated, so that the increase on

one objective may lead to the decease of another. As a result, given

an MOO problem, we are usually interested in its Pareto e�cient

solutions, which are introduced in the following subsection.

2.3 Pareto E�ciency and Improvement
Di�erent from single-objective optimization, there is typically no

single global solution to an MOO problem. Usually there exist a

set of points that all �t a predetermined de�nition for an optimum.

�e predominant concept in de�ning an optimal point is Pareto

e�ciency (or Pareto optimal) (Pareto 1906) [32], which is,

De�nition 2.1. A point x∗ is Pareto e�cient i� there does not

exist another point x, such that F(x) ≥ F(x∗) with at least one

Fi (x) > Fi (x∗). Otherwise, x∗ is Pareto ine�cient.

De�nition 2.2. Pareto Frontier: �e set of all Pareto e�cient

points is called the Pareto (e�cient) frontier.

It would be important to note that Pareto e�ciency itself does not

imply equality or fairness in an economic system. In fact, a Pareto

e�cient status can be extremely unbalanced – that a few individuals

may take a great share of the bene�ts, while the remaining ones

possess only a small portion. As a result, we may need to take

special consideration to �nd the economically favorable Pareto

e�cient solution to a system.

De�nition 2.3. Pareto Improvement: A status from point x1 to

x2 is called a Pareto improvement i� F(x1) ≤ F(x2) with at least

one Fi (x1) < Fi (x2).

De�nition 2.4. Utopia Point: A point F◦ ∈ Rk is a utopia point

i� for each i = 1, 2, · · · ,k , F◦i = maximize

x
Fi (x). �e corresponding

variable x◦i is the utopia decision variable.

Intuitively, a Pareto improvement is an action conducted in a

system that harms no one and helps at least one person. Pareto

improvements will keep adding to the economy until it achieves
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a Pareto optimum (convergence), where no more Pareto improve-

ments can be made [28].

Utopia point (or ideal point) is the most ideal solution to an MOO

problem, but in general it is una�ainable. However, it can help to

�nd the Pareto optimal solution to MOO.

3 PARETO EFFICIENT ECONOMIC
RECOMMENDATION

We propose our Pareto E�cient Economic Recommendation (PEER)

framework in this section. We �rst formalize the problem into an

Online Resource Allocation (ORA) framework with multi-objective

surplus maximization, and further propose methods to estimate the

personalized utility and surplus with economic theories.

3.1 Problem Formalization
Suppose there existm users {u1,u2, · · · ,um } in an online economic

system, and there aren items {v1,v2, · · · ,vn } to be allocated among

the users, where the maximum quantity of each item consists the

quantity vector q = [q1,q2, · · · ,qn ]ᵀ . In the following, we use

1 ≤ i ≤ m and 1 ≤ j ≤ n to index the users and items, respectively.

�e Online Resource Allocation (ORA) [52] problem aims to �nd

an allocation matrix Q = [Qi j ]m×n , where Qi j ≥ 0 is the quantity

that user ui is provided with item vj , under the maximum quantity

constraint of

∑m
i=1

Qi j ≤ qj , ∀j.
Pareto e�cient recommendation thus a�empts to provide rec-

ommendations according to the Pareto e�cient allocation of the

online services in terms of per-user bene�ts (i.e., surplus). Let Qi
be the allocation vector for user ui so that Q = [Q1Q2 · · ·Qm ]ᵀ ,

and let Si (Qi ) be the surplus that user ui achieves from his/her

allocated items. We aim to solve the following MOO problem,

maximize

Q=[Qi j ]m×n
S(Q) = [S1(Q1), S2(Q2), · · · , Sm (Qm )]ᵀ

s .t . Qi ≥ 0, i = 1, 2, · · · ,m
m∑
i=1

Qi j ≤ qj , j = 1, 2, · · · ,n

(4)

which maximizes the surpluses of di�erent users jointly. �e model

produces Pareto e�cient allocations on user bene�ts, which are

taken to make system decisions.

3.2 Model Speci�cation
�e key to specifying the mathematical form of Eq.(4) is to calculate

the per-user surplus Si (Qi ) given an arbitrary allocation matrix Qi .

Let Pj be the price of item vj , which is pre-known, we have,

Si (Qi ) =
n∑
j=1

Si (Qi j ) =
n∑
j=1

(
Ui j (Qi j ) − Pj ·Qi j

)
(5)

where Ui j (·) is the utility of user ui on item vj . It is important to

notice that the utility functionUi j (·) is personalized – that di�erent

users may gain di�erent utilities even on the same quantity of the

same item. �is is because of the di�erent preferences of users,

namely, a product favored by this user may not be quite favored by

another one, and this nature serves as the inherent driving power

for personalized recommendation.

In this work, we estimate the personalized utilityUi j (q) per user-

item level to represent the personalized user preference on each

item. Speci�cally, the utility for di�erent user-item pairs share the

same form but are parameterized by di�erent parameters:

Ui j (q) = ai j ln(1 + q) , (α + βi + γj + uᵀi vj ) ln(1 + q) (6)

where the risk aversion parameter ai j is re-parameterized in the

spirit of collaborative �ltering: α , βi ,γj are the global, user, and

item o�sets; and ui , vj ∈ Rk+ are the user and item representation

vectors, respectively.

As a result, the calculation of per-user surplus boils down to the

estimation of per user-item utility function Ui j (q).

3.3 Personalized Utility Estimation
Similar to [52], we conduct personalized utility estimation based

on the observed user purchasing records. Let qi j be the quantity

that user ui purchased item vj , and Si j (qi j ) = Ui j (qi j ) − Pjqi j be

the surplus that user ui gains from this purchase. �en the Law of
Zero Surplus for the Last Unit [13] in economics states that,

∆Si j (qi j ) = Si j (qi j ) − Si j (qi j − 1) ≥ 0

∆Si j (qi j + 1) = Si j (qi j + 1) − Si j (qi j ) < 0

(7)

Intuitively, it means that the reason a user purchases a quantity of

qi j on an item, is that he/she can still obtain increased surplus with

the last unit, but even a single more unit of purchase will decease

the surplus. With this, we maximize the following log-likelihood

of observing the whole purchasing records dataset D,

maximize

Θ
logp(D)

=

m∑
i=1

n∑
j=1

Ii j
(
Pr

(
∆Si j (qi j ) ≥ 0

)
Pr

(
∆Si j (qi j + 1) < 0

) )
− λ‖Ω‖2F

(8)

where Ω = {α , βi ,γj , ui , vj }m n
i=1j=1

is the parameter set, Ii j is an

indicator whose value is 1 when user ui purchased item vj in the

dataset and 0 otherwise, λ > 0 is the regularization coe�cient,

and ui , vj ∈ Rk+ are non-negative. We adopt the commonly used

sigmoid function to model the probabilities:

Pr
(
∆Si j (qi j ) ≥ 0

)
=

1

1 + exp(−∆Si j (qi j ))
Pr

(
∆Si j (qi j + 1) < 0

)
= 1 − Pr

(
∆Si j (qi j + 1) ≥ 0

) (9)

We optimize Eq.(8) by Stochastic Gradient Descent (SGD) to get

the optimal parameter set Θ, thus obtain the per user-item utility

functions Ui j (q) = (α + βi + γj + uᵀi vj ) ln(1 + q).

3.4 MOO Scalarization
Given utility functions Ui j (q), prices Pj , and quantity constraints

q = [q1,q2, · · · ,qn ]ᵀ , the MOO function in Eq.(4) is determined

only on the allocation matrix Q = [Qi j ]m×n .

Since its existence, researchers have proposed various approaches

to multi-objective optimization, and they can be generally classi�ed

into a priori, a posteriori and interactive methods, which involve the

preference information from the decision maker priorly, posteriorly,

or interactively during the model learning process [28].

In this work, we adopt the a priori approach because we aim

at an o�ine learning algorithm for Pareto e�cient allocation. To
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do so, we adopt the scalarization method to transform the multi-

objective problem into a single-objective one. When scalarization

is done neatly, Pareto optimality of the solutions obtained can be

guaranteed [29]. It is proven that minimizing the following function

is necessary and su�cient for Pareto optimality of Eq.(4) [28, 49]:

minimize

Q=[Qi j ]m×n
S(Q) =

m∑
i=1

wi

(
Si (Qi ) − S◦i

)
2

s .t . Qi ≥ 0,

m∑
i=1

Qi j ≤ qj , ∀i, j
(10)

where w1,w2, · · · ,wm ≥ 0 are the weights set by the decision

maker, whose relative values re�ect the decision maker’s preference

on the importance of each user. Mathematically, di�erent choices

of weights will result in di�erent Pareto e�cient optima, although

many of them can be extremely unbalanced. Because we treat the

bene�ts of each user equally and do not pose any special preference

on speci�c users, we adopt identical weights wi = 1 in this work.

S◦i is the Utopia point for user ui , which is determined by the

maximum possible surplus of the user. We already have:

Si (Qi j ) = Ui j (Qi j ) − PjQi j = ai j ln(1 +Qi j ) − PjQi j (11)

Let derivative be zero with respect to global quantity limits:

S ′(Qi j ) =
ai j

1 +Qi j
− Pj = 0, w .r .t . Qi j ≤ qj (12)

We thus have the utopia decision variable Q◦i j and utopia point S◦i :

Q◦i j = min

(
ai j

Pj
− 1, qj

)
,∀j = 1, 2, · · · ,n

S◦i =
n∑
j=1

(
Ui j (Q◦i j ) − PjQ

◦
i j

)
,∀i = 1, 2, · · · ,m

(13)

With these components, we plug Eq.(5)(6)(13) and wi = 1 into

Eq.(10) for model speci�cation.

3.5 Model Learning
We transform Eq.(10) into a non-constrained problem with penalties,

so that it can be conveniently solved with gradient optimization.

More concretely, we transform the two constraints into penalty

terms added to the objective to penalize infeasible solutions:

minimize

Q=[Qi j ]m×n
L(Q) =

∑
i

(∑
j

(
ai j ln(1 +Qi j ) − PjQi j

)
− S◦i

)
2

−λ1

∑
i, j

log(Qi j ) − λ2

∑
j

min

{
0,qj −

∑
i
Qi j

} (14)

where the second term is the log-barrier function that prevents

the elements in Q from approaching the nonnegative cone, and

the last term is a hinge-loss that penalizes an allocation that vi-

olates the quantity constraint. One may also use the hinge-loss

−λ1

∑
i, j min{0,Qi j } for Q ≥ 0, but this would give sparse optima,

which are not favored in this work because we rely on the result

allocation matrix Q to rank all the items for each user.

In Eq.(14), λ1, λ2 ∈ R+ determine the tradeo� between the ac-

curacy of the approximation procedure and the feasibility of the

solution. With λ1 and λ2 → ∞, any violation of the constraints

will be greatly penalized and the solution is guaranteed to be in the

Algorithm 1: Pareto Efficient Allocation

Input: Initial penalty parameters λ
(0)
1
, λ
(0)
2
> 0, step factor

µ > 1, initial learning rate γ (0) < 1, threshold

0 < ϵ1, ϵ2 � 1, dimension k for latent factors u′i , v
′
j

Output: Pareto e�cient allocation matrix Q∗

1 Initialize Θ
(0)
∗ = {α ′, β ′i ,γ

′
j , u
′
i , v
′
j }
m n
i=1j=1

randomly;

2 repeat
3 Θ

(t )
0
← Θ

(t−1)
∗ ;

4 repeat
5 Compute the gradient ∇ΘL(Θ(t )l ) by Eq.(18);

6 Θ
(t )
l+1
← Θ

(t )
l − γ

(t )∇ΘL(Θ(t )l );
7 until ‖Θ(t )l+1

− Θ(t )l ‖ < ϵ1;

8 Θ
(t )
∗ ← Θ

(t )
L ;

9 λ
(t+1)
1

← µλ
(t )
1
, λ
(t+1)
2

← µλ
(t )
2
,γ (t+1) ← γ (t )/µ;

10 until λ(t )
1
> 1/ϵ2 and λ

(t )
2
> 1/ϵ2;

11 return Q∗ ← Q(Θ(t )∗ );

feasible region. However, the objective term maybe dominated by

these two penalty terms, causing the solution to be inaccurate.

To combine the best of two worlds, we propose a sequential

minimization framework: for each �xed pair (λ1, λ2), we optimize

Eq.(14) to �nd a local minimum solution Q(λ1, λ2) which depends

on the current (λ1, λ2), then we increase the parameters (λ1, λ2)
by a factor µ > 1 and restart the optimization with Q(λ1, λ2) as

the initial point. To increase the approximation accuracy when λ1

and λ2 get larger, we increase the number of steps per iteration,

ensuring that the penalty terms will vanish as the solution becomes

feasible, and the objective term will get fully optimized. �e process

is repeated until the current solution is a stationary point.

To apply the sequential minimization framework, we derive the

gradient for Eq.(14), where ∇1

Q ,∇
2

Q ,∇
3

Q denote the gradient for

each of the three additive components:

∇1

Q =

2
(∑

j
Si (Qi j ) − S◦i

) ( ai j

1 +Qi j
− Pj

)m×n
∇2

Q = −λ1

[
1

Qi j

]
m×n
, ∇3

Q = −λ2

(
1m · Iqᵀ−1ᵀmQ<0

) (15)

where 1m is a column vector of 1’s, and Iqᵀ−1ᵀmQ<0
is the indicator

function Ix<0 applied to every element of the vector qᵀ − 1ᵀmQ . As

a result, the gradient of Eq.(14) will be:

∇QL(Q) = ∇1

Q + ∇
2

Q + ∇
3

Q (16)

However, the huge number of users and items in practice makes

it computationally infeasible to directly gradient on the allocation

matrix Q . As a result, we still re-parameterize the allocation matrix

according to the spirit of collaborative �ltering, i.e., let

Qi j = α
′ + β ′i + γ

′
j + u

′ᵀ
i v′j (17)

4



whereΘ = {α ′, β ′i ,γ
′
j , u
′
i , v
′
j }
m n
i=1j=1

is the parameter set, and u′i , v
′
j ∈

Rk+ are latent vectors. As a result, Q becomes an intermediate pa-

rameter and the gradient on low-dimensional parameters Θ is:

∇ΘL(Θ) = ∇QL(Q) · ∇ΘQ = (∇1

Q + ∇
2

Q + ∇
3

Q ) · ∇ΘQ (18)

Once we obtain a closed form solution to compute the gradients,

we can apply various kinds of unconstrained minimization algo-

rithms, e.g., gradient descent, conjugate gradient or L-BFGS [3].

For illustrative purposes, we provide an algorithm using gradient

descent in Algorithms 1. Assuming the algorithm will perform τ
iterations in each inner loop, the time complexity of Algorithm 1 is

O(τmn logµ ( 1

λϵ )).
With the Pareto e�cient allocation matrix Q∗ produced by the

algorithm, we can thus provide the personalized recommendation

list for each user ui by ranking the items vj in descending order of

the quantity Q∗i j allocated to him/her.

4 PARETO IMPROVEMENT PROCESS
Researchers have developed many successful personalized recom-

mendation algorithms, which are widely applied to various practi-

cal systems. Taking advantages of their insightful designs can be

bene�cial to both the practitioners and recommendation results.

Although they do not primarily consider Pareto e�ciency of

the recommendations, their results can be promoted into Pareto

e�cient ones, which improves the user bene�ts, and meanwhile

keeps a satisfactory recommendation performance. To this end, we

propose a Pareto Improvement Process (PIP) in this section.

We �rst construct the replication allocation matrix Q̂ from the

recommendation results of a given recommendation algorithm. Let

the top-K recommendation list for user ui given by the algorithm

be Ri = {vi1 ,vi2 , · · · ,viK }, we construct the corresponding recom-

mendation vector ri = [Ivj ∈Ri ]n×1, where the j-th element is 1 if

the j-th item is in the recommendation list, and 0 otherwise. With

the vectors for all users, we have Q̂ = [r1r2 · · · rm ]ᵀ .

Note that Q̂ may not satisfy the quantity constraint q = [q1,q2 · · ·qn ]ᵀ .

To make it feasible, we examine each column of Q̂ , and if

∑m
i=1

Q̂i j >

qj , we only retain a total number qj of 1’s in that column. �ese

1’s correspond to the users whose recommendation list Ri ranks

item vj in higher position, i.e., we allocate the limited number of

item vj to those users who be�er prefer the item. To help with a

clearer understanding, we present the procedure in Algorithm 2.

Based on the replication allocation matrix Q̂ , we calculate the

current bene�t Ŝi = Si (Q̂i ) for each user ui , and further solve the

following Pareto improvement problem:

maximize

Q=[Qi j ]m×n
S(Q) = [S1(Q1), S2(Q2), · · · , Sm (Qm )]ᵀ

s .t . Qi ≥ 0,

m∑
i=1

Qi j ≤ qj , Si (Qi ) ≥ Ŝi , ∀i, j
(19)

where the third constraint is incorporated to guarantee Pareto

improvements.

Algorithm 2: Replication Matrix Construction

Input: Top-K recommendation list

Ri = {vi1 ,vi2 , · · · ,viK } for each user ui , quantity

constraint q = [q1,q2, · · · ,qn ]ᵀ
Output: Replicate allocation matrix Q̂

1 for each user ui (i ← 1 tom) do
2 ri ← [Ivj ∈Ri ]n×1; //identi�cation vector

3 pi ← [∞]n×1; //ranking position vector

4 for each item vj (j ← 1 to n) do
5 if vj ∈ Ri and vj ≡ vik then
6 pi j ← k ; //record the ranking position

7 Q̂ ← [r1, r2, · · · , rm ]ᵀ ;

8 for each item vj (j ← 1 to n) do
9 if

∑m
i=1

Q̂i j > qj then
10 Rank users (ui ’s) in ascending order of pi j ;
11 Keep Q̂i j = 1 for top-qj users and change the

remaining to 0;

12 return Q̂ ;

Similarly, Eq.(19) can be scalarized and further converted into

the following non-constrained optimization problem:

minimize

Q=[Qi j ]m×n
L̂(Q) =

∑
i

(
Si (Qi ) − S◦i

)
2

− λ1

∑
i, j

log(Qi j )

− λ2

∑
j

min

{
0,qj −

∑
i
Qi j

}
− λ3

∑
j

min

{
0, Si (Qi ) − Ŝi

} (20)

where the gradient for the last term is:

∇4

Q = −λ3

(
IS(Q )−Ŝ<0

· 1ᵀn
)

(21)

With the gradients∇Q L̂(Q) = ∇1

Q+∇
2

Q+∇
3

Q+∇
4

Q and∇ΘL̂(Θ) =
∇Q L̂(Q) · ∇ΘQ , we can still adopt Algorithm 1 for model learning,

and take the output Pareto e�cient allocation matrix for personal-

ized recommendation.

5 DISCUSSIONS
We further discuss some of the properties of the Pareto e�cient

economic recommendation framework and Pareto improvement

process.

We can see that when qj = ∞ (∀j) in Eq.(4), the quantity con-

straint components in Eq.(10)(14) (19)(20) all vanish, and ∇3

Q = 0

in Eq.(15). As a result, the model learning process automatically

turns into a non-constrained one. Besides, the surplus Si (Qi ) that

each user achieves from an allocation are no longer mutually corre-

lated in this case, thus the Pareto e�cient model learning actually

maximizes the surplus of each user independently, and reaches the

utopia points. As a result, the quantity constraints (i.e., limited

resource allocation) serve as the critical component to bridge the

relationship of di�erent users, because the allocation of an item to

one user may imply that other users are neglected, which is similar

to our physical economic world.

Except for the consumer surplus (i.e., utility beyond price: U (q)−
Pq) that we have considered in this work, economists have also

studied producer surplus, i.e., price beyond cost: Pq −cq, where c is
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the per-item cost. In this work, we do not incorporate producer sur-

plus into consideration for total surplus maximization (as [52]) for

two reasons, 1) the producer surplus will mathematically be a �xed

value when all items are allocated out, and 2) the price component

(Pq) o�sets when adding the producer and consumer surplus for

total surplus maximization, as a result, some users may be sacri�ced

for the maximization of collective interest (total surplus), which is

philosophically not favored. In this work, however, we guarantee

that each user bene�ts and no one has to sacri�ce for the whole

economic system.

As stated before, the weight parameters wi in Eq.(10) determine

the distribution of bene�ts among users, and di�erent choices ofwi
lead to di�erent Pareto e�cient allocations. Although we choose

to treat users equally by se�ing identical wi ’s in this work, we

can actually control the distribution of bene�ts among di�erent

users with di�erent weights, so as to achieve targeted (but still

Pareto e�cient) allocations for speci�c business intelligence goals

in real-world systems.

6 EXPERIMENTS
We conduct extensive experiments to evaluate the performance of

both the Pareto E�cient Economic Recommendation (PEER) and

Pareto Improvement Process (PIP), in terms of recommendation

performance, economic e�ciency, and Pareto e�ciency.

6.1 Dataset Description
We take the user purchasing records dataset from Shop.com for ex-

periments, because two of the most important information sources

needed in our framework are the price of items and quantity of pur-

chasing, which are absent in many of the other datasets. To avoid

the problem of cold-start [23, 51] so as to focus on our key research

target of Pareto e�cient recommendation, we select those users

and items of at least �ve purchasing records, which is a frequently

adopted pre-processing method in previous work [22, 23, 46]. Some

statistics of our dataset are summarized in Table 1.

Table 1: Statistics of the Shop.com dataset
#Consumers #Products #Transactions Density Train/Test

34,099 42,691 400,215 0.03% 75%/25%

For experimental purpose, we randomly select 75% of the trans-

actions from each user to construct the training set, and adopt the

remaining transactions as testing set for evaluation. �is amounts

to around 100k transactions from 34k users towards 30k items in

the testing set.

6.2 Experimental Setup
We set the initial penalty parameters λ

(0)
1
= λ
(0)
2
= 0.1, step factor

µ = 2, initial learning rate γ (0) = 0.1, threshold ϵ1 = ϵ2 = 0.1, and

dimension of latent factors k = 20 in Algorithm 1. In the experi-

ments, we aim to provide and evaluate top-N recommendation lists

for users, where N runs from 1 to 50. As a result, we set the length

of recommendation list K = 50 when constructing the replication

allocation matrix in Algorithm 2, so that the baselines get fair (or

even be�er) treatment.

When estimating the personalized utility function in Eq.(8), we

set λ = 0.05 and the dimension of representation vectors ui , vj ∈
Rk+ as k = 20, because we �nd that 20 factors are su�ciently enough

to stable the model performance.

We take the following representative and state-of-the-art recom-

mendation algorithms for performance comparison:

• NMF: Non-negative Matrix Factoration [21], which is a

representative and one of the most frequently used matrix

factorization approach for personalized recommendation.

To apply, we construct the user-item purchasing quantity

sparse matrix and predict the missing values, based on

which to provide personalized recommendation list for

each user in descending order of the predictions.

• BPRMF:BayesianPersonalizedRanking withMatrix Factori-

zation [34] that is one of the state-of-the-art approaches

for ranking-based recommendation. In implementation,

we conduct balanced negative sampling on un-purchased

items for model learning.

• TSM: Total Surplus Maximization [52] approach that max-

imizes the total (i.e., consumer plus producer) surplus of

an economic system for service allocation and recommen-

dation. It is a state-of-the-art economic surplus-based ap-

proach for recommendation.

For each approach we carefully tune the parameters to achieve

the best performance. In NMF and BPRMF, we select 20 factors with

regularization coe�cient λ = 0.1, and for TSM we also use 20 factors

and use λ = 0.05,η = 5 for regularization. In the following, we use

PEER to represent our Pareto E�cient Economic Recommendation

approach proposed in this work. Besides, we also apply our Pareto

Improvement Process (PIP) on three of the baselines for evaluation,

which are denoted as PIP-NMF, PIP-BPRMF, and PIP-TSM in the

following, respectively.

We adopt di�erent evaluation metics for di�erent experimental

tasks, which will be exposited in each of the following subsections.

6.3 Recommendation Performance
We �rst evaluate the performance on personalized recommendation

for each approach. To do so, we construct top-N recommendation

list for each user in the testing set based on each algorithm, and

take the Conversion-Rate@N (CR@N) for evaluation.

For a set of testing users and the top-N recommendation list for

each of them, CR@N is the percentage of lists that ‘hit’ the purchase

records in the testing set of the target user. In our experiment, N
runs from 1 to 50 with a step of 5. For each user in the testing set,

there are as many as 30k candidate products for recommendation,

and all the candidate products are present in the training dataset.

For computational e�ciency, we randomly select 1000 users to

evaluate average CR at each time, and the CR performance of 30

testing rounds are averaged to provide the �nal evaluation results.

Figure 1(a) shows the experimental results of each algorithm, and

more speci�c numbers on typical choices of N are shown in Table 2.

We see that our PEER approach generally gains be�er performance

than traditional algorithms (NMF and BPRMF). On considering that

the key di�erent of PEER from previous algorithms is to model user

preferences with economic basis (personalized utility and surplus
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Table 2: Evaluation on averaged Conversion Rate (CR@N), Consumer Surplus (CS@N), Percentage Utopia Surplus (PUS@N)
on Top-N recommendation lists, where N = 1, 5, 10, 20. In each column, the improvement from ai to b j is signi�cant at 0.05
level for i < j, but numbers from di�erent columns are not comparable.

N 1 5 10 20 Q

Algorithm CR(%) CS($) PUS(%) CR(%) CS($) PUS(%) CR(%) CS($) PUS(%) CR(%) CS($) PUS(%) PUSQ (%)
NMF 0.06

1
4.65

1
0.001

1
0.10

1
15.52

1
0.003

1
0.10

1
27.86

1
0.008

1
0.20

1
48.15

1
0.011

1
/

BPRMF 0.10
1

8.84
1

0.001
1

0.24
2

20.54
1

0.006
1

0.28
2

36.62
1

0.013
1

0.51
3

72.04
1

0.014
1

/

TSM 0.20
1

62.25
2

0.002
1

0.30
2

205.84
3

0.012
1

0.30
2

398.25
3

0.017
1

0.62
4

562.20
3

0.027
/

54.61
2

PIP-NMF 0.15
1

26.92
2

0.001
1

0.20
1

73.06
2

0.007
1

0.23
2

108.75
2

0.013
1

0.34
2

228.35
2

0.018
/

32.25
1

PIP-BPRMF 0.15
1

41.60
2

0.002
1

0.26
2

133.85
2

0.013
1

0.36
2

187.76
2

0.016
1

0.65
4

366.67
2

0.021
/

37.58
1

PIP-TSM 0.31
2

72.30
2

0.002
1 0.423

226.76
3 0.0201

0.45
3

413.17
3

0.017
1

0.73
5

573.05
3

0.035
/

86.14
3

PEER 0.342 96.353 0.0031
0.38

3 335.754
0.018

1 0.463 560.284 0.0261 0.775 710.584 0.0522 93.314

integrating the consideration of price and quantity), this implies the

e�ectiveness of principled economic basis in business intelligence.

Another observation is that PEER also outperforms TSM, which

is interesting because the allocation results produced by TSM is

in fact also a Pareto e�cient solution, while the di�erence is that

TSM takes producer surplus into consideration for allocation of

bene�ts. �is observation veri�es the economic intuition that pro-

ducers and consumers have con�icts of interest in the allocation

of total internet welfare (surplus), so that each party has to “steal”

surplus from the other side so as to bene�t themselves. As a result,

maximizing the bene�ts of consumers alone (instead of together

with producers) helps consumers to gain be�er experience.

We also see that the PIP-boosted algorithms are generally be�er

than their corresponding non-PIP version, which is not surpris-

ing because we re-optimize their outputs to be�er align with the

personalized utilities of users for Pareto e�ciency. But what is sur-

prising is that they did not signi�cantly outperform the randomly

initialized PEER approach.

More detailed examinations show that the recommendation lists

of NMF and BPRMF lead to heavily unbalanced service allocations

among di�erent users a�er processing by Algorithm 2, that those

active users tend to possess much higher surplus than inactive users.

�is is because the inactive users are usually recommended with

the similar (mostly popular) items, so that they have to compete for

the limited bene�ts from these items. As a result, the optimization

procedure of Algorithm 1 will �nally converge into unbalanced

Pareto e�cient solutions. But because TSM has already taken

user balance into consideration, its PIP-boosted version achieves

comparable performance with PEER.

6.4 Economic E�ciency
We evaluate the economic e�ciency of the proposed algorithm

in this section. To do so, we calculate the accumulated consumer

surplus of a top-N recommendation list and average across the

users, which is de�ned as follows:

CS@N =
1

M

M∑
i=1

∑
j ∈Πi,N

(
ai j ln(1 +Qi j ) − PjQi j

)
(22)

where i and M are the index and the total number of testing users,

N is the length of recommendation list, and Πi,N is the recommen-

dation list for the i-th user. For fair comparison between algorithms,
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Figure 1: Comparison of di�erent algorithms on (a) recom-
mendation performance and (b) economic e�ciency. �e x-
axis is the length of recommendation list, and the y-axis is
(a) conversion rate and (b) average consumer surplus.

we take Qi j = 1 for the recommended items, which means that a

user will �nally purchase one for each item in the recommendation

list. Figure 1(b) shows the results on averaged consumer surplus v.s.

the length of recommendation lists, and detailed results on selected

recommendation lengths are displayed in Table 2.

We see that the average consumer surplus is signi�cantly boosted

by the Pareto Improvement Process (PIP) on traditional recommen-

dation algorithms of NMF and BPRMF, which validates the e�ec-

tiveness of our PIP approach on promoting the economic e�ciency

of traditional algorithms. However, we also observe that PIP does

not achieve signi�cant improvement on TSM. �e underlying rea-

son can be that TSM is also designed with a philosophy of surplus

maximization. Although it a�empts to maximize the joint surplus

of both consumers and producers, it has indeed taken the bene�t

of users into consideration. Nevertheless, by maximizing the joint

consumer surplus in a direct manner, the PEER approach gains the

best performance on economic e�ciency in terms of accumulated

consumer surplus.

Besides, we see that the CS@N of NMF and BPRMF increases ap-

proximately linearly with the increase of recommendation length N ,

while in the surplus-driven approaches (e.g., PEER, TSM, PIP-TSM),

CS@N tends to increase with diminishing marginal increments.

�is shows that the surplus-driven approaches are able to rank

those items of higher surplus for users to top positions in the list,

while traditional algorithms tend to distribute the items according
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to the probability of user likeness, with li�le consideration of the

amount of bene�ts that an item brings to a user.

6.5 Pareto E�ciency
We also care about the Pareto e�ciency of the recommendation

(allocation) results, which measures the degree that a Web economic

system is close to its best possible e�cient resource allocation status.

To do so, we calculate the averaged Percentage Utopia Surplus

(PUS) when a top-N recommendation list is provided to each user:

PUS@N = 1

M
∑M
i=1

(
Si (QN )/S◦i

)
whereQN is the allocation matrix

corresponding to the top-N recommendation lists of M testing

users – that each recommended item is allocated with a quantity

of one to its corresponding user. We also calculate the PUS value

given the directly estimated allocation matrixQ for those applicable

algorithms (i.e., PEER, PIP-X, and TSM), and this result is shown as

PUSQ in Table 2.

We see that the PEER approach generally gains the best PUS@N

performance on most selections of recommendation length N , but

the results are not statistically signi�cant except N = 20 and against

NMF or BPRMF, because the consumer surplus is too small when

only a few (i.e., N ) items are provided. However, results become

clearer when we do not limit the number of provided items, and

evaluate PUS on the output allocation matrix Q directly, as shown

in the last column of Table 2. Note that the NMF and BPRMF

algorithms do not produce any allocation matrix directly, so the

PUSQ measure is not applicable to them.

It is seen that PIP-NMF/BPRMF did not achieve satisfactory

PUS even a�er promoting by PIP. Detailed examinations indicate

that this is also due to the unbalanced initial allocations given by

NMF/BPRMF, so that some users possess very high initial surplus.

Per the nature of Pareto improvement that avoids hurting anyone,

those users dominate the allocations so that other users eventually

gain only small surplus values, leading to low average PUS results.

In contrast, by treating consumer surplus in a balanced manner,

TSM gives be�er initial surpluses and the PUS can be further pro-

moted by the PIP framework. Finally, by optimizing the consumer

surpluses toward utopia points directly, the PEER approach gains

signi�cantly the best average PUS – which when combined with

the observed improvement from TSM to PIP-TSM – veri�es the

Pareto e�ciency of our proposed optimization algorithms.

7 RELATEDWORK
�e e�ciency of economic systems has long been a vitally impor-

tant research consideration in economics [4], especially in welfare

economics [16]. Ever since the existence of human social production

in ancient ages, people have been considering the proper, accept-

able, and mutually bene�cial ways for allocation of resources [42].

�e breakthroughs of human production capability brought about

by the �rst and second Industrial Revolution has further driven

the human society to rethink about the ways to e�ciently allocate

goods, capital, energy, and various other types of resources [39].

Although philosophically debated among economists for cen-

turies [30], it was not until the 1900’s that economic e�ciency were

proposed to be clearly and objectively measured – which is called

the Pareto criterion named a�er Italian economist Vilfredo Pareto

(1848-1923) [32], stating that an e�cient status should be a situation

in which it is impossible to make anyone be�er-o� without making

someone worse-o�. Pareto e�ciency (or Pareto optimality) has

been one of the most basic concepts in mainstream economics, and

it is widely used to analyze and optimize the resource allocation in

economic and engineering systems [28].

However, although the Web has shaped into a tremendous on-

line economy by continuously integrating human activities from

o�ine to online, the research community has seldom considered

the Pareto e�ciency of the Web from an economic point of view.

Actually, many of the Web-based services can be formalized into

the classical producer-consumer economic paradigm [52], where

consumers/users consume normal goods, �nancial products, jobs,

or news feeds from producers in E-commerce [20], online �nancing

[9, 26], crowd-sourcing [15, 17], or news portals [24], etc. By im-

plicitly assigning certain items to targeted users in technical forms

of personalized recommendation [18, 37] or search [7, 43], the Web

actually serves a fundamental role in resource allocation on the

massive online economy.

Nevertheless, traditional Web-based approaches mostly make

allocations to match the preference of each individual user, without

treating the system as a whole to examine the mutual in�uence

between user bene�ts. For example, both the Collaborative Fil-

tering (CF)-based [11, 19, 41], Content-based [25, 33], or hybrid

[8] recommendation approaches adopt meticulously designed al-

gorithms to model user preferences, but the recommendation of

an item to one user does not pose e�ect to others. �is lack of

economic system-wise view leads to the Pareto ine�ciency of rec-

ommendation/allocation results.

Recent research lines have begun to tackle the problem. [52]

proposed economic recommendation by automatically estimating

the utility and surplus for each user-item pair from large-scale Web

data, such as consumer purchasing logs and online transactions.

Based on this, [53] further extended the work to multiple product

(i.e., product set) utility estimation, so that we can calculate the

utility of a combination of products by considering their comple-

mentary and substitutive relationships.

It is worthwhile to note that, as a frequently used optimization

strategy, Multi-Objective Optimization and the Pareto optimization

principle have been applied to plenty of research in recommender

systems [1, 2, 27, 31, 35, 36, 40, 48], but the related research mostly

focus on jointly maximizing mutually unaligned recommendation

objectives, e.g., accuracy, novelty, and diversity, etc. In this work,

however, we focus on the economic interpretation of recommender

systems, aiming to quantify and maximize the consumer surplus

(welfare) with MOO from an economic point of view to model the

online economy, which is di�erent from the motivation of previous

MOO-based research.

8 CONCLUSIONS AND FUTUREWORK
Existing approaches of recommender systems focus on providing

targeted recommendations to match the preference of each indi-

vidual user. Although many Web applications have turned into

intact online economic systems, li�le consideration is put on the

essential problem of online economic e�ciency – that why and

how Web-based systems can achieve e�cient service allocations.
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�is paper a�empts to answer these principled questions based

on established economic theories melt with solid data-driven algo-

rithmic approaches. To do so, we �rst formalized the online resource
allocation problem that serves as the basic functionality of most

Web-based systems, and further proposed algorithms to measure

the user bene�ts in terms of utility and surplus. Based on this, we

proposed Pareto e�cient economic recommendation that a�empts

to �nd the Pareto optimal service allocation of the system with

consideration of mutual correlations among users. To bene�t the

many existing personalized recommendation algorithms, we fur-

ther proposed the Pareto improvement process to re-optimize their

recommendation results into Pareto e�cient ones. Experimental re-

sults on real-world industry data veri�ed the proposed approaches

in terms of recommendation performance, consumer surplus, and

Pareto e�ciency.

�is is our �rst step towards an economic e�cient Web, and

there is much room for further improvements. In the future, we

will study di�erent utility functions in measuring consumer surplus.

We can compute other Pareto e�cient solutions beyond the bal-

anced one to get the Pareto frontier and investigate their di�erences

and relations. More importantly, our basic philosophy to promote

Web e�ciency is not restricted to e-commerce, and it can well be

generalized to various other Web services, which is promising to

both interdisciplinary research and practical applications.

ACKNOWLEDGEMENT
We thank the reviewers for the careful reviews and constructive

suggestions. �e work was sponsored by NSF grant CCF-1101741

and IIS-0953908, part of the work is sponsored by the Center for

Intelligent Information Retrieval. Any opinions, �ndings, conclu-

sions, or recommendations expressed in this paper are the authors’,

and do not necessarily re�ect those of the sponsors.

REFERENCES
[1] Gediminas Adomavicius and YoungOk Kwon. 2015. Multi-criteria recommender

systems. In Recommender systems handbook. Springer, 847–880.

[2] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Xuanhui Wang. 2012.

Personalized click shaping through lagrangian duality for online recommenda-

tion. In SIGIR. ACM, 485–494.

[3] Galen Andrew and Jianfeng Gao. 2007. Scalable training of L 1-regularized

log-linear models. In ICML. ACM, 33–40.

[4] Kenneth Arrow. 1962. Economic welfare and the allocation of resources for

invention. In �e rate and direction of inventive activity: Economic and social
factors. Princeton University Press, 609–626.

[5] Paul A. Baran. 1953. Economic Progress and Economic Surplus. Science & Society
(1953), 289–317.

[6] Paul A. Baran. 1966. Monopoly Capital. NYU Press (1966).

[7] Sergey Brin and Lawrence Page. 2012. Reprint of: �e Anatomy of a Large-Scale

Hypertextual Web Search Engine. Computer Networks 56, 18 (2012), 3825–3833.

[8] Robin Burke. 2007. Hybrid web recommender systems. In �e adaptive web.

Springer, 377–408.

[9] Simla Ceyhan, Xiaolin Shi, and Jure Leskovec. 2011. Dynamics of Bidding in a

P2P Lending Service: E�ects of Herding and Predicting Loan Success. WWW
(2011), 547–556.

[10] James S. Coleman and �omas J. Fararo. 1992. Rational Choice �eory. Nueva
York: Sage (1992).

[11] Michael D. Ekstrand, John T. Riedl, and Joseph A. Konstan. 2011. Collaborative

Filtering Recommender Systems. Foundations and Trends in Human-Computer
Interaction 4, 2 (2011), 81–173.

[12] Walter Eucken. 2012. �e foundations of economics: History and theory in the

analysis of economic reality. Springer Science & Business Media (2012).

[13] Daniel Friedman and Skovics Jzsef. 2013. Tractable Consumer Choice. �eory
and Decision (2013), 1–26.

[14] Joshua Gans, Stephen King, and N. Gregory Mankiw. 2011. Principles of Microe-

conomics. Cengage Learning (2011).

[15] Je� Howe. 2006. �e rise of crowdsourcing. Wired magazine 14, 6 (2006), 1–4.

[16] Richard Just, Darell L Hueth, and Andrew Schmitz. 2008. Applied welfare eco-
nomics. Edward Elgar Publishing.

[17] Aniket Ki�ur, Ed H Chi, and Bongwon Suh. 2008. Crowdsourcing user studies

with Mechanical Turk. In SIGCHI. ACM, 453–456.

[18] Joseph A. Konstan and John Riedl. 2012. Recommender Systems: from Algorithms

to User Experience. UMUAI 22, 1-2 (2012), 101–123.

[19] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for

Recommender Systems. Computer (2009).

[20] Kenneth C Laudon, Carol Guercio Traver, and Alfonso Vidal Romero Elizondo.

2007. E-commerce. Pearson/Addison Wesley.

[21] D. D. Lee and H. S. Seung. 2001. Algorithms for Non-negative Matrix Factoriza-

tion. NIPS (2001), 556–562.

[22] Asher Levi, Osnat Mokryn, Christophe Diot, and Nina Ta�. 2012. Finding

a Needle in a Haystack of Reviews: Cold Start Context-Based Recommender

System. RecSys (2012), 115–122.

[23] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjie�hymiades. 2014. Facing the

Cold Start Problem in Recommender Systems. Expert Systems with Applications
41, 4 (2014), 2065–2073.

[24] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized news

recommendation based on click behavior. In IUI. ACM, 31–40.

[25] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011. Content-based

recommender systems: State of the art and trends. In Springer. 73–105.

[26] Chunyu Luo, Hui Xiong, Wenjun Zhou, Yanhong Guo, and Guishi Deng. 2011.

Enhancing Investment Decisions in P2P Lending :An Investor Composition

Perspective. KDD (2011), 292–300.

[27] Nikos Manouselis and Constantina Costopoulou. 2007. Analysis and classi�cation

of multi-criteria recommender systems. World Wide Web 10, 4 (2007), 415–441.

[28] R Timothy Marler and Jasbir S Arora. 2004. Survey of multi-objective optimiza-

tion methods for engineering. Structural and multidisciplinary optimization 26, 6

(2004), 369–395.
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